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Abstract. Infra-solvmanifolds are a certain class of aspherical man-
ifolds which generalize both flat manifolds and almost flat manifolds
(i.e., infra-nilmanifolds). Every 4-dimensional infra-solvmanifold is dif-
feomorphic to a geometric 4-manifold with geometry of solvable Lie type.

There were questions about whether or not all 4-dimensional infra-
solvmanifolds bound. We answer this affirmatively. On each infra-
solvmanifold M admitting Nil3 × R, Nil4, Sol3 × R, or Sol1

4 geometry,
an isometric involution with 2-dimensional fixed set is constructed. The
Stiefel-Whitney number ω4

1(M) vanishes by a result of R.E. Stong and
from this it follows that all Stiefel-Whitney numbers vanish.

We say that a closed n-manifold M bounds if there is a compact (n+ 1)-
dimensional manifold W with ∂W = M . The only 2-dimensional infra-
solvmanifolds are the torus and Klein bottle, and both are boundaries. Also,
it is well known that all 3-dimensional closed manifolds bound. So 4 is the
first dimension of interest. Given a Lie group G with left invariant metric,
if Π is a cocompact discrete subgroup of Isom(G) acting freely and properly
discontinuously on G, we say that Π\G is a compact form of G. By the
work of Hillman, all 4-dimensional infra-solvmanifolds admit a geometry of
solvable Lie type [9, Theorem 8]; any 4-dimensional infra-solvmanifold M
is diffeomorphic to a compact form of a solvable 4-dimensional geometry G.
Therefore, to show that all 4-dimensional infra-solvmanifolds bound, it suf-
fices to show that all compact forms of the solvable 4-dimensional geometries
bound.

See [20] for a classification of the 4-dimensional geometries in the sense
of Thurston. Of these, the 4-dimensional solvable geometries are R4,Nil3 ×
R,Nil4, Sol3×R, Sol04, Sol4m,n, and Sol14. It is a remarkable theorem of Ham-
rick and Royster that all closed flat n-manifolds bound [8]. Furthermore,
as all compact forms of Sol4m,n (m 6= n) and Sol04 are mapping tori of lin-
ear self-diffeomorphisms of T 3 ([10, Corollary 8.5.1] and [13, Theorem 3.5,

Date: November 17, 2013.
1991 Mathematics Subject Classification. Primary 20H15, 22E25, 20F16, 57R75, 57S25.
Key words and phrases. Solvmanifolds, Infra-solvmanifolds, 4 dimensional, cobordism,

involution.
The result of this paper is one part of the author’s Ph.D. thesis. The author would

like to thank his adviser, Kyung Bai Lee, for his guidance and Jim Davis for very helpful
comments.

1



2 SCOTT VAN THUONG

Theorem 4.2]), they can be shown to bound easily. The infra-solvmanifolds
with Sol14 geometry were classified and shown to bound in [15]. Hillman has
classified infra-solvmanifolds with Sol3 × R geometry and has shown that
they bound [11].

In the first section, we recall the definitions of infra-solvmanifolds and the
solvable 4-dimensional geometries. In the second section, we show how to de-
fine an involution, induced by left translation, on certain infra-solvmanifolds.
In the third section, we study the maximal compact subgroups of Aut(G)
where G is one of Nil3 × R,Nil4,Sol3 × R, or Sol14. In the last section we
show that any infra-solvmanifold with Nil3×R,Nil4, Sol3×R, or Sol14 geom-
etry admits an involution with 2-dimensional fixed set. The Stiefel-Whitney
number ω4

1(M) vanishes by a result of R.E. Stong and from this it follows
that all Stiefel-Whitney numbers vanish. This extends the argument in [15]
and establishes that all 4-dimensional infra-solvmanifolds bound.

1. infra-solvmanifolds and 4-dimensional geometries

Let G be a simply connected solvable Lie group and let K be a maximal
compact subgroup of Aut(G). Let Aff(G) = G o Aut(G) denote the affine
group with group operation

(a,A)(b, B) = (aA(b), AB).

Aff(G) acts on G by
(a,A)g = aA(g).

