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ABSTRACT. The k-dimensional Dehn (or isoperimetric) function of a group bounds
the volume of efficient ball-fillings of k-spheres mapped into k-connected spaces
on which the group acts properly and cocompactly; the bound is given as a func-
tion of the volume of the sphere. We advance significantly the observed range of
behavior for such functions. First, to each non-negative integer matrix P and posi-
tive rational number r, we associate a finite, aspherical 2-complex Xr,P and calcu-
late the Dehn function of its fundamental group Gr,P in terms of r and the Perron-
Frobenius eigenvalue of P . The range of functions obtained includes δ(x) = xs,
where s ∈ Q ∩ [2,∞) is arbitrary. By repeatedly forming multiple HNN exten-
sions of the groups Gr,P we exhibit a similar range of behavior among higher-
dimensional Dehn functions, proving in particular that for each positive integer
k and rational s > (k + 1)/k there exists a group with k-dimensional Dehn func-
tion xs. Similar isoperimetric inequalities are obtained for arbitrary manifold pairs
(M, ∂M) in addition to (Bk+1, Sk).

INTRODUCTION

Given a k-connected complex or manifold one wants to identify functions that
bound the volume of efficient ball-fillings for spheres mapped into that space. The
purpose of this article is to advance the understanding of which functions can arise
when one seeks optimal bounds in the universal cover of a compact space. Despite
the geometric nature of both the problem and its solutions, our initial impetus for
studying isoperimetric problems comes from algebra, more specifically the word
problem for groups.

The quest to understand the complexity of word problems has been at the heart
of combinatorial group theory since its inception. When one attacks the word prob-
lem for a finitely presented group G directly, the most natural measure of complex-
ity is the Dehn function δ(x) which bounds the number of defining relations that
one must apply to a word w =G 1 to reduce it to the empty word; the bound is
a function of word-length |w|. (Modulo coarse Lipschitz equivalence ≃, the Dehn
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function of a finitely presented group does not depend on the choice of presenta-
tion.)

Progress in the last ten years has led to a fairly complete understanding of which
functions arise as Dehn functions of finitely presented groups. The most com-
prehensive information comes from [13] where, modulo issues associated to the
P = NP question, Birget, Rips and Sapir essentially provide a characterisation
of the Dehn functions greater than x4. In particular they show that the following
isoperimetric spectrum is dense in the range [4,∞).

IP = {α ∈ [1,∞) | f(x) = xα is equivalent to a Dehn function}.

Gromov proved that IP ∩ (1, 2) is empty and that word hyperbolic groups can be
characterised as those which have linear Dehn functions. In [3] Brady and Bridson
completed the understanding of the coarse structure of IP by providing a dense
set of exponents in IP ∩ [2,∞). What remains unknown is the fine structure of
IP ∩ (2, 4). In particular, it has remained unknown whether Q ∩ (2, 4) ⊂ IP.

What Brady and Bridson actually do in [3] is associate to each pair of positive in-
tegers p > q a finite aspherical 2-complex whose fundamental group Gp,q has Dehn
function x2 log2 2p/q. These complexes are obtained by attaching a pair of annuli to
a torus, the attaching maps being chosen so as to ensure the existence of a family
of discs in the universal cover that display a certain snowflake geometry (cf. Figure
4 below). In the present article we present a more sophisticated version of the
snowflake construction that yields a much larger class of isoperimetric exponents.

Theorem A. Let P be an irreducible non-negative integer matrix with Perron-Frobenius
eigenvalue λ > 1, and let r be a rational number greater than every row sum of P . Then
there is a finitely presented group Gr,P with Dehn function δ(x) ≃ x2 logλ(r).

By taking P to be the 1×1 matrix (22q) and r = 2p (for integers p > 2q) we obtain
the Dehn function δ(x) ≃ xp/q and deduce the following corollary.

Corollary B. Q ∩ (2,∞) ⊂ IP.

The influential work of M. Gromov [9], [10] embedded the word problem in the
broader context of filling problems for Riemannian manifolds and combinatorial
complexes. For example, Gromov’s Filling Theorem [4] states that given a com-
pact Riemannian manifold M , the smallest function bounding the area of least-area
discs in M as a function of their boundary length is coarsely Lipschitz equivalent
to the Dehn function of π1M . In the geometric context, it is natural to extend ques-
tions about the size of optimal fillings to higher-dimensional spheres, exploring
higher-dimensional isoperimetric functions that bound the volume of optimal ball-
fillings of spheres mapped into the manifold (or complex). Correspondingly, one
defines higher-dimensional Dehn functions δ(k)(x) for finitely presented groups G
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that have a classifying space with a compact (k + 1)-skeleton (see Section 2). The
equivalence class of δ(k) is a quasi-isometry invariant of G.

For each positive integer k one has the k-dimensional isoperimetric spectrum

IP(k) = {α ∈ [1,∞) | f(x) = xα is equivalent to a k-dimensional Dehn function}.

We do not yet have as detailed a knowledge of the structure of these sets as we

do of IP = IP(1). Indeed knowledge until now has been remarkably sparse even

for IP(2): the results of [1], [16], [15] provide infinite sets of exponents in the range
[3/2, 2) and provide evidence for the existence of exponents in the range [2,∞);
the snowflake construction of [3] provides a dense set of exponents in the interval

[3/2, 2); and in [5] it is was proved that 2, 3 ∈ IP(2) (see also [7]). Gromov and
others have investigated the isoperimetric behavior of lattices [10].

Our second theorem relieves the dearth of knowledge about the coarse structure

of IP(k), k > 2.

Theorem C. Let P be an irreducible non-negative integer matrix with Perron-Frobenius
eigenvalue λ > 1, and let r be an integer greater than every row sum of P . Then for
every k > 2 there is a group Σk−1Gr,P of type Fk+1 with k-dimensional Dehn function
δ(k)(x) ≃ x2 logλ(r). There are also groups Σk−1Z2 of type Fk+1 with k-dimensional Dehn
function δ(k)(x) ≃ x2.

By taking P to be the 1 × 1 matrix (22q) and r = 2p we see that Q ∩ [2,∞) ⊂

IP(k); in particular IP(k) is dense in the range [2,∞). But that falls short of one’s

expectations: as in the case k = 1, one anticipates that IP(k) should be dense in the
range that begins with the exponent (k + 1)/k corresponding to the isoperimetric
inequality for spheres in Euclidean space. In order to fulfil this expectation, we
investigate the higher Dehn functions of products G × Z and prove the following
theorem.

Theorem D. If P, λ and r are as in Theorem C, then for all q, ℓ ∈ N, the (q + ℓ)-

dimensional Dehn function of Σq−1Gr,P × Zℓ is equivalent to xs, where s = (ℓ+1)α−ℓ
ℓα−(ℓ−1)

and

α = 2 logλ(r). The (q + ℓ)-dimensional Dehn function of Σq−1Z2 ×Zℓ is equivalent to xs,
where s = ℓ+2

ℓ+1
.

By holding q and ℓ fixed and varying r and P , one obtains a dense set of expo-
nents s in the interval [ ℓ+2

ℓ+1
, ℓ+1

ℓ
] including all rationals in this range. By varying q

and ℓ with k = q + ℓ and taking account of Theorem C we deduce the following
result, shown pictorially in Figure 1.

Corollary E. Q ∩ [(k + 1)/k,∞) ⊂ IP(k).

The main aim of Brady and Bridson’s initial construction of snowflake groups

[3] was to prove that the closure of IP(1) is {1} ∪ [2,∞). We have proved that the
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FIGURE 1. Isoperimetric exponents of Σq−1Gr,P × Zℓ. Colors corre-
spond to fixed values of q.

closure of IP(k) contains {1} ∪ [(k + 1)/k,∞) but we do not know if it is equal to it.
Indeed the fact that there exist two-dimensional Dehn functions of the form x log x
and x2/ log x (see [1], [15]) might be taken as evidence against the existence of the

gap (1, (k + 1)/k) in IP(k).

This article is organised as follows. In Section 1 we outline the construction of
the snowflake groups Gr,P and their HNN extensions ΣGr,P , deferring a detailed
account to Sections 4 and 6. In Section 2 we define the class of maps with which
we shall be working and record some pertinent properties; we also recall those
elements of Perron-Frobenius theory that we require. The groups Gr,P are funda-
mental groups of graphs of groups; in Section 3 we analyze the geometry of the
vertex groups in these decompositions. The snowflake geometry of Gr,P is de-
scribed in Section 4 and this is analyzed in further detail in Section 5 to prove The-
orem A. In Section 6 we turn our attention to higher Dehn functions and establish
the lower bounds required for Theorem C by analyzing the geometry of an explicit
sequences of embedded (k+1)-balls in the universal cover of a (k+1)-dimensional
classifying space for Σk−1Gr,P . In Section 7 we establish the complementary upper
bounds. The proof proceeds by induction, slicing balls into slabs based of lower-
dimensional fillings. A lack of control on the topology of these slabs obliges one
to prove a stronger result: instead of establishing bounds only on the behavior of
ball-fillings for spheres, one must establish isoperimetric inequalities for all pairs
of compact manifolds (M (k+1), ∂M) mapping to the space in question. In Section 8
we analyze the isoperimetric behaviour of products G×Z and complete the proof
of Theorem D.

1. AN OUTLINE OF THE BASIC CONSTRUCTION

The snowflake groups Gr,P in Theorem A are the fundamental groups of aspherical
2-complexes Xr,P assembled from a finite collection of tori and annuli. With respect
to a fixed framing on the tori, the attaching maps of the annuli are all powers of
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the slopes {1/0, 0/1, 1/1}. From this perspective, it is perhaps surprising that one
can encode the range of isoperimetric exponents stated in Theorem A.

More algebraically, Gr,P is the fundamental group of a graph of groups with ver-
tex groups Z2 and edge groups Z. The rational number r encodes the multiplicity
of the attaching maps of the annuli while the positive integer matrix P encodes a
prescription for the number and orientation of the tubes connecting each of the tori
to its neighbours (and to itself).

It is natural to describe the assembly of Xr,P in two stages. At the first stage, one
groups the basic tori into connected families which form the vertices of a coarser
graph-of-spaces decomposition G of Xr,P than the one sketched above. If P is
an R × R matrix, then there are R vertex spaces in this coarser decomposition,
corresponding to the rows of P ; the edge spaces are all annuli, and the underlying
graph of the decomposition is the directed graph whose transition matrix is equal
to P .

If the sum of the entries in a given row of P is m then the corresponding vertex
space consists of a chain of m − 1 framed tori, the (j + 1)st being attached to the
jth Tj by an annulus, one end of which wraps once around a coordinate circle in Tj

and the other end of which wraps once around the circle of slope 1/1 (“diagonal”)
in Tj+1; it is convenient to then collapse each of the connecting annuli to a circle.
A detailed study of these vertex spaces Vm will be undertaken in Section 3. There
is a distinguished element that plays an important role in this study, namely the
diagonal element c in the first of the m − 1 tori.

If P = (pij) then in G there are pij cylinders running from the vertex correspond-
ing to row i to the vertex corresponding to row j. The rational number r deter-
mines the attaching maps of the ends of these cylinders: if r = p/q then each
cylinder wraps p times around a coordinate circle on one of the tori at vertex i and
q times around the diagonal (slope 1/1 circle) on one of the tori at vertex j.

The “coarser” decomposition of Xr,P is the one that we focus on throughout
this article. The (less informative) fact that Xr,P is a union of tori connected along
annuli attached with slopes in {0/0, 0/1, 0/1}, is recovered by simply forgetting
the grouping of the basic tori into vertex spaces Vm.

This completes our sketch of the construction of the groups Gr,P . A key feature
of the construction is that for each positive integer d there is an injective endomor-
phism φd : Gr,P → Gr,P whose restriction to the fundamental group of each basic
torus is x 7→ xd.

For each integer r, we define ΣGr,P to be the HNN extension of Gr,P that is
associated to the endomorphism φr and has two stable letters. In other words, if
one realizes the endomorphism φr by the natural cellular map Φr : Xr,P → Xr,P ,
then ΣGr,P is the fundamental group of the union of two copies of the following
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mapping torus, identified along the images of X × {0}:

Xr,P × [0, 1]

[(x, 1) ∼ (Φr(x), 0)]
.

Note that the resulting 3-complex X3
r,P is aspherical, and hence may be used to

calculate the two-dimensional Dehn function of ΣGr,P .
The group ΣGr,P also admits an injective endomorphism φd : ΣGr,P → ΣGr,P for

each positive integer d, extending the endomorphism φd : Gr,P → Gr,P . Proceeding
inductively, we construct the groups ΣkGr,P using this “suspension procedure”.
Using mapping tori as above, we also construct aspherical (k + 2)-dimensional
complexes Xk+2

r,P with fundamental group ΣkGr,P . These complexes are used to

compute the (k + 1)-dimensional Dehn functions δ(k+1)(x) of the groups ΣkGr,P .

The strategy for proving Theorems A and C. The key geometric idea behind The-
orem A is that efficient van Kampen diagrams for the groups Gr,P exhibit the snow-
flake geometry illustrated in Figure 4. The essential features of such diagrams are
these: the diagram is composed of polygonal subdiagrams joined across strips so
that the dual to the decomposition is a tree T ; each of the polygonal subdiagrams
is a van Kampen diagram in one of the vertex groups Vm. Typically it is an (m+1)-
gon with a base labelled by a power of the distinguished c ∈ Vm and m other faces
labelled by powers of the coordinate circles in the chain of tori defining Vm. The
strips in the diagram correspond to the connecting annuli whose pattern of exis-
tence is encoded in P . By construction, the number of 1-cells is altered by a factor
of r as one passes from one side of the strip to the other.

