Questions about Existence of Vector and Scalar Potentials

Recall we had the following picture of the \textit{grad}, \textit{curl}, and \textit{div} differential operators.

\[
\begin{align*}
\{ \text{Functions} &\} \xrightarrow{\text{grad}} \{ \text{Vector fields} &\} \xrightarrow{\text{curl}} \{ \text{Vector fields} &\} \xrightarrow{\text{div}} \{ \text{Functions} &\} \\
\{ f(x,y,z) &\text{ on a domain } E \in \mathbb{R}^3. \} &\rightarrow \{ F = \langle P, Q, R \rangle &\text{ on the domain } E \in \mathbb{R}^3. \} &\rightarrow \{ F = \langle P, Q, R \rangle &\text{ on the domain } E \in \mathbb{R}^3. \} &\rightarrow \{ f(x,y,z) &\text{ on the domain } E \in \mathbb{R}^3. \}\end{align*}
\]

1. **Tests to see if a vector field has a scalar or vector potential.**

 (a) Suppose the vector field \(F \) is equal to \(\nabla f \) for some function \(f \) (we say that \(F \) is conservative, and that it has a scalar potential). Then \(\nabla \times F = \nabla \times \nabla f = 0 \).

 In particular, if \(F \) is a vector field for which \(\nabla \times F \neq 0 \), then you can conclude that \(F \) is NOT the gradient of some function \(f \).

 (b) Suppose the vector field \(F \) is equal to \(\nabla \times G \) for some vector field \(G \) (we say that \(F \) has a vector potential). Then \(\nabla \cdot F = \nabla \cdot \nabla \times G = 0 \).

 In particular, if \(F \) is a vector field for which \(\nabla \cdot F \neq 0 \), then you can conclude that \(F \) is NOT the curl of some vector field \(G \).

2. **Suppose the vector field \(F \) satisfies \(\nabla \times F = 0 \). Is it the case that \(F \) is the gradient of some function \(f \)?**

 (a) The answer can be “No.” Consider the following example.

 \[B = \frac{\langle -y, x, 0 \rangle}{x^2 + y^2} \]

 - Note that the domain of \(B \) is all of \(\mathbb{R}^3 \) minus the \(z \)-axis. This domain has a \textit{one dimensional hole}; that is, a hole which prevents the one dimensional circle
 \[C : \quad r(t) = (\cos(t), \sin(t), 0) \quad 0 \leq t \leq 2\pi \]
 from being the boundary of an oriented surface contained in the domain.
 - It is easy to verify that \(\nabla \times B = 0 \).
 - It is also easy to verify that the line integral \(\int_C B \cdot dr = 2\pi \).
 - Because the path integral about a closed path is non-zero, we conclude that \(B \) is not a gradient.
 - \textit{Key idea: It is a global problem, not a local problem.} We saw in class notes (2-dim version) that \(B \) is locally the gradient of a function; for example, the polar angle function
 \[f(x,y,z) = \tan^{-1}(y/x) \]
 is one such function.

 The key problem is that there is no \textit{globally defined function} \(f \) whose gradient is \(B \). In particular, when one tries to extend the definition of the polar angle function above around the circle unit \(C \) in the \(xy \)-plane, it becomes multivalued (we end up being forced to conclude that values of \(f \) at some point is both \(\alpha \) and \(2\pi + \alpha \)). Note that the circle \(C \) is one of the circles which is not the boundary of an oriented surface in \(\mathbb{R}^3 \) minus the \(z \)-axis.
(b) If the domain has no one dimensional holes, then every simple, closed loop \(C \) is the boundary of an oriented surface \(S \), and then Stokes' Theorem gives
\[
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_S 0 \cdot d\mathbf{S} = 0
\]
Thus Path integrals are independent of the chosen path, and we saw in class how to use these path integrals to build a globally defined function \(f \) with \(\nabla f = \mathbf{F} \). The negative of such an \(f \) is called a (scalar) potential for \(\mathbf{F} \).

3. Suppose the vector field \(\mathbf{F} \) satisfies \(\nabla \cdot \mathbf{F} = 0 \). Is it the case that \(\mathbf{F} \) is the curl of some vector field \(\mathbf{G} \)?

