Abstract Linear Algebra, Fall 2011 - Solutions to Problems II

1. Suppose v_1, \ldots, v_n is a basis of a vector space V. Show that $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ is also a basis of V.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be scalars such that

$$\alpha_1 v_1 + \alpha_2 (v_1 + v_2) + \cdots + \alpha_n (v_1 + v_2 + \cdots + v_n) = 0.$$

Rearranging, we have

$$(\alpha_1 + \alpha_2 + \cdots + \alpha_n)v_1 + (\alpha_2 + \cdots + \alpha_n)v_2 + \cdots + \alpha_n v_n = 0.$$

By linear independence of v_1, \ldots, v_n,

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0, \alpha_2 + \cdots + \alpha_n = 0, \ldots, \alpha_n = 0.$$

It follows that $\alpha_1 = 0, \alpha_2 = 0, \ldots, \alpha_n = 0$, so $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ are linearly independent. Now $\dim V = n$ and we know from class that any n linearly independent vectors in a vector space of dimension n form a basis. Thus $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ is a basis of V. [Alternatively, one can show directly that $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ generate V. Indeed, the subspace generated by $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ certainly contains v_1. It also contains v_2 (take the difference of the second and first vectors in the list). Similarly, it contains v_3 (take the difference of the third and second vectors in the list). Continuing in this way, we see that it contains v_1, v_2, \ldots, v_n. Since every vector in V is a linear combination of v_1, \ldots, v_n, it follows that $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ generate V.]

2. Let V be an n-dimensional vector space and suppose the vectors v_1, \ldots, v_n generate (or span) V. Show that v_1, \ldots, v_n is a basis of V.

From class, any maximal subset of linearly independent elements in $\{v_1, \ldots, v_n\}$ gives a basis of V. Since $\dim V = n$, any basis of V has n elements. Hence a maximal subset of linearly independent elements in $\{v_1, \ldots, v_n\}$ must have n elements and so must contain v_1, \ldots, v_n. Therefore v_1, \ldots, v_n is a basis of V.

3. Let $A = (a_{ij})$ be an $n \times n$ matrix over a field F. Define $\text{tr}(A)$, the trace of A, to be the sum of the diagonal elements of A:

$$\text{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

a. Show that $A \mapsto \text{tr}(A) : M_n(F) \to F$ is a linear map.

b. Let B be an $m \times n$ matrix and C be an $n \times m$ matrix (both over F). Show that $\text{tr}(BC) = \text{tr}(CB)$.

c. Show that, for any invertible $n \times n$ matrix B (over F), $\text{tr}(BAB^{-1}) = \text{tr}(A)$.
a. Let $A = (a_{ij})$ and $B = (b_{ij})$. Then $A + B = (a_{ij} + b_{ij})$ and

$$\text{tr}(A + B) = \sum_{i=1}^{n} (a_{ij} + b_{ij})$$
$$= \sum_{i=1}^{n} a_{ij} + \sum_{i=1}^{n} b_{ij}$$
$$= \text{tr}(A) + \text{tr}(B).$$

Similarly, for any scalar α, we have $\alpha A = (\alpha a_{ij})$ and

$$\text{tr}(\alpha A) = \sum_{i=1}^{n} \alpha a_{ij}$$
$$= \alpha \sum_{i=1}^{n} a_{ij}$$
$$= \alpha \text{tr}(A).$$

b. Write $B = (b_{ij})$, $C = (c_{kl})$. Then BC is an $m \times m$ matrix with ij-entry $\sum_{j=1}^{n} b_{ij} c_{ji}$. Similarly, CB is an $n \times n$ matrix with kj-entry $\sum_{l=1}^{m} c_{kl} b_{lj}$. Hence

$$\text{tr}(BC) = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{ij} c_{ji}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} c_{ji} b_{ij}$$
$$= \text{tr}(CB).$$

c. We use the preceding problem with $C = AB^{-1}$.

$$\text{tr}(BAB^{-1}) = \text{tr}(B(AB^{-1}))$$
$$= \text{tr}((AB^{-1})B)$$
$$= \text{tr}(AB^{-1}B)$$
$$= \text{tr}(A).$$

4. Let v_1, \ldots, v_m and w_1, \ldots, w_n be bases of a vector space V (over a field F). We know from class that $m = n$ (the number of vectors in a basis of V is uniquely determined). This problem outlines another way to see this (at least for certain fields F). Writing the vectors in each basis as linear combinations of vectors in the other, we see that there are scalars α_{ij} and β_{kl} such that

$$v_i = \sum_{j=1}^{n} \alpha_{ij} w_j, \quad w_k = \sum_{l=1}^{m} \beta_{kl} v_l.$$

Put $A = (\alpha_{ij})$, $B = (\beta_{kl})$ (so A is an $m \times n$ matrix over F and B is an $n \times m$ matrix over F).

a. Show that $AB = I_m$ and $BA = I_n$.
b. Suppose F contains Q. Use $3b$ to show that $m = n$. [In a previous life, you probably studied the row echelon form of a matrix. You can use this to see that $m = n$ without the assumption that F contains Q.]

a. We prove only that $AB = I_m$ (the proof that $BA = I_n$ is effectively identical). First recall from class that, by linear independence of v_1, \ldots, v_m,

$$\sum_{j=1}^{n} \alpha_j v_j = \sum_{j=1}^{n} \beta_j v_j \quad \text{(for scalars } \alpha_j, \beta_j) \implies \alpha_j = \beta_j, \ j = 1, \ldots, m.$$