The most important class of diagrams are those that are as symmetric as possible,
having the property that as one moves from the circumcentre of the dual tree to
the boundary of the diagram, the joining strips are all oriented in such a way that
the length of the side strip decreases by a factor of r as one journeys towards the
boundary. The labels on the outer sides of the strips are powers of the diagonal
elements in various vertex groups Vm, and a crucial feature of our construction
is that the cyclic subgroups 〈c〉 ⊂ Gr,P are distorted in a precisely understood
manner, with distortion funtion ≃ xα where α = logλ(r). (This fact is at the heart
of our calculations and it is where the Perron-Frobenius theory enters – see Section
4.)

If the tree T has radius d, then arguing by induction on d in a suitable class of
diagrams, one calculates the length of the boundary to be ∼ dk/α if the central
polygon has base ∼ dk. One has a precise understanding of the quadratic Dehn
functions of the vertex groups Vm, and this leads to an area estimate of ∼ d2k on
these diagrams of diameter ∼ dk. Thus we obtain a family of diagrams with area
∼ d2k and perimeter ∼ dk/α, and an elementary manipulation of logs provides the
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required lower bound x 7→ x2 logλ(r) on the Dehn function of Gr,P . The complemen-
tary upper bound is established in Section 5; the main points are a calculation of
the distortion function for Vm ⊂ Gr,P and an improvement of the Shuffling Lemma
from [3].

A key feature in our construction of Gr,P is that, when r is an integer, the snow-
flake diagrams we were just discussing admit a precise scaling by a factor of r.
This means that one can stack a sequence of scaled copies of these diagrams to
form 3-dimensional balls embedded in the universal cover of the 3-complex X3

r,P

(see Figures 7, 8). Such sequences of balls provide sharp lower bounds on the
two-dimensional Dehn functions of the groups ΣGr,P , and the simple relation-
ship between Gr,P and ΣGr,P means that the complementary upper bounds can
be deduced easily as in [16]. The scaling phenomenon continues into arbitrary di-
mensions, enabling us to construct sequences of embedded balls in the universal
cover of Xk

r,P that establish the lower bounds on the Dehn functions described in
Theorem C. In order to establish the complementary upper bounds we follow a
strategy modelled on the case k = 3. This is ultimately successful but, as we ex-
plained in the introduction, it requires that we establish isoperimetric inequalities
for compact manifolds (M, ∂M) other than (Bk, Sk−1).

An explicit example. We conclude our sketch of our basic constructions with an
explicit example. The example that we present here has Dehn function xp/q, where
p > 2q are positive integers (common factors are allowed).

Let P be the 1 × 1 matrix with entry 22q = 4q and let r = 2p. Then Gr,P is the
fundamental group of a graph of groups G with one vertex group and 4q infinite
cyclic edge groups. The single vertex group V4q is the fundamental group of a tree
of groups that we shall describe in a moment. V4q has generators a1, . . . , a4q ; the
product of these generators c = a1 · · ·a4q plays a special role.

The ith edge group of G has two monomorphisms to the vertex group V4q . One
maps the generator to c and the other maps the generator to a2p

i . Thus we have a
relative presentation

Gp/q = Gr,P = 〈 V4q , s1, . . . , s4q | s−1
i a2p

i si = c (i = 1, . . . , 4q) 〉.

It remains to elucidate the structure of the group V4q . This is the fundamental
group of a tree of groups in which each of the vertex groups is isomorphic to Z2

and each of the edge groups is infinite cyclic. The underlying tree is a segment
with 4q − 2 edges and 4q − 1 vertices. A basis {ai, bi} is fixed for each vertex group,
and the generator of each edge group maps to the generator ai of the left-hand
vertex group, and to the diagonal element ai+1bi+1 of the right-hand vertex group.

The generators a1, . . . , a4q mentioned above are the generators ai of these vertex
groups together with a4q = b4q−1. The distinguished element c is the diagonal a1b1

of the leftmost vertex group Z2 (see Figure 2(a)).
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Theorem A tells us that the Dehn function of Gp/q is xα where α = 2 log4q 2p =

p/q. Consider, for example, the group G5/2 with Dehn function x5/2. In this case,
the tree described above is a segment of length 14 and the above description of V4q

yields the presentation

〈a1, b1, a2, b2, . . . , a15, b15 | [ai, bi] (i = 1, . . . , 15), bi = ai+1bi+1 (i = 1, . . . , 14) 〉.

Eliminating the superfluous generators b1, . . . , b14 and relabelling b15 as a16, as in
the description of V4q above, we get

V16 = 〈 a1, . . . , a16 | θ ∈ C16 〉

where C16 is the following set of commutators:

[a1, a2 · · ·a16], [a2, a3 · · ·a16], · · · , [a14, a15a16], [a15, a16].

Thus we obtain the explicit presentation

G5/2 = 〈 a1, . . . , a16, s1, . . . , s16 | C16; s−1
i a32

i si = a1 · · ·a16 (i = 1, . . . , 16) 〉.

We have just described a 32-generator, 31-relator presentation of G5/2. The cor-
responding presentation for Gp/q has 22q+1 generators and 22q+1 − 1 relations.

2. PRELIMINARIES

In the first part of this section we recall the basic definitions associated to Dehn
functions. We then gather those elements of Perron-Frobenius theory that will be
needed in the sequel.

Dehn functions. Given a finitely presented group G = 〈A | R〉 and a word w in
the generators A±1 that represents 1 ∈ G, one defines

Area(w) = min{N ∈ N | ∃ equality w =
N∏

j=1

ujrju
−1
j freely, where rj ∈ R±1} .

The Dehn function δ(x) of the finite presentation 〈A | R〉 is defined by

δ(x) = max{Area(w) | w ∈ ker(F (A) → G), |w| 6 x }

where |w| denotes the length of the word w. It is straightforward to show that the
Dehn functions of any two finite presentations of the same group are equivalent in
the following sense (and modulo this equivalence relation it therefore makes sense
to talk of “the” Dehn function of a finitely presented group).

Given two functions f, g : [0,∞) → [0,∞) we define f 4 g if there exists a posi-
tive constant C such that

f(x) 6 C g(Cx) + Cx

for all x > 0. If f 4 g and g 4 f then f and g are said to be equivalent, denoted
f ≃ g.
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Remark 2.1. In order to establish the relation f 4 g between non-decreasing func-
tions, it suffices to consider relatively sparse sequences of integers. For if (ni)
is an increasing sequence of integers for which there is a constant C > 0 such
that n0 = 0 and ni+1 6 Cni for all i, and if f(ni) 6 g(ni) for all i, then f 4 g.
Indeed, given x ∈ [0,∞) there is an index i such that ni 6 x 6 ni+1, whence
f(x) 6 f(ni+1) 6 g(ni+1) 6 g(Cni) 6 g(Cx).

We refer to [4] for general facts about Dehn functions, in particular the interpre-
tation of Area(w) in terms of van Kampen diagrams over 〈A | R〉. Recall that a van
Kampen diagram for w is a labelled, contractible, planar 2-complex with a base-
point and boundary label w. Associated to such a diagram D one has a cellular

map D̃ from D to the universal cover K̃ of the standard 2-complex of 〈A | R〉,
respecting labels and basepoint. The diagram is said to be embedded if this map in
injective.

Remark 2.2. If the presentation 〈A | R〉 is aspherical and the diagram D is em-
bedded, then D has the smallest area among all diagrams with the same boundary

label. To see this, note that if ∆̃ is a diagram with the same boundary circuit as D̃,

then D̃−∆̃ defines a 2-cycle in K̃, which must be zero since H2(K̃;Z) = 0 and there

are no 3-cells. Thus each 2-cell in the image of D̃ must also occur in the image of ∆̃.

And since D̃ is an embedding, the number of 2-cells in the image (hence domain)

of ∆̃ is at least Area(D).

Higher-dimensional Dehn functions. Our treatment of higher-dimensional Dehn
(isoperimetric) functions is similar to that of Bridson [5], which is an interpretation
of the more algebraic treatment of Alonso et al. [2]. See Section 5 of [5] for an
explanation of the differences with the approaches of other authors, in particular
[10], [8], and [11].

The k-dimensional Dehn function is a function δ(k) : N → N defined for any
group G that is of type Fk+1 (that is, has a K(G, 1) with finite (k + 1)-skeleton).
Up to equivalence, δ(k)(x) is a quasi-isometry invariant. Roughly speaking, δ(k)(x)
measures the number of (k + 1)-cells that one needs in order to fill any singu-
lar k-sphere in K(G, 1) comprised of at most x k-cells. The reader who is happy
with this description can skip the technicalities in the remainder of this subsection.
However, to be precise one has to be careful about the classes of maps that one con-
siders and the way in which one counts cells. To this end, we make the following
definitions.

If W is a compact k-dimensional manifold and X a CW complex, an admissible
map is a continuous map f : W → X(k) ⊂ X such that f−1(X(k) − X(k−1)) is a
disjoint union of open k-dimensional balls, each mapped by f homeomorphically
onto a k-cell of X .
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If f : W → X is admissible we define the volume of f , denoted Volk(f), to be the
number of open k-balls in W mapping to k-cells of X . This notion is useful because
of the abundance of admissible maps:

Lemma 2.3. Let W be a compact manifold (smooth or PL) of dimension k and let X be a
CW complex. Then every continuous map f : W → X is homotopic to an admissible map.
If f(∂W ) ⊂ X(k−1) then the homotopy may be taken rel ∂W .

Proof. We prove the lemma in the smooth case; analogous methods apply in the PL
category (cf. the transversality theorem of [6]).

First arrange that f(W ) ⊂ X(k) using cellular approximation. Next consider
X(k) − X(k−1) as a smooth manifold and perturb f to be smooth on the preimage
of this open set. Let C ⊂ X(k) be a set consisting of one point in the interior of
each k-cell of X . By Sard’s theorem we can choose each point of C to be a regular
value of f . The preimage f−1(C) is now a codimension k submanifold of W (i.e.
a finite set of points) and f is a local diffeomorphism at each of these points, by
the inverse function theorem. Thus there is a neighborhood V of C consisting of
a small open ball around each point, whose preimage in W is a disjoint union of
open balls, each mapping diffeomorphically to a component of V . Now modify f
by composing it with a map of X (homotopic to the identity) that stretches each
component of V across the k-cell containing it, and pushes its complement into
X(k−1). The resulting map is admissible. �

Given a group G of type Fk+1, fix an aspherical CW complex X with funda-

mental group G and finite (k + 1)-skeleton. Let X̃ be the universal cover of X . If

f : Sk → X̃ is an admissible map, define the filling volume of f to be the minimal
volume of an extension of f to Bk+1:

FVol(f) = min{Volk+1(g) | g : Bk+1 → X̃, g|∂Bk+1 = f }.

Note that the maps g must be admissible for volume to be defined. Such extensions

exist by Lemma 2.3, since πk(X̃) is trivial. Next we define the k-dimensional Dehn
function of X to be

δ(k)(x) = sup{FVol(f) | f : Sk → X̃, Volk(f) 6 x }.

Again, the maps f are assumed to be admissible. We will also write δ(k)(x) as

δ
(k)
G (x) (recall that G is the fundamental group of X).

Remarks 2.4. (1) In these definitions one could equally well use X in place of X̃ ,

since maps Sk → X (or Bk+1 → X) and their lifts to X̃ have the same volume.

There are reasons to prefer X̃ , however, as we shall see in the next definition below.

(2) It is not difficult to show that the Dehn function δ
(k)
G (x) agrees with the notion

defined by Alonso et al. in [2]. A discussion along these lines is given in Section
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5 of [5]. Moreover it is proved in [2] that, up to equivalence, δ
(k)
G (x) depends only

on G (and in fact is a quasi-isometry invariant); hence we refer to it as “the” k-
dimensional Dehn function of G. It is also proved in [2] that the supremum in the

definition of δ
(k)
G (x) is attained.

More general Dehn functions. The definition of δ(k)(x) generalizes in a natural
way to give Dehn functions modeled on manifolds other than Bk+1. For example,
Gromov has defined genus g filling invariants based on surfaces other than the disk
[10]. Here we need to consider arbitrary compact manifolds.

Let (M, ∂M) be a compact manifold pair (smooth or PL) with dim M = k + 1. If

f : ∂M → X̃ is an admissible map define

FVolM(f) = min{Volk+1(g) | g : M → X̃, g|∂M = f }

and

δM(x) = sup{FVolM(f) | f : ∂M → X̃, Volk(f) 6 x }.

The dimension of δM(x) is k, the dimension of ∂M (when ∂M 6= ∅). In general we
do not assume that M is connected or that ∂M 6= ∅. By convention, if M is closed
then δM(x) is identically zero. We will also use the notation δM

G (x) for δM(x).

Remarks 2.5. (1) In the definition of δM(x) it is important that we use maps into

X̃ , which is contractible, since maps f : ∂M → X need not have extensions to M .
Note that if (M, ∂M) = (Bk+1, Sk) then the definitions of δM(x) and δ(k)(x) agree.

(2) The omission of X from the notation and the adoption of the alternative nota-
tion δM

G (x) suggest an implicit claim that, as in the case M = Bk+1, the equivalence
class of δM(x) depends only on G. We shall address this issue elsewhere, as it
would take us too far afield in the context of the current paper. The structure of
the arguments in Sections 7 and 8 requires us to work with specific choices of X
anyway.

