Quiz 5

Name: key

1. Use a linear approximation (or differentials) to estimate \(\sqrt{49.01} \). Show your work.

Let \(x = 49.01 \), \(f(x) = \sqrt{x} \), and \(\bar{x} = 49 \).

Then \(f(x) \approx f(\bar{x}) + (x - \bar{x}) f'(\bar{x}) \).

So \(\sqrt{49.01} \approx \sqrt{49} + (0.01) \frac{1}{2\sqrt{49}} \).

Since \(f'(x) = \frac{1}{2\sqrt{x}} \), then \(f'(49) = \frac{1}{14} \).

So \(\sqrt{49.01} \approx 7 + (0.01) \frac{1}{14} = 7 + \frac{1}{1400} \).

(Here's how I explained it in class:

\[f(x) = \sqrt{x} \]

\[f'(x) = \frac{1}{2\sqrt{x}} \]

\[P = (49, 7) \]

\[Q = (49.01, 7) \]

\[QS = \frac{1}{14} (0.01) \]

\[\overline{QR} = \text{slope of PR}, \ P Q \]

\[QS \approx f'(7), \ PQ \]

\[QS \approx \frac{1}{14} \times (0.01) \]

\[\sqrt{49.01} \approx 7 + QS = 7 + \frac{0.01}{14} \]

2. If \(f''(x) = \sin x \), \(f'(0) = 7 \), and \(f(0) = 3 \), find \(f(x) \).

Since \(f''(x) = \sin x \),

Then \(f'(x) = -\cos x + C \) for some constant \(C \).

Since \(f'(0) = 7 \), then

\[7 = -\cos 0 + C \], so \(7 = -1 + C \), so \(C = 8 \).

Hence \(f'(x) = -\cos x + 8 \).

Therefore \(f(x) = -\sin x + 8x + D \).

Since \(f(0) = 3 \), then

\[3 = -\sin 0 + 8 \cdot 0 + D \], so \(3 = D \).

So \(f(x) = -\sin x + 8x + 3 \).