Suppose we have a discrete subgroup

Π ⊂ GoK ⊂ Aff(G)

such that Π acts freely on G with compact quotient Π\G. If, in addition the
translation subgroup Γ := Π ∩ G is a cocompact lattice of G and of finite
index in Π, we say that Π\G is an infra-solvmanifold of G. For simply
connected solvable Lie groups, a result of Mostow [17, Theorem 6.2] implies
that Γ\G has finite volume precisely when Γ\G is compact. So, the terms
“lattice” and “cocompact lattice” are equivalent for our purposes.

The condition that Π act freely on G is equivalent to Π being torsion
free. The translation subgroup Γ is normal in Π and we refer to Φ := Π/Γ
as the holonomy group of Π\G. It is a finite subgroup of K. We have the
diagram

1 −−−−→ Γ −−−−→ Π −−−−→ Φ −−−−→ 1y y y
1 −−−−→ G −−−−→ GoK −−−−→ K −−−−→ 1

By definition, an infra-solvmanifold is finitely covered by the solvmanifold
Γ\G with Φ as the group of covering transformations, hence the prefix “in-
fra”. In this paper, a solvmanifold is a quotient of G by a lattice of itself. In
[12] , the various definitions of infra-solvmanifold appearing in the literature
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are shown to all be equivalent. Here we have adopted Definition 1 in [12] as
above.

Recall that the 3-dimensional geometry Nil3 is the group of upper trian-
gular matrices 1 x z

0 1 y
0 0 1


and the 3-dimensional geometry Sol3 is the semidirect product R2 oφ(u) R

where φ(u) =
[
e−u 0
0 eu

]
.

In dimension 4, except for Sol14 = Nil3 o R, all solvable geometries are of
the form R3 oφ(u) R for φ : R→ GL(3,R).

R4 : φ(u) =

1 0 0
0 1 0
0 0 1

 Nil3 × R : φ(u) =

1 u 0
0 1 0
0 0 1


Nil4 : φ(u) =

1 u 1
2u

2

0 1 u
0 0 1

 Sol3 × R : φ(u) =

e−u 0 0
0 eu 0
0 0 1


Sol04 : φ(u) =

eu 0 0
0 eu 0
0 0 e−2u

 Sol4m,n : φ(u) =

eλu 0 0
0 eu 0
0 0 e−(1+λ)u


Sol04

′ : φ(u) =

eu ueu 0
0 eu 0
0 0 e−2u


For Sol4m,n, λ > 0 is such that φ(u) is conjugate to an element of GL(3,Z).

This guarantees that Sol4m,n has a lattice [13]. The characteristic polynomial
of φ(u) is x3 −mx2 + nx − 1 for m,n ∈ Z. It is known that Sol04

′ has no
compact forms [13] and therefore does not appear in the list of 4-dimensional
geometries in [20].

Sol14 can be described as the multiplicative group of matrices1 eux z
0 eu y
0 0 1

 ,
which splits as the semidirect product Nil3 o R. It has 1-dimensional center
(u = x = y = 0 in the above matrix). The quotient of Sol14 by its center is
Sol3; we have the short exact sequence

1→ Z(Sol14)→ Sol14 → Sol3 → 1.

All 4-dimensional solvable geometries are type (R) and unimodular. There-
fore, with a left invariant metric on G,

Isom(G) ⊂ GoK ⊂ Aff(G),
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where K is a maximal compact subgroup of Aut(G) [6]. In fact, all of the
4-dimensional solvable geometries admit a left invariant metric so that

Isom(G) = GoK.

All 4-dimensional solvable geometries, except Sol04, satisfy the generalized
first Bieberbach theorem [4]. Consequently, if Π ⊂ Isom(G) (G 6= Sol04) is
a discrete subgroup acting freely and properly discontinuously on G, then
the translation subgroup Γ := Π ∩ G is a lattice of G and Φ := Π/Γ is
finite. Therefore, the compact forms of a solvable 4-dimensional geometry G,
excluding Sol04, are indeed infra-solvmanifolds of G. Note that the holonomy
group Φ acts freely and isometrically on the solvmanifold Γ\G with quotient
the infra-solvmanifold Π\G. The compact forms of Sol04 are not infra-
solvmanifolds of Sol04; however, they can be realized as infra-solvmanifolds
of a different simply connected solvable Lie group [21].

For the rest of this paper, given an infra-solvmanifold Π\G, we shall
always let Γ denote the translation subgroup and Φ denote the holonomy
group.