(3) Also to be addressed elsewhere is whether the supremum in the definition of
δM(x) is attained. The main difficulty arises when M is 3-dimensional, as we shall
explain in a moment. In the current paper this issue plays no role because none of
the bounds that we establish require a priori finiteness.

(4) If dim M = k + 1 > 4 then δM(x) 6 δ(k)(x) provided ∂M is connected or
δ(k)(x) is superadditive. In particular, δM(x) is finite. The key point to observe here

is that if N = ∂M is connected and f : N → X̃ has volume V , then there is an
admissible homotopy with (k + 1)-dimensional volume at most δ(k)(V ) from f to

an admissible map f ′ : N → X̃ whose image lies X̃(k−1); one can then fill f ′ by a
map M → X with zero (k + 1)-dimensional volume.

To see that this homotopy exists, one considers a (k − 1)-sphere S in N that
encloses a ball D containing all of the open discs that contribute to the volume of f .
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The restriction of f to S is trivial in Hk−1(X̃
(k−1)) and hence in πk−1(X̃

(k−1)) (recall

that X̃(k−1) is (k − 2)-connected, and k > 2). The null-homotopy H : Bk → X̃(k−1)

of f |S furnished by this observation can be adjoined to f |D to give an admissible

map Sk → X̃ of volume V . This can then be filled by an admissible map Bk+1 → X̃
of volume at most δ(k)(V ). The desired map f ′ is defined to be the adjunction of
f |N−D and H .

If dim M = 2 then the same statement holds; this is proved below in Lemma 7.4.
It is not clear whether δM(x) 6 δ(2)(x) when dim M = 3.

Remark 2.6. An obvious adaptation of the argument in Remark 2.2 shows that if X
is an aspherical (k +1)-dimensional CW complex, g : Mk+1 → X is an embedding,
and f = g|∂M (with f and g admissible) then FVolM(f) = Volk+1(g). That is, the
embedding g has minimal volume among all extensions of f to the manifold M .
We shall use this fact in particular in the case of high-dimensional balls to estimate
δ(k)(x) from below.

Perron-Frobenius Theory. A square non-negative matrix P is said to be irreducible
if for every i and j there exists k > 1 such that the ij-entry of P k is positive. The
basic properties of irreducible matrices are summarized in the Perron-Frobenius
theorem below. See [14] and [12] for a more thorough treatment of this theory and
its applications.

Proposition 2.7 (Perron-Frobenius theorem). Let P be an irreducible non-negative
R × R matrix. Then P has one (up to a scalar) eigenvector with positive coordinates and
no other eigenvectors with non-negative coordinates. Moreover, the corresponding eigen-
value λ is simple, positive, and is greater than or equal to the absolute value of all other
eigenvalues. If m and M are the smallest and largest row sums of P , then m 6 λ 6 M ,
with equality on either side implying equality throughout.

Lemma 2.8. Let P be an irreducible non-negative R × R matrix with Perron-Frobenius
eigenvalue λ. Let {v1, . . . , vR} be a generalized eigenbasis for P , with v1 a positive eigen-
vector for λ, and with corresponding inner product 〈 · , · 〉. Then 〈u, v1〉 > 0 for every
non-negative vector u ∈ RR − {0}.

Proof. Decompose RR as W1 ⊕ · · · ⊕Wk where each Wi is a generalized eigenspace
for P , with W1 = 〈v1〉. Each Wi is P -invariant, as is the non-negative orthant N ,
since P is non-negative. The intersection (W2 ⊕ · · · ⊕Wk)∩N must then be trivial,
for otherwise it contains an eigenvector for P other than v1 (or a scalar multiple),
by the Brouwer fixed point theorem. Hence 〈u, v1〉 6= 0 for every u ∈ N −{0}. Since
N − {0} is connected and contains v1, 〈u, v1〉 is positive. �

Proposition 2.9 (Growth rate). Let P be an irreducible non-negative R × R matrix
with Perron-Frobenius eigenvalue λ. Let ‖ · ‖ be a norm on RR. Then there are positive
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constants A0, A1 such that for every non-negative vector u in RR and every integer k > 0,
A0λ

k ‖u‖ 6
∥∥P ku

∥∥ 6 A1λ
k ‖u‖.

Proof. First, it is clear that by varying the constants, it suffices to consider any single
norm ‖ · ‖. Consider a generalized eigenbasis {v1, . . . , vR} as in Lemma 2.8 (with v1

a positive eigenvector for λ). Let 〈 · , · 〉 and ‖ · ‖ be the corresponding inner product
and norm on RR. Let π : RR → 〈v1〉 be orthogonal projection (π(u) = 〈u, v1〉v1).

Define A0 = inf{‖π(u)‖ / ‖u‖ | u ∈ N − {0}}. Note that A0 > 0 by Lemma 2.8
and compactness of N − {0} modulo homothety. For every u ∈ N − {0} we now
have λkA0 ‖u‖ 6 λk ‖π(u)‖ =

∥∥P kπ(u)
∥∥ 6

∥∥P ku
∥∥. We also have

∥∥P ku
∥∥ 6 λk ‖u‖

since λ is the spectral radius of P ; hence A1 = 1 will work. �

3. THE VERTEX GROUPS Vm

In this section we define groups Vm for each integer m > 2. We begin with a very
brief overview of the construction of the groups Gr,P so that the reader knows
where the groups Vm fit into the overall picture.

An irreducible matrix P determines a directed graph (whose transition matrix is
P ). This graph is the underlying graph in a graph of groups description of the Gr,P

in Theorem A. The vertex groups in this graph of groups are precisely the groups
Vm which we define and study in this section.

The groups Vm satisfy a number of the properties that the free abelian groups
Zm do, but they have geometric dimension 2. In particular, Vm has generators
a1, . . . , am and has the following scaling property (cf. equation (3.2)): for any in-
teger N > 0, the equality aN

1 · · ·aN
m = (a1 · · ·am)N holds. Moreover, this equal-

ity requires on the order of N2 relations of Vm. This follows as a special case of
Lemma 3.5, which gives careful estimates on the areas of certain words in Vm.

The groups Vm. Begin with m − 1 copies of Z× Z, the ith copy having generators
{ai, bi}. The group Vm is formed by successively amalgamating these groups along
infinite cyclic subgroups by adding the relations

b1 = a2b2, b2 = a3b3, . . . , bm−2 = am−1bm−1.

Thus Vm is the fundamental group of a graph of groups whose underlying graph
is a segment having m− 2 edges and m− 1 vertices. We define two new elements:
c = a1b1 and am = bm−1. Then a1, . . . , am generate Vm and the relation a1 · · ·am = c
holds; see Figure 2(a). The element c is called the diagonal element of Vm. The
additional relations bm−2 = am−1am, . . . , bm−k = am−k+1 · · ·am are also evident
from Figure 2(a).

If m = 1 then we define Vm to be the infinite cyclic group 〈a1〉 and we set c = a1.
Lemmas 3.1 and 3.5 below clearly hold in this case.
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c

a1

a2 a3

a4
b1

b2

(a) (b)

FIGURE 2. Some relations in V4: c = a1a2a3a4 and c3 = (a1)
3(a2)

3(a3)
3(a4)

3

Lemma 3.1 (Shuffling Lemma). Let w = w(a1, . . . , am, c) be a word representing cN in
Vm for some integer N . Let ni be the exponent sum of ai in w, and nc the exponent sum
of c in w. Then the words an1

1 · · ·anm
m cnc and cncanm

m · · ·an1
1 also represent cN in Vm and

ni = N − nc for all i.

Proof. First we prove the second statement. The abelianization Vm/[Vm, Vm] ∼= Zm

has {a1, . . . , am} as a basis and the image of w is an1+nc

1 · · ·anm+nc
m . Since cN abelian-

izes to aN
1 · · ·aN

m, we must have ni = N − nc for all i.
To prove the first statement it now suffices to establish the following set of equal-

ities for any integer N :

(a1 · · ·am)N = aN
1 · · ·aN

m = aN
m · · ·aN

1 = (am · · ·a1)
N . (3.2)

In fact we shall prove the following equalities, by induction on k:

(am−k+1 · · ·am)N = am−k+1
N · · ·aN

m = aN
m · · ·am−k+1

N = (am · · ·am−k+1)
N .

The case k = 1 is evidently true. Suppose the equations hold for a given k >

1. By the induction hypothesis aN
m−ka

N
m−k+1 · · ·a

N
m = aN

m−k(am−k+1 · · ·am)N . Then
since bm−k = am−k+1 · · ·am and this element commutes with am−k, we conclude
that aN

m−k(am−k+1 · · ·am)N = (am−k · · ·am)N . The same commutation relation also
yields

aN
m−k(am−k+1 · · ·am)N = (am−k+1 · · ·am)NaN

m−k

= (am · · ·am−k+1)
NaN

m−k

= aN
m · · ·aN

m−k+1a
N
m.

Finally we have (am · · ·am−k+1)
NaN

m−k = (am · · ·am−k+1am−k)
N , again because am−k

and bm−k (= am · · ·am−k+1) commute. �

Remark 3.3 (Scaling in Vm). Equation (3.2) plays a key role in this article. It shows
that the basic relation shown in Figure 2(a) holds at larger scales as well. Figure 2(b)
illustrates how these larger relations follow from the triangular relations bi−1 = aibi

and bi−1 = biai.
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The spaces Xm. To compute area in Vm we shall use a specific aspherical 2-complex
Xm with fundamental group Vm. This complex is a union of m − 1 tori, each trian-
gulated with two 2-cells realizing the relations aibi = bi−1 and biai = bi−1 (where
b0 = c in the case i = 1). Thus the ith torus has standard generators given by the
1-cells ai and bi, and its diagonal is joined to the 1-cell bi−1 of the previous torus.
In all there is one vertex, 1-cells a1, . . . , am−1, b0, . . . , bm−1, and 2(m − 1) triangular
2-cells.

The universal cover X̃m is a union of planes, each covering one of the tori below.
Each plane contains three families of parallel lines covering the 1-cells ai, bi, and
bi−1. The plane intersects neighboring planes along the bj-lines for j 6= 0, m −

1. These planes are the vertex spaces of X̃m corresponding to the graph of groups
decomposition of Vm described earlier. The incidence graph of the vertex spaces
is the Bass-Serre tree for this decomposition, with edges corresponding to bj-lines
(j 6= 0, m − 1).

Remark 3.4. Figure 2(b) shows an embedded disk in X̃m with boundary word of

the form cN = aN
1 · · ·aN

m (N = 3). The triangles shown are 2-cells of X̃m. Each large

triangular region lies in a vertex space of X̃m. There are similar embedded disks
with boundary word cN = aN

m · · ·aN
1 as well. All of these disks have area (m−1)N2.

Throughout this article we usually work with the standard generators {a1, . . . , am}
for Vm. However in the area computation below we allow words involving the
elements bi as well.

Lemma 3.5 (Area in Vm). Let w(a1, . . . , am−1, b0, . . . , bm−1) be a word representing the
element xN for some N , where x is a generator ai or bi. Let w be expressed as w1 · · ·wk

where each wi is a power of a generator. Then N 6 |w| and Area(wx−N) 6 3
∑

i<j |wi| |wj|.

Note that if the sum included diagonal terms of the form (3/2) |wi|
2 then the area

bound would simply be (3/2) |w|2. The leeway afforded by the absence of these
terms will be exploited in the proof of Theorem A. (In particular, it would not
suffice to know that Vm has quadratic Dehn function.) Also the statement N 6 |w|

implies that every vertex space is a totally geodesic subspace of X̃m.

Proof. First we prove that N 6 |w| and then we establish the area bound. Both
proofs are by induction on the complexity of the word w, defined as follows. Let

p be a path in the 1-skeleton of X̃m whose edge labels read w. Since w represents
xN , the endpoints of p lie in a single vertex space. Hence the induced path p̂ in
the Bass-Serre tree is a closed path. The complexity of w is the length of p̂. Note
that vertices of p̂ correspond to edges of p (or letters of w) and edges correspond
to transitions between certain pairs of generators. Thus the complexity is also the
number of such transitions occurring in w.
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If w has complexity zero then p lies in a plane. The statement N 6 |w| amounts
to saying that xN is a geodesic, which is clear. If p̂ has positive length then there
is a non-trivial proper subpath p′ ⊂ p with endpoints on a single bj-line. (These
endpoints correspond to edges in p̂ that map to the same edge of the Bass-Serre
tree, crossing and returning.) The subword w′ ⊂ w corresponding to p′ represents
an element of the form bj

M . Let u be the word obtained from w by substituting bj
M

for w′. Then u and w′ both have complexity strictly smaller than that of w. By the
induction hypothesis, M 6 |w′| and N 6 |u| = (|w| − |w′|)+M . Therefore N 6 |w|.

Next we establish the area bound when w has complexity zero. Since p then lies

entirely within a vertex space of X̃m, we may assume without loss of generality
that Vm = V1 and x = b0, so that w(a1, b0, b1) = b0

N in V1 = 〈a1, b1, b0 | a1b1 = b0 =
b1a1〉. Since this group is abelian we can successively transpose adjacent subwords
wi and cancel pairs of the form xx−1, to obtain v = an

1b
n
1 bN−n

0 for some n. Each
transposition of letters contributes 2 to Area(wv−1), so we have Area(wv−1) 6

2
∑

i<j |wi| |wj|. Next let Ia and Ib be the sets of indices for which wi is a power
of a1 and b1 respectively. Then

∑
i∈Ia

|wi| > |n| and
∑

i∈Ib
|wi| > |n|, and therefore∑

i<j |wi| |wj| > n2 = Area(vb−N
0 ). Then we have Area(wb−N

0 ) 6 Area(wv−1) +

Area(vb−N
0 ) 6 3

∑
i<j |wi| |wj | as desired.

