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Abstract. We calculate the full isometry group in the case G/H ad-

mits a homogeneous metric of positive sectional curvature.

Introduction

In this paper, we compute the isometry groups of simply connected, homo-

geneous, positively curved manifolds. These were classified by Berger, Aloff,

Wallach and Bérard Bergery. The primary motivation for computing these

isometry groups stemmed from looking for free, isometric actions of finite

groups. These were investigated in order to construct counterexamples to

an old obstruction proposed by S. S. Chern (also called Chern’s conjecture)

for fundamental groups of positively curved manifolds. Counterexamples to

Chern’s conjecture were first constructed in [11] and [6].

In order to compute the full isometry group, G, of a homogeneous space,

M = G0/H0, we first obeserve that the group of components, G/G0, is finite.

We then determine the full isotropy group, H, which helps us get hold of the

group of components, G/G0 = H/H0, by studying the group, Aut(G0,H0).

This in essence means that the pair (G,H) may be determined from the pair

of Lie algebras, (g, h).

The next step is to study enlargements of transitive actions that are vis-

ible at the Lie algebra level. Namely, given a G0-invariant metric on M , we

may have a strict containment, G0 ( I0(M). Such extensions are handled

following the work of A. L. Onishchik (see Section 2). Finally, in Section 4,

this program is carried out for the entire list of simply connected, homoge-

neous spaces with positive sectional curvature. The results are summed up

in Table 3 on page 22.
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1. Preliminaries

One systematic way to study positively curved manifolds is to look at the

ones with large isometry groups. By large, here, we mean those manifolds

on which the isometry group acts transitively. If a compact Lie group, G,

acts transitively on M , then M is diffeomorphic to the left coset space G/H.

If we put a G-invariant Riemannian metric on M (which always exists if G

is compact), then it can be realized by a Riemannian submersion,

H −−−→ G
π

−−−→ M = G/H

so that the metric on M is submersed from a left invariant metric on G. Here

H ⊂ G is a closed subgroup which is the isotropy group at a point; the metric

must necessarily be right invariant with respect to H. It is then possible to

compute the sectional curvatures of 2–planes in M using the Gray–O’Neill

submersion formulas. Classically, it was known that the spheres, Sn, and the

projective spaces, CPm, HPk, CaP2 admit positive curvature. They can be

described as homogeneous spaces and the well known metrics on them may

be obtained by submersing the canonical bi-invariant metric on SO(n + 1),

SU(m + 1), Sp(k + 1) and F4 respectively.

Simply connected homogeneous spaces of positive curvature were classi-

fied in [3], [14], [1], [2]. In Table 1 we present the complete classification

list.

Even dimensions Odd dimensions

S2n = SO(2n + 1)/SO(2n) S2n+1 = SO(2n + 2)/SO(2n + 1)

CPm = SU(m + 1)/SU(m) M7 = SO(5)/SO(3)

HPk = Sp(k + 1)/(Sp(k) × Sp(1)) M13 = SU(5)/(Sp(2) ×Z2
S1)

CaP2 = F4/Spin(9) N1,1 = SU(3) × SO(3)/U∗(2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

F 6 = SU(3)/T2 Nk,l = SU(3)/S1
k,l, gcd(k, l) = 1,

F 12 = Sp(3)/(Sp(1) × Sp(1) × Sp(1)) kl(k + l) 6= 0, (k, l) 6= (1, 1)

F 24 = F4/Spin(8)

Table 1. Simply connected, homogeneous spaces with pos-

itive curvature.

Recently B. Wilking found an error in [3]; he showed that Berger had

missed N1,1 from the Aloff-Wallach family, Nk,l, which is normal homoge-

neous (cf. [17]). Table 1 reflects that correction where the examples above
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the dotted lines are normal homogeneous. We now recall a simple fact which

will be useful to us later.

Lemma 1.1. Let G act freely and isometrically on a manifold M and let

H ⊳G. Then there is an induced ineffective action of G on M/H with kernel

H. In particular, G/H acts freely and isometrically on M/H with quotient

M/G.

From the previous lemma, we see that the natural action of the normalizer,

N(H), on G/H induces a free action of N(H)/H on G/H.

N(H) × G/H −→ G/H

(n, gH) 7−→ gH · n−1 = gn−1H

The group, N(H)/H, will show up frequently. We call it the generalized

Weyl group and denote it by WH . Note that we have extended the standard

action of G on G/H to an action of G×WH . However, the total action need

not be effective. The next proposition is well known.

Proposition 1.2. Let G be a simple, compact, connected Lie group. The

kernel of the extended G × WH action on G/H is precisely ∆Z(G), the

diagonal image of the center in G × WH .

The isotropy representation.

Consider the identity coset eH, the orbit of the identity element e ∈ G.

Then the action of H ⊂ G fixes eH. This affords a representation of H on

the complement p which is identified with TeHG/H,

H × p −−−→ p

(h,X) −−−→ dh(X)

The differential dh acting on p is simply the adjoint representation of H,

where g = h + p is an Ad(H)-invariant decomposition.

Definition. Let (M,g) be a Riemannian manifold with isometry group Ĝ

and isotropy group Ĥp for p ∈ M . If the isotropy representation of Ĥp on

the tangent space TpM is irreducible for every p ∈ M , then M is said to be

isotropy irreducible.

By considering the action of the isotropy group Ĥp on a principal or-

bit, it follows that an isotropy irreducible space must be homogeneous. A

homogeneous space G/H is said to be strongly isotropy irreducible if the

identity component, H0, acts irreducibly on the complement p. J. Wolf

classified all strongly isotropy irreducible homogeneous spaces of compact

groups in [18]. In particular, among our list of homogeneous manifolds with

positive curvature, all compact, rank one, symmetric spaces are strongly
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isotropy irreducible. The other spaces that are isotropy irreducible are the

normal homogeneous Berger example, M7 = SO(5)/SO(3), and the spheres,

S6 = G2/SU(3) and S7 = Spin(7)/G2. The next lemma is straightforward.

Lemma 1.3. If G/H is an isotropy irreducible homogeneous space, then

the Weyl group WH is finite.

Automorphism groups of compact Lie groups.

Let G be a compact, connected Lie group and let σ : G → G be an

automorphism. Then σ(Z) = Z, where Z = Z(G) is the center. This is

because σ(Z) ⊆ Z and σ is invertible. This defines a map,

ϕ : Aut(G) → Aut(G/Z)

σ 7→ σ̄

where σ̄(gZ) = σ(g)Z. If α ∈ ker(ϕ), then α(g) = z(g)·g, where z : G → Z is

a homomorphism into the center. ker(ϕ) is trivial if and only if z is the trivial

map. When G is a compact semisimple group, the center is discrete, hence

finite. So for compact, connected, semisimple groups, Aut(G) ∼= Aut(G/Z).