2. Translational Involution

We show how to define an involution on an infra-solvmanifold M = Π\G
when the center of G, Z(G), is non-trivial. The involution is induced by left
translation. This technique was used to show closed flat n-manifolds bound
[8, 7].

Lemma 2.1. Let M = Π\G be an infra-solvmanifold with Z(G) non-trivial.
Note Γ ∩ Z(G) is a lattice of Z(G). Let t be a free generator of Γ ∩ Z(G)
and set s = t

1
2 . Translation by s induces an involution on M if and only

if A(s) = s modulo Γ ∩ Z(G), for all A ∈ Φ. That is, translation by s
commutes with the action of Φ on Γ\G.

Proof. Since s commutes with Γ, translation by s defines a free involution
on the solvmanifold Γ\G. To induce an involution on M , translation by s
must normalize the action of Φ on Γ\G. For any (a,A) ∈ Π, we have

(s, id)(a,A)(−s, id) = (s · a ·As−1, A)

= ((I −A)s · a,A) (since s ∈ Z(G)).

Therefore, s induces an involution on M when (I − A)s ∈ Γ ∩ Z(G); that
is, A(s) = s modulo Γ ∩ Z(G), for all A ∈ Φ. �

Let M̂ denote the solvmanifold Γ\G. We have the coverings

G
q−−−−→ M̂

p−−−−→ M.

We refer to the involutions induced by translation by s as translational
involutions. Let îs : M̂ → M̂ denote the induced involution on M̂ , is : M →
M denote the induced involution on M , and F denote the fixed set of is on
M .
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Lemma 2.2. The preimage of F in M̂ is a finite disjoint union of closed,
connected, submanifolds. We can write

p−1(F ) =
⋃
η

Eη,

where the union is over all possible injective homomorphisms η : 〈̂is〉 → Φ
and

Eη = {x̂ ∈ M̂ | s(x̂) = η(̂is)(x̂)}.
Each Eη is a finite disjoint union of components of F .

Proof. The fixed set F of the translational involution must be a finite disjoint
union of closed connected submanifolds [2, p. 72]. Since p is a finite sheeted
covering, p−1(F ) also admits the structure of a finite disjoint union of closed
connected submanifolds.

If x̂ ∈ p−1(F ), then s(x̂) = (a,A)(x̂) for some unique A ∈ Φ where
(a,A) ∈ Π. Thus,

s2(x̂) = (a,A)2(x̂).

Since the deck transformation group acts freely, (a,A)2 = s2 ∈ Γ, and thus
A2 = I. So η(̂is) = A defines an injective homomorphism η : Z2 → Φ. We
warn the reader the action of η(̂is) = A ∈ Φ on M̂ is induced not just by
the automorphism A, but rather by the affine transformation (a,A). The
preimage of F in M̂ is indexed by all possible injective homomorphisms
η : Z2 → Φ. That is,

p−1(F ) =
⋃
η

Eη.

Note that Eη1 = Eη2 when η1 = η2 and Eη1 ∩ Eη2 = ∅ otherwise.
The actions of s and η(̂is) commute on M̂ by Lemma 2.1. By definition,

Eη is the fixed set of the involution η(̂is)−1 ◦ îs = η(̂is)◦ îs on M̂ . So it must
be a finite disjoint union of closed connected submanifolds, and therefore
must be a finite disjoint union of components of p−1(F ). �

When exp : g → G is a diffeomorphism, for A ∈ Aut(G), we have
Fix(A) = exp(Fix(A∗)), where A∗ is the automorphism of g induced from
A. When G is a 4-dimensional solvable geometry, G is type (E) and exp is
a diffeomorphism. So Fix(A) is always diffeomorphic to Rn. We have the
diagram of coverings, where the vertical arrows are inclusions.

G
q−−−−→ M̂

p−−−−→ Mx x x⋃
η q
−1(Eη)

q−−−−→
⋃
η Eη

p−−−−→ F

Now we analyze q−1(Eη).
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Lemma 2.3. Assume that exp : g→ G is a diffeomorphism. The preimage
of Eη in G under q : G → M̂ is a disjoint union of submanifolds of G. In
fact, if η(̂is) = A ∈ Φ with (a,A) ∈ Π, then any component of q−1(Eη) is
Fix(γs−1a,A) for some γ ∈ Γ. Consequently, the preimage of Eη in G is

q−1(Eη) =
⋃
γ∈Γ

Fix(γs−1a,A).