Now suppose w has positive complexity. Define w′ ⊂ w and u as before, so that
w′ represents bj

M , u is obtained from w by substituting bj
M for w′, and both u and

w′ have smaller complexity than w. Note that w′ = wi0 · · ·wi1 ⊂ w1 · · ·wk for some
i0 and i1, and so u = w1 · · ·wi0−1bj

Mwi1+1 · · ·wk. Let I = {i0, . . . , i1}. Applying the
induction hypothesis to u and w′ we obtain

Area(ux−N) 6 3
∑

i<j
i,j 6∈I

|wi| |wj | + 3
∑

i6∈I

|wi|M (3.6)

and

Area(w′bj
−M) 6 3

∑

i<j
i,j∈I

|wi| |wj| . (3.7)

Since M 6 |w′| =
∑

j∈I |wj|, inequality (3.6) becomes

Area(ux−N) 6 3
∑

i<j
i,j 6∈I

|wi| |wj| + 3
(∑

i6∈I

|wi|
)(∑

j∈I

|wj|
)
. (3.8)

Adding together (3.7) and (3.8) yields

Area(w′bj
−M) + Area(ux−N) 6 3

∑

i<j

|wi| |wj|
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which proves the lemma because Area(wx−N) 6 Area(wu−1) + Area(ux−N) and
Area(wu−1) = Area(w′bj

−M). �

4. THE GROUPS Gr,P AND SNOWFLAKE WORDS

The groups Gr,P . Start with a non-negative square integer matrix P = (pij) with
R rows. Let mi be the sum of the entries in the ith row and let n =

∑
i mi, the

sum of all entries. Form a directed graph Γ with vertices {v1, . . . , vR} and having
pij directed edges from vi to vj. Label the edges as {e1, . . . , en} and define two
functions ρ, σ : {1, . . . , n} → {1, . . . , R} indicating the initial and terminal vertices
of the edges, so that ei is a directed edge from vρ(i) to vσ(i) for each i. These functions
also indicate the row and column of the matrix entry accounting for ei. Partition
the set {1, . . . , n} as

⋃
i Ii by setting Ii = ρ−1(i). Note that |Ii| = mi.

Let M = max{mi} and choose a rational number r = p/q with p > Mq > 0.
We define a graph of groups Gr,P with underlying graph Γ as follows. The vertex
group Gvi

at vi will be Vmi
and all edge groups will be infinite cyclic. Relabel the

standard generators of these vertex groups as {a1, . . . , an} in such a way that the
standard generating set for Gvi

is {aj | j ∈ Ii}. Let ci be the diagonal element of the
vertex group Gvi

. Then the inclusion maps are defined by mapping the generator
of the infinite cyclic group Gei

to the elements ai
p ∈ Gvρ(i)

and cσ(i)
q ∈ Gvσ(i)

.
Let si be the stable letter associated to the edge ei. The fundamental group Gr,P

of Gr,P is obtained from the presentation

〈Gv1 , . . . , GvR
, s1, . . . , sn | s−1

i ai
psi = cσ(i)

q for all i 〉

by adding relations si = 1 for each edge ei in a maximal tree in Γ. However, we
shall continue to use the generating set {a1, . . . , an, s1, . . . , sn} for Gr,P even though
some of these generators are trivial.

The spaces Xr,P . We define aspherical 2-complexes Xr,P by forming graphs of
spaces modeling Gr,P . Namely, take the disjoint union of the spaces Xvi

≈ Xmi

(one for each vertex vi) and attach annuli Ai, one for each edge ei of the graph.
The two boundary curves of Ai are attached to the paths labeled ai

p in Xvρ(i)
and

cσ(i)
q in Xvσ(i)

. The resulting 2-complex Xr,P has fundamental group Gr,P and it is
aspherical because it is the total space of a graph of aspherical spaces.

The universal cover X̃r,P is a union of copies of the universal covers X̃vi
and

infinite strips R× [−1, 1] covering the annuli Ai. Each strip is tiled by 2-cells whose
boundary labels read s−1

i ai
psicσ(i)

−q; the two sides R×{±1} consist of edges labeled
ai and cσ(i) respectively. Note that if a path crosses a strip along an edge labeled si

and returns over s−1
i then the power of ai represented by the path is divisible by p.
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Snowflake words. For each group element of the form cN
i we will define two types

of words in the generators {a1, . . . , an, s1, . . . , sn} representing that element, called
positive and negative snowflake words. The structure of these words is governed
by the dynamics of the matrix P . Some snowflake words are close to geodesics,
and these are useful in determining the large scale geometry of Gr,P .

We define snowflake words recursively on |N | ∈ N as follows. Let

N0 =
p(M(q + 2) + (M − 1)(p − 1))

p − Mq
.

Note for future reference that N0 > p (this is easily verified). Let c be the diagonal
element of a vertex group with standard ordered generating set {ai1 , . . . , aim}. A
word w representing cN is a positive snowflake word if either

(i) |N | 6 N0 and w = aN
i1
· · ·aN

im , or

(ii) |N | > N0 and w = (si1u1s
−1
i1

)(aN1
i1

) · · · (simums−1
im

)(aNm

im
) where each uj is a

positive snowflake word representing a power of cσ(ij ) and |Nj| < p for all
j.

In the second case note that each subword (sijujs
−1
ij

)(a
Nj

ij
) represents a power of

aij , and by Lemma 3.1 this power is N . Then since |Nj | < p, the word (sijujs
−1
ij

)

represents either aij
⌊N/p⌋p or aij

⌈N/p⌉p. Consequently, the word uj represents either

cσ(ij )
⌊N/p⌋q or cσ(ij)

⌈N/p⌉q .
A negative snowflake word is defined similarly, with the ordering of the terms

representing powers of aij reversed. More specifically, w satisfies either

(i′) |N | 6 N0 and w = aN
im · · ·aN

i1 , or

(ii′) |N | > N0 and w = (aNm

im )(simums−1
im ) · · · (aN1

i1
)(si1u1s

−1
i1

) where uj is a negative
snowflake word representing a power of cσ(ij) and |Nj | < p for all j.

As with positive snowflake words, each word uj will represent either cσ(ij )
⌊N/p⌋q or

cσ(ij )
⌈N/p⌉q .

To see that the recursion is well-founded note that the definition describes an
iterated curve shortening process in which subwords of the form cN are replaced
by the words described in case (ii) or (ii′), with appropriate powers of cσ(ij ) in
place of uj; see Figure 3. Writing |N | = Ap + B with 0 6 B < p, the new word
representing cN has length at most M((A + 1)q + 2 + B), which is strictly less than
|N | provided |N | > N0. Eventually the subwords cN all have length at most N0

and the shortening procedure terminates. See also Figure 4 for the end result of
this process. In this figure the top and bottom halves of the boundary are positive
and negative snowflake words representing cN , the diameter.

Note that every snowflake word has a nested structure in which various sub-
words are themselves snowflake words. These are the subwords uj arising at each
stage. The minimal such subwords are those given by (i) and (i′) and these will be
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cσ(1)
⌊N/p⌋q

cσ(2)
⌊N/p⌋q

cσ(3)
⌈N/p⌉q

aN
1

aN
2

aN
3

aN1
1

aN2
2

aN3
3

cN

FIGURE 3. One way of shortening cN . Here {a1, a2, a3} is the generat-
ing set for a vertex group V3 with diagonal element c. The exponents
N1 and N2 are both N−⌊N/p⌋p and N3 is N−⌈N/p⌉p. The short black
edges are labeled s1, s2, s3.

called terminal subwords. The depth of a snowflake subword is the number of snow-
flake subwords of type (ii) or (ii′) properly containing it, including the original
snowflake word itself. Equivalently, it is the number of matching sj , s−1

j pairs en-
closing it. Note that a snowflake word w contains a depth zero terminal subword
if and only if w has the form (i) or (i′).

It is worth emphasizing that the curve shortening process is not canonically de-

termined, but allows many choices. In each “remainder” term aNi

i the exponent
Ni may be positive or negative; the two possible values for Ni are N − ⌊N/p⌋p
and N − ⌈N/p⌉p. Figure 3 shows both possibilities occurring in a single step, for
example. For this reason, a single snowflake word may have terminal subwords
of different depths. However, Lemma 4.2 below shows that these depths will not
differ substantially.

Remark 4.1. A special type of snowflake word plays a key role in the proof of
Theorem C. If r is an integer (that is, r = p/1) and N = rk for some k, then the
positive (resp. negative) snowflake word representing cN

i is unique. What happens
is that the exponents Nj in the expressions (ii) or (ii′) at each stage are always zero;

there are no “remainder” terms a
Nj

ij
. Each subword uj represents cσ(ij )

N/r, and

N/r is again a power of r. Furthermore, all terminal subwords will have the form
ai1 · · ·aim or aim · · ·ai1 .

Lemma 4.2 (Snowflake word depth). Given r and P there are positive constants B0, B1

with the following property. If a non-trivial snowflake word w representing cN contains a
terminal subword of depth d then B0r

d 6 |N | 6 B1r
d.

Proof. If d = 0 then w has the form (i) or (i′) and 1 6 |N | 6 N0. Thus we need to
arrange that B0 6 1 and B1 > N0 for the lemma to hold in this case.
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If d > 0 then we will show by induction on d that

N0r
d−1 − p(rd−2 + · · · + r + 1) 6 |N | 6 N0r

d + p(rd−1 + · · ·+ r + 1). (4.3)

The lower bound then gives

|N | > N0r
d−1 − p

(
rd−1 − 1

r − 1

)
>

1

r

(
N0 −

p

r − 1

)
rd.

Recall that N0 > p and r > 2, which imply N0 > p/(r − 1). Now we may find
B0 > 0 so that B0 6 r−1(N0 − p/(r − 1)) and B0 6 1, giving the desired bound.

The upper bound in (4.3) gives

|N | 6 N0r
d + p

(
rd − 1

r − 1

)
6 (N0 + p)rd

where the last inequality uses the fact that r − 1 > 1. Now choose B1 > N0 + p to
obtain the desired bound.

Next we prove (4.3) by induction on d. If d = 1 then |N | > N0 and w is of the
form (ii) or (ii′) where some uj has the form (i) or (i′). Then uj represents cσ(ij )

N ′

with N ′ 6 N0, and so (sijujs
−1
ij

) represents aij
rN ′

. This implies |N | = |rN ′ + Nj| 6

rN0 + p.
For d > 1 write w in the form (ii) or (ii′). Then the terminal subword has depth

d − 1 in uj for some j. By the induction hypothesis uj represents cσ(ij )
N ′

where

N0r
d−2 − p(rd−3 + · · ·+ 1) 6 |N ′| 6 N0r

d−1 + p(rd−2 + · · ·+ 1). (4.4)

Then (sijujs
−1
ij

) represents aij
rN ′

and rN ′ − p 6 |N | 6 rN ′ + p. These bounds and

(4.4) together imply (4.3). �

Proposition 4.5 (Snowflake word length). Given r and P there are positive constants
C0, C1 with the following property. If c is the diagonal element of one of the vertex groups
and w is a snowflake word representing cN then C0 |w|α 6 |N | 6 C1 |w|α, where α =
logλ(r) and λ is the Perron-Frobenius eigenvalue of P .

Proof. If w is non-trivial and has the form (i) or (i′) then 1 6 |N | 6 N0 and |N | 6

|w| 6 r |N |. Then |w|α 6 (rN0)
α, which implies

(rN0)
−α |w|α 6 |N | 6 |w|α .

Thus we need to arrange that C0 6 (rN0)
−α and C1 > 1 to cover this case.

Next assume that w is of type (ii) or (ii′) which implies that the depth of every
terminal subword is at least one. Equivalently, w contains the letters sj , s−1

j for

some j. Let s(w) be the number of letters sj or s−1
j in w (for all indices j). Note that

a subword of w containing no such letters has length at most rN0. Since s(w) 6= 0,
this implies

s(w) 6 |w| 6 2(rN0 + 1)s(w). (4.6)
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Let ‖ · ‖1 denote the ℓ1 norm on RR: ‖v‖1 is the sum of the entries of the vector v.
Let x1, . . . , xR be the standard basis vectors of RR. Recall from the definition of Gr,P

that the entry pij of P gives the number of directed edges from vertex vi to vertex
vj . Thus if w has the form (ii) or (ii′) and represents a power of ci, then pij is the
number of subwords uk representing powers of cj . Thus the number of subwords
uk in the expression (ii) or (ii′) is given by the row sum mi =

∑
j pij . If w represents

a power of ck and every terminal subword has depth d then a straightforward
induction on d shows that

s(w) = 2
(∥∥P T (xk)

∥∥
1
+

∥∥(P T )2(xk)
∥∥

1
+ · · ·+

∥∥(P T )d(xk)
∥∥

1

)

where P T is the transpose of P . The term
∥∥(P T )i(xk)

∥∥
1

counts the number of

matching sj, s−1
j pairs (for all j) of depth i.

If we let d0 and d1 denote the smallest and largest depths of terminal subwords
of w then we obtain

2

d0∑

i=1

∥∥(P T )i(xk)
∥∥

1
6 s(w) 6 2

d1∑

i=1

∥∥(P T )i(xk)
∥∥

1
.

Applying Proposition 2.9 with the norm ‖ · ‖1 we have

2A0

d0∑

i=1

λi 6 s(w) 6 2A1

d1∑

i=1

λi =
2A1λ

λ − 1
(λd1 − 1)

which implies

2A0λ
d0 6 s(w) 6

2A1λ

λ − 1
λd1 .