(a) The answer can be “No.” Consider the following example.
\[
\mathbf{E} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{3/2}}
\]
- Note that the domain of \(\mathbf{E} \) is all of \(\mathbb{R}^3 \) minus the origin \((0, 0, 0)\). This domain has a two dimensional hole; that is, a hole which prevents the two dimensional sphere \(S \) defined by \(x^2 + y^2 + z^2 = 1 \) from bounding a solid ball in the domain.
- It is easy to verify that \(\nabla \cdot \mathbf{E} = 0 \).
- It is also easy to verify that \(\iint_S \mathbf{E} \cdot d\mathbf{S} = 4\pi \).
- Because the surface integral of \(\mathbf{E} \) about the closed sphere \(S \) is non-zero, we conclude (by the result from the Stokes’ Theorem handout) that \(\mathbf{E} \) is not the curl of any vector field.
- **Key idea:** It is a global problem, not a local problem. Because \(\nabla \cdot \mathbf{E} = 0 \), it is possible to “integrate” and find locally defined vector fields \(\mathbf{G} \) whose curl equals \(\mathbf{E} \) (do this as an exercise; we did some examples of finding such vector fields in class).
 The problem is that there is no globally defined vector field \(\mathbf{G} \) on \(\mathbb{R}^3 \) minus \((0, 0, 0)\) whose curl is \(\mathbf{E} \). In particular, there is no vector field defined on all of the unit sphere \(S \): \(x^2 + y^2 + z^2 = 1 \) whose curl is equal to \(\mathbf{E} \) on \(S \). (It is a good exercise to try extending different candidates for \(\mathbf{G} \) over all of \(S \) and to think about what goes wrong.) Note that the sphere \(S \) does not bound a solid ball in \(\mathbb{R}^3 \) minus \((0, 0, 0)\).

(b) If the domain has no two dimensional holes, so that every sphere bounds a solid ball, and if \(\nabla \cdot \mathbf{F} = 0 \), then one can argue that \(\mathbf{F} \) is the curl of another, globally defined vector field. The argument involves some integration.

A vector field \(\mathbf{G} \) such that \(\nabla \times \mathbf{G} = \mathbf{F} \) is called a vector potential for \(\mathbf{F} \).

4. **Remark 1.** It can be shown that these are essentially the only examples that occur. Of course a space may have several one or two dimensional holes, but locally (near the holes) the examples will all look like \(\mathbf{B} \) or \(\mathbf{E} \).

5. **Remark 2.** The vector fields \(\mathbf{B} \) and \(\mathbf{E} \) are not esoteric mathematical examples. They occur in nature, and you will meet them in your physics and engineering courses.

- For example, the field \(\mathbf{B} \) is (up to an appropriate positive scalar multiple) the static magnetic field due to a constant electric current flowing up an infinite wire along the \(z \)-axis.
• The field \mathbf{E} is the standard “inverse square law, central force” field. It could be (up to an appropriate negative scalar multiple) the gravitational field due to a mass m at $(0, 0, 0)$. Alternatively, it could be (up to an appropriate positive/negative scalar multiple) the electrostatic field due to a positive/negative charge q at $(0, 0, 0)$.

• You should check that $\nabla \cdot \mathbf{B} = 0$.
• Verify that $\mathbf{A} = (0, 0, -\frac{1}{2} \ln(x^2 + y^2))$ is a vector potential for \mathbf{B}; that is, $\nabla \times \mathbf{A} = \mathbf{B}$.
• (One can verify that the domain of \mathbf{B} has no two dimensional holes! It is possible to fill spheres in this domain in with solid balls in the domain.)
• Now check that $\nabla \times \mathbf{E} = 0$.
• Verify that $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ is a scalar potential for \mathbf{E}; that is, $-\nabla f = \mathbf{E}$.
• (One can verify that the domain of \mathbf{E} has no one dimensional holes; every simple, closed loop in the domain is the boundary of some oriented surface in the domain.)
• Working with vector potentials for Magnetic fields \mathbf{B} and scalar potentials for Electric fields \mathbf{E} will be useful in your EM–class.