Theorem 1.4. Let G be a compact, connected, semisimple Lie group. Then

Inn(G) ⊂ Aut(G) is a normal subgroup of finite index. The groups fit into

a (split) exact sequence,

1 → Inn(G) → Aut(G) → Out(G) → 1

where Out(G), which is called the group of outer automorphisms, is given

by symmetries of the Dynkin diagram of G.

The full automorphism group of a semisimple group can be computed

with the help of the previous theorem. The proof for the simple case can be

found in [7]. The extension to the semisimple case is easy (see for instance

[12]).

The automorphism group of U(n). For a compact, connected Lie group G,

recall the map, ϕ : Aut(G) → Aut(G/Z). If σ ∈ ker(ϕ), then σ(g) = z(g) · g

for all g ∈ G, where z : G → Z is a homomorphism into the center. A

homomorphism of U(n) into its center, S1, is a 1-dimensional representation.

U(n) has infinitely many 1-dimensional representations (cf. [4]). All of these

factor through the determinant, since the map, det : U(n) → U(1), can be

identified with the quotient of U(n) by its commutator, SU(n). It follows

that any C-representation of U(n) looks like A 7→ det(A)m for some m ∈ Z.

Now σ ∈ ker(ϕ) implies σ−1 ∈ ker(ϕ) and we have,

σ(A) = det(A)mA

σ−1(A) = det(A)kA
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for some fixed k,m ∈ Z. A simple calculation yields

σ−1
◦ σ(A) = det(A)nkm+k+m · A

Since this map must be the identity we must have nkm + k + m = 0 which

is equivalent to n+ 1
m

+ 1
k

= 0 for non-zero k,m. This has a unique solution

in integers: n = −2m = −2k = 2 which implies σ2 = id. We have,

Theorem 1.5. The map, ϕ : Aut(U(n)) → Aut(PSU(n)), is an isomor-

phism for n > 2.

A compact, connected, semisimple Lie group G does not admit any non-

trivial C-representation (cf. [4]). The above considerations then show

Theorem 1.6. For any compact, connected, semisimple Lie group G,

Aut(G × S1) ∼= Aut(G) × Aut(S1).

The group of components.

Given a homogeneous space, M = G/H, we now assume that G = I(M)

is the full isometry group for some homogeneous metric on M . Let G0 and

H0 be the identity components of the isometry group and the isotropy group

respectively. Then G/G0
∼= H/H0 is the group of components. Most of the

arguments below are along the lines of [16, Section 3].

Definition. The set of automorphisms of a compact Lie group, G, that fix

a subgroup, H, will be denoted by Aut(G,H). The groups Inn(G,H) and

Out(G,H) are defined analogously.

The adjoint action (conjugation) allows us to define a map,

Ad :H −→ Aut(G0,H0)

h 7−→ (Adh : x 7→ hxh−1)

This is actually a map into Aut(G0) whose image lies in Aut(G0,H0). The

kernel of this map is,

ker(Ad) = {h ∈ H : hxh−1 = x ∀ x ∈ G0}

= CG(G0) ∩ H

By assumption, G is the isometry group, so M = G/H = G0/H0 is an

effective coset space. This will allow us to show

Proposition 1.7. The map, Ad : H → Aut(G0,H0), is an injection.

Proof. Suppose h ∈ ker(Ad). Then the left action of h fixes the identity

coset, eH. Let U be a small neighborhood of the identity, e, in G; then

U ⊂ G0. If π : G → G/H, then π(U) is an open set containing eH. Then

for all x ∈ U , h · xH = xH, since h ∈ CG(G0). This implies that h acts
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ineffectively on π(U) and its differential at eH must be the identity and

hence h = e. �

This shows that H/H0 is a subgroup of Aut(G0,H0)/Ad(H0). Consider

the short exact sequence,

1 −−−→ Inn(G0,H0) −−−→ Aut(G0,H0) −−−→ Q −−−→ 1

where Q is the quotient. Since H0 is a subgroup of both groups, Inn(G0,H0)

and Aut(G0,H0), we may consider the reduced sequence, which leaves the

quotient unchanged,

1 −−−→ Inn(G0,H0)/H0 −−−→ Aut(G0,H0)/H0 −−−→ Q −−−→ 1

Since the action of G0 is effective, H0 ∩ Z(G0) must be trivial. This allows

us to identify, Inn(G0,H0) ∼= N(H0)/Z(G0). We now have a commutative

diagram with exact rows; the maps i1 and i2 are inclusions.

1 N(H0)/Z(G0)

i1

Aut(G0,H0)

i2

Q

φ

1

1 Inn(G0) Aut(G0) Out(G0) 1

The following lemma will clarify things a bit by helping us compute the

induced map φ. The proof of the lemma is a simple exercise in ‘diagram

chasing’.

Lemma 1.8. Given a commutative diagram of groups with exact rows,

1 H1

φ1

f
H2

g

φ2

H3

φ3

1

1 G1
f ′

G2
g′

G3 1

where the maps φ1 and φ2 are injections and φ3 is the induced map. If

H1 = G1 ∩ H2, then φ3 is a monomorphism also.

This now implies that the quotient Aut(G0,H0)/Inn(G0,H0) = Q is a

subgroup of Out(G0); the splitting of the short exact sequence for Aut(G0)

yields the splitting for Aut(G0,H0). So we may regard Q as the subgroup

of outer automorphisms that fixes H0. Note also that the previous lemma

allows us to bound the number of components, H/H0; since the group of

components is a subgroup of Aut(G0,H0)/H0, its order is bounded by the

orders of Inn(G0,H0) = N(H0)/Z(G0)H0 and Q.

To compute the full isometry group, we need two ingredients: the identity

component and the group of components. Lemma 1.8 will then allow us to
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put the two together. All the positively curved homogeneous spaces can

be written as quotients of simple groups (see Table 1). We saw above that

we can always extend the action by the generalized Weyl group WH . In the

next section we will see that enlargements of transitive actions are restricted

to a few types and we will use this to compute the identity component.

2. Enlargements of transitive actions

We briefly describe the theory of enlargements of transitive actions. The

theory was developed by A. L. Onishchik (cf. [8]) and the results stated in

this section are proved in his original paper. Recall that a Lie algebra, g, is

said to be compact if it is the Lie algebra of some compact Lie group.

