- 1. Perform vector addition, subtraction, and scalar multiplication using (a) a diagram, and (b) in terms of components. When are two vectors equal? When are they parallel? How do you calculate the magnitude of a vector? What is a unit vector? How do you find a unit vector parallel to a given vector? What is a position vector? What is a displacement vector? How do you calculate the displacement vector \overrightarrow{AB} in terms of position vectors \overrightarrow{OA} and \overrightarrow{OB} ?
- 2. Define the dot product $\mathbf{u} \cdot \mathbf{v}$ of two vectors \mathbf{u} and \mathbf{v} . Is it a scalar or vector? How do you compute $\mathbf{u} \cdot \mathbf{v}$ given the components of \mathbf{u} and \mathbf{v} ? What can you say about the dot product if (a) \mathbf{u} and \mathbf{v} are parallel? (b) \mathbf{u} and \mathbf{v} are perpendicular? What does $\mathbf{v} \cdot \mathbf{v}$ give in terms of some geometric property of \mathbf{v} ? How can you find the angle between \mathbf{u} and \mathbf{v} using the dot product? When is $\mathbf{u} \cdot \mathbf{v} = 0$? What happens when you swap the order of the terms in a dot product?
- 3. Define the component and projection of \mathbf{u} onto \mathbf{v} Which one is a scalar/vector? How do you calculate components/projections using the dot product? Given a diagram of \mathbf{u} and \mathbf{v} , draw the projection of one to the other. What can you say about components/projections of \mathbf{u} onto \mathbf{v} if \mathbf{u} and \mathbf{v} are identical/parallel/perpendicular? What is the projection of a vector \mathbf{v} in \mathbb{R}^3 to \mathbf{i} , \mathbf{j} , and \mathbf{k} ? How can you recover \mathbf{v} given these three projections? What are the components of \mathbf{v} to \mathbf{i} , \mathbf{j} , and \mathbf{k} ?
- 4. Let u and v be vectors in R³. Define the cross product u × v of two vectors u and v. Is it a scalar or vector? How do you compute u × v given the components of u and v? What is the direction of u × v in relation to u and v? What does |u × v| represent geometrically? What can you say about the cross product if (a) u and v are parallel? (b) u and v are perpendicular? What is v × v? When is u × v = 0? Is it true that u × v = v × u? If not, what is the correct relationship? Find the cross products of i, j, and k with themselves, and with each other in both orders. Given two non-parallel vectors u and v, how can you find a third vector perpendicular to both?
- 5. (a) Find the equation of a line given a point and parallel vector in (a) parametric vector form, (b) parametric Cartesion form, (c) symmetric form.
 - (b) Given two points A and B, find the equation of the line passing through them. (Write this in terms of position vectors $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$, and a parameter t). How would you parameterise the line segment between A and B? How can you write the position vector of the midpoint of A and B in terms of \mathbf{a} and \mathbf{b} ? How would you find a point dividing the A and B in a given ratio?
 - (c) How can you tell when two lines are parallel? How can you tell if they intersect? How do you find the angle between two intersecting lines?
 - (d) How do you find the distance from a point to a line?
- 6. (a) Find the equation of a plane given a point and a normal vector. What is a normal vector to the plane given by ax+by+cz = d? Find the equation of a line orthogonal to the plane through a given point.
 - (b) How can you tell if two planes are parallel? What about perpendicular? How do you find the angle between two intersecting planes?

- (c) How do you find the equation of the line of intersection of two planes? (Hint: Use the normal vectors of the planes to find a vector parallel to the line. Then find one point lying on the line by finding a solution to the equations of the planes.)
- (d) Given three non-collinear points A, B, and C in \mathbb{R}^3 , find the equation of a plane passing through A, B, and C. (Hint: Take the cross product of \overrightarrow{AB} and \overrightarrow{AC}). Can you still apply this method if A, B, and C lie on a straight line? Explain why geometrically. How can you calculate the area of the triangle spanned by A, B, and C?
- (e) How do you find the distance of a point to a plane? What about the distance between two parallel planes?
- 7. (a) What is a vector function (say, in R³)? What is the natural domain of a vector function? How do you take limits of vector functions. Define the derivative of a vector function. What does is mean for a vector function to be continuous/differentiable? How do you compute the derivative of a vector function given its component functions?
 - (b) Suppose C is a curve parameterised by a vector function $\mathbf{r}(t)$, $a \leq t \leq b$. What are the initial/terminal points of the curve? What does the derivative $\mathbf{r}'(t)$ represent geometrically? What is a unit tangent vector to a curve, and how would you find it?
 - (c) How do you find the equation of a tangent line to a curve at $\mathbf{r}(t_0)$? (Hint: How would you find a tangent vector at $\mathbf{r}(t_0)$? Then use the standard method for finding equations for lines given a point and a vector).
 - (d) If $\mathbf{r}(t)$ represents position at time t, what do $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$ respresent? What does $|\mathbf{r}'(t)|$ respresent?
 - (e) Suppose you have a curve in \mathbb{R}^2 given by parametric equations for x and y in terms of t. Eliminate t to obtain an equation involving only x and y, and draw a graph of this equation. Must the parametrised curve run over the entire graph?
 - (f) Find a parameterisation of a circle with radius R and centre (h.k) in \mathbb{R}^2 . How would you indicate that you only want the top half of the circle? What if you wanted to reverse the direction of the path?
 - (g) Find a parameterisation of the intersection of two surfaces in \mathbb{R}^3 (note: only for surfaces with simple equations that allow you to draw their projections to the co-ordinate planes).
 - (h) How can you tell when two moving objects collide, given vector equations for their paths of motion. How can you tell when the underlying curves intersect?
- 8. (a) Write (short) proofs of basic geometric statements using properties of vectors.
 - (b) Prove basic formulae involving vector functions (such as differentiation rules) by doing calculations for component function.