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Introduction

The existence of free circle actions (S1-actions) on compact symmetric

spaces is of importance in connection with constructing Riemannian man-

ifolds of positive sectional curvature. Among the known compact, simply

connected Riemannian manifolds of positive sectional curvature there are

two infinite families, occuring in dimensions 7 and 13 (cf. [AW75], [Esc82],

[Esc84], [Baz96], [Sha]). Both families are described as orbit spaces of

free circle actions on symmetric spaces with Dynkin diagram A2, namely

as circle quotients of SU(3) and SU(6)/Sp(3). It has been shown by R.

Bock in [Boc98] that the two other symmetric spaces of type A2, namely

SU(3)/SO(3) and E6/F4, do not admit free, isometric circle actions. In the

present paper we ask: Which symmetric spaces allow free, isometric circle

actions? We only need to answer this for the strongly irreducible, compact

symmetric spaces i.e., those which are locally not Riemannian products.

Let S be a strongly irreducible, compact symmetric space and let G̃ denote

the connected component of its isometry group. An inner involution is an

element u ∈ G̃ such that u2 = id. Our main results are:

Theorem 1. Any inner involution on the symmetric space S without fixed

points lies in a circle subgroup U ⊂ G̃ such that U acts freely on S.

This allows us to classify the irreducible symmetric spaces that admit free

circle actions.

Theorem 2. Free circle actions exist precisely on the following compact,

strongly irreducible symmetric spaces:

1. All simple compact Lie groups,

2. SU(2n)/SO(2n) for all n ≥ 2,

3. SU(2n)/Sp(n) for all n ≥ 2,
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4. SO(p + q)/(SO(p) × SO(q)) and SO(p + q)/S(O(p) × O(q)) for all odd

p, q ≥ 1.

Theorem 3. If S is not of group type, then the only free, isometric actions

of SU(2) or of SO(3) are the usual Hopf actions on the Grassmannians of

odd dimensional subspaces in R4m (Example 4 in Theorem 2).

However, we show in Section 6 that the orbit space of a free circle action

on a symmetric space S = G/K with its induced metric has zero curvature

2-planes at every point unless S itself admits positive curvature i.e., unless

S is a compact, rank one, symmetric space. The above mentioned metrics

of positive curvature on the 7- and 13-dimensional orbit spaces are induced

from non-symmetric metrics on S. In fact, in both cases there is a subgroup

H ⊂ G of smaller dimension which acts still transitively on S, and S carries

the normal homogeneous metric with respect to H. It remains open whether

there exist non-symmetric metrics on the Grassmannians for which the S1-

quotients (or the SU(2) or SO(3) quotients) admit positive curvature.

The bulk of this work was accomplished when the third named author

was visiting the University of Augsburg, Germany during the summer of

2001. It is a pleasure to thank the differential geometry group at Augsburg

for their hospitality. The authors also wish to thank Christian Groß whose

careful reading of this paper has helped improve its exposition.

1. Preliminaries on symmetric spaces

Let S be a compact symmetric space. As usual we represent S as a coset

space G/K where G is a compact, connected Lie group with an involutive

automorphism σ (of order 2) called the global symmetry of S. Let K̂ =

{g ∈ G; gσ = g} denote the fixed group of σ and let K̂o denote its identity

component. Then we have (cf. [Hel78] p. 212):

K̂o ⊂ K ⊂ K̂,(1.1)

and S may be viewed as a finite covering of the “smallest” symmetric space

Ŝ = G/K̂. The symmetry σ acts also on the Lie algebra g of G and induces

the Cartan decomposition g = k + p where k is the Lie algebra of K (and

of K̂). k is identified with the (+1)-eigenspace of σ∗, while p is the (−1)-

eigenspace which can also be viewed as the tangent space ToS of S at the

base point o = eK. As a consequence we have the Cartan relations:

[k,k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.(1.2)

We will need the following totally geodesic submanifold of G:

P = exp(p) = {x ∈ G; xσ = x−1}o ⊂ G(1.3)
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where {·}o always denotes the identity component (the connected component

of the unit element e ∈ G). This subspace is known as Cartan embedding of

the symmetric space. In fact the map

φ : G → G, φ(g) = gσg−1,

takes values in P since (gσg−1)σ = g(gσ)−1 = (gσg−1)−1 and descends to

an embedding of Ŝ = G/K̂ (since g̃σ g̃−1 = gσg−1 if and only if g̃ = gk for

some k ∈ K̂).