Further, each Fix(γs−1a,A) is a left translate of the connected subgroup
Fix(A) of G and is diffeomorphic to Rn, where n = dim(Fix(A)) = dim(Fix(A∗)).

Proof. Because Eη is a disjoint union of closed submanifolds and q is a
covering, q−1(Eη) is a (possibly not connected) submanifold of G without
boundary.

Let A = η(̂is) and let (a,A) ∈ Π. An element x̃ ∈ G projects to x̂ ∈ Eη
if and only if there exists γ ∈ Γ such that s(x̃) = γ(a,A)(x̃), or equivalently,

x̃ = (γs−1a,A)(x̃).

That is, x̃ must be in the fixed set of the affine transformation (γs−1a,A).
Consequently, the preimage of Eη in G is

q−1(Eη) =
⋃
γ∈Γ

Fix(γs−1a,A).

Some sets in the above union may be empty. The fixed set of an affine
transformation, if non-empty, is just a translation of the fixed subgroup of
its automorphism part; that is, if x0 ∈ Fix(b, B), then

Fix(b, B) = x0Fix(B).

Any two left translates of Fix(A) are either disjoint or equal. Since exp
is a diffeomorphism, any left translate of Fix(A) is a submanifold of G
diffeomorphic to Rn, where n = dim(Fix(A)). Since Γ is countable, q−1(Eη)
is expressed as a countable union of submanifolds of G, each of which has
dimension dim(Fix(A)). This forces each component of the submanifold
q−1(Eη) to have dimension equal to that of Fix(A).

In fact, we claim a component Ẽη of q−1(Eη) is equal to Fix(γs−1a,A)
for some γ ∈ Γ. The argument above shows that x̃ ∈ Ẽη belongs to
Fix(γs−1a,A) for some γ ∈ Γ. Since Fix(γs−1a,A) is connected,

Fix(γs−1a,A) ⊂ Ẽη.

Also, Fix(γs−1a,A) is closed in Ẽη, since it is closed in G. Note that the
inclusion Fix(γs−1a,A) ↪→ Ẽη is open by invariance of domain, as both
manifolds have the same dimension. Consequently, Fix(γs−1a,A) = Ẽη. �

An important consequence of Lemma 2.3 is that all components of F
lifting to Eη must have the same dimension equal to that of Fix(η(̂is)),
where η(̂is) ∈ Φ is the unique automorphism of G coming from η.
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Lemma 2.4. Let Π\G be an infra-solvmanifold with translational involution
induced by s. Suppose that A ∈ Φ has order 2 and A(s) = −s. Let η : Z2 →
Φ be the homomorphism η(̂is) = A. Then Eη = ∅.

Proof. Let α = (a,A) ∈ Π and define Π ′ = 〈Γ, α〉. Note that Π ′\G is an
infra-solvmanifold with Z2 holonomy and translational involution i′s induced
by s.

We claim that the group generated by Π ′ and s, 〈Π ′, s〉, is torsion free.
A general element of 〈Π ′, s〉 with holonomy A is of the form (sγa,A), where
γ ∈ Γ. Now

(sγa,A)2 = (sγaA(s)A(γ)A(a), id)

= (γaA(γa), id), (since s ∈ Z(G))

= (γa,A)2 6= (e, id),

where the last inequality follows since Π is torsion free.
Consequently, 〈Π ′, s〉 is torsion free and hence 〈Π ′, s〉 acts freely on G.

Therefore s acts as a free involution on the infra-solvmanifold Π ′\G. Note
that the preimage of Fix(i′s) ⊂ Π ′\G in Γ\G under the double covering
Γ\G→ Π ′\G is precisely Eη. Hence Eη must be empty. �

3. Maximal Compact Subgroups of Aut(G)

Given a 4-dimensional infra-solvmanifold Π\G with translational invo-
lution is induced by translation by s as defined in Lemma 2.1, the fixed
set F will be a disjoint union of submanifolds. We will need to compute
the dimension of Fix(is). By Lemma 2.3, a component of F lifts to G as a
left translate of Fix(η(̂is)), where η(̂is) is an involution in Aut(G). Every
involution in Aut(G) belongs to a maximal compact subgroup K of Aut(G).
When G is one of the 4-dimensional solvable geometries, Aut(G) has finitely
many components. In this case, a result of Mostow [16, Theorem 3.1] implies
that all maximal compact subgroups of Aut(G) are conjugate. Therefore,
we can fix a maximal compact subgroup K and compute dim(Fix(A)) for
each involution A in K.

