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1. WHEN IS
√

k IRRATIONAL? A SIMPLE PROOF

Early in our mathematical training we learn the standard proof that
√

2 is
irrational. The usual proof involves writing

√
2 = m

n and then using unique
factorization of the integers to conclude that m

n cannot be in lowest terms. Of
course, many proofs exist of this fact and we present one more such proof
which has the virtues of brevity and of not appealing to the fundamental
theorem of arithmetic.

Proposition 1. Let k be a positive integer. If b
√

kc 6=
√

k, then
√

k is irrational.

Proof. Consider the set of positive integers {l | l > 0 and h
l =

√
k for some h}.

We are assuming, by way of contradiction, that the set is non-empty so that
it has a minimum element n by the well-ordering of the natural numbers. If
for some m we have

√
k = m/n, then for any integer d we have

√
k =

m
n

=
−dm + kn

m− dn

Letting d = b
√

kc we get d < m/n < d + 1 which implies 0 < m − dn < n,
contradicting our choice of n. �

Remark. Note that a similar proof works for
√

k = m/n, where we write
m/n = (d

√
kem − kn)/(−m + d

√
ken). Here we use a slightly non-standard

definition of the ceiling function namely, dxe = bxc+ 1. The usual definition,
“the smallest integer greater than or equal to x”, is the same as this one for
x 6∈ Z, but is off by 1 if x ∈ Z.
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2. LINEAR FRACTIONAL TRANSFORMATIONS ON ∂H2

Sometimes what is more interesting than the result of a proof is the tech-
nique used to obtain it. The proof above leads us to study the following linear
fractional transformation on ∂H2 (here H2 is viewed as the upper half plane);
let d = b

√
kc and d + 1 = d

√
ke.

Pk(z) =

(
d k
1 d

)(
z
1

)
=

dz + k
z + d

=
b
√

kcz + k
z + b

√
kc

Mk(z) =

(
d + 1 k

1 d + 1

)(
z
1

)
=

(d + 1)z + k
z + (d + 1)

=
d
√

kez + k
z + d

√
ke

Note, first of all, that ±
√

k are the only fixed points of Pk, Mk. In fact, −
√

k is
a source and

√
k is a sink as we iterate Pk, Mk and look at the orbits of points

in ∂H2. From this point of view, the above proposition used the fact that
√

k
is a fixed point of P−1

k (respectively M−1
k ) to derive a contradiction. We now

pursue this train of thought a bit further. Specifically, the orbit of 1/0 (the
“point at infinity” on ∂H2) has a very interesting property for certain choices
of k. For the definitions of plus continued fraction and minus continued fraction
and notation, see the next section.

Let k be a positive integer, not a perfect square, and let [d; d1, d2, . . .] be
the plus continued fraction expansion of

√
k, and pn

qn
the convergents of that

continued fraction. Let (d + 1; e1, e2, . . .) be the minus continued fraction ex-
pansion of

√
k, and rn

sn
the convergents of that continued fraction.

Theorem Plus. The following statements are equivalent for the plus continued frac-
tion expansion of

√
k.

(a) For all n ≥ 0 we have Pn
k (1

0) = pn
qn

. That is, the orbit of 1/0 ∈ ∂H2 under Pk

is precisely the set of convergents of the plus continued fraction expansion of√
k.

(b) The quantity 2b
√

kc
k−b

√
kc2 = − Tr(Pk)

det(Pk)
is an integer.

(c) The plus continued fraction expansion for
√

k has period at most 2.
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Theorem Minus. The following statements are equivalent for the minus continued
fraction expansion of

√
k.

(a) For all n ≥ 0 we have Mn
k (1

0) = rn
sn

. That is, the orbit of 1/0 ∈ ∂H2 under Mk

is precisely the set of convergents of the minus continued fraction expansion
of
√

k.

(b) The quantity 2d
√

ke
d
√

ke2−k
=

Tr(Mk)
det(Mk)

is an integer.

(c) The minus continued fraction expansion for
√

k has period at most 2.

3. CONTINUED FRACTIONS REDUX

The subject of continued fractions is quite old and well studied. There
are several texts and articles about them and as such we refer the interested
reader to the excellent books [Ka03] and [RS94] for the proofs of the many
well known results stated in this section.

Continued fractions arose from studying expressions of the form,

a0 +
1

a1 + 1
a2+

1
. . .+ 1

an

Given any integer a0 and a sequence of positive integers (aj)j≥1, the above
expression defines a sequence of rational numbers pn

qn
:= [a0; a1, a2, . . . , an−1].