The Riemannian metric on S is induced by a bi-invariant metric on G,

and G acts on S by isometries. But the action of G need not be effective;

its kernel consists of all z ∈ G with z(gK) = gK for all g ∈ G which is

equivalent to g−1zg ∈ K for all g ∈ G. In particular, z ∈ K and moreover

g−1zg = (g−1zg)σ = (g−1)σzgσ. Thus all x = gσg−1 ∈ P commute with z,

but since P generates G as a group (recall from the Cartan relations (1.2)

that p generates g as a Lie algebra), G must commute with z and hence z

lies in the center Z of G. Conversely, Z ∩ K clearly acts trivially on G/K.

We have shown:

Proposition 1.1. The identity component of the isometry group of the sym-

metric space S = G/K is G̃ = G/(Z ∩ K), where Z is the center of G.

Proposition 1.2. Suppose that S = G/K is irreducible where K is con-

nected and k has no outer automorphisms. Then K̂ = K · Zσ where Z is

the center of G and Zσ = {z ∈ Z : zσ = z}.

Proof. We need to determine K̂/K. Any k̂ ∈ K̂ determines an automor-

phism i(k̂) : k 7→ k̂kk̂−1 of K̂o = K. This must be inner by assumption i.e.,

i(k̂) = i(k) for some k ∈ K. Hence, the coset k̂K contains some representa-

tive k̂∗ = k̂k−1 commuting with k and hence with all of K. So without loss

of generality we may assume k̂ = k̂∗.

Now recall that the adjoint representations of K and K̂ on g leave p invari-

ant and their restrictions to p are the isotropy representations of S = G/K

and Ŝ = G/K̂ respectively. By irreducibility of the isotropy representa-

tion of K we obtain Ad(k̂) = ± I on p unless this representation is complex

and Ad(k̂) acts as a complex scalar. But in the latter case S is hermitian

symmetric and k̂ lies in the identity component K (in fact in the central

S1-factor). If Ad(k̂) is the identity on p, then k̂ acts trivially on Ŝ, hence

k̂ ∈ Z. If Ad(k̂) = − I on p, then k̂ acts as the symmetry σ on Ŝ. Thus

k̂ belongs to G i.e., Ŝ is an inner symmetric space which is equivalent to

saying that K̂ contains a maximal torus T with k̂ ∈ T (cf. [Hel78], p. 424f).

This implies k̂ ∈ K̂o = K which finishes the proof.
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2. Involutions

Let G be a compact, connected Lie group. Given g ∈ G, conjugation by

the element g yields an automorphism of G, i(g)(x) = gxg−1, which is called

an inner automorphism. The fixed group of i(g), namely the elements of G

commuting with g, evidently contains a maximal torus; the torus contain-

ing g. In particular, the fixed point groups of two inner involutions have

conjugate maximal tori. The last statement can be generalized to arbitrary

involutions.

Proposition 2.1. Let G be a compact, connected Lie group and let σ, σ̃

be two involutions of G such that σ̃ = σγ for some inner automorphism

γ = i(g) i.e., γ(x) = gxg−1 for some g ∈ G. Let K and K̃ be the identity

components of the fixed groups of σ and σ̃. Then the maximal tori of K and

K̃ are conjugate in G.

Proof. We start by proving the statement for two special cases for σ̃. Sup-

pose first σ̃ = σκ with κ = i(k) for some k ∈ K. Let To ⊂ K be a maximal

torus with k ∈ To. Extend To to a maximal torus T of G. Since To is

maximal abelian in K and contained in K ∩ T which is abelian, we get

To = K ∩ T . On the other hand

K̃ ∩ T = {t ∈ T ; σκt = t} = {t ∈ T ; σt = t} = K ∩ T.

Therefore the maximal torus To of K is contained in a maximal torus of K̃

(which extends K̃∩T ), and in particular we have also k ∈ K̃. Reversing now

the roles of σ and σ̃ we see that K and K̃ have in fact the same maximal

torus To.