Lemma 3.1.
[
Nil3 × R

]
(1) A maximal compact subgroup of Aut(Nil3×R)

is
O(2,R)× Z2.

(2) If A ∈ O(2,R)× Z2 restricts to the identity on R, then

dim(Fix(A)) = 2.

Proof. A maximal compact subgroup of Aut(Nil3) is O(2,R) and acts as

A =
[
a b
c d

]
:

1 x z
0 1 y
0 0 1

 7−→
1 (ax+ by) 1

2 (abx2 + 2bcxy + cdy2 + 2 det(A)z)
0 1 (cx+ dy)
0 0 1

 .
The induced action of A ∈ O(2,R) on Z(Nil3) is multiplication by det(A).

Therefore, Fix(A) is 1-dimensional for all A ∈ O(2,R). It follows that a
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maximal compact subgroup of Aut(Nil3×R) is O(2,R)×Z2, where O(2,R) ⊂
Aut(Nil3) and Z2 acts as a reflection on R. Thus, if A ∈ O(2,R)×Z2 restricts
to the identity on R, then

dim(Fix(A)) = 2. �

Lemma 3.2.
[
Nil4

]
(1) A maximal compact subgroup of Aut(Nil4) is Z2 ×

Z2.
(2) Let A ∈ Aut(Nil4) have order 2. If A restricts to the identity on

Z(Nil4), then
dim(Fix(A)) = 2.

Proof. Recall the splitting of Nil4 as the semidirect product R3 oR. Letting
g denote the Lie algebra of Nil4, we have g ∼= R3 o R, where R acts by the
matrix 0 1 0

0 0 1
0 0 0

 .
With standard bases e1, e2, e3 of R3 and e4 of R, g has relations

[e4, e2] = e1, [e4, e3] = e2.

For A ∈ Aut(g), A induces an action on the quotient g/ [g, g] ∼= 〈e3, e4〉,
denote this action by

B =
[
a b
c d

]
.

We will see that B determines the action of A on e1 and e2. The relation
[e4, e3] = e2, implies A(e2) = det(B)e2. Compactness forces det(B) = ±1.
We also compute

A(e1) = A([e4, e2]) = [A(e4), A(e2)]

= [be3 + de4,det(B)e2] = det(B)de1

Again, compactness implies d = ±1. Since [e3, e2] vanishes, we have

0 = A([e3, e2]) = [A(e3), A(e2)]

= [ae3 + ce4,det(B)e2] = det(B)ce1

Thus c vanishes and B must be upper triangular of the form

B =
[
±1 b
0 ±1

]
.

By conjugation we can set b = 0. Thus, a maximal compact subgroup of
Aut(Nil4) cannot be larger than Z2 × Z2. Conversely, we see that

Z2 × Z2 = {(±I3, 1), (±J,−1)} ⊂ Aut(R3 o R),

where

J =

1 0 0
0 −1 0
0 0 1

 .
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defines a subgroup of Aut(Nil4). It now follows that a maximal compact
subgroup of Aut(Nil4) is {(±I3, 1), (±J,−1)} ∼= Z2 × Z2.

Note that (−I3, 1) and (−J,−1) do not act as the identity on Z(Nil4).
The remaining involution (J,−1) restricts to the identity on Z(Nil4) and
has 2-dimensional fixed subgroup. �

Lemma 3.3.
[
Sol14

]
(1) A maximal compact subgroup of Aut(Sol14) is D4.

(2) Let A ∈ Aut(Sol14) have order 2. If A restricts to the identity on
Z(Sol14), then

dim(Fix(A)) = 2.

Proof. A maximal compact subgroup of both Aut(Sol3) and Aut(Sol14) is
the dihedral group [15]

D4 =
〈[

0 −1
1 0

]
,

[
1 0
0 −1

]〉
= Z4 o Z2.