Definition. Let (g′, g, k) be a triple of Lie algebras, where g and k are

subalgebras of g′. The triple is said to be a decomposition if g′ = g + k.

If G′ is the simply connected Lie group corresponding to g′ and G, K

are the corresponding connected Lie subgroups of G′, then (g′, g, k) is a

decomposition if and only if G acts transitively on G′/K. This is equivalent

to saying G′ = G · K.

Definition. The pair (g′, k) is called an extension or enlargement of the

pair, (g, h), if (g′, g, k) is a decomposition and h = g ∩ k.

An extension is effective if g′ and k have no non-trivial ideal in common.

This corresponds to saying that the action of G′ on G′/K is almost effective.

We will only be concerned with extensions of simple algebras i.e. we will

assume that g is simple. Although this is not required for the definitions,

this is assumed in the results. We identify three types of extensions.

Extensions of Type I. This is essentially an extension by the normalizer.

(g′, k) is said to be a Type I extension of (g, h) if there exists a subalgebra

a ⊂ g such that, h ⊕ a ⊂ g, g′ = g ⊕ a, k = h ⊕ a. The inclusion, a →֒ g′, is

the diagonal embedding. So to have a Type I extension, the normalizer of

h in g must be non-empty.

Example. Consider the Aloff-Wallach space, N7
1,1 = SU(3)/S1

1,1. This has

positive curvature for a left-invariant, Ad(U(2))-invariant metric on SU(3).

The normalizer of the circle S1
1,1 is U(2) and the Weyl group is SO(3). Now

we take g = su(3), h = s1 = iR and a = so(3) to see that we have a Type I

extension.

Extensions of Type II. (g′, g′′) is called a Type II extension of (g, h) if g′

is simple. All such extensions are classified in Onishchik’s original paper

(cf. [8]); we present these in Table 2.
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g′ g g′′ h = g ∩ g′′

su(2n),
sp(n)

su(2n − 1) sp(n − 1) ◭

n > 1 su(2n − 1) ⊕ u(1) sp(n − 1) ⊕ u(1) ◭

so(5) su(2)

so(7) g2 so(5) ⊕ u(1) su(2) ⊕ u(1)

so(6) su(3) ◭

so(2n + 2) su(n + 1)
so(2n + 1)

su(n) ◭

n > 2 su(n + 1) ⊕ u(1) su(n) ⊕ u(1) ◭

sp(n) sp(n − 1) ◭

so(4n) sp(n) ⊕ u(1) so(4n − 1) sp(n − 1) ⊕ u(1) ◭

n > 1 sp(n) ⊕ sp(1) sp(n − 1) ⊕ sp(1) ◭

so(16) spin(9) so(15) spin(7) ◭

sp(2) sp(1) ◭

sp(2) ⊕ u(1) sp(1) ⊕ u(1) ◭

so(8)
sp(2) ⊕ sp(1)

so(7)
sp(1) ⊕ sp(1) ◭

su(4) su(3) ◭

su(4) ⊕ u(1) su(3) ⊕ u(1) ◭

spin(7) g2 ◭

Table 2. Type II extensions.

We will be concerned with the pairs that actually yield homogeneous

manifolds with positive curvature. In Table 2, these are marked by the

“◭” symbol. Note that most exceptional examples are spheres with the

exception of CPn appearing the pair (sp(n), sp(n − 1) ⊕ u(1)). The simply

connected, exceptional, homogeneous spaces with positive curvature can be

read off from the marked pairs (g, h).

Extensions of Type III. These are described as follows: let (m,m′,m′′) be a

decomposition with m simple. Let a be a subalgebra such that m′′ ( a ⊂ m.

Now we set g′ = m + a, k = m′ + m′′, g = ∆a and h = k ∩ ∆a. In this case

(g′, k) is said to be a Type III extension of (g, h). Note that the homogeneous

space G′/K is diffeomorphic to a product manifold, M/M ′ × A/M ′′.

Example. There exists an embedding G2 →֒ Spin(8) such that the quotient

is, Spin(8)/G2 = S7 × S7. This admits a Type III extension to Spin(8) ×

Spin(8).

Type III extensions were also classified by Onishchik in his paper [8]; for

a simpler exposition, see [15]. It is clear from the classification that none of

the examples of positive curvature admit Type III extensions which implies
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that none of our examples are diffeomorphic to products. In fact, all known

examples of positively curved manifolds are not even homotopy equivalent

to products (cf. [12]). So we may safely ignore this type of extension for

homogeneous positively curved manifolds. If a homogeneous space admits a

Type II or Type III extension, we will refer to it as an exceptional space.

Theorem 2.1 (Onishchik). Let (g, h) be an effective pair of compact Lie

algebras, with g simple. Then any effective, compact extension of (g, h) is

either a Type I extension or a Type I extension of an extension of Type II

or Type III.

One has to be careful applying the theorem; it outlines topological exten-

sions only. For instance, we have the inclusions, Sp(n) ⊂ SU(2n) ⊂ SO(4n),

all of which act transitively on the sphere, S4n−1. However, for the metric

submersed from the bi-invariant metric, the quotient spaces are pairwise not

isometric. The various pinchings are computed in [20]. So S4n−1 only admits

a Type I extension metrically for the normal homogeneous metric. In the

case of a non-exceptional space, we need to perform a Type I extension only

once; this follows easily from the theorem.

3. The generalized Weyl group

We now exhibit the Weyl group, WH , for our examples; we drop the

term, ‘generalized’. Before we plunge into computations, we state some

useful lemmas.

Lemma 3.1 (Berger). Any circle acting isometrically on an even dimen-

sional manifold with positive curvature has a fixed point.

The proof involves showing the vanishing of Killing fields on such mani-

folds (cf. [14]). The analogous statement in odd dimensions is well known;

see for instance [13].

Lemma 3.2. If a torus T2 = S1 × S1 acts isometrically on a manifold

M2n+1 with positive curvature, then there exists x ∈ M for which the

isotropy group, T2
x, contains a circle i.e. not all isotropy groups can be finite.

It is evident from the previous lemma that a Lie group G acting freely

and isometrically on a positively curved manifold must have rank(G) ≤ 1;

this is also well known (see for instance [14]). This restricts the Weyl group

WH in some odd dimensional cases as we shall see. Another way to estimate

the Weyl group is to consider the fixed point set, (G/H)H , of the action of

H on G/H since in fact (G/H)H ≈ N(H)/H.
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The Weyl group in even dimensions.

