Homework 3

Due: Friday, 12 February, 2016.

Practice: Questions marked with a $\sqrt{}$ in Sections Two.I.1–2 from the textbook.

- **1.** [8 marks] Classify all 2×3 matrices in reduced row echelon form. They should fall into 7 "families" according to the positions of their leading 1's. For example, $\begin{pmatrix} 1 & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$ where $a \in \mathbb{R}$, describes one such family. Is it possible for a SLE with 2 equations in 3 variables to have a unique solution?
- 2. [10 marks] Show that the following are *not* vector spaces. (i.e. find a vector space axiom which is violated.)
 - (a) The union of the x-axis and y-axis in \mathbb{R}^2 with the inherited operations.
 - (b) $\{p \in \mathcal{P}_2 \mid p(2) = 4\}$ with the operations inherited from \mathcal{P}_2 , the set of polynomials of degree at most 2.
- **3.** [8 marks] Let V be a vector space, and $\mathbf{v} \in V$ be a vector. Prove, using the vector space axioms, that the negative of \mathbf{v} is unique. That is, show that if $\mathbf{u}, \mathbf{u}' \in V$ satisfy $\mathbf{v} + \mathbf{u} = \mathbf{0}$ and $\mathbf{v} + \mathbf{u}' = \mathbf{0}$ then $\mathbf{u} = \mathbf{u}'$. Indicate which axiom you are using at each step. (Note: you cannot assume V is a specific vector space such as \mathbb{R}^n .)
- 4. [14 marks] Let V be the set of real numbers equipped with vector addition \oplus and scalar multiplication \odot defined as follows: for all $x, y \in V$ and $r \in \mathbb{R}$, let
 - $x \oplus y = x + y 2$
 - $r \odot x = r(x-2) + 2$.
 - (a) Compute $0 \oplus 0$, $1 \oplus 2$, $0 \odot x$, $(-1) \odot x$.
 - (b) Prove that V equipped with \oplus and \odot is a vector space. What is the zero vector in V? What is the negative of x in V?