Hence by (4.6) we have

(2A0)λ
d0 6 |w| 6

(
4(rN0 + 1)A1λ

λ − 1

)
λd1 . (4.7)

We complete the proof by applying Lemma 4.2 separately for the upper and lower
bounds. Using d = d1 we obtain

|N | > B0r
d1 = B0(λ

d1)logλ(r) > B0

(
4(rN0 + 1)A1λ

λ − 1

)− logλ(r)

|w|logλ(r) .

Now choose C0 > 0 satisfying C0 6 B0

(
4(rN0+1)A1λ

λ−1

)−α

and C0 6 (rN0)
−α to obtain

the desired lower bound.
Applying Lemma 4.2 with d = d0 gives

|N | 6 B1r
d0 = B1(λ

d0)logλ(r) 6 B1(2A0)
− logλ(r) |w|logλ(r)

so choose C1 with C1 > B1(2A0)
−α and C1 > 1. �
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5. PROOF OF THEOREM A

Throughout this section Gr,P is fixed, with r = p/q greater than all the row sums
of P , and α = logλ(r), where λ is the Perron-Frobenius eigenvalue of P . Unless
otherwise stated, all words use the generating set {a1, . . . , an, s1, . . . , sn} for Gr.P .

The lower bound. To establish the lower bound δ(x) < x2α we will show that
δ(ni) > (C0

24−α) ni
2α for certain integers ni tending to infinity. This is sufficient by

Remark 2.1, provided the sequence (ni) grows at most exponentially.
Note also that to establish a single inequality δ(n) > A, it is enough to exhibit an

embedded disk in X̃r,P with boundary length n and area A or greater, by Remark
2.2. Here we are using the facts that Xr,P is aspherical and 2-dimensional.

Choose a vertex group Vm in Gr,P with m > 2 and let c be its diagonal ele-
ment. There must be at least one vertex group of this type, for otherwise P would
be a permutation matrix with Perron-Frobenius eigenvalue 1. For each i choose
positive and negative snowflake words w+

i and w−
i representing ci. Then define

wi = w+
i (w−

i )−1 and ni = |wi|. Note that C0 2−α |wi|
α

6 i 6 C1 2−α |wi|
α by Propo-

sition 4.5. It follows that the sequence (ni) tends to infinity, and that it is exponen-
tially bounded:

ni+1

ni

6
(ni+1)

α

(ni)α
6

(i + 1)

C0

C1

i
6

2C1

C0

for i > 1.
Next we find embedded disks ∆i in X̃r,P with boundary words wi and estimate

their areas. Each ∆i is made of two disks ∆+
i and ∆−

i with boundary words w+
i c−i

and ci(w−
i )−1 respectively, joined along the boundary arcs labeled c−i, ci.

The disk ∆±
i is a union of embedded disks in vertex spaces X̃mi

and pieces of
strips joining them. Consider the curve shortening process that transforms ci into
w±

i . To build ∆±
i simply fill the central region shown in Figure 3 with the embed-

ded disk from Figure 2(b). Then fill each strip with either ⌊i/p⌋ or ⌈i/p⌉ copies
of the 2-cell with the appropriate boundary word sjcσ(j)

qs−1
j a−p

j , and repeat the

procedure. The resulting disk is a union of embedded disks in X̃r,P joined along

boundary arcs, with no folding along these arcs. Since each strip separates X̃r,P ,
one can see inductively (on the number of strips crossed by ∆±

i ) that ∆±
i is em-

bedded. For the same reason, it suffices to note that no folding occurs when ∆+
i

and ∆−
i are joined together to conclude that ∆i is embedded. Figure 4 shows an

example of a disk ∆i with boundary word wi.
To estimate the area of ∆i consider the central region in ∆+

i adjacent to ∆−
i . By

Remark 3.4 this subdisk of ∆i has area (m − 1)i2 > i2. Then since i > C0 2−αni
α (as

observed above) we conclude that

Area(∆i) > (C0
24−α)ni

2α (5.1)
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FIGURE 4. A snowflake disk based on the matrix P = ( 1
2

1
1 )

and therefore δ(ni) > (C0
24−α)ni

2α.

The upper bound. Suppose a word w represents an element of a vertex group
Vm. The graph of groups structure of Gr,P yields a decomposition of w as w1 · · ·wk

where each wi is either an element of Vm, or begins with s±j and ends with s∓j for
some j. These latter cases occur when the path described by w leaves the vertex

space X̃m and then returns again over a strip in X̃r,P .

Recall that a strip in X̃r,P has sides labeled ai and cσ(i). The next lemma shows
that a geodesic (in the generators {a1, . . . , an, s1, . . . , sn}) can only enter a strip from
(and return to) the ai-side.

Lemma 5.2. Let w be a geodesic in Gr,P representing an element of a vertex group Vm.
Then w is a product of subwords w1 · · ·wk where each wi is a power of a generator aj, or
begins with sj and ends with s−1

j (for some j) and represents a power of aj.

Proof. Let w′ ⊂ w be an innermost word that begins with s−1
ℓ and ends with sℓ (for

some ℓ) and whose corresponding path in X̃r,P has endpoints in the same vertex

space X̃vσ(ℓ)
. Thus w′ = s−1

ℓ usℓ crosses a strip from the cσ(ℓ)-side, and the subword
u only crosses strips from (and returns to) ai-sides. That is, u can be written as
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u1 · · ·uk where each ui is a power of a generator aj , or begins with sj and ends with
s−1

j and represents a power of aj .

Note that u has both endpoints on an aℓ-line in the vertex space X̃vρ(ℓ)
across

a strip from X̃vσ(ℓ)
. Hence u represents aN

ℓ for some N . Let u′ be the word in the
standard generators of Gvρ(ℓ)

∼= Vm obtained by replacing each ui by the appropriate

power of aj that it represents. Consider the word u′a−N
ℓ which represents the trivial

element c0 in Vm. Since u′ does not involve c, Lemma 3.1 implies that every aj-
exponent of u′a−N

ℓ is zero. Hence u′ has aℓ-exponent N and aj-exponent zero for
every j 6= ℓ.

If any of the subwords ui of u represent a power of aj with j 6= ℓ, then by Lemma
3.1 one could rearrange the subwords (preserving the property that u represents
aN

ℓ ) so that those representing powers of aj are adjacent. Then these adjacent sub-
words cancel in Vm and can be deleted, shortening w. Therefore every ui represents
a power of aℓ.

If none of the subwords ui begins with sℓ and ends with s−1
ℓ then u = aN

ℓ , but

then w′ could be replaced by a word a
N/r
i1

· · ·aN/r
im

representing cσ(ℓ)
N/r. The new

word is shorter than w because of the hypothesis that m < r, and therefore some
ui must have the form sℓvs−1

ℓ after all. Now rearrange the subwords so that sℓvs−1
ℓ

occurs last. Again w can be shortened by replacing u with this rearranged word
and then cancelling s−1

ℓ sℓ at the end. �

Proposition 5.3. Let c be the diagonal element of one of the vertex groups in Gr,P . Then
for every N there is a snowflake word wsf and a geodesic wgeo, both representing cN , with∣∣wsf

∣∣ 6 rN0

∣∣wgeo

∣∣.

Proof. The proof is by induction on |N |. Let w be a geodesic representing cN . We
shall apply Lemma 3.1 inductively to rearrange and modify w into two words, a
geodesic wgeo and a positive snowflake word wsf. The two constructions are iden-
tical except at the base of the induction, which involves only certain segments of
length at most rN0.

Let ai1 , . . . , aim be the standard generators (in order) of the vertex group Vm con-
taining c. If |N | 6 N0 then define wgeo = w and wsf = aN

i1
· · ·aN

im . The desired
conclusion holds in this case since r > m.

Suppose next that |N | > N0. By Lemma 5.2 we can write w as w1 · · ·wk where

each subword has the form a
Nj

j or sjujs
−1
j . In the latter case sjujs

−1
j represents a

power of aj .
By Lemma 3.1 we can permute the subwords wℓ of w to arrange that those repre-

senting powers of ai1 come first, those representing powers of ai2 occur next, and
so on. The resulting word is still a geodesic representing cN . Note that two sub-
words cannot both be of the form sijujs

−1
ij

since they could be made adjacent, and
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then a cancellation of s−1
ij

sij would be possible. Hence we can arrange for w to have

the form

w = (si1u1s
−1
i1

)(aN1
i1

)(si2u2s
−1
i2

)(aN2
i2

) · · · (simums−1
im

)(aNm

im
) (5.4)

where each sijujs
−1
ij

represents a power of aij . Next observe that |Nj | < p for all j,

since otherwise a subword of the form s−1
ij

a±p
ij

could be replaced by a word of the

form a±q
ℓ1

· · ·a±q
ℓm′

s−1
ij

(that is, cσ(ij )
±qs−1

ij
expressed in the standard generators). Here

m′ is a row sum of P and so r > m′, making the new word shorter than w.
Recall that uj represents a power of cσ(j). By Lemma 3.1 the power of aij repre-

sented by sijujs
−1
ij

is N − Nj , and so uj represents cσ(j)
(N−Nj)/r. Recall that N0 > p,

hence |N | > p > |Nj |. Then since r > 2 it follows that |(N − Nj)/r| < |N |.
By induction cσ(j)

(N−Nj)/r is represented by a geodesic (uj)geo and a positive
snowflake word (uj)sf satisfying the conclusion of the lemma. Define wgeo and
wsf by replacing each subword uj in (5.4) by (uj)geo or (uj)sf accordingly. Then
the desired conclusion also holds for wgeo and wsf, since they agree except in the
subwords (uj)geo and (uj)sf. �

Corollary 5.5 (Edge group distortion). Given r and P there is a positive constant D
with the following property. If c is a diagonal element and w is a word representing cN

then |N | 6 D |w|α.

Proof. It suffices to consider the case when w is a geodesic. Apply Proposition 5.3
to obtain the geodesic wgeo and snowflake word wsf representing cN with |wsf| 6

rN0

∣∣wgeo

∣∣. Then Proposition 4.5 implies |N | 6 C1 |wsf|
α

6 C1 (rN0)
α
∣∣wgeo

∣∣α. �

The statement and proof of the next proposition are similar to those of Proposi-
tion 3.2 of [3]. The case N = 0 establishes the upper bound of Theorem A.

Proposition 5.6 (Area bound). Given r and P there is a positive constant E with the
following property. If w is a word in Gr,P representing xN for some N , where x is either
a generator ai or the diagonal element of one of the vertex groups, then Area(wx−N) 6

E |w|2α.

Proof. We argue by induction on |w|. We shall prove the statement with E =
(3/2)r2D2 (D given by Corollary 5.5). Let c denote the diagonal element of the
vertex group Vm containing x.

Write w as w1 · · ·wk where each wi has the form aNi

ji
or is a word beginning in s±1

ji

and ending in s∓1
ji

. In the latter cases wi represents an element of the form cNi or

aNi

ji
. Let Ic and Ia be the sets of indices for which these two cases occur, and let w′

be the word obtained from w by replacing each subword wi of this type with the

appropriate word cNi or aNi

ji
. Then w′ is a word in the standard generators of Vm

(and the diagonal element) representing xN , of length
∑

i Ni.
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By Lemma 3.5 we have Area(w′x−N) 6 3
∑

i<j NiNj . To estimate each Ni we use

Corollary 5.5 as follows. If i ∈ Ic then wi represents cNi and Corollary 5.5 gives
Ni 6 D |wi|

α. If i ∈ Ia then wi = sji
uis

−1
ji

for some ui representing cσ(ji)
Ni/r (because

wi represents aNi

ji
). Then by Corollary 5.5 we have Ni/r 6 D(|wi| − 2)α 6 D |wi|

α,
so Ni 6 rD |wi|

α. Finally if i 6∈ (Ic ∪ Ia) then Ni = |wi| 6 |wi|
α. Putting these

observations together we have

Area(w′x−N) 6 3r2D2
∑

i<j

|wi|
α |wj|

α . (5.7)

Next we use the induction hypothesis and Corollary 5.5 to bound Area(ww′−1).

First note that Area(ww′−1) 6
∑

i∈Ic
Area(wic

−Ni) +
∑

i∈Ia
Area(wia

−Ni

ji
).

If i ∈ Ic then wi = s−1
ji

uisji
where ui represents aji

rNi . Applying the induc-

tion hypothesis to ui we have Area(uiaji

−rNi) 6 (3/2)r2D2(|wi| − 2)2α. The strip
s−1

ji
aji

rNisji
c−Ni has area Ni/q 6 (D/q) |wi|

α
6 D |wi|

α, by Corollary 5.5. Thus

Area(wic
−Ni) 6 (3/2)r2D2(|wi| − 2)2α + D |wi|

α

6 (3/2)r2D2((|wi| − 2)2α + |wi|
α)

6 (3/2)r2D2 |wi|
2α .

(5.8)

The last inequality above uses the fact that for numbers x > 0 one has (x + 2)2α >

xα(x + 2)α + 2α(x + 2)α > x2α + (x + 2)α.
If i ∈ Ia then wi = sji

uis
−1
ji

where ui represents cσ(ji)
Ni/r. Applying the induc-

tion hypothesis to ui we have Area(uicji

−Ni/r) 6 (3/2)r2D2(|wi| − 2)2α. The strip

sji
cji

Ni/rs−1
ji

a−Ni

ji
has area (Ni/r)/q 6 (D/q)(|wi| − 2)α 6 D(|wi| − 2)α, by Corollary

5.5. Therefore

Area(wia
−Ni

ji
) 6 (3/2)r2D2(|wi| − 2)2α + D(|wi| − 2)α

6 (3/2)r2D2((|wi| − 2)2α + (|wi| − 2)α)

6 (3/2)r2D2 |wi|
2α .