From Lemma 3.1 we know that the Weyl group is finite. Synge’s theorem

implies that the largest subgroup of WH acting isometrically is Z2. In the

case of the compact, rank one, symmetric spaces, the Weyl group is well

known; for explicit computations, see [12]. We state them for completeness:

S2n = SO(2n + 1)/SO(2n). The Weyl group, WSO(2n) is isomorphic to Z2.

CPn = SU(n + 1)/U(n). The Weyl group is trivial unless n = 1 in which

case it is Z2.

HPk = Sp(k + 1)/Sp(k) × Sp(1). The Weyl group is trivial unless k = 1 in

which case it is Z2.

CaP2 = F4/Spin(9). The Weyl group is trivial.

CP2m+1 = Sp(m + 1)/Sp(m) × U(1). The Weyl group is isomorphic to Z2.

The flag manifolds, F 6 and F 12. There are two of the three non-symmetric

examples in even dimensions. They are described as the spaces of complete

flags over CP2 and HP2 respectively.

F 6 = SU(3)/T2, so the Weyl group, WT2 = N(T)/T is simply the usual

Weyl group of SU(3). Hence WT2 = S3, the symmetric group on 3 letters.

F 12 = Sp(3)/(Sp(1) × Sp(1) × Sp(1)). Let {e1, e2, e3} be the standard

basis in H3. Consider the following transformations (where the subscripts

i = 1, 2, 3 are to be understood cyclically),

σi(ei) = ei+1, σi(ei+1) = ei, σi(ei−1) = −ei−1

The adjoint action of these involutions normalizes Sp(1)× Sp(1)× Sp(1) by

permuting the diagonal entries. They generate S3, the symmetric group.

The cohomology ring of F 12 yields χ(F 12) = 6 (see for instance [5]) which

bounds the order of the Weyl group. It follows that the Weyl group is

isomorphic to S3.

The Cayley flag, F 24 = F4/Spin(8). This is the space of flags over CaP2,

the Cayley plane. The isotropy representation of Spin(8) on F4 splits into

three equivalent subrepresentations V1, V2, V3 (cf. [14]). In [16, Theorem B]

the authors show the following for even dimensional homogeneous spaces:

if H0 6= 1 and G/H is isotropy irreducible, then there exists a finite group

of automorphisms of h which permutes transitively the dominant weights of

the isotropy representation of H0.

Let Ĝ = F4 × WSpin(8) acting on F 24 with isotropy group Ĥ. In [16] the

authors show that Ĝ/Ĥ is isotropy irreducible. By their theorem mentioned
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above, it follows the Weyl group must be the symmetric group, S3, acting

via the permutation representation on p.

Remark. The three flag manifolds all have Weyl group isomorphic to S3.

However, by Synge’s theorem S3 cannot act isometrically. For a homoge-

neous metric of positive curvature, it is evident that at most Z2 ⊂ S3 acts

freely and isometrically.

The Weyl group in odd dimensions.

The only positively curved symmetric space in odd dimensions is the

sphere. It is well known that its Weyl group is Z2, generated by the antipodal

map.

The Berger space SO(5)/SO(3). This space is rather curious; the embedding

of SO(3) is nonstandard. Consider the space of 3 × 3 symmetric, trace zero

matrices. This is isomorphic to the the vector space R5 and SO(3) acts on it

by conjugation. This gives a (maximal) representation, ρ : SO(3) → SO(5).

This space is isotropy irreducible (cf. [18]) which shows

Lemma 3.3. The embedding, ρ : SO(3) → SO(5), is maximal as an embed-

ding of connected groups.

Proposition 3.4. The Weyl group Wρ(SO(3)) is trivial.

Proof. Let n ∈ N(SO(3)) be an element of the normalizer. Then Ad(n)

is an automorphism of SO(3). Since SO(3) has no outer automorphisms,

the restriction of Ad(n) to SO(3) must be inner. So we may modify it by

an element x ∈ SO(3) so that Ad(xn) is trivial on SO(3). Hence, xn ∈

C(SO(3)), the centralizer of SO(3) in SO(5).

Let g ∈ C(SO(3)). Then C(g) is a connected subgroup of maximal rank,

since g lies in some maximal torus. Also, ρ(SO(3)) ( C(g) ⊂ SO(5). The

first containment is strict since C(g) has full rank. By the previous lemma,

C(g) must be all of SO(5) which implies that g ∈ Z(SO(5)), the center. But

SO(5) has trivial center, so g = xn = id. Hence n ∈ SO(3). �

The Berger space SU(5)/Sp(2) ×Z2
S1. We give a brief description of this

space. Sp(2) is embedded into SU(4) in the standard way, which is embedded

in SU(5) canonically. We have,

Sp(2) × S1 −→ SU(5)

(A, z) 7−→

(

im(A) · z 0

0 z̄4

)
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Note however, that the map has a kernel given by {(id, 1), (−id,−1)} ∼= Z2.

The quotient, Sp(2)×Z2
S1, then embeds into SU(5) and the corresponding

normal homogeneous space has positive curvature.

Proposition 3.5. The Weyl group WSp(2)×Z2
S1 is trivial.

Proof. We have the following containments, Sp(2) ×Z2
S1 ⊂ U(4) ⊂ SU(5).

Let H = Sp(2) ×Z2
S1 and K = U(4). The isotropy representation of H

splits into two irreducible summands: a 5-dimensional real representation

and a 4-dimensional complex representation. This shows that WH is finite.

Let su(5) = h + p + m, where u(4) = h + p. Let V = p + m. The

decomposition su(5) = h + V is Ad(H) invariant. Since N(H) preserves h,

it must preserve V as well. If V were irreducible for the action of N(H), then

SU(5)/N(H) would be an isotropy irreducible space whose universal cover

is our space, M13. This contradicts the classification of isotropy irreducible

spaces in [16]. So let U ⊂ V be an invariant subspace for the isotropy

representation of N(H). Then U is preserved by H also and hence U = p

or U = m. It follows that p and m are invariant subspaces for the action

of N(H) also. In particular N(H) normalizes U(4). Now N(U(4)) = U(4)

in SU(5) which implies N(H) ⊂ U(4), and we have NSU(5)(H) = NU(4)(H).

But K/H = SO(6)/O(5) = RP5 is an isotropy irreducible symmetric space

with trivial Weyl group. It follows that NSU(5)(H) = H. �

The Aloff-Wallach space N1,1 = (SU(3)× SO(3))/U∗(2). Following Wilking

(cf. [17]), the subgroup U∗(2) is the image under the embedding (i, π) :

U(2) → SU(3) × SO(3). For A ∈ U(2),

i(A) =

(

A 0

0 det(A)−1

)

and π : U(2) → SO(3) ∼= U(2)/Z is the canonical projection.