It turns out that limn→∞
pn
qn

always exists in this case and we say that

α := lim
n→∞

pn

qn
= a0 +

1
a1 + 1

a2+
1

. . .+ 1
. . .

is the plus continued fraction expansion of α (also called regular continued fraction
expansion). By simply changing all the ” + ” signs in the definition above to
”− ” signs we obtain similarly the notion of minus continued fraction expansion.
The next result captures one of the first basic facts about continued fractions.
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Theorem 2. Any irrational number α can be represented as an infinite plus contin-
ued fraction and any real numebr β as an infinite minus continued fraction.

α = a0 +
1

a1 + 1
a2+

1
. . .+ 1

. . .

; β = b0 −
1

b1 − 1
b2−

1
. . .− 1

. . .

where ai ≥ 1 and bi ≥ 2 for all i ≥ 1.

One can compute the numbers ai by setting a0 = bαc, α1 = 1
α−a0

, and ai+1 =
bαi+1c, where αi+1 = 1

αi−ai
. Similarly, the bi’s are computed from β by setting

b0 = dβe, β1 = − 1
β−b0

, and then bi+1 = dβi+1e, where βi+1 = − 1
βi−bi

. The first
of these recursion formulas will be used in the proof of Theorem Plus.

We now introduce some notation. From now on, we will denote plus/minus
continued fractions as,

[a0; a1, a2, . . .] := a0 +
1

a1 + 1
a2+

1
. . .+ 1

. . .

(b0; b1, b2, . . .) := b0 −
1

b1 − 1
b2−

1
. . .− 1

. . .

If a continued fraction is periodic, for example
√

7 = [2; 1, 1, 1, 4, 1, 1, 1, 4, . . .],
then we will denote it as

√
7 =

[
2; 1, 1, 1, 4

]
. Similarly,

√
29 =

[
5; 2, 1, 1, 2, 10

]
and

√
15 = (4; 8). Now we will summarize the properties of plus and minus

continued fractions in the form of a table. The statements and their proofs
can be found in any standard text on the subject; for instance, see [RS94] for
plus continued fractions and [Ka03] for minus continued fractions.

Note that the (plus) continued fraction expansion of α is finite if and only if
α is rational. By the same token, the minus continued fraction β = (b0; b1, b2, . . .)
is rational if and only if there exists N such that bj = 2 for all j ≥ N (since
(2; 2) = 1).
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In the table that follows, let a0, a1, a2, . . . and b0, b1, b2, . . . be infinite sequences
of integers such that ai ≥ 1 and bi ≥ 2 if i ≥ 1. Then [a0; a1, a2, . . .] converges
to a unique real number α, and similarly (b0; b1, b2, . . .) converges to a unique
real number β.

Define the following recursive sequences:

pi+1 = ai pi + pi−1, ri+1 = biri − ri−1 for i ≥ 0

qi+1 = aiqi + qi−1, si+1 = bisi − si−1 for i ≥ 0

with initial values
p−1 = 0, p0 = 1
q−1 = 1, q0 = 0

and
r−1 = 0, r0 = 1
s−1 = −1, s0 = 0

Plus Minus

α = [a0; a1, a2, . . .] β = (b0; b1, b2, . . .)

If An := pn
qn

, then An = [a0; a1, . . . , an−1] If Bn := rn
sn

, then Bn = (b0; b1, . . . , bn−1)

and lim
n→∞

An = [a0; a1, . . .] = α. and lim
n→∞

Bn = (b0; b1, . . .) = β.

pi−1qi − piqi−1 = (−1)i−1 for all i ≥ 0 ri−1si − risi−1 = 1 for all i ≥ 0

Periodic continued fractions

α = [a0; a1, a2, . . .] is periodic i.e., (b0; b1, b2, . . .) is periodic i.e.,

α = [a0; a1, a2, . . . , al, al+1, . . . , am] β = (b0; b1, b2, . . . , bl, bl+1, . . . , bm)∗

⇐⇒ α is a quadratic irrational. ⇐⇒ β is a quadratic irrational.