(5.9)

Combining (5.8) and (5.9) we then have

Area(ww′−1) 6
∑

i∈Ic∪Ia

(3/2)r2D2 |wi|
2α

6
∑

i

(3/2)r2D2 |wi|
2α . (5.10)

Finally, adding (5.7) and (5.10) together gives the desired result:

Area(wx−N) 6 (3/2)r2D2
(∑

i

|wi|
α
)2

6 (3/2)r2D2
(∑

i

|wi|
)2α

= (3/2)r2D2 |w|2α . �
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6. SUSPENSION AND SNOWFLAKE BALLS

Throughout this section P denotes a non-negative R × R integer matrix with
Perron-Frobenius eigenvalue λ, and r is an integer which is strictly greater than
the largest row sum of P . In this section, we give an explicit description of the sus-
pended snowflake groups ΣGr,P and the 3-dimensional K(ΣGr,P , 1) spaces X3

r,P .
Then we describe snowflake balls B3

i which embed in the universal cover of X3
r,P

and estimate their boundary areas. We show how to iterate this suspension pro-
cedure to obtain groups ΣkGr,P and (k + 2)-dimensional spaces Xk+2

r,P . Lastly we
define higher-dimensional snowflake balls and estimate their boundary volumes.

Remark 6.1. In order to realize the exponents (k + 1)/k (the endpoints of the in-
tervals in Figure 1, which are omitted otherwise) we add the free abelian group Z2

to the class of snowflake groups Gr,P . We endow Z2 with snowflake structure as
follows

Z2 = 〈 a1, a2, c | a1a2 = c = a2a1 〉

and use the corresponding presentation 2-complex X in place of Xr,P . There is
no matrix P associated to the group Z2, and so the only condition that we impose
on the integer r is that r > 2. Since there are no stable letters si, we define the

snowflake words to be the commutators wi = [ari

1 , ari

2 ] and define the snowflake
disks B2

i = ∆ri to be the unique embedded disks in X with boundary wi.
In the discussions that follow, whenever we talk about snowflake groups Gr,P ,

we shall always include Z2, and whenever we use the complexes Xr,P we shall
always include the presentation 2-complex X for Z2 described above.

The groups ΣGr,P . Let φ : Gr,P → Gr,P be the monomorphism which takes each ai

to ar
i and each si to itself. The group ΣGr,P is defined to be the associated multiple

HNN extension with stable letters u1 and v1:

ΣGr,P = 〈Gr,P , u1, v1 | u1gu−1
1 = φ(g), v1gv−1

1 = φ(g) (g ∈ Gr,P ) 〉.

The spaces X3
r,P . These spaces will have fundamental group ΣGr,P . Recall that

Xr,P is a 2-dimensional K(Gr,P , 1) space. There is a cellular map Φ: Xr,P → Xr,P

which induces the map φ on the fundamental group. It maps the 1-cells labeled
si homeomorphically to themselves, maps the 1-cells labeled ai to themselves by
degree r maps, and maps each 2-cell in the obvious manner; the image of each
trianglar 2-cell has combinatorial area r2, and the image of the remaining 2-cells
(which have an si edge in their boundaries) have combinatorial area r. The 3-
complex X3

r,P with fundamental group ΣGr,P is obtained by taking two copies of
the mapping torus of the map Φ and identifying them along a copy of Xr,P . From
this perspective it is easy to see that X3

r,P is aspherical; each mapping torus is as-
pherical since Xr,P is an aspherical 2-complex, and since Φ induces the monomor-
phism φ in π1. We give more details of the cell structure of X3

r,P below.
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Start with the 2-complex Xr,P and form two copies of Xr,P × [0, 1]. Each copy is
given the product cell structure, in which each k-cell of Xr,P gives rise to a (k + 1)-
cell in Xr,P × (0, 1). The “bottom” side Xr,P × {0} keeps its original cell structure
and the “top” Xr,P ×{1} is subdivided by pulling back under Φ the cell structure of
Φ(Xr,P ). That is, each triangular 2-cell in a vertex space of Xr,P is subdivided into
r2 triangles, and each edge space 2-cell (bearing the boundary label sjcσ(j)s

−1
j ar

j) is
subdivided into r copies of the same cell.

The vertical 1-cells of the two copies of Xr,P × [0, 1] are labeled u1 and v1 respec-
tively, oriented from Xr,P ×{1} to Xr,P ×{0}. Finally to form X3

r,P one attaches the
bottom of each piece to Xr,P by the identity, and the top by the map Φ. Figures 5
and 6 illustrate the two types of 3-cell occurring in X3

r,P .

a

a

aa

b

bb

b

c

c

c

v1v1

v1

FIGURE 5. A triangular 3-cell (with r = 2)

aj aj

aj aj aj aj

sjsjsj

sj

cσ(j)cσ(j)

v1v1 v1

v1

FIGURE 6. A rectangular 3-cell

Snowflake balls. We define define embedded 3-dimensional balls B3
j in X̃3

r,P in
a similar fashion to the snowflake disks constructed in Section 5. An essential
difference, however, is that now r is an integer, and the observations of Remark 4.1
apply. That is, snowflake disks of diameter ri are unique, and the corresponding
snowflake words have no “remainder” terms.

As in the proof of Theorem A we let c be the diagonal element of a vertex group
Vm in Gr,P ⊂ ΣGr,P where m > 2. We let w+

i and w−
i denote respectively the

(unique) positive and negative snowflake words representing cri

. (Note that the
indexing here differs from that in Section 5, where these words would be called
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w±
ri .) Let B2

i be the snowflake disk bounded by wi = w+
i (w−

i )−1, with “diameter”

cri

. Note that B2
i is the same as the snowflake disk ∆ri of Section 5.

For each positive integer j, we shall use a stack of thickened van Kampen disks
to define an embedded 3-ball B3

j in the universal cover of X3
r,P . Note that the

universal cover of X3
r,P contains infinitely many embedded copies of the universal

cover of Xr,P ; one for each coset of Gr,P in ΣGr,P . We call two such copies adjacent if
the cosets have representatives which differ by right multiplication by u±1

1 or v±1
1 .

The map Φ: Xr,p → Xr,P lifts to a map of universal covers which we also de-
note by Φ. Consider the image Φ(B2

i ) of the embedded snowflake disk B2
i . This

image is again embedded, but its boundary word is φ(wi). If we apply the curve
shortening procedure once to the subword φ(w+

i ) we obtain w+
i+1, which is the pos-

itive snowflake word for cri+1
. Similarly, if we apply curve shortening once to the

subword φ(w−
i ) we obtain the negative snowflake word for cri+1

. Thus Φ(B2
i ) is a

sub-diagram of B2
i+1. The top half of the ball B3

j is defined to be the union of the
mapping cylinders of Φ with domain B2

i and codomain B2
i+1 where i ranges from

1 to j; the copies of B2
i are identified. This embeds in the universal cover of X3

r,P

as follows. The disk B2
1 embeds in some copy of the universal cover of Xr,P , B2

2

embeds in the adjacent copy obtained by right multiplying by u−1
1 , and the map-

ping cylinder of Φ: B2
1 → B2

2 embeds in the universal cover of X3
r,P to interpolate

between the images of B2
1 and B2

2 . Note that this embedding is possible since the
universal covering of X3

r,P can be described as an infinite union of mapping cylin-

ders of Φ: X̃r,P → X̃r,P which is encoded by the Bass-Serre tree T corresponding
to the multiple HNN description of ΣGr,P .

We continue to add mapping cylinders of Φ: B2
i → B2

i+1 for i = 2, . . . , j, as
indicated in the top half of the schematic diagram in Figure 7. The image of the

u1

u1

v1

v1

B
2
1

B
2
1

B
2
j+1

B
2
j

B
2
j

B
2
j−1

B
2
j−1

FIGURE 7. A schematic of the embedded ball B3
j
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union of the first few embedded layers is shown in Figure 8. In a similar fashion,

FIGURE 8. A few layers of B3
j

we can embed a second copy of the union of mapping cylinders of Φ: B2
i → B2

i+1.
However, this time we start from the copy of B2

j in the image of the previous union,
and add the mapping cylinders in descending order (so i = j, . . . , 1) and require
that new copies of the universal cover of Xr,P differ by right multiplication by v+1

1 .
The image of this family is indicated in the lower half of the schematic diagram
of Figure 7, and the total union is the embedded ball B3

j . It is easy to see that
the union embeds, since each mapping cylinder embeds, and distinct mapping

cylinders correspond to distinct layers in the 3-complex X̃3
r,P . These layers are

distinct, since they map to distinct edges of the Bass-Serre tree T above. Finally,
there is a 2-dimensional “fringe” at the equator B2

j+1 level. We remove this fringe
by simply replacing the two embeddings of Φ: B2

j → B2
j+1 by embeddings of

Φ: B2
j → Φ(B2

j ).

Lemma 6.2. Given r and P there is a positive constant F0 such that
∣∣∂B2

j

∣∣ 6 Area(∂B3
j )

6 F0

∣∣∂B2
j

∣∣ for every j.

Proof. The ball B3
j is a union of 2j mapping cylinders. See Figure 7 for a schematic

representation. Its boundary area is twice the area of the upper hemisphere. This
latter area is estimated as follows.

For each 1 6 i 6 j, there are |∂B2
i | vertical (conjugation by u1) 2-cells, which

interpolate between ∂B2
i and Φ(∂B2

i ). This proves the first inequality,
∣∣∂B2

j

∣∣ 6

Area(∂B3
j ).

For each 1 6 i 6 j there are horizontal 2-cells which interpolate between Φ(∂B2
i−1)

and ∂B2
i . In the case i = 1 there is no loop Φ(∂B2

0), and the horizontal 2-cells just
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fill the van Kampen diagram B2
1 . For any i, the horizontal 2-cell contribution to the

area is bounded above by |∂B2
i |. To see this, note that the horizontal interpolation

is a union of pieces of the form sjai1 · · ·aims−1
j a−r

j where {a1, . . . , am} generates a
vertex group Vm, and the stable letter sj conjugates the diagonal element of this
vertex group to some generator aj of Gr,P . The area of this piece is m, and its
contribution to |∂B2

i | is m + 2.
Counting vertical and horizontal 2-cells for both hemispheres we obtain

Area(∂B3
j ) 6 4

j∑

i=1

∣∣∂B2
i

∣∣ .

Proposition 4.5 implies that
∣∣w+

i

∣∣ 6 C
−1/α
0 ri/α and so

4

j∑

i=1

∣∣∂B2
i

∣∣ = 8

j∑

i=1

∣∣w+
i

∣∣ 6 8C
−1/α
0

j∑

i=1

(r1/α)i .

The last term is a geometric series, and so is bounded above by F ′
0(r

1/α)j for a

positive constant F ′
0 (independent of j). Proposition 4.5 also gives C

−1/α
1 rj/α 6

∣∣w+
k

∣∣
and so

Area(∂B3
j ) 6 F ′

0r
j/α 6

F ′
0

2
C

1/α
1

∣∣∂B2
j

∣∣ .

Now the desired (second) inequality holds by taking F0 = (F ′
0/2)C

1/α
1 . �

The inductive supension procedure. Having discussed ΣGr,P we define further
suspensions ΣkGr,P having (k + 2)-dimensional Eilenberg-MacLane spaces Xk+2

r,P ,

and (k + 2)-dimensional snowflake balls Bk+2
j ⊂ X̃k+2

r,P . We assume that the group

Σk−1Gr,P , the space Xk+1
r,P , and snowflake balls Bk+1

j ⊂ X̃k+1
r,P have already been

constructed.
First we define the groups ΣkGr,P . Let φ : Σk−1Gr,P → Σk−1Gr,P be the monomor-

phism which sends ai to ar
i and which leaves fixed the stable letters si, ui, and vi.

We define ΣkGr,P to be the multiple ascending HNN extension with two stable
letters uk and vk, each acting by φ:

ΣkGr,P = 〈Σk−1Gr,P , uk, vk | ukgu−1
k = φ(g), vkgv−1

k = φ(g) (g ∈ Σk−1Gr,P ) 〉.

Next we define the spaces Xk+2
r,P . The homomorphism φ is induced by a cellular

map Φk+1 : Xk+1
r,P → Xk+1

r,P . We define Xk+2
r,P to be the double mapping torus with

monodromy Φk+1. That is, take two copies of Xk+1
r,P × [0, 1], identify the “bottom”

sides Xk+1
r,P × {0} to Xk+1

r,P by the identity, and attach the “top” sides Xk+1
r,P × {1} to

Xk+1
r,P by the map Φk+1. The vertical 1-cells of the copies of Xk+1

r,P × [0, 1] are labeled

uk and vk respectively, oriented from Xk+1
r,P ×{1} to Xk+1

r,P ×{0}. The resulting space
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Xk+2
r,P is given a cell structure exactly as in the definition of X3

r,P . As before, Xk+2
r,P is

aspherical, has dimension k + 2, and has fundamental group ΣkGr,P .
Now we define the higher-dimensional snowflake balls. The map Φk+1 lifts to a

map X̃k+1
r,P → X̃k+1

r,P which we will also call Φk+1. We define (k+2)-dimensional balls

Bk+2
j of diameter rj for each j as unions of mapping cylinders (called layers) of the

map Φk+1 restricted to the (k+1)-dimensional balls Bk+1
i . These mapping cylinders

are assembled as shown in Figure 7, with Bk+1
i in place of B2

i . More specifically,
we assume inductively that Φk+1 maps Bk+1

i into a subcomplex of Bk+1
i+1 for each

i. Then the upper hemisphere of Bk+2
j is the union of the mapping cylinders of

Φk+1 : Bk+1
i → Bk+1

i+1 where i ranges from 1 to j − 1, and the mapping cylinder of

Φk+1 : Bk+1
j → Φk+1(Bk+1

j ). The lower hemisphere is defined similarly, and the two

are identifed along Φk+1(Bk+1
j ). Note that the subspaces Bk+1

i − Φk+1(Bk+1
i−1 ) of the

domains of these mapping cylinders lie in the boundary of Bk+2
j .

