Homework 4

Due: Friday, 26 February, 2016.

Practice: Questions marked with a $\sqrt{}$ in Sections Two.II.1, Two.III.1–3 from the textbook.

1. [6 marks] Let A be a 3×7 matrix. What are the possible values for rank(A) and nullity(A)? What does this say about the number of solutions to $A\mathbf{x} = \mathbf{0}$? Is it possible for the columns of A to be linearly independent?

2. [**12 marks**] Let
$$A = \begin{pmatrix} 1 & 2 & 0 & 3 & -3 & 10 \\ 3 & 6 & 2 & 3 & 3 & 8 \\ 2 & 4 & 1 & 1 & 4 & 3 \\ 4 & 8 & 1 & 6 & 0 & 20 \end{pmatrix}$$
. The RREF of A is $\begin{pmatrix} 1 & 2 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

Let S be the set of columns of A.

- (a) What is rank(A) and nullity(A)?
- (b) Choose a linearly independent subset $S' \subseteq S$ such that Span(S') = Span(S). Write each vector of S not in S' as a linear combination of vectors in S'.
- (c) Does S' form a basis for \mathbb{R}^3 ? Give reasons.
- 3. [16 marks]
 - (a) Show that $\mathcal{B} = \{ \begin{pmatrix} 3 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \end{pmatrix} \}$ forms a basis for \mathbb{R}^2 . Find the column vector (i.e. the co-ordinates) representing $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ with respect to the (ordered) basis \mathcal{B} .
 - (b) Does $\mathcal{D} = \{2x^2 + 1, x 3, x^2 + 2x + 1\}$ form a basis for \mathcal{P}_2 ? (Hint: represent each element of \mathcal{D} as a column vector with respect to the basis $\mathcal{B} = \{1, x, x^2\}$ for \mathcal{P}_2 .) If so, find $[x + 1]_{\mathcal{D}}$, the column vector representing the polynomial x + 1 with respect to the basis \mathcal{D} .
- 4. [6 marks] Let \mathcal{P} be the vector space of real polynomials under the usual operations, and suppose $S \subset \mathcal{P}$ is a finite set. Explain why S cannot span \mathcal{P} . (Hint: consider the degree of each polynomial in S.) This shows that \mathcal{P} does not have a finite basis, and therefore must be infinite dimensional.