The assertion remains true if σ̃ is only conjugate to σκ, say σ̃ = ασκα−1

for some α = i(a) for a ∈ G. But note that ασ = σασ, where ασ = σασ =

i(aσ). So we have in this case,

σ̃ = σασκα−1 = σγ,

for γ = i(g) with g = aσka−1. To complete the proof we will show that any

g ∈ G can be represented as g = aσka−1 for some k ∈ K and a ∈ G.

The group G acts on itself isometrically by a · x := aσxa−1 (for any

a, x ∈ G). The orbit G · e is just the Cartan embedding of the symmetric

space G/K into G, and its normal space νe(G · e) at the unit element e is

the Lie algebra k ⊂ g of K. It follows from a straightforward argument that

any g ∈ G is of the form g = a · k for some a ∈ G and k ∈ K = exp(k). In

fact, there is a shortest geodesic from g to the closed set G · e ⊂ G. This

geodesic meets G · e perpendicularly at some point a · e. Thus g = expa·e(ξ)

for some normal vector ξ ∈ νa·e(G · e). Let ξo = a−1 · ξ ∈ νe(G · e) = k.
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Then g = expa·e(a · ξo) = a · expe(ξo) = a · k for k = exp(ξo) ∈ K, and we

are done.

Remark 2.2. In the terminology of [HPTT94] and [Kol02], the conjugacy

of the maximal tori of the fixed point groups K and K̂ can be seen from

the fact that these maximal tori are sections of the above mentioned polar

action of G on itself; the polar action is given by a · x := aσxa−1 (see also

[dS56], Chapter II).

Remark 2.3. Given any connected Dynkin diagram, there is, up to con-

jugacy, at most one diagram automorphism of order 2. Since the full au-

tomorphism group is a (split) extension of the inner automorphism group,

any two outer involutions differ by an inner automorphism.

3. Fixed point free involutions

Since the circle group S1 ⊂ C contains the element −1 of order 2, a free

isometric circle action on a symmetric space S = G/K can occur only if

there is an involution in G̃ acting on S without fixed points, where G̃ is the

identity component of the isometry group. So we ask when this is possible.

Lemma 3.1. An element u ∈ G acting on S = G/K has a fixed point if

and only if u is conjugate to some element of K.

Proof. An element u ∈ G has a fixed point on S = G/K if and only if

ugK = gK or g−1ug ∈ K for some g ∈ G i.e., if and only if u is conjugate

to some element of K.

If K is connected, then the above condition is equivalent to saying the

the conjugacy class of u intersects a maximal torus of K. In particular, if S

is an inner symmetric space i.e., if G and K have the same rank and hence

share a maximal torus, then any conjugacy class meets K. Then any u ∈ G

acting on S has a fixed point. This fact rules out most symmetric spaces on

Helgason’s list ([Hel78], p. 518, 532f). The remaining types are AI, AII,

DI, EI and EIV.

Moreover, by Proposition 2.1 and Remark 2.3, it suffices to consider one

type of symmetric space for a given group G as long as the fixed groups are

connected. The most convenient type is the so called normal form; S = G/K

is said to be of normal form if a maximal torus T of G is contained in P ,

the Cartan embedding. (This means that the Satake diagram of S has only

white points and no arrows; see [Hel78], pp. 426, 531, 532ff.)
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Lemma 3.2. If S = G/K is of normal form and if K̂ \ K contains no

elements of order 2, then any u ∈ G with u2 = e is conjugate to an element

of K and hence, has a fixed point on S.

Proof. We may find v ∈ T which is conjugate to u, and since T ⊂ P we have

vσ = v−1 = v. Therefore v ∈ K̂ and hence, v ∈ K since v has order 2.