Recall that Φk+1 maps Bk+1
i to a subcomplex of Bk+1

i+1 . There is an induced map

Φk+2 from the mapping cylinder of Φk+1 : Bk+1
i → Bk+1

i+1 to the mapping cylinder of

Φk+1 : Bk+1
i+1 → Bk+1

i+2 ; use Φk+1 × id on Bk+1
i × I and Φk+1 on Bk+1

i+1 . Then Φk+2 maps

layer i of Bk+2
j to layer i+1 of Bk+2

j+1 for any i 6 j (in either hemisphere). These maps

defined on the layers of Bk+2
j join together to define the map Φk+2 : Bk+2

j → Bk+2
j+1 .

The balls Bk+2
j embed into X̃k+2

r,P exactly as the balls B3
j embed into X̃3

r,P . That is,

we consider X̃k+2
r,P as a union of copies of the mapping cylinder of Φk+1 : X̃k+1

r,P →

X̃k+1
r,P with the mapping parameter corresponding to right multipllication by u−1

k

or v−1
k . Then the embedding Bk+2

j → X̃k+2
r,P is assembled from the embeddings

Bk+1
i → X̃k+1

r,P (for i 6 j) as shown in Figure 7, with the upper hemisphere extend-
ing in the uk direction and the lower hemisphere in the vk direction. Under this
embedding, the map Φk+2 : Bk+2

j → Bk+2
j+1 described above is simply the restriction

of Φk+2 : X̃k+2
r,P → X̃k+2

r,P to Bk+2
j .

For any k, we define the shell of a snowflake ball Bk
j to be the subspace Bk

j −

Φk(Bk
j−1), or simply Bk

j in the case j = 1.

Lemma 6.3. Volk(shell(Bk
j )) 6 Volk−1(∂Bk

j ).

Proof. It suffices to show that every k-cell of the shell has a (k−1)-dimensional face
contained in ∂Bk

j . Recall that Bk
j is a union of layers, so consider the intersection

of the shell with layer i (in either hemisphere). This layer is a mapping cylinder
M(Φk−1 : Bk−1

i → Bk−1
i+1 ) and its preimage in Bk

j−1 under Φk is layer i − 1 of this
smaller ball (or is empty in the case i = 1). Hence the intersection of the shell with
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layer i is

M(Φk−1 : Bk−1
i → Bk−1

i+1 ) − Φk(M(Φk−1 : Bk−1
i−1 → Bk−1

i ))

= M(Φk−1 : Bk−1
i → Bk−1

i+1 ) − M(Φk : Φk−1(Bk−1
i−1 ) → Φk−1(Bk−1

i )))

= M(Φk−1 : (Bk−1
i − Φk−1(Bk−1

i−1 )) → (Bk−1
i+1 − Φk−1(Bk−1

i )))

if i > 1, and is M(Φk−1 : Bk−1
i → Bk−1

i+1 ) in the case i = 1. Either way, this part of

shell(Bk
j ) is the mapping cylinder of the restriction of Φk−1 to shell(Bk−1

i ). Hence

each k-cell has a (k − 1)-dimensional face in shell(Bk−1
i ), which is contained in

∂Bk
j . �

The next result is a higher-dimensional analogue of Lemma 6.2.

Lemma 6.4. Given r, P , and k > 3 there is a positive constant Fk such that Volk−2(∂Bk−1
j )

6 Volk−1(∂Bk
j ) 6 Fk Volk−2(∂Bk−1

j ) for every j.

Proof. We prove, for k > 3, the following two statements: there exist positive con-
stants Ek, Fk such that

(1) (2C
−1/α
1 )(r1/α)j 6 Volk−2(∂Bk−1

j ) 6 Ek(r
1/α)j, and

(2) Volk−2(∂Bk−1
j ) 6 Volk−1(∂Bk

j ) 6 Fk Volk−2(∂Bk−1
j )

for all j (with C1 given by Proposition 4.5). Statement (1) is a higher-dimensional
analogue of Proposition 4.5 and (2) is the main statement of the lemma. The two
statements are proved together by induction on k.

If k = 3 then (1) follows from Proposition 4.5, with E3 = 2C
−1/α
0 . Statement (2) is

given by Lemma 6.2 (with F3 = F0).
For k > 3 we prove (1) as follows. The induction hypothesis implies that

Volk−2(∂Bk−1
j ) 6 Fk−1 Volk−3(∂Bk−2

j )

by (2) and Volk−3(∂Bk−2
j ) 6 Ek−1(r

1/α)j by (1). Hence Volk−2(∂Bk−1
j ) 6 Ek(r

1/α)j

with Ek = Fk−1Ek−1. We also have (by induction) Volk−2(∂Bk−1
j ) > Volk−3(∂Bk−2

j ) >

(2C
−1/α
1 )(r1/α)j by (2) and (1). This establishes (1).

To prove (2) we count vertical and horizontal (k−1)-cells of ∂Bk
j as in the proof of

Lemma 6.2. In each hemisphere of Bk
j , layer i is a copy of the mapping cylinder of

Φk−1 : Bk−1
i → Bk−1

i+1 . This layer meets ∂Bk
j in horizontal cells which are the (k − 1)-

cells of shell(Bk−1
i ), and vertical cells, each of which is the product of a (k − 2)-cell

in ∂Bk−1
i with I . This latter observation implies the first inequality of (2) (taking

i = j) and also that the number of vertical cells in layer i is at most Volk−2(∂Bk−1
i ).

The number of horizontal cells is at most Volk−2(∂Bk−1
i ) by Lemma 6.3. Adding the
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contributions from all layers in both hemispheres, we obtain

Volk−1(∂Bk
j ) 6 4

j∑

i=1

Volk−2(∂Bk−1
i ).

Statement (1) implies 4
∑j

i=1 Volk−2(∂Bk−1
i ) 6 4Ek

∑j
i=1(r

1/α)i and the latter sum

is a geometric series. Hence Volk−1(∂Bk
j ) 6 F ′

k(r
1/α)j for some constant F ′

k. Now

(1) implies that Volk−1(∂Bk
j ) 6 (F ′

k/2)(C
1/α
1 ) Volk−2(∂Bk−1

j ), establishing (2) with

Fk = (F ′
k/2)C

1/α
1 . �

7. PROOF OF THEOREM C

We will establish upper and lower bounds for the k-dimensional Dehn functions
δ(k)(x) of the groups Σk−1Gr,P and these will be equal. As usual λ denotes the
Perron-Frobenius eigenvalue of P and α = logλ(r). In the case of Σk−1Z2 we define
α = 1.

The lower bound. As in the proof of Theorem A, we show that the embedded

snowflake balls Bk+1
i ⊂ X̃k+1

r,P have the correct proportions and are numerous

enough to determine δ(k)(x) from below.
First we show that for every k > 1 there is a constant Gk such that

Volk+1(Bk+1
i ) > Gk Volk(∂Bk+1

i )2α (7.1)

for all i. The case k = 1 was proved in (5.1) with G1 = (C0)
24−α. For k > 1 we

proceed by induction. Note that Volk+1(Bk+1
i ) > Volk(Bk

i ) since the latter is the
volume of the mapping cylinder of Φk : Bk

i → Φk(Bk
i ) inside Bk+1

i . We also have
Volk(Bk

i ) > Gk−1 Volk−1(∂Bk
i )2α by the induction hypothesis. Lemma 6.4 implies

that Gk−1 Volk−1(∂Bk
i )2α > Gk−1F

−2α
k+1 Volk(∂Bk+1

i )2α. Equation (7.1) now follows by

taking Gk = Gk−1F
−2α
k+1 .

Next we show that for each k > 2 the sequence (Volk(∂Bk+1
i ))i is exponentially

bounded and tends to infinity. Consider first the case k = 2. Then we have

Vol2(∂B3
i+1)

Vol2(∂B3
i )

6
F0 |∂∆ri+1 |

|∂∆ri |
6

F0 |∂∆ri+1 |α

|∂∆ri |α
6

F0r
i+1

C0

C1

ri
=

F0rC1

C0

where the first inequality holds by Lemma 6.2, the second since α > 1, and the
third by Proposition 4.5. Thus, the sequence is exponentially bounded. For k > 2
we have

Volk(∂Bk+1
i+1 )

Volk(∂Bk+1
i )

6
Fk+1 Volk−1(∂Bk

i+1)

Volk−1(∂Bk
i )
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by Lemma 6.4 and so (Volk(∂Bk+1
i ))i is exponentially bounded, by induction on k.

It tends to infinity because

Volk(∂Bk+1
i ) > Vol2(∂B3

i ) > |∂∆ri | > 2C
−1/α
1 (r1/α)i

by Lemma 6.4, Lemma 6.2, and Proposition 4.5. Now, using Remarks 2.1 and 2.6,
we conclude from (7.1) that δ(k)(x) < x2α.

The upper bound. To establish the upper bound we must work with Dehn func-
tions δM

G (x) modeled on arbitrary manifolds M with boundary, as defined in Sec-
tion 2. Recall that the dimension of δM

G (x) is the dimension of ∂M , and δM
G (x) agrees

with the usual k-dimensional Dehn function when M is the (k + 1)-dimensional
ball.

A function F : N → N is superadditive if F (a + b) > F (a) + F (b) for all a, b.

Theorem 7.2. Let G be a group of type Fn and geometric dimension at most n, and fix a
finite aspherical n-complex X with fundamental group G. Suppose that the Dehn function
δM
G (x) (defined with respect to X) satisfies

δM
G (x) 6 F (x)

for every n-manifold M , where F : N → N is non-decreasing. Let H be a multiple as-
cending HNN extension of G. Then H is of type Fn+1, has geometric dimension at most
n + 1, and

δM
H (x) 6 F (x)

for every (n + 1)-manifold M .

In the hypotheses we are including Dehn functions δM
G (x) where M has more

than one connected component (otherwise we should add that F is superadditive).
Stipulation: the n-dimensional Dehn functions in the conclusion are defined with
respect to a fixed complex Y constructed in the proof of the theorem.

Proof. First we define the finite (n + 1)-dimensional complex Y with fundamental
group H in the usual way. Suppose the multiple ascending extension has k stable
letters. Form k copies of X × [−1, 1], give each the product cell structure, and
attach each copy of X × {−1} to X by the identity map. Then attach each copy of
X × {1} to X by the appropriate monodromy map, and call the resulting space Y .
Let Z ⊂ Y be the union of the spaces X × {0}. There are natural projections along
the fibers p0 : Z → X and p1 : Z → X which factor through Z × {−1} and Z × {1}

respectively. Let Ỹ be the universal cover of Y and let X̃ and Z̃ be the preimages

of X and Z in Ỹ . The projections pi lift to projections pi : Z̃ → X̃ along fibers. Note

that each component of X̃ and Z̃ is a copy of the universal cover of X , and in fact

p0 : Z̃ → X̃ is a homeomorphism.
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Each open k-cell σk in Z̃ × (−1, 1) ⊂ Ỹ has the form σk−1 × (−1, 1) where σk−1 is

a (k − 1)-cell in X̃ , and the restriction of p0 to σk ∩ Z̃ is simply projection onto the

first factor. Since Z̃ is not a subcomplex of Ỹ , we measure volume in Z̃ by passing

to X̃ via p0. The description of p0 just given leads to the following observation: if

f : Mk → Ỹ is an admissible map transverse to Z̃ and X̃ , and N = f−1(Z̃) and

M0 = f−1(X̃), then p0 ◦ f |N and f |M0 are admissible and

Volk(f) = Volk−1(p0 ◦ f |N) + Volk(f |M0) (7.3)

where the left hand side is volume in Ỹ and the right hand side is volume in X̃.
Now suppose that M is a compact (n + 1)-manifold with boundary and let

g : M → Ỹ be a least-volume map with boundary f = g|∂M . We can arrange

that N = g−1(Z̃) is a properly embedded codimension one submanifold with a

product neighborhood N × [−1, 1] ⊂ M such that g−1(Z̃ × (−1, 1)) = N × (−1, 1).
The product structure on N × [−1, 1] may be chosen so that g|N×(−1,1) is the map
g|N × id. Note that N may have several connected components.

We claim that Voln(p0 ◦ g|N) is smallest among all N-fillings of p0 ◦ f |∂N : ∂N →

X̃ . Assuming this for the moment, the theorem is proved as follows. We have

Voln+1(g) = Voln(p0◦g|N) by (7.3) because X̃ has dimension n. Then Voln(p0◦g|N) =

FVolN(p0 ◦ f |∂N) by the claim, and the latter is at most δN
G (Voln−1(p0 ◦ f |∂N)) by the

definition of δN
G . Equation (7.3) implies that δN

G (Voln−1(p0 ◦ f |∂N)) 6 δN
G (Voln(f)).

Then we have the desired bound

FVolM(f) = Voln+1(g) 6 δN
G (Voln(f)) 6 F (Voln(f))

by the main hypothesis and we conclude that δM
H (Voln(f)) 6 F (Voln(f)). Since

Voln(f) was arbitrary and F is non-decreasing, we have δM
H (x) 6 F (x) for all x.