For A ∈ D4, let Ā be +1 if A is diagonal, and −1 if A is off-diagonal. Then
A acts on Sol3 = R2 o R as

A :
([
x
y

]
, u

)
7−→

(
A

[
x
y

]
, Āu

)
,

and on Sol14 as

A =
[
a b
c d

]
:

1 eux z
0 eu y
0 0 1

 7−→
1 eĀu(ax+ by) 1

2 (abx2 + 2bcxy + cdy2 + 2 det(A)z)
0 eĀu (cx+ dy)
0 0 1

 .
For both Sol3 and Sol14, Ā is the induced action of A on Sol3/R2 ∼=

Sol14/Nil ∼= R. Note that multiplication by det(A) is the induced action of
A on Z(Sol14). Thus, the only involution in D4 restricting to the identity on

Z(Sol14) is
[
−1 0
0 −1

]
and evidently it has 2-dimensional fixed subgroup. �

Lemma 3.4.
[
Sol3 × R

]
(1) A maximal compact subgroup of Aut(Sol3×R)

is
D4 × Z2,

where D4 ⊂ Aut(Sol3) and Z2 acts as a reflection on R.
(2) Let A ∈ D4 ⊂ D4 × Z2 ⊂ Aut(Sol3 × R) have order 2.

If A =
[
−1 0
0 −1

]
or ±

[
0 1
1 0

]
, then

dim(Fix(A)) = 2.

If A = ±
[
1 0
0 −1

]
, then

dim(Fix(A)) = 3.
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Proof. The first statement is clear since a maximal compact subgroup of
Aut(Sol3) is D4. For the second statement, recall that the induced action of
A on the quotient Sol3/R2 ∼= R is +1 if A is diagonal and −1 otherwise. �

Whenever G is one of Nil3 × R,Nil4,Sol14 or Sol3 × R, we can equip G
with left invariant metric so that

Isom(G) = GoK,

where K is one of the maximal compact subgroups of Aut(G) described in
Lemmas 3.1, 3.2, 3.3, 3.4.

4. Proof of Bounding

The following relations among Stiefel-Whitney classes of 4-manifolds are
known.

Lemma 4.1. For any 4-manifold M ,
(1) ω2

1ω2 = ω1ω3 = 0
(2) ω2

2 = ω4
1 + ω4

Therefore, M is a boundary if and only if the Stiefel-Whitney numbers
ω4

1(M) and ω4(M) are 0.

A solvmanifold Γ\G is parallelizable since one can project a framing of
left invariant vector fields from G to Γ\G. Hence the Euler characteristic
χ(Γ\G) vanishes. Since any infra-solvmanifold Π\G is finitely covered by a
solvmanifold, χ(Π\G) = 0. Therefore, the mod 2 Euler characteristic ω4(M)
vanishes. Hence the only Stiefel Whitney number to consider is ω4

1(M). The
following is crucial for our argument that 4-dimensional infra-solvmanifolds
bound.

Proposition 4.2. [19, Proposition 9.2] A manifold Mn is unoriented cobor-
dant to a manifold M ′ with differentiable involution having a fixed set of
dimension n− 2 if and only if ωn1 (M) = 0.

We will also need the following result on the discrete cocompact subgroups
of Isom(Sol3) = Sol3 oD4, which are also known as crystallographic groups
of Sol3. Note that the nil-radical of Sol3 is R2. Let Π ⊂ Isom(Sol3) be a
crystallographic group with lattice Γ and holonomy Φ. Recall the action of
D4 as automorphisms of Sol3 from Lemma 3.3. Let

pr1 : Sol3 → Sol3/R2 ∼= R.
denote the quotient map. If Γ is a lattice of Sol3, then Γ meets the nil-radical
in a lattice Γ ∩ R2 ∼= Z2 and pr1(Γ) ∼= Z is a lattice of R.

Proposition 4.3. [15, Lemma 3.4] Let Π ⊂ Isom(Sol3) = Sol3 o D4 be
crystallographic and let v denote a generator of pr1(Γ) ∼= Z.

If (b, B) ∈ Π where B = ±
[
1 0
0 −1

]
⊂ D4, then

pr1(b) = v
1
2 .
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For Nil3 × R geometry manifolds, we need to study the holonomy repre-
sentation

ρ : Φ→ Aut(Z(Nil3 × R)).