Proposition 3.6. The Weyl group WU∗(2) is trivial.

Proof. Let (A,B) ∈ N(U∗(2)) be an element of the normalizer. Since π

is surjective, B is an element of SO(3). Now SU(3)/i(U(2)) = CP2 which

has the fixed point property. This implies that NSU(3)(U(2)) = U(2) which

forces (A,B) ∈ U∗(2). �

The Aloff-Wallach spaces, Nk,l = SU(3)/S1
k,l. These spaces are described as

circle quotients of SU(3) by the subgroups,

S1
k,l = {diag(zk, zl, z̄k+l) : gcd(k, l) = 1, z ∈ S1}

When (k, l) = (1, 1), we get the normal homogeneous space described above.

Note that the pairs (k, l), (−k,−l), (k,−k − l) etc. give the same space. So

we may assume, without loss of generality, that k, l > 0. Since we already
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considered (k, l) = (1, 1), we will also assume that at least one of k or l is

bigger than 1. The following is straightforward.

Lemma 3.7. Let k, l be positive integers with gcd(k, l) = 1 and (k, l) 6=

(1, 1). Then k, l and −k − l are pairwise distinct.

Let Ck,l denote the centralizer of S1
k,l. The centralizer of any toral sub-

group S in a compact, connected Lie group is the union of all maximal tori

containing S. So Ck,l is a connected subgroup of maximal rank. Let,

T = {diag(z,w, z̄w̄) : z,w ∈ S1}

be the usual maximal torus of SU(3). Then S1
k,l ⊂ T ⊂ Ck,l. Now the Lie

algebra of SU(3) splits as,

su(3) = t + V1 + V2 + V3

where Vi are the root spaces for the maximal torus. They are generated by

matrices of the form,




0 z 0

−z̄ 0 0

0 0 0



 ,





0 0 w

0 0 0

−w̄ 0 0



 ,





0 0 0

0 0 x

0 −x̄ 0





respectively, where z,w, x ∈ C. The Lie algebra of S1
k,l is generated by

the element diag(k, l,−k − l). It is routine to check that the Lie bracket

of diag(k, l,−k − l) with any element in the root spaces is non-trivial by

Lemma 3.7. This implies that the Lie algebra of the centralizer is the same

as t. We have shown

Proposition 3.8. The centralizer Ck,l is the maximal torus T containing

S1
k,l.

The normalizer, N(S1
k,l), acts on S1

k,l via the adjoint action with kernel

Ck,l. By Lemma 1.1, we have a non-trivial action of N/Ck,l on the circle.

Since the circle has only one non-trivial automorphism (complex conjuga-

tion), it follows that the normalizer is at most a Z2 extension of Ck,l.

Proposition 3.9. The Weyl group WS1
k,l

is isomorphic to S1.

Proof. The centralizer is the identity component of the normalizer. So the

adjoint action of N(S1
k,l) preserves Ck,l as well. But Ck,l is a maximal torus

which implies that N(S1
k,l)/Ck,l ⊂ S3, the Weyl group of SU(3). The Weyl

group, S3, acts by permuting the eigenvalues of T. By Lemma 3.7, we

see that no non-trivial permutation preserves the subgroup S1
k,l. Hence,

N(S1
k,l)/Ck,l is trivial and the result follows. �

We now deal with other representations of spheres most of whose Weyl

groups are also well known.
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S2n+1 = SU(n + 1)/SU(n), n > 1. WSU(n) is isomorphic to S1.

S4n+3 = Sp(n + 1)/Sp(n). The Weyl group WSp(n) is isomorphic to Sp(1).

S15 = Spin(9)/Spin(7). The embeddings, Spin(7) ⊂ Spin(8) ⊂ Spin(9), are

standard. Since, Spin(9)/Spin(8) = S8 and Spin(8)/Spin(7) = S7, we have

a fibration

S7 −−−→ S15 −−−→ S8

The isotropy representation of Spin(7) splits into two irreducible pieces

which correspond to the tangent spaces of the fiber and base. The normal-

izer, N(Spin(7)), must preserve this decomposition and hence it normalizes

Spin(8) as well. This implies that N(Spin(7)) ⊂ N(Spin(8)) which is a Z2

extension of Spin(8).

Proposition 3.10. The normalizer, N(Spin(7)), is contained in Spin(8).

Proof. We want to show that any non-trivial element that normalizes Spin(8)

cannot normalize Spin(7). Suppose x ∈ N(Spin(8)) normalizes Spin(7) such

that x 6∈ Spin(8). Then x2 ∈ Spin(8). There are two possibilities: either

x2 ∈ Spin(8)− Spin(7) or x2 ∈ Spin(7). If x2 were in Spin(7), then WSpin(7)

would contain two elements of order two, namely, x2 and the non-trivial

element in NSpin(8)(Spin(7))/Spin(7). This would violate Milnor’s condition

which says that any finite group acting freely on a sphere has at most one

element of order two.

So we must have x2 ∈ Spin(8)\Spin(7). Since x2 also normalizes Spin(7),

x2 must generate NSpin(8)(Spin(7)). It follows that WSpin(7) = Z4 which acts

freely and isometrically for the bi-invariant metric. In particular, S15/Z4,

has positive curvature. Since N(Spin(7)) is contained in N(Spin(8)), we

have an induced (ineffective) action on the base, S8, with quotient RP8.

The kernel of the action is Z2 which then acts on the fiber and the fibration

now looks like,

RP7 −−−→ S15/Z4 −−−→ RP8

The base, RP8, is non-orientable which implies that the total space is also

non-orientable. This contradicts Synge’s theorem. �

The proposition tells us that the Weyl group is isomorphic to Z2. Note

that the Spin(9) action on S15 is effective, so Spin(7) does not intersect

Z(Spin(9)). Since the center normalizes every subgroup, we must have,

Z(Spin(9)) ⊂ N(Spin(7)). It follows that the Weyl group comes from the

center, Z(Spin(9)).
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N1,1 = SU(3)/S1
1,1. The space N7

1,1 can be written in two different ways;

we already saw its normal homogeneous incarnation which was described

by Wilking. For a certain choice of left invariant metric on SU(3), the two

representations of this space are isometric (cf. [17]). As a quotient of SU(3),

it is easy to see that the normalizer of S1
1,1 is U(2) and the Weyl group,

WS1
1,1

= U(2)/S1
1,1 = SO(3). Hence this space admits a free, isometric

SO(3) action.