Now we return to the claim that Voln(p0 ◦ g|N) = FVolN (p0 ◦ f |∂N). We show that
if p0 ◦ g|N is not a least-volume filling of p0 ◦ f |∂N then g can be modified rel ∂M to
a map of smaller volume, contradicting the choice of g.

Let M0 = g−1(X̃), and note that the frontier of M0 in M is N × {−1} ∪ N × {1}.
These two subsets of ∂M0 will be denoted M−

0 and M+
0 respectively.

Suppose Voln(h) < Voln(p0 ◦g|N) for some map h : N → X̃ with h|∂N = p0 ◦f |∂N .
Form a new copy of M in which N × (−1, 1) is replaced by N × (−2, 2). Define a

new map g′ : M → Ỹ by letting g′ be g on M0, (p−1
0 ◦ h) × id on N × (−1, 1), and

by extending to the remaining regions as follows. Note that (p−1
0 ◦ h) × id extends

continuously to N × [−1, 1] as h on N × {−1} and as p1 ◦ p−1
0 ◦ h on N × {1}. Since

each component of X̃ is contractible the maps p1 ◦ p−1
0 ◦ h and g|M+

0
are homotopic

rel ∂N . We let g′|N×[1,2] : N × [1, 2] → X̃ be such a homotopy. Similarly g′|N×[−2,−1]
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is defined to be a homotopy in X̃ from g|M−

0
to h, fixing ∂N pointwise. This defines

the map g′ : M → Ỹ .
Now collapse each fiber of ∂N × [1, 2] and ∂N × [−2,−1] to a point, to obtain a

new copy of M with a map g′′ : M → Ỹ which agrees with g on ∂M . Note that all

of M−(N×(−1, 1)) maps by g′′ into X̃ and g′′|N×(−1,1) = (p−1
0 ◦h)×id. Hence by (7.3)

we have Voln+1(g′′) = Voln(h) < Voln(p0 ◦ g|N) = Voln+1(g), a contradiction. �

Lemma 7.4. If G is finitely presented, δG(x) 6 F (x) with F (x) superadditive, and M is
a compact 2-manifold with boundary, then δM

G (x) 6 F (x).

In particular if δG(x) is superadditive then δM
G (x) 6 δG(x) for every compact

2-manifold M .

Proof. If M is connected with one boundary component then let q : M → D2 be
a quotient map which collapses the complement of a collar neighborhood of ∂M

to a point. Then Area(g ◦ q) = Area(g) for any map g : D2 → X̃, and we have
δM
G (x) 6 δG(x) 6 F (x).

If N is closed then δM⊔N
G (x) = δM

G (x) since N may be assigned zero area by
mapping it to a point. So without loss of generality assume that M has no closed
components. For each component M ′ of M there is a quotient map to a connected,
simply connected space Z ′ which is a union of disks (one for each boundary com-
ponent of M ′) and arcs joining them. Taking a union of such spaces and maps, we

have a quotient map M → Z. Every map D2 ⊔ · · · ⊔ D2 → X̃ extends to a map

Z → X̃ which yields (by composition) a map M → X̃ with the same area. Hence

δM
G (x) 6 δD2⊔···⊔D2

G (x). Now superadditivity of F implies δD2⊔···⊔D2

G (x) 6 F (x). �

Theorem 7.5. Let G be a finitely presented group of geometric dimension 2 with δG(x)
equivalent to a superadditive function. Let H be obtained from G by performing n iterated

multiple ascending HNN extensions. Then δ
(n+1)
H (x) 4 δG(x).

The upper bound of Theorem C follows immediately, by Theorem A.

Proof. Let F0(x) be superadditive where F0(x) ≃ δG(x). Then δG(x) 6 F (x) =
CF0(Cx) + Cx for some C and F (x) is superadditive. The result now follows di-
rectly from Lemma 7.4 and Theorem 7.2. �

The case n = 1 of Theorem 7.5 was proved by Wang and Pride [16], using a more
direct method.

8. PRODUCTS WITH Z

In this section we determine higher Dehn functions of G × Z for certain groups
G. In these cases the geometry of G × Z is accurately represented by embedded
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balls which are products of optimal balls in G with intervals, with suitably chosen
lengths. We conclude the section by proving Theorem D.

To establish an upper bound for Dehn functions of G×Z we need the following
refinement of Theorem 7.2. The proof is based on [1, Theorem 6.1].

Theorem 8.1. Let G be a group of type Fn and geometric dimension at most n, and fix a
finite aspherical n-complex X with fundamental group G. Suppose that the Dehn function
δM
G (x) satisfies

δM
G (x) 6 Cxs

for every n-manifold M , and fixed C > 0 and s > 1. Then

δM
G×Z

(x) 6 C1/sx2−1/s

for every (n + 1)-manifold M .

Proof. First note that we are in the situation of Theorem 7.2, which is valid, but no
longer provides the best possible upper bound. Define Y , Z, p0, and p1 as in the

proof of Theorem 7.2. Note that now the projections along fibers p0, p1 : Z̃ → X̃

are both homeomorphisms, and Volk(p0 ◦ f) = Volk(p1 ◦ f) for any f : Nk → Z̃.
Given a compact (n + 1)-manifold M with boundary, consider a map f : ∂M →

Ỹ . Arrange that L = f−1(Z̃) is a codimension one submanifold with a product

neighborhood L × [−1, 1] ⊂ ∂M such that f−1(Z̃ × (−1, 1)) = L × (−1, 1). As
before, the product structure on L × [−1, 1] can be chosen so that f |L×(−1,1) is the
map f |L × id.

We will prove that δM
G×Z

(x) 6 C1/sx2−1/s by induction on the number of con-

nected components of L. If L = ∅ then f(∂M) ⊂ X̃ . The components of ∂M may

map into different components of X̃ . However, by joining these components with

a minimal collection of embedded arcs in the 1-skeleton of Ỹ , one obtains a con-
tractible subcomplex T ⊂ Ỹ of dimension n containing f(∂M). Then f extends to

a map g : M → T ⊂ Ỹ with Voln+1(g) = 0.

Now assume that L 6= ∅. Let Z̃0 be a connected component of Z̃ such that L0 =

f−1(Z̃0) is a non-empty union of components of L, and f(L) lies entirely in one

component of Ỹ − p1(Z̃0). (Think of L0 as an innermost union of components of
L.) Let N1 ⊂ ∂M − (L0 × (−1, 1)) be the union of components having boundary
L0×{1}. That is, N1 and its complement N−1 in ∂M−(L0×(−1, 1)) map to opposite

sides of Z̃0 × (−1, 1) in Ỹ , and in fact f(N1) ⊂ p1(Z̃0) ⊂ X̃ , by the choice of Z̃0.
Our method now is to fill L0 with a least-volume copy of N1 and then fill the two

sides of ∂M efficiently by M (using the induction hypothesis) and N1 × I . These
fillings fit together to yield a filling of f by M having the required volume.

Let v = Voln(f) and u = Voln−1(p0 ◦ f |L0) (which is equal to Voln(f |L0×(−1,1))

by (7.3)). Let h : N1 → X̃ be a least-volume N1-filling of p0 ◦ f |L0 . Thus, h|∂N1 =
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p0 ◦ f |L0 and Voln(h) 6 Cus. Define a new map f ′ : ∂M → Ỹ by first collapsing
the fibers of L0 × [−1, 1] to points, and then sending N−1 by f and N1 by h. Since
h is least-volume and L0 × [−1, 1] was collapsed we have Voln(f ′) 6 v − u. Also

(f ′)−1(Z̃) = L − L0, so by the induction hypothesis there is a map g−1 : M → Ỹ
with g−1|∂M = f ′ such that

Voln+1(g−1) 6 C1/s(v − u)2−1/s.

Next let g1 : N1 × [−1, 1] → Ỹ be a homotopy which begins with h on N1 × {−1}

and pushes across Z̃0 × (−1, 1) and then deforms within p1(Z̃0) to f |N1 , with the

boundary fixed pointwise. This latter homotopy exists since p1(Z̃0) is contractible.

Note that Voln+1(g1) = Voln(h) by (7.3) since p1(Z̃0) has dimension n.
Now join N1 ⊂ ∂M to (N1 × {−1}) ⊂ N1 × [−1, 1] to get a new copy of M and a

map g : M → Ỹ extending g−1 and g1. Then g|∂M = f and

Voln+1(g) 6 C1/s(v − u)2−1/s + vh

where vh = Voln(h). Now s > 1 and v > u imply

Voln+1(g) 6 C1/s(v − u)v1−1/s + vh

= C1/sv2−1/s

(
1 −

u

v
+

v(1/s)−1vh

C1/sv

)
.

(8.2)

Recall that vh = Voln(h) 6 Voln(f |N1) 6 v because h is least-volume. Hence

1 −
u

v
+

v(1/s)−1vh

C1/sv
6 1 −

u

v
+

v
(1/s)−1
h vh

C1/sv

= 1 −
u

v
+

v
1/s
h

C1/sv
.

(8.3)

The main hypothesis implies that vh 6 Cus, or v
1/s
h 6 C1/su, again because h is

least-volume. Thus

1 −
u

v
+

v
1/s
h

C1/sv
6 1 −

u

v
+

u

v
= 1. (8.4)

By equations (8.2), (8.3), and (8.4) we have Voln+1(g) 6 C1/sv2−1/s where v =
Voln(g|∂M), which completes the proof. �

Definition 8.5. Let G be a group of type Fk+1 and geometric dimension at most

k+1. The k-dimensional Dehn function δ
(k)
G (x) has embedded representatives if there is

a finite aspherical (k+1)-complex X , a sequence of embedded (k+1)-dimensional

balls Bi ⊂ X̃ , and a function F (x) ≃ δ
(k)
G (x), such that the sequence given by (ni) =

(Volk(∂Bi)) tends to infinity and is exponentially bounded, and Volk+1(Bi) > F (ni)
for each i.
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The lower bounds established in this article for various Dehn functions are all
obtained by constructing embedded representatives and applying Remarks 2.1
and 2.6. In particular the k-dimensional Dehn functions of Σk−1Gr,P and Σk−1Z2

have embedded representatives.
The next result generalizes [1, Theorem 6.3] to higher dimensions.

Proposition 8.6. Let G be a group of type Fk+1 and geometric dimension at most k +
1. Suppose the k-dimensional Dehn function δ(k)(x) of G is equivalent to xs and has
embedded representatives. Then G×Z has (k+1)-dimensional Dehn function δ(k+1)(x) <

x2−1/s, with embedded representatives.

Proof. We establish the lower bound δ(k+1)(x) < x2−1/s for G × Z as follows. Since

δ
(k)
G (x) has embedded representatives, let X , F (x), Bi, and (ni) be as in Definition

8.5; without loss of generality suppose that F (x) = Cxs for some C > 0. Define
mi = 3 Volk+1(Bi). The space Y = X × S1 has fundamental group G × Z and

universal cover Ỹ = X̃ ×R. Consider the (k + 2)-dimensional balls

Ci = Bi × [0, mi/3ni] ⊂ Ỹ .

The boundary of Ci is ∂Bi × [0, mi/3ni] ∪ Bi × ∂[0, mi/3ni] which implies that

Volk+1(∂Ci) = mi.

We also have Volk+2(Ci) = Volk+1(Bi)mi/3ni = (mi)
2/9ni for each i. Since mi =

3 Volk+1(Bi) > 3C(ni)
s we have (3C)−1/s(mi)

1/s > ni. Then

Volk+2(Ci) =
(mi)

2

9ni
>

(
C1/s

32−1/s

)
(mi)

2−1/s.

Note that Ỹ is aspherical and has dimension k + 2, and so Ci is a least-volume ball
(cf. Remark 2.6). Therefore δ(k+1)(mi) > (C1/s/32−1/s)(mi)

2−1/s for each i. Now it
remains to check that the sequence (mi) has the required properties. It tends to

infinity since mi > 3C(ni)
s. Also each ball Bi ⊂ X̃ is least-volume, so there is

a constant D such that mi 6 D(ni)
s for all i.1 Then mi+1/mi 6 (D/C)(ni+1/ni)

s,
which is bounded. Now Remark 2.1 implies that δ(k+1)(x) < x2−1/s. �

We are now in a position to prove Theorem D.

Proof of Theorem D. Fix r, P , and q, let s(ℓ) = 2(ℓ+1)α−ℓ
2ℓα−(ℓ−1)

, and let Gℓ be the group

Σq−1Gr,P ×Zℓ. (Or let s(ℓ) = ℓ+2
ℓ+1

and Gℓ = Σq−1Z2 ×Zℓ.) We verify by induction on
ℓ the following statements for Gℓ:

(1) δM(x) 6 Cxs(ℓ) for all (q + ℓ + 1)-manifolds M and some constant C > 0,
(2) δ(q+ℓ)(x) < xs(ℓ), and

1Here we are using the upper bound for δ
(k)
G (x).
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(3) δ(q+ℓ)(x) has embedded representatives.

The first two statements together imply δ(q+ℓ)(x) ≃ xs(ℓ).
If ℓ = 0 then (1) follows from Theorem 7.2 and Proposition 7.4. Statement (2)

holds by Theorem C, and we have already observed that (3) holds for these groups.
For ℓ > 0 note first that s(ℓ) = 2 − 1/s(ℓ − 1). Then statement (1) holds by

Theorem 8.1 and property (1) of Gℓ−1. Proposition 8.6 implies (2) and (3) by prop-
erties (1)–(3) of Gℓ−1. �
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