We have $v_i = \sum_{j=1}^{n} \alpha_{ij} w_j$ and $w_k = \sum_{l=1}^{m} \beta_{kl} v_l$. Substituting the second equations in the first, we obtain

$$v_i = \sum_{j=1}^{n} \alpha_{ij} w_j$$

$$= \sum_{j=1}^{n} \alpha_{ij} \left(\sum_{l=1}^{m} \beta_{jl} v_l \right)$$

$$= \sum_{j=1}^{n} \sum_{l=1}^{m} \alpha_{ij} \beta_{jl} v_l$$

$$= \sum_{l=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} \beta_{jl} \right) v_l.$$

We also have $v_i = \sum_{l=1}^{m} \delta_{il} v_l$ where δ_{il} is Kronecker’s delta symbol, i.e.,

$$\delta_{il} = \begin{cases} 1, & \text{if } i = l, \\ 0, & \text{if } i \neq l. \end{cases}$$

Thus, by the fundamental fact recalled above,

$$\sum_{j=1}^{n} \alpha_{ij} \beta_{jl} = \delta_{il}, \quad 1 \leq i \leq m, \ 1 \leq l \leq m.$$

This set of scalar equations is exactly the single matrix equation $AB = I_m$.

b. Since $AB = I_m$, $\text{tr}(AB) = 1 + \cdots + 1$ (m times) and so $\text{tr}(AB) = m$. Similarly, $\text{tr}(BA) = n$. Using $\text{tr}(AB) = \text{tr}(BA)$, we conclude that $m = n$.

5. Consider the real vector space S of all infinite sequences of real numbers (under component-wise operations). The elements of S are infinite tuples $(\alpha_0, \alpha_1, \alpha_2, \ldots)$ which we write simply as (α_n).

a. Show that S is infinite-dimensional.

b. Give an example of a proper subspace of S that is again infinite-dimensional.

c. Let \mathcal{F} denote the set of sequences (α_n) in S such that $\alpha_n = \alpha_{n-1} + \alpha_{n-2}$, for all $n \geq 2$. Put

$$\tau_1 = \frac{1 + \sqrt{5}}{2}, \quad \tau_2 = \frac{1 - \sqrt{5}}{2}.$$
We saw in class that \(w_1 = (\tau^n_1) \) and \(w_2 = (\tau^n_2) \) form a basis of the subspace \(\mathcal{F} \) of \(\mathcal{S} \). Consider the Lucas sequence \(l = (l_n) \) given by
\[
l_0 = 2, \quad l_1 = 1, \quad l_n = l_{n-1} + l_{n-2} \quad (n \geq 2).
\]
Show that \(l = w_1 + w_2 \) in \(\mathcal{F} \) and deduce that
\[
l_n = \tau^n_1 + \tau^n_2 \quad (n \geq 0).
\]

a. For \(k = 0, 1, \ldots \), we set \(e_k = (\delta_{kn}) \). Thus \(e_k \) has 0 in all positions except the \(k \)-th in which it has a 1. For any positive integer \(N \), the vectors \(e_0, e_1, \ldots e_N \) are linearly independent. Indeed, for any scalars \(\alpha_0, \alpha_1, \ldots, \alpha_N \), we have
\[
\alpha_0 e_0 + \alpha_1 e_1 + \cdots + \alpha_N e_N = (\alpha_0, \alpha_1, \ldots, \alpha_N, 0, \ldots),
\]
so that
\[
\alpha_0 e_0 + \alpha_1 e_1 + \cdots + \alpha_N e_N = 0 \text{ in } \mathcal{S} \implies \alpha_0 = 0, \alpha_1 = 0, \ldots, \alpha_N = 0.
\]
It follows that the dimension of \(\mathcal{S} \) cannot be less than \(N + 1 \) (otherwise, by Theorem 1 from class, any list of \(N + 1 \) vectors in \(\mathcal{S} \), in particular \(e_0, e_1, \ldots e_N \), would be linearly dependent). Since \(N \) is arbitrary, we conclude that \(\mathcal{S} \) must be infinite-dimensional.

b. Let \(\mathcal{S}_{\text{fin}} \) denote the set of all sequences in \(\mathcal{S} \) with only finitely many non-zero terms. In symbols,
\[
\mathcal{S}_{\text{fin}} = \{ s = (\alpha_n) \mid \exists N = N_s \text{ such that } \alpha_n = 0, \forall n > N \}.
\]
Check that this gives a subspace of \(\mathcal{S} \). Since \(\mathcal{S}_{\text{fin}} \) contains the vectors \(e_k \), for \(k = 0, 1, \ldots \), the argument of part a shows that \(\mathcal{S}_{\text{fin}} \) is infinite-dimensional.

c. Since \(w_1, w_2 \) is a basis of \(\mathcal{F} \), there exist unique real numbers \(\alpha \) and \(\beta \) such that
\[
l = \alpha w_1 + \beta w_2.
\]
Equivalently,
\[
l_n = \alpha \tau^n_1 + \beta \tau^n_2, \quad n = 0, 1, \ldots
\]
Taking \(n = 0 \) and \(n = 1 \),
\[
2 = \alpha + \beta,
\]
\[
1 = \alpha \tau_1 + \beta \tau_2.
\]
Solving for \(\alpha \) and \(\beta \), we obtain \(\alpha = 1, \beta = 1 \) (or simply note that this gives a solution of the equations). Hence \(l = w_1 + w_2 \) and so
\[
l_n = \tau^n_1 + \tau^n_2 \quad (n \geq 0).
\]