Remark (i). The spheres, S4k+3 = Sp(k +1)/Sp(k) admit a free, isometric

action of Sp(1). This gives rise to the principal bundles,

S1 −−−→ S4k+3 −−−→ CP2k+1

Sp(1) −−−→ S4k+3 −−−→ HPk

This also shows that CP2k+1 is an S2 bundle over HPk. In the above action of

Sp(1) on S4k+3, consider the action of the subgroup Pin(2) ⊂ Sp(1) ∼= SU(2).

The resulting space is a Z2 isometric quotient of CP2k+1. However, the

metric on CP2k+1 submersed from the bi-invariant metric on Sp(k+1) is not

the standard Fubini-Study metric for k > 0; it has pinching 1
4(k+1) (cf. [20]).

Regarding the quotient, CP2k+1/Z2, we see that it is a RP2 bundle over

HPk.

Remark (ii). In the case of the standard 1
4 -pinched metric, we saw that

the Weyl group of CPn is trivial for all n. Yet, we remarked the the odd

complex projective spaces, CP2k+1, admit free, isometric involutions which

come from the outer automorphism of complex conjugation on Cn+1. If

n + 1 = 2k + 2 is even, then we can define a map on C2k+2,

(z1, z2, ..., z2k , z2k+1, z2k+2) 7→ (−z̄k+2,−z̄k+3, ...,−z̄2k+2, z̄1, ..., z̄k+1)

This is an involution on C2k+2 without fixed points that preserves (complex)

lines and it induces a fixed point free involution on CP2k+1. Interestingly

enough, this can also be realized as an action of Pin(2) on the sphere, S4k+3.

The Pin(2) embedding in the full isometry group of S4k+3 is quite strange

and yields CP2k+1/Z2 as an isometric quotient of the standard CP2k+1.

Remark (iii). The spheres, S6 = G2/SU(3) and S7 = Spin(7)/G2, always

admit Type II extensions, so we do not compute their Weyl groups.

4. The isometry group

It is appropriate to mention at this time that Onishchik himself has used

his theory of enlargements to indicate how the isometry group of a homo-

geneous space may be computed. His solution is in general terms and for

the bi-invariant metric (cf. [10], [9]). In particular, there are no curvature
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assumptions in his work. Unless otherwise mentioned, we will compute the

isometry group for the normal homogeneous metric and indicate what the

isometry groups are for other homogeneous metrics of positive curvature on

the same space. As usual, I(M) denotes the isometry group of the Riemann-

ian manifold M .

Proposition 4.1. Let G/H be an even dimensional, homogeneous, posi-

tively curved manifold. Then I0(G/H) is simple and centerless.

Proof. From [14] we know that for even dimensional G/H of positive curva-

ture, we can assume that G is simple. By Lemma 3.1 and the fact that they

all have positive Euler number, Type I extensions are ruled out. Since they

do not admit Type III extensions, either I0(G/H) = G (almost effectively)

or I0 is a Type II extension of G, which is also simple.

Now suppose we have G/H even dimensional with positive curvature.

Since rank(H) = rank(G), G and H share a maximal torus. Since the

center lies in every maximal torus, the action is effective if and only if G is

centerless. �

In odd dimensions we see from our Weyl group computations, that a non-

trivial Type I extension is by S1, SO(3) or SU(2). Next we state a key

reduction theorem which will yield the isometry group for any homogeneous

metric of positive curvature.

Reduction Theorem. Let M = G′/H ′ be a simply connected, homoge-

neous, positively curved manifold. Then G′ contains a closed subgroup, G,

which is simple, compact and acts transitively on M . In particular, G′ is a

Type I or Type II extension of G.

Proof. The even dimensional case is an immediate consequence of [14, Corol-

lary 4.2] which proves the following: if M = G/H is an even dimensional

homogeneous with positive curvature, then G is simple and G and H have

the same rank. Combining this with the previous proposition yields the

result.

In odd dimensions we appeal to [2] where the author classifies odd di-

mensional homogeneous, positively curved manifolds. Theorems 1 and 2 in

that paper deal with the case of M = G′/H ′ of positive curvature when

G′ is not simple. The theorems prove: if G′ is not simple, then (g′, h′)

is one of the pairs (su(n + 1) ⊕ R, su(n) ⊕ R), (sp(n) ⊕ R, sp(n − 1) ⊕ R),

(sp(n)⊕sp(1), sp(n−1)⊕sp(1)), (su(3)⊕R, R2) or (su(3)⊕su(2), su(2)⊕R). A

quick glance reveals that all of these are Type I extensions of simple groups;

the first three are different representations of odd spheres while the fourth

represents the Aloff-Wallach spaces. The last one is the normal homogeneous

representation of the Aloff-Wallach space N1,1. �
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Remark. The normal homogeneous space, N1,1, was ruled out by Bérard

Bergery. Since this space is also isometric to a circle quotient of SU(3) with

respect to a left invariant metric, we may apply our methods with impunity.

For a positively curved homogeneous space we can find a minimal simple

group that acts transitively namely, a transitive simple group such that no

subgroup acts transitively. This follows from the Reduction Theorem and

the classification theorems in [14] and [2]. The homogeneous spaces in Table

1 are written as quotients of these minimally transitive simple groups with

a few exceptions like S3 = SU(2), S6 = G2/SU(3) and S7 = Spin(7)/G2.

These are dealt with on a case by case basis. In any event, we have

Proposition 4.2. Let M be a homogeneous space of positive curvature.

Then there exists a minimally transitive simple group, G, such that for any

homogeneous metric, g, of positive curvature, G ⊂ I0((M,g)).

Recall that the group of components depends on the groups Out(G0,H0)

and N(H0)/H0Z(G0). The former will be the Weyl group in most cases.

From our Weyl group computations, we see that the odd dimensional spheres

and the Aloff-Wallach spaces are the only spaces that admit honest Type

I extensions. A word of caution is in order: the group of components may

be a proper subgroup of Aut(G0,H0) as is evident in the case of the flag

manifolds.

The isometry group of a symmetric space is well known and has been

computed (see for instance [19]), so we won’t repeat this here. The results

are summarized in Table 3. We would like to mention, however, that the

compact, rank one, symmetric spaces are isotropy irreducible, so any homo-

geneous metric on them will be a multiple of the usual normal homogeneous

metric. Hence, by Proposition 4.2, the isometry group for any homogeneous

metric of positive curvature will be the same as that for the normal ho-

mogeneous metric. A few other cases such as other representations of the

spheres and projective spaces are also well known (cf. [19]). We will use the

Reduction Theorem and Proposition 4.2 to indicate the connected isome-

try groups for all possible homogeneous metrics of positive curvature. The

methods developed here may then be applied in each case to compute the

group of components. Note that the short exact sequence,

1 −−−→ I0 −−−→ I −−−→ I/I0 −−−→ 1

is always split for homogeneous metrics, as a consequence of Lemma 1.8.

