Ternary Expansions and the Cantor Set

Geometric Series: Recall a geometric series, which converges for all $|a| < 1$:

$$
\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}
$$

This is a result of the telescoping formula

$$(1-a)(1+a+a^2+\cdots+a^{N-1}) = 1-a^N$$

When $|a| < 1$, taking the limit as N goes to infinity gives the geometric series formula.

We consider the special case where $a = \frac{1}{p}$ for p a natural number greater than or equal to 2. When $p = 2$ we just have the familiar series:

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$$

This series also has the cool property that every tail of the series sums to exactly the previous term before the tail:

$$
\begin{align*}
1 &= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \\
\frac{1}{2} &= \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \\
\frac{1}{2N} &= \frac{1}{2N+1} + \frac{1}{2N+2} + \frac{1}{2N+3} + \cdots
\end{align*}
$$

This property is not unique, however. Let $a = \frac{1}{p}$. Prove that

$$
\sum_{k=N+1}^{\infty} \frac{p-1}{p^k} = \frac{1}{p^N}
$$

for any $p \in \mathbb{N}, p \geq 2$.

Note that, in particular, $\sum_{k=1}^{\infty} \frac{p-1}{p^k} = 1$, regardless of the choice of p.

Expansions of real numbers

Given $p \geq 2$, take any series of the form

$$
\sum_{k=1}^{\infty} \frac{a_k}{p^k}, \quad a_k \in \{0, 1, \ldots, p-1\}.
$$

Prove that this series converges to a real number in $[0, 1]$.
Consider the space of all sequences \(\{a_k\}_{k=1}^{\infty} \) where \(a_k \in \{0, 1, \ldots, p-1\} \). The map

\[
F: \{a_k\}_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} \frac{a_k}{p^k}
\]

is therefore a well-defined map from the space of such sequences to \([0, 1]\). We observe that \(F \) is not quite injective. If \(x \in [0, 1] \) is of the form \(\frac{q}{p^N} \) where \(q \in \mathbb{N}, q < P^N \), show that there are two different sequences \(\{a_k\}_{k=1}^{\infty} \) that \(F \) maps to \(x \).

Next, we want to prove that \(F \) is surjective. Given any \(x \in [0, 1] \), prove (constructively) that there exists a sequence \(\{a_k\}_{k=1}^{\infty} \) such that \(a_k \in \{0, 1, \ldots, p-1\} \) for all \(k \) and

\[
\sum_{k=1}^{\infty} \frac{a_k}{p^k} = x.
\]

Hint: observe that since the series consists of positive terms, the partial sums form a strictly increasing sequence. Also, use Equation (1) above.

You can now describe a bijection between the interval \([0, 1]\) and the space of sequences \(\{a_k\}_{k=1}^{\infty}, a_k \in \{0, 1, \ldots, p-1\} \). When \(p = 10 \), the sequence is just exactly the decimal expansion of the number \(x \), for example,

\[
x = 0.141592... = \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \cdots;
\]

when \(p = 2 \) the sequence is called the binary expansion; when \(p = 3 \), it is the ternary expansion.

The Cantor Set

One way to view the Cantor ternary set is in terms of ternary expansions. Given \(x \in [0, 1] \), there is a sequence of integers \(\{a_k\}_{k=1}^{\infty}, a_k \in \{0, 1, 2\} \) such that the series

\[
\sum_{k=1}^{\infty} \frac{a_k}{3^k}
\]

converges to \(x \). In other words, we can associate \(x \) to the ternary sequence

\[
\{a_1, a_2, a_3 \ldots\}, a_k \in \{0, 1, 2\}.
\]

Prove that the Cantor ternary set is equal to the subset of \([0, 1]\) consisting of all \(x \) which have a ternary expansion for which \(a_k \in \{0, 2\} \) for all \(k \), i.e. the numbers which have an expansion with no 1’s. (Read this carefully in the cases where \(x \) has two possible expansions. If \(x \) has one ternary expansion which contains no 1’s, then it is in the Cantor set.)

Prove that the map we defined in class:

\[
\sum_{k=1}^{\infty} \frac{a_k}{3^k} \mapsto \sum_{k=1}^{\infty} \frac{b_k}{2^k}, \quad b_k = \frac{a_k}{2}
\]

maps the Cantor ternary set \(C \) onto \([0, 1]\), hence proving \(C \) is uncountable.

Prove that if \(a, b \in C \), the Cantor ternary set, with \(a < b \), then there exists a real number \(r \notin C \) such that \(a < r < b \). In other words, the Cantor set contains no intervals.