Lemma 4.4. Let M = Π\G be an infra-solvmanifold with G = Nil3 × R.
Then there is a set of generators t1, t2 for Γ ∩ Z(G) ∼= Z2, t1 ∈ Z(Nil3), so
that with respect to the basis t1, t2,

(1) ρ(Φ) ⊂
〈[

1 0
0 −1

]
,

[
−1 0
0 −1

]〉
, or

(2) ρ(Φ) ⊂
〈[

1 1
0 −1

]
,

[
−1 0
0 −1

]〉
Proof. We have Z(G) = Z(Nil3)× R. Since

[G,G] = Z(Nil3) = R,
Z(Nil3) is invariant under any automorphism of G. Further, Γ ∩ Z(Nil3) is
a lattice of Z(Nil3).

Note that ρ(Φ) has Z(Nil3) as an invariant subspace. Because ρ(Φ) can be
conjugated (over GL(2,R)) into O(Z(G)), we can assume that it leaves the
orthogonal complement of Z(Nil3) invariant as well. The maximal compact
subgroup of O(Z(G)) leaving Z(Nil3) invariant is

Z2 × Z2 =
〈[

1 0
0 −1

]
,

[
−1 0
0 −1

]〉
.

Thus, over GL(2,R), ρ(Φ) can be conjugated into this Z2 × Z2. But over
GL(2,Z), there is one more case.

Let t1, t2 be two generators of Π ∩ Z(G) ∼= Z2, where t1 generates Π ∩
Z(Nil3). It is known [1] that an involution A ∈ GL(2,Z) with vanishing

trace is GL(2,Z) conjugate to either
[
1 0
0 −1

]
or
[
1 1
0 −1

]
. Using this, it is

not hard to see that we can keep t1 the same, but change t2 to t′2 = at1± t2
for a ∈ Z, to put ρ(Φ) in the desired form. �

We are now ready to prove the main theorem.

Theorem 4.5. All 4-dimensional infra-solvmanifolds are boundaries.

Proof. Every 4-dimensional infra-solvmanifold is diffeomorphic to a compact
form of a solvable 4-dimensional geometry [9, Theorem 8]. So it suffices to
show these compact forms bound.

The flat 4-dimensional manifoldsM = Π\R4 are all boundaries by Hamrick-
Royster [8].

When G = Sol4m,n or Sol04, any compact form M = Π\G is a mapping
torus of T 3, and is therefore a T 3 bundle over S1. Because T 3 is orientable,
ω1(M) is induced from the base of the fibration. That is, let p denote the
projection p : M → S1. Now ω1(M) = p∗(c) for some class c ∈ H1(S1; Z2) ∼=
Z2. Then:

ω1(M)4 = (p∗(c))4 = p∗(c4) = p∗(0) = 0.
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Of course ω4(M) vanishes as well. To see that ω1 is induced from a class in
the base of the fibration, note that

H1(M ; Z2) ∼= hom(H1(M ; Z),Z2) ∼= hom(π1(M),Z2)

It is known that ω1(M), under the above isomorphism, is the cohomology
class which assigns 1 to an element of γ ∈ π1(M) if the restriction of the
tangent bundle to γ is non-orientable, and 0 if the restriction is orientable.
Since the fiber of M is orientable, ω1(M) must come from the base.

Case G = Nil4, Sol14 :

For M = Π\G when G is Nil4 or Sol14, let s = t
1
2 where t is a generator

of Γ ∩ Z(G). We construct the translational involution defined in Lemma
2.1. Our explicit computation of maximal compact subgroups of Aut(Nil4)
and Aut(Sol14) shows that A(s) = ±s for any holonomy A ∈ Φ. This also
follows since Z(G) is invariant under any automorphism and 1-dimensional.
Let η : Z2 = 〈̂is〉 → Φ be an injective homomorphism. If η(̂is)(s) = −s, then
Eη = ∅ by Lemma 2.4. If η(̂is)(s) = s, then η(̂is) acts as the identity on Z(G)
and η(̂is) has 2-dimensional fixed subgroup on G (Lemmas 3.2 and 3.3). By
Lemma 2.3, Eη is 2-dimensional. Therefore, Fix(is) is 2-dimensional.

Case G = Sol3 × R :

Now consider a Sol3 × R geometry manifold Π\G. Let s = t
1
2 where t

is a generator of Γ ∩ Z(G). Since A(s) = ±s for all A ∈ Φ, s defines an
involution on Π\G. Let η : Z2 = 〈̂is〉 → Φ be an injective homomorphism.
If η(̂is)(s) = −s, then Eη = ∅ by Lemma 2.4.