∗ except (b0; b1, . . . , bl−1, 2) which is rational.

k ∈ Z such that k > 0 and d = b
√

kc <
√

k < d
√

ke = d + 1
√

k =
[
d; a1, a2, . . . , a2, a1, 2d

] √
k = (d + 1; b1, b2, . . . , b2, b1, 2(d + 1))

For example, For example,
√

14 =
[
3; 1, 2, 1, 6

] √
7 = (3; 3, 6)

√
73 =

[
8; 1, 1, 5, 5, 1, 1, 16

] √
13 = (4; 3, 3, 2, 2, 2, 2, 3, 3, 8)
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The following formula allows one to freely travel between the worlds of
plus and minus continued fractions. The proof is left as an exercise for the
interested reader (as in [Ka03]; see also [Zag81]).

[a0; a1, a2, a3, . . .] = (a0 + 1; 2, 2, . . . , 2︸ ︷︷ ︸
a1−1

, a2 + 2, 2, 2, . . . , 2︸ ︷︷ ︸
a3−1

, a4 + 2, . . .)

For example,
√

13 =
[
3; 1, 1, 1, 6

]
= (4; 3, 3, 2, 2, 2, 2, 3, 3, 8). We are now ready

to prove the main theorems, plus and minus.

4. PROOFS OF THEOREMS PLUS AND MINUS

Proof of Theorem Plus.
Recall that we have

√
k = [d; d1, d2, . . .].

(a) ⇒ (b)
The equation P2

k (1
0) = p2

q2
implies

d2 + k
2d

=
dd1 + 1

d1
,

which in turn yields d1 = 2d
k−d2 . Then, since d1 is an integer and d := b

√
kc, the

result follows.

(b) ⇒ (c)
The inequality d <

√
k < d + 1 gives us

2d
k− d2 <

√
k + d

k− d2 =
1√

k− d
<

2d + 1
k− d2 .

Then, since k − d2 is an integer greater than 0, there can be no integer be-
tween the two quantities on the far left and right sides of the above inequality.
Thus, d1 :=

⌊
1√
k−d

⌋
=
⌊

2d
k−d2

⌋
= 2d

k−d2 . From this, we compute

d2 :=

⌊
1

1√
k−d

− d1

⌋
=
⌊

k− d2
√

k− d

⌋
= 2d
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Continuing on, we see that d3 :=
⌊

1
(
√

k+d)−2d

⌋
=
⌊

1√
k−d

⌋
= d1, and similarly

d4 = 2d = d2. The continued fraction for
√

k becomes
[
d; 2d

k−d2 , 2d
]
, which

proves (c).

(c) ⇒ (a)
Suppose

√
k has a period 2 continued fraction expansion. From the well

known theorems on the continued fraction expansions of quadratic surds (see
Table), we know that it must be of the form

√
k = [d; d1, 2d]. Upon examining

this expression, one can see that

1√
k− d

= d1 +
1

2d +
1
1√

k− d
Simplifying this equation gives d1 = 2d

k−d2 . Now, we use this information to
get a different way to express pn and qn, the numerators and denominators
of our convergents.

Define two sequences, {an} and {bn}, recursively using the following ma-
trix notation. Define (

a1 a0

b1 b0

)
:=

(
d 1
1 0

)
,

and (
an an−1

bn bn−1

)
=

(
an−1 an−2

bn−1 bn−2

)(
2d 1

k− d2 0

)
,

for all n ≥ 2. We claim that

pn =
an

(k− d2)bn/2c and qn =
bn

(k− d2)bn/2c

for all n ≥ 0. The reader can easily verify that the assertion holds for n = 0, 1.
Then, for n ≥ 2, we have two cases. First, if n is even, bn−1

2 c = n/2 − 1 =
bn−2

2 c and the recursion formula for pn yields pn = 2d
k−d2 pn−1 + pn−2 which,

by induction is

2d
(k− d2)1+b(n−1)/2c an−1 +

1
(k− d2)b(n−2)/2c an−2
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Using the remarks above and the formula for an verifies our claim for pn.
A similar argument proves the statement about qn. Now, we have pn/qn =
an/bn, so to finish the proof, we will show that Pn

k (1
0) = an/bn. To this end,

define (
s0

t0

)
=

(
1
0

)
, and

(
sn

tn

)
=

(
d k
1 d

)(
sn−1

tn−1

)
It is clear that Pn

k (1
0) = sn

tn
, so if we show that sn = an and tn = bn we are done.

The formula for sn and tn can be written as(
sn

tn

)
=

(
d k
1 d

)n(
1
0

)
.

In addition, the formula for an and bn can be written as(
an

bn

)
=

(
d 1
1 0

)(
2d 1

k− d2 0

)n−1(
1
0

)
.