We now apply this lemma to the normal form spaces of types EI, AI

and DI. Let us start with EI, the symmetric space S = E6/PSp(4) where

PSp(4) = Sp(4)/{± I}. From Proposition 1.2 we see that K̂ \K contains no

order 2 elements since the center Z(E6) is Z3 (cf. [Hel78], p. 516). Moreover

the Dynkin diagram of K = Sp(4) is of type C4, allowing no diagram au-

tomorphisms; hence K has no outer automorphism. So Lemma 3.2 implies

that any u ∈ G with u2 = e has a fixed point on S. By Proposition 2.1 the

same is true for G/K̃ where K̃ = F4 (note that G/K̃ is of type EIV). We

have proved:

Proposition 3.3. E6/Sp(4) and E6/F4 do not admit any fixed point free,

inner involutions.

Next we consider the case AI where S = SU(n)/SO(n). Here the sym-

metry σ is complex conjugation of matrices and therefore K̂ is the set of all

real matrices in SU(n) i.e., K̂ = SO(n) = K. Lemma 3.2 shows that any

order 2 element of SU(n) has a fixed point. If n is odd, SO(n) has no center

and SU(n) acts effectively. We have shown

Proposition 3.4. SU(n)/SO(n) admits no fixed point free involutions if n

is odd.

However, if n = 2m is even, then Z(SU(2m)) ∩ K = {± I}. So, we pass

to the effective groups G = SU(2m)/{± I} and K = SO(2m)/{± I}. Now

K̂ modulo sign consists of all matrices A ∈ SU(2m) which are either real

or purely imaginary; in the latter case we have σ(A) = Ā = −A ≡ A

mod ± I. Since the product of two purely imaginary matrices is real, K̂ is

a degree 2 extension of K. An imaginary diagonal matrix k̂ is of order 2

in SU(2m)/{± I} if and only if k̂ = i · diag(− Ij, I2m−j) with m + j even (in

order to have det k̂ = 1). If j 6= m, then the eigenvalues of k̂ do not come in

conjugate pairs, thus k̂ is not conjugate to a real matrix i.e., not conjugate

to an element of K. This defines a fixed point free involution on S. Hence,

there are free Z2-actions on S = SU(2m)/SO(2m), but not on Ŝ (by Lemma

3.2). By Proposition 3.1, the same holds for the spaces SU(2m)/Sp(m) i.e.,

there are free Z2-actions on S = SU(2m)/Sp(m), but not on Ŝ = G/K̂ .
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Finally we consider the case DI or more precisely the normal form sym-

metric space S = SO(2n)/S(O(n) × O(n)) for odd n (the Grassmannian of

n-planes in R2n). The kernel of the action of SO(2n) on S is {± I}; the

symmetry σ on G = SO(2n)/{± I} is given by conjugation with the ma-

trix diag(− In, In) (up to sign). Note that K = S(O(n) × O(n))/{± I} ∼=

SO(n) × SO(n) is connected while K̂ = Fix(σ) has another connected com-

ponent formed by the off diagonal block matrices A = ( 0 a
b 0 ) in SO(2n) with

σ(A) = −A ≡ A mod ± I. Thus K̂ = K ∪ K · J where J = ( 0 −In

In 0 ). We

conclude from Lemma 3.2 that the space Ŝ = G/K̂ admits no fixed point

free involutions, but S does (as we will see in Section 4).

4. Circle actions

To complete the proof of Theorem 1, we now show that all remaining

spaces admit free circle actions. Let us start with SU(2n)/SO(2n) and

SU(2n)/Sp(n). As we have seen, these can be treated together since the

maximal tori of SO(2n) and Sp(n) are conjugate within SU(2n). Recall

from Section 3 that each u ∈ G = SU(2n) with u2 = e has a fixed point

on S = G/K, where K = SO(2n) or Sp(n). Among these, only u = − I

belongs to the kernel Z ∩ K of the action of G on S. Any circle subgroup

U ⊂ T ⊂ G contains an element of order 2. Thus the effective action of U

can be free only if − I ∈ U . Since U ⊂ G is abelian, it can be extended to a

maximal torus T of G, and by conjugacy we may assume that T is the torus

of diagonal matrices. Hence U is of the form,

U = {u(z) = diag(zk1 , . . . , zk2n); z ∈ S1},(4.1)

where all the ki are odd integers with
∑

ki = 0; then u(−1) = − I. To avoid

ineffective coverings of S1 we assume that the ki are relatively prime. U

acts freely if and only if the entries zki for all z ∈ S1 \ {±1} do not come

in conjugate pairs. So for U to act freely, we must ensure (after possibly

reordering) that we never have zk1+k2 = ... = zk2n−1+k2n = 1 for any z 6= ±1.