In the Sol3×R geometry case, not all involutions in Φ inducing the identity
on Z(Sol3 × R) have 2-dimensional fixed subgroup (Lemma 3.4). When

η(̂is) = A, where A is one of
[
−1 0
0 −1

]
or ±

[
0 1
1 0

]
, Eη is 2-dimensional,

since Fix(A) is 2-dimensional. But for

B = ±
[
1 0
0 −1

]
,

Fix(B) is 3-dimensional. However, we shall see that when η(̂is) = B, Eη is
empty. Note that the nil-radical of Sol3 × R is R3 with quotient R. Let

pr : Sol3 × R→ R

denote the quotient homomorphism. If we let pr2 : Sol3 × R→ Sol3 denote
the quotient of Sol3 × R by its center and let pr1 : Sol3 → R denote the
quotient of Sol3 by its nil-radical, then pr factors as pr1 ◦ pr2,

pr : Sol3 × R
pr2:/Z(Sol3×R)
−−−−−−−−−−→ Sol3

pr1:/R2

−−−−−→ R.
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Now pr(Γ) is a lattice of R. Let v denote a generator of pr(Γ). By Lemma
2.3, the preimage of Eη in Sol3 × R is given by, for (b, B) ∈ Π,⋃

γ∈Γ

Fix(γs−1b, B)

However, all sets Fix(γs−1b, B) are empty for any γ ∈ Γ. To see this, suppose
x ∈ Sol3 × R satisfies

γs−1bB(x) = x.

We will apply pr = pr1 ◦ pr2 to both sides. Note that pr(b) = v
1
2 by

Proposition 4.3, pr(γ) = vn for some n ∈ Z, pr(s) = 0, and

pr(B(x)) = B̄(pr(x)) = pr(x)

(since B is diagonal, B̄ = +1). Thus, application of pr yields

vn+ 1
2 + pr(x) = pr(x),

which is a contradiction. This shows that Eη is empty when η(̂is) = B.
Therefore, Fix(is) has no 3-dimensional components and is 2-dimensional

in the Sol3 × R geometry case.

Case G = Nil3 × R :

Finally, consider a Nil3×R geometry manifold Π\G. Now Z(Nil3×R) =
Z(Nil3) × R. We will use either Z(Nil3) or R to induce an involution on
Π\G depending on which case of Lemma 4.4 occurs.

Suppose we can take t1, t2 with t1 ∈ Z(Nil3), as a generating set of Γ ∩
Z(G) so that ρ(Φ) is diagonal for this generating set (case (1) of Lemma

4.4). Take s = t
1
2
2 for our involution on M . Lemma 2.4 implies that Eη is

non-empty only when η(̂is)(s) = s. This conditions means that η(̂is) fixes
the R factor in Z(Nil3×R) = Z(Nil3)×R. But all such η(̂is) fixing R must
have a 2-dimensional fixed set on Nil3 × R by Lemma 3.1.

Now suppose case (2) of Lemma 4.4 occurs. This time, we must take

s = t
1
2
1 for our involution. If η(̂is) acts as a reflection on Z(Nil3), Lemma

2.4 implies Eη is empty.
We claim further that Eη is empty when η(̂is) ∈ Φ with ρ(η(̂is)) =[

1 1
0 −1

]
. To see this, note that translation by s = t

1
2
1 is also induced from

translation by s′ = t
1
2
1 t
−1
2 . But η(̂is)(s′) = s′−1. Hence Lemma 2.4 implies

that Eη is empty in this case.
Thus we conclude that the only non-empty components of Fix(is) can

arise from η(̂is) ∈ Φ with ρ(η(̂is)) = id. But Lemma 3.1 implies that all
such η(̂is) have 2-dimensional fixed set. Therefore, when G = Nil3 × R, in
either case of Lemma 4.4, we have an involution with fixed set of constant
dimension 2.
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For any manifold with Nil3 × R,Nil4,Sol14, or Sol3 × R geometry, we
have constructed an involution with 2-dimensional fixed set. By Stong’s
result (Proposition 4.2), ω4

1(M) = 0. Thus, all Stiefel-Whitney numbers
are zero and we have established that all 4-dimensional infra-solvmanifolds
bound. �
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