MATH 2443, Calculus and Analytic Geometry IV Representative Week-by-Week Outline of Topics

Week	Topic	$\mathbf{Section}^{\dagger}$
1	Functions of several variables Limits and continuity	14.1 14.2
2	Partial derivatives Tangent planes and linear approximations	14.3 14.4
3	Chain rule Directional derivatives and gradients	$14.5 \\ 14.6$
4	Maximum and minimum values Lagrange multipliers	14.7 14.8
5	Review, Exam 1 Double integrals over rectangles	15.1
6	Iterated integrals Double integrals over general regions	15.2 15.3
7	Double integrals in polar coordinates Triple integrals	$15.4 \\ 15.7$
8	Triple integrals (cont) Triple integrals in cylindrical coordinates	15.7 15.8
9	Triple integrals in spherical coordinates Review, Exam 2	15.9
10	Vector fields Line integrals	16.1 16.2
11	Fundamental theorem for line integrals Green's theorem	$\begin{array}{c} 16.3 \\ 16.4 \end{array}$
12	Curl and divergence Parametric surfaces and their areas	$\begin{array}{c} 16.5 \\ 16.6 \end{array}$
13	Surface integrals Stokes' theorem	16.7 16.8
14	Stokes' theorem (cont.) Review, Exam 3	16.8
15	The divergence theorem Review	16.9
16	Final exam (as per University's official schedule) ^{††}	

†Sections refer to the designated course text Calculus 7/e by James Stewart.

^{††}Evening classes have their final exams on the last regular class meeting of the last week of classes.