S6 = G2/SU(3).

The submersed bi-invariant metric has constant curvature. Since this

space is isotropy irreducible, any homogeneous, G2-invariant metric will also
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have constant curvature. Hence we have a Type II extension to SO(7) and

the isometry group is O(8).

CP2m+1 = Sp(m + 1)/(Sp(m) × U(1)).

I0 = Sp(m + 1)/Z2 which is centerless and the Weyl group, WSp(m)×U(1),

is isomorphic to Z2. Also Out(Sp(m + 1)) is trivial and we have,

I(CP2m+1) = (Sp(m + 1)/Z2) × Z2

for the normal homogeneous metric induced by Sp(m + 1). This space is

isotropy reducible. Scaling the irreducible factors differently, one obtains

a left invariant metric on Sp(m + 1) which admits a Type II extension to

PSU(2m+2). This is the Fubini-Study metric and its isometry group is well

known. The isometry group for any other homogeneous metric of positive

curvature is a finite extension of Sp(m + 1)/Z2 or PSU(2m + 2).

F 6 = SU(3)/T2.

I0 = PSU(3) and the Weyl group, WT2 is the full symmetric group, S3.

Also, Out(PSU(3)) = Z2 generated by complex conjugation on SU(3). This

map acts isometrically on the flag manifold and Aut(SU(3),T2) = S3 × Z2.

Since the Weyl group acts freely and F 6 is even dimensional, we know that at

most a Z2 inside it can act freely and isometrically. Hence, I/I0 is generated

by two involutions. Putting this together, we have,

I(F 6) = PSU(3) ⋊ (Z2 ⊕ Z2) = (PSU(3) ⋊ Z2) × Z2

for the metric submersed from a left-invariant, Ad(U(2))-invariant metric on

SU(3). Since this space does not admit any extensions, any homogeneous

metric of positive curvature will have PSU(3) as the identity component of

its isometry group with at most four components.

F 12 = Sp(3)/(Sp(1) × Sp(1) × Sp(1)).

I0 = Sp(3)/Z2 which is centerless and the Weyl group is S3. Since

Out(Sp(3)) is trivial, the group of components is a subgroup of the Weyl

group. As above, we have,

I(F 12) = (Sp(3)/Z2) × Z2

for the metric submersed from a left invariant, Ad(Sp(2) × Sp(1))-invariant

metric on Sp(3). Again as above, any homogeneous metric of positive cur-

vature will have Sp(3) as identity component of its isometry group with at

most four components.
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F 24 = F4/Spin(8).

The group F4 is centerless and has no outer automorphisms. Hence, the

computation here is the same as the previous case and we have,

I(F 24) = F4 × Z2

for the metric submersed from a left invariant, Ad(Spin(9))-invariant metric

on F4. Any homogeneous metric of positive curvature on this space will

have isometry group F4 or F4 × Z2.

M7 = SO(5)/SO(3).

This is the curious Berger space that stands out as an errant son. I0 =

SO(5) is centerless and has no outer automorphisms. We also showed that

the Weyl group is trivial. The gods smile and we have,

I(M7) = SO(5)

for the normal homogeneous metric induced by SO(5). This space being

isotropy irreducible, any homogeneous metric of positive curvature on this

space will have the same isometry group.

M13 = SU(5)/(Sp(2) ×Z2
S1).

I0 = PSU(5) is centerless and has an outer automorphism – complex

conjugation. We showed that the Weyl group is trivial, so I/I0 is either

trivial or Z2. Complex conjugation is an isometry which does not commute

with the action of SU(5) and we have,

I(M13) = PSU(5) ⋊ Z2

for the normal homogeneous metric induced by SU(5). From Proposition

4.2, the isometry group of any homogeneous metric of positive curvature on

this space would be PSU(5) or PSU(5) ⋊ Z2.

N1,1 = (SU(3) × SO(3))/U∗(2).

I0 = PSU(3) × SO(3) which is centerless. The Weyl group, WU∗(2), is

trivial. Out(SU(3) × SO(3)) = Z2, the complex conjugation map on SU(3)

which is trivial on the SO(3) factor. Complex conjugation is an isometry for

the bi-invariant metric and we have,

I(N1,1) = (PSU(3) × SO(3)) ⋊ Z2 = (PSU(3) ⋊ Z2) × SO(3)

for the normal homogeneous metric induced by SU(3)×SO(3). Considering

this space as a circle quotient of SU(3), we see that the isometry group of

any homogeneous metric of positive curvature will be a finite extension of

PSU(3) or PSU(3) × SO(3).
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Nk,l = SU(3)/S1
k,l.

3 | (k2 + l2 + kl), (k, l) 6= (1, 1). We know that I0 = PSU(3)×S1, with cen-

ter {id} × S1 with isotropy group T2, the diagonal image of the normalizer

N(S1
k,l). By Theorem 2.1, the reduced Weyl group, N(H0)/H0Z(G0), must

be finite and is in fact trivial. We saw earlier that Out(PSU(3) × S1) =

Z2 ⊕ Z2, where the involutions are complex conjugation on each factor.

Both involutions are isometries and we have,

I(Nk,l) = (PSU(3) × S1) ⋊ (Z2 ⊕ Z2)

= (PSU(3) ⋊ Z2) × (S1 ⋊ Z2)
for 3 | (k2 + l2 + kl)

for the metric submersed from a left invariant, Ad(U(2))-invariant metric on

SU(3). By Proposition 4.2, the isometry group of any homogeneous metric

of positive curvature would be a finite extension of PSU(3) or PSU(3)×S1.

3 ∤ (k2 + l2 + kl). In this case, I0 = U(3) whose center is the set of diagonal

matrices, z · In, where z is a unit complex number. The reduced Weyl

group, N(H0)/H0Z(G0), is again trivial and Out(U(n)) = Z2 is generated

by complex conjugation. The latter is an isometry and we have,

I(Nk,l) = U(3) ⋊ Z2 for 3 ∤ (k2 + l2 + kl)

for the metric submersed from a left invariant, Ad(U(2))-invariant metric on

SU(3). As above, the isometry group of any homogeneous metric of positive

curvature would be a finite extension of SU(3) or U(3).

S2m+1 = SU(m + 1)/SU(m).