The failure of this condition would mean that the exponents have a common

divisor not equal to 2. We have shown:

Proposition 4.1. Let U ⊂ SU(2n) be conjugate to a subgroup of the form

(4.1). Then U acts freely on SU(2n)/SO(2n) or on SU(2n)/Sp(n) if and

only if all the integers ki are odd and for any permutation π of the set

{1, ..., 2n}, the greatest common divisor of the numbers kπ(1) + kπ(2), kπ(3) +

kπ(4), . . . , kπ(2n−1) + kπ(2n) is 2.

Remark 4.2. For the case SU(6)/Sp(3) we encounter the Bazaikin spaces

([Baz96], see also [Zil]). These were originally constructed as quotients
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of the homogeneous space S′ = SU(5)/Sp(2) by a circle group U . Here

any u ∈ U is a composition of certain left translations in SU(5) with

the right translation by uo(z) = diag(z, z, z, z, z̄4) = diag(z · I4, z̄
4) (for

z ∈ S1) which commutes with the right action of Sp(2). However, note

(by counting dimensions, for instance) that SU(5) ⊂ SU(6) acts transi-

tively on S = SU(6)/Sp(3) with stabilizer SU(5) ∩ Sp(3) = Sp(2) which

implies S′ = S. Moreover, the above right action of uo ∈ SU(5) on S is

the same as the left action by u1 = diag(z · I5, z̄
5) ∈ SU(6). In fact, both

transformations commute with the transitive action of SU(5), and applied

to the base point o = e · Sp(2) = e · Sp(3) we have uo · o = u1 · o since

u1u
−1
o = diag(z · I4, z, z̄5) · diag(z · I4, z̄

4, 1)−1 = diag(I4, z
5, z̄5) ∈ Sp(3).

Therefore, the two sided action of U on can be replaced with a left action

of some U ′ ⊂ SU(6).

Remark 4.3. None of the subgroups U ⊂ SU(2n) of Proposition 4.1 can be

extended to a group isomorphic to SU(2) or SO(3). In fact it follows from

the representation theory of SU(2) that a circle group U ⊂ SU(2n) can be

extended if and only if, up to conjugation, its Lie algebra is generated by an

orthogonal sum of vectors of the type i ·diag(−m,−m+2, ...,m−2,m) with

m ≤ n. But the eigenvalues of such matrices evidently come in conjugate

pairs, so they violate the condition of Propostion 4.1.

It remains to consider the real, odd-dimensional, oriented Grassmannians

S = G/K with G = SO(p + q) and K = SO(p)× SO(q) for p, q odd (of type

DI). The symmetry σ is conjugation by diag(− Ip, Iq). Its fixed group K̂

consists of all block diagonal matrices diag(a, b) ∈ SO(2n), where a is a p×p

and b is a q × q matrix. Then K̂ = S(O(p) × O(q)) and Ŝ = G/K̂ is the

Grassmannian of un-oriented p-planes in Rp+q. The group G acts effectively

on S, but not on Ŝ; the kernel of the latter action is {± I}. At the end of

Section 3 we saw that the fixed group of the action of σ on G̃ = G/{± I}

is a proper extension of K̂/{± I} in the case p = q = n. However, if p 6= q,

then there is no such extension since there are no orthogonal off diagonal

block matrices.

A maximal torus T of G consists of all block diagonal matrices A =

diag(a1, ..., an) with ai = ( cos αi − sinαi

sinαi cos αi
). Since p, q are odd, say p = 2m− 1,

the subgroup T ∩ K is a maximal torus of K and consists of all matrices

A ∈ T with am = I2. Furthermore, A ∈ T ∩ K̂ if and only if am = ±I2.

