Homework 7

Due: Friday, 1 April, 2016.

Practice: Questions marked with a $\sqrt{}$ in Sections Three.IV.4 from the textbook.

1. [15 marks] Determine whether the following matrices are invertible and, if so, find the inverse.

$$A = \begin{pmatrix} 6 & 5 \\ 5 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \\ 3 & 3 & 8 \end{pmatrix}, C = \begin{pmatrix} 2 & 3 & 6 \\ 4 & 1 & 9 \\ 0 & 5 & 3 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2. [6 marks] Use part (a) to solve the following SLE's. (Just do an appropriate matrix multiplication – no need to solve these from scratch.)

(a)

$$6x + 5y = 5$$

 $5x + 4y = 7$
(b)
 $x + 2y + z = 2$
 $2x + 5y = -1$
 $3x + 3y + 8z = 4$
(c)
 $x + 2y + z = 3$
 $2x + 5y = 5$
 $3x + 3y + 8z = -2$

- 3. [5 marks] Determine whether the derivative operator $\frac{d}{dx} : \mathcal{P} \to \mathcal{P}$ is invertible, where \mathcal{P} is the vector space of real polynomials.
- 4. (a) [4 marks] An $m \times n$ matrix A is called *symmetric* if $A^T = A$. For example, any diagonal matrix is symmetric. Give an example of a symmetric 3×3 matrix which is not a diagonal matrix. What relationship between m and n must hold if A is symmetric?
 - (b) [5 marks] Let A be a $m \times n$ matrix. Prove that $A^T A$ is symmetric. (Hint: take the transpose of $A^T A$.)
 - (c) [5 marks] Suppose A is an invertible matrix. Prove that $(A^{-1})^T = (A^T)^{-1}$. (Hint: take the transpose of $A^{-1}A$.)