Write the right hand side of the former equation as Pn
k
(

1
0
)
, and the right hand

side of the latter equation as ABn−1( 1
0
)
. Then, observe that AB = Pk A, so

(an, bn) = (sn, tn) follows by induction. �

Proof of Theorem Minus.
Let k be a non-square positive integer, and let (d + 1; e1, e2, . . .) be the minus

continued fraction for
√

k.
(a) ⇒ (b)

The equation M2
k(

1
0) = r2

s2
implies

(d + 1)2 + k
2(d + 1)

=
(d + 1)e1 − 1

e1

from which it follows that e1 = 2(d+1)
(d+1)2−k . This, along with d + 1 = d

√
ke, and

the fact that e1 is an integer, gives the desired result.
(b) ⇒ (c)

If 2d
√

ke
d
√

ke2−k
is an integer, then let d + 1 = d

√
ke, e1 = 2d

√
ke

d
√

ke2−k
and e2 = 2(d + 1).

Let x = (d + 1; e1, e2). It can be seen that x satisfies

x = d + 1− 1
e1 − 1

e2+(x−(d+1))
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This yields a quadratic equation whose only positive root is
√

k. Therefore,√
k = (d + 1; e1, e2), and the minus continued fraction for

√
k has period at

most 2.
(c) ⇒ (a)

Suppose the minus continued fraction for
√

k has period at most 2. That is,√
k = (d + 1; e1, e2), for some d + 1, e1, e2. From this, we see

√
k = d + 1− 1

e1 − 1
e2−((d+1)−

√
k)

.

Rearranging, this gives

e1(2(d + 1)− e2)
√

k + ((d + 1)e1e2 − (d + 1)2e1 − ke1 − e2) = 0

Because
√

k is irrational, we must have

e1(2(d + 1)− e2) = 0

(d + 1)e1e2 − (d + 1)2e1 − ke1 − e2 = 0.

In the first equation, e1 6= 0, so e2 = 2(d + 1). Substituting for e2 in the sec-
ond equation gives ((d + 1)2 − k)e1 − 2(d + 1) = 0, which in turn gives e1 =

2(d+1)
(d+1)2−k . Note also that we have d + 1 = d

√
ke.

Next, we define the following sequence. For n ≥ 1, define(
an

bn

)
=

(
d + 1 −1

1 0

)(
2(d + 1) −1

(d + 1)2 − k 0

)n−1(
1
0

)

¿From this definition, it can be shown that an satisfies the recurrence relation
an = 2(d + 1)an−1 − ((d + 1)2 − k)an−2, with a similar recurrence for bn. We
then claim that

rn =
an

((d + 1)2 − k)bn/2c

and

sn =
bn

((d + 1)2 − k)bn/2c
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which is true by induction. For n = 1, 2, this is easily verified. For n ≥ 3, we
have two cases. When n is even, we have, via the recursion formula for rn:

rn = e1rn−1 − rn−2

=
2(d + 1)an−1

((d + 1)2 − k)n/2 −
((d + 1)2 − k)an−2

((d + 1)2 − k)n/2

=
an

((d + 1)2 − k)n/2

Similar arguments hold when n is odd, and for sn.
Next, we claim that if we view the map Mk as a matrix, then

Mn
k

(
1
0

)
=

(
an

bn

)

To see this, let A =
(

d+1 −1
1 0

)
, B =

(
2(d+1) −1

(d+1)2−k 0

)
. Then, the equation above

reduces to showing that ABn−1( 1
0
)

= Mn
k
(

1
0
)
. If we note that AB = Mk A and

that
(

1
0
)

is a fixed point of BA−1, we get our result:

Mn
k
(

1
0
)

= (ABA−1)n( 1
0
)

= ABn A−1( 1
0
)

= ABn−1(BA−1)
(

1
0
)

= ABn−1( 1
0
)

which implies that

rn

sn
=

an
((d+1)2−k)bn/2c

bn
((d+1)2−k)bn/2c

=
an

bn
= Mn

k (1
0)

which completes the proof. �

5. CLOSING REMARKS

5.1. How many k such that
√

k has period 2 continued fraction?
Given consecutive squares, d2, (d + 1)2, there are 2d numbers between them.