Up to conjugation, any circle subgroup U ⊂ SO(2n) with 2n = p + q lies

in T and consists of elements of the form

u(z) = diag(a(z)k1 , ..., a(z)kn )(4.2)
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where a(eiα) := ( cos α − sin α
sinα cos α

) and k1, ..., kn are relatively prime integers. An

element u(z) is conjugate to an element of K if and only if a(z)ki = I2 for

some i. To ensure freeness, we wish to avoid such a possibility and this is

achieved for all z 6= 1 if and only if ki = ±1 for all i. So, for a free action,

the elements of U must be of the form

u(z) = diag(a(z), ..., a(z))(4.3)

up to conjugacy in O(2n). This is simply the Hopf circle action on R2n = Cn

and it descends to a free action on Ŝ. There are no other free circle actions

on Ŝ since any such action would lift to a free circle action on S. We have

shown:

Proposition 4.4. The only free circle actions on S = SO(2n)/(SO(p) ×

SO(q)) and on Ŝ = SO(2n)/S(O(p)×O(q)), where p, q odd and p + q = 2n,

are by subgroups conjugate to the type described in (4.3).

It is well known that the Hopf circle action extends to a Hopf SU(2)-action

on R2n if n is even, yielding a free SU(2) action on S and a free SO(3)-action

on Ŝ. (Note that the action of H ⊂ G on S is free if and only if the action

of the maximal torus of H is free.)

We conclude that these are the only free actions of connected groups

on strongly irreducible symmetric spaces that are not of group type. This

completes the proof of Theorem 1. 2

5. Reducible symmetric spaces

Proposition 5.1. Let S = S1 × S2 be a Riemannian product of compact

symmetric spaces. Then S admits a fixed point free inner involution if and

only if either of S1 or S2 do.

Proof. Let u be any inner involution on S. So u = (u1, u2) where ui are

inner involutions on Si. Then Fix(u) = Fix(u1) × Fix(u2) ⊂ S is empty if

and only if Fix(u1) = ∅ or Fix(u2) = ∅.

Corollary 5.2. S = S1 × S2 admits a free, isometric circle action if and

only if S1 or S2 admit such an action.

Proof. A free circle action of S1 or S2 can easily be extended to a free circle

action of S. The converse follows from Proposition 5.1 and Theorem 1.

Remark 5.3. Of course there are many ways to extend a free circle action

on S1 to S1×S2; we may use, for instance, any circle action (not necessarily

free) on S2 and then act via the diagonal. An instructive example is that of

the Berger spheres, (S2n−1 ×S1 S1).
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6. Existence of zero curvature 2-planes

Proposition 6.1. Let S = G/K be any compact Riemannian symmetric

space of rank r ≥ 2 and U ⊂ G a circle subgroup acting freely on S. Then

the induced metric on the orbit space S/U has a zero curvature plane at

every point.

Proof. It suffices to show that at any point o ∈ S there is a zero curvature

2-plane in ToS which is horizontal i.e., perpendicular to the fiber U(o) of

the Riemannian submersion π : S → S/U . The O’Neill tensor does not

increase the curvature in this situation (cf. [Esc84], [Esc92] and [GM74]).

Let o ∈ S be arbitrary and let K be the identity component of the group

of isometries of S which fixes o and hence acts linearly on p = ToS. Let

a ⊂ p be a maximal abelian subalgebra containing a nonzero tangent vector

v ∈ To(U(o)) ⊂ p.

Now we use a well known convexity theorem (see for instance [PT88]):

The orthogonal projection of the orbit K(v) ⊂ p onto a is the convex hull

of the finite set W (v) ⊂ a where W is the Weyl group of S acting on a.

We only need that the convex hull of W (v) contains the origin 0. Then

the a-projection of some k(v) is 0. In other words, k(v) ⊥ a or v ⊥ a′ :=

k−1 · a. Thus To(U(o)) = R v is perpendicular to a′ which means that a′ is

a horizontal flat subspace of p of dimension r ≥ 2.

Remark 6.2. The only space (up to coverings) where the above proposition

does not apply is the Grassmannian S = G/K, where G = SO(4m) and

K = SO(p) × SO(q) for p, q odd and p + q = 4m. This space admits a free,

isometric action of SU(2). However, the tangent space of the SU(2)-orbit at

the base point o = eK ∈ S is perpendicular to a maximal flat subspace of

ToS, and so SU(2)\G/K cannot have positive curvature at all points.
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