We assume m > 1. I0 = SU(m + 1) ×Zm+1
U(1) = U(m + 1) for the

normal homogeneous metric even though this example admits a Type II

extension. Out(I0) = Z2 which acts isometrically while the reduced Weyl

group, N(H0)/H0Z(G0), is trivial. We have,

I(S2m+1) = U(m + 1) ⋊ Z2

for the normal homogeneous metric. The isotropy representation of this

space splits into two irreducible summands. Scaling the metric appropriately

on the two summands yields a space isometric to the round sphere (cf. [20]).

For this metric, the space admits a Type II extension and its isometry group

is the full orthogonal group. The isometry group of any homogeneous metric

of positive curvature would be a finite extension of U(m + 1) or SO(2m + 2)

by Proposition 4.2.
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S4m+3 = Sp(m + 1)/Sp(m).

I0 = Sp(m + 1) ×Z2
Sp(1). As before, the reduced Weyl group is trivial,

and Out(Sp(m + 1)) is trivial. We have,

I(S4m+3) = Sp(m + 1) ×Z2
Sp(1)

for the normal homogeneous metric induced by Sp(m + 1). The normal

homogeneous metric does not have constant curvature, although it is possible

to scale the irreducible factors of the isotropy representation to obtain other

homogeneous metrics of positive curvature. In particular, it is possible to

get the metric in the previous case or the round sphere metric. The isometry

group for any homogeneous metric of positive curvature would be a finite

extension of Sp(m + 1) ×Z2
Sp(1), U(2m + 2) or SO(4m + 4).

S3 = SU(2).

The normal homogeneous metric has constant curvature so it will have

the orthogonal group as isometry group. However, it is possible to find other

left invariant metrics of positive curvature whose isometry groups would be

finite extensions of SU(2), U(2) or SO(4) depending on the right invariance

of the metric. Determing the moduli space of all homogeneous metrics of

positive curvature is a hard problem, in general.

S7 = Spin(7)/G2.

The normal homogeneous metric is the metric of constant curvature.

Hence, this admits a legitimate Type II extension to SO(8) and we have,

I(S7) = SO(8) ⋊ Z2 = O(8)

The isotropy representation of G2 on the quotient is irreducible. Hence, any

Spin(7)-invariant metric has constant curvature and any homogeneous met-

ric of positive curvature will have the orthogonal group as isometry group.

S15 = Spin(9)/Spin(7).

The normal homogeneous metric does not have constant curvature, its

pinching is 9
121 (cf. [20]). The Weyl group, WSpin(7), is Z2 and Spin(9) has

no outer automorphisms. However, since the Weyl group is precisely the

center, the reduced Weyl group, N(H0)/H0Z(G0), is trivial. Hence, the

group of components is trivial and we have,

I(S15) = Spin(9)

for the normal homogeneous metric induced by Spin(9). The isotropy rep-

resentation is reducible and it is possible to scale the invariant factors dif-

ferently to yield other left-invariant metrics on Spin(9). For some choice of

constants, it is possible to recover the metric of constant curvature on S15
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M = G/H I(M) Other I0(M)

Sn = SO(n + 1)/SO(n) O(n + 1) —

CPm = SU(m + 1)/SU(m) PSU(m + 1) ⋊ Z2 —

HPk = Sp(k + 1)/(Sp(k) × Sp(1)),
Sp(k + 1)/Z2 —

k > 1

CaP2 = F4/Spin(9) F4 —

S6 = G2/SU(3) O(7) —

CP2m+1 = Sp(m + 1)/(Sp(m) × U(1)) (Sp(m + 1)/Z2) × Z2 PSU(2m + 2)

F 6 = SU(3)/T2 (PSU(3) ⋊ Z2) × Z2 —

F 12 = Sp(3)/(Sp(1) × Sp(1) × Sp(1)) (Sp(3)/Z2) × Z2 —

F 24 = F4/Spin(8) F4 —

M7 = SO(5)/SO(3) SO(5) —

M13 = SU(5)/(Sp(2) ×Z2
S1) PSU(5) ⋊ Z2 —

N1,1 = SU(3) × SO(3)/U∗(2) (PSU(3) ⋊ Z2) × SO(3) PSU(3)

Nk,l = SU(3)/S1
k,l (PSU(3) ⋊ Z2) × (S1 ⋊ Z2) PSU(3)

(k, l) 6= (1, 1), 3 | (k2 + l2 + kl)

Nk,l = SU(3)/S1
k,l U(3) ⋊ Z2 SU(3)

3 ∤ (k2 + l2 + kl)

S2m+1 = SU(m + 1)/SU(m) U(m + 1) ⋊ Z2 SO(2m + 2)

S4m+3 = Sp(m + 1)/Sp(m) Sp(m + 1) ×Z2
Sp(1) U(2m + 2), SO(4m + 4)

S3 = SU(2) O(4) SU(2), U(2)

S7 = Spin(7)/G2 O(8) —

S15 = Spin(9)/Spin(7) Spin(9) SO(16)

Table 3. Isometry groups of 1-connected, homogeneous,

positively curved manifolds.

(cf. [20]). Hence, the isometry group of any homogeneous metric of positive

curvature on this space is either Spin(9) or the orthogonal group.

The results are summarized in Table 3. The last column of the table

answers the following question: Given G/H of positive cuvature, what are

the possible connected isometry groups for homogeneous metrics of positive

curvature on G/H for metrics submersed from a left-invariant metric on G.

This is answered using the Reduction Theorem and Proposition 4.2.
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Trudy Moskov. Mat. Obšč., 11:199–242, 1962. English translation in Amer. Math.

Soc. Transl., 50 (1966), 5–58.

[9] A. L. Onishchik. The group of isometries of a compact Riemannian homogeneous

space. In Differential geometry and its applications (Eger, 1989), pages 597–616.

North-Holland, Amsterdam, 1992.

[10] A. L. Onishchik. Topology of transitive transformation groups. Johann Ambrosius

Barth Verlag GmbH, Leipzig, 1994.

[11] K. Shankar. On the fundamental groups of positively curved manifolds. J. Differential

Geom., 49(1):179–182, 1998.

[12] K. Shankar. Isometry Groups of Homogeneous, Positively Curved Manifolds. PhD

thesis, University of Maryland, College Park, 1999.

[13] K. Sugahara. The isometry group and the diameter of a Riemannian manifold with

positive curvature. Math. Japon., 27(5):631–634, 1982.

[14] N. Wallach. Compact homogeneous riemannian manifolds with strictly positive cur-

vature. Ann. of Math. (2), 96:277–295, 1972.

[15] M. Wang and W. Ziller. On normal homogeneous Einstein manifolds. Ann. Sci. École
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