So if d2 < k < (d + 1)2, then the plus continued fraction of
√

k has period at
most 2 if and only if k− d2 is a divisor of 2d, where 1≤ k− d2 ≤ 2d. Thus there
are precisely σ0(2d) numbers between the consecutive squares d2, (d + 1)2

that have period at most 2, where σ0(j) is the number of divisors of j. Simi-
larly, there are σ0(2d + 2)− 1 numbers with minus continued fraction of pe-
riod at most 2 (we subtract 1, since the divisor 2d + 2 cannot be realized).
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In general, σ0(2d) ≥ 4 (counting the obvious divisors 1, 2, d, 2d), and the
lower bound is sharp for d prime. Moreover, it is not hard to see that for
d > 3, there are exactly two numbers between d2 and (d + 1)2 which have
period at most 2 simultaneously for their plus and minus continued fractions;
they are d2 + d and d2 + 2d = (d + 1)2 − 1. Along these lines, observe that
d2 + d + 1 = d(d + 1) + 1 always has period larger than 2 for either continued
fraction.

5.2. Matrix convergents vs. continued fraction convergents.
When k does not satisfy the conditions of either theorem, then the matrix

yields a sequence of rational numbers that converge quite fast to
√

k, but have
no apparent relation to the continued fraction convergents. The fact that Pk

and Mk applied to
(

1
0
)

converge to
√

k is a fairly straightforward exercise in
the linear algebra of irreducible Perron–Frobenius matrices.

However, there is one strange phenomenon for which we do not have a
complete proof (and leave as a conjecture for the interested reader). When
the quantity 2d

k−d2 is a half-integer, then the matrix convergents form a proper
subset of the (plus) continued fraction convergents in a precise way. For ex-
ample, consider

√
13 and

√
44.

√
13; d = 3, k = 13,

2d
k− d2 = 3

2 ,
√

13 = [3; 1, 1, 1, 1, 6], P13 =

(
3 13
1 3

)
Continued fraction convergents:{

3; 4, 7
2 ,

11
3

,
18
5

,
119
33

, 137
38 , 256

71 ,
393
109

,
649
180

,
4287
1189

, 4936
1369 , 9223

2558 ,
14159
3927

,
23382
6485

, . . .
}

Matrix convergents; Pn
13

(
1

0

)
{

3;
11
3

,
18
5

,
119
33

,
393
109

,
649
180

,
4287
1189

,
14159
3927

,
23382
6485

,
154451
42837

, . . .
}

The matrix convergents are picked from the continued fraction convergents
in the following pattern: skip two, pick three (and also note that the contin-
ued fraction of

√
13 has period 5 = 2 + 3). Now observe a similar phenome-

non for
√

44.
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√
44;

d = 6, k = 44,
2d

k− d2 = 3
2 ,

√
44 = [6; 1, 1, 1, 2, 1, 1, 1, 12], P44 =

(
6 44

1 6

)
Continued fraction convergents:{

6; 7, 13
2 ,

20
3

, 53
8 , 73

11 ,
126
19

,
199
30

,
2514
379

, 2713
409 , 5227

788 ,
7940
1197

, 21107
3182 , 29047

4379 ,
50154
7561

, . . .
}

Matrix convergents; Pn
44

(
1
0

)
{

6;
20
3

,
126
19

,
199
30

,
2514
379

,
7940
1197

,
50154
7561

,
79201
11940

,
1000566
150841

, . . .
}

The matrix convergents are picked from the continued fraction convergents
in the following pattern: skip two, pick one, skip two, pick three (and note
that the continued fraction of

√
44 has period 8 = 2 + 1 + 2 + 3).

Elementary arithmetic shows that such k do not exist if d is a power of
2. In general, the number of such k ∈ (d2, (d + 1)2) for which 2d

k−d2 is a half
integer depends on the number of odd factors of d: if d = 2jm, where m is
odd, then the number of such k is σ0(m)− 1. When such k exist, we formulate
the following conjecture.

Conjecture 1. Let k be a positive integer, not a perfect square, and let d = b
√

kc. If
2d

k−d2 is a half-integer, then the matrix convergents of
√

k are a proper subset of the
continued fraction convergents in the following pattern: “skip two, pick three”, if d
is odd and “skip two, pick one, skip two, pick three” if d is even.

In addition, it seems that the period of the continued fraction divides 10 if d
is odd, and the period divides 8 if d is even. In the case of d odd, the period is
always 5 if k = d2 + 4, and the period is 10 in other cases. Moreover, there are
possibly more conjectures for patterns of the continued fraction when 2d

k−d2

is in Z(2) = { m
2n , where n ∈ Z}, but we don’t have precise statements, so we

leave that to an enterprising and interested reader.
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