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On Old and New Jacobi Forms

by Ralf Schmidt

Abstract. Certain “index shifting operators” for local and global representations of the
Jacobi group are introduced. They turn out to be the representation theoretic analogues
of the Hecke operators Ud and Vd on classical Jacobi forms, which underlie the theory of
Jacobi old- and new-forms. Further analogues of these operators on spaces of classical
elliptic cusp forms are also investigated. In view of the correspondence between Jacobi
forms and elliptic modular forms, this provides some support for a purely local conjecture
about the dimension of spaces of spherical vectors in representations of the p-adic Jacobi
group.

Introduction

While laying the foundations for the representation theory of the Jacobi group GJ in [1], it has always
been the policy to consider only representations of a fixed central character. For instance, both in a
local or global context, all irreducible representations π of GJ with a fixed central character, indexed
by a number m, are in bijection with the irreducible representations π̃ of the metaplectic group via
the fundamental relation

π = π̃ ⊗ πm
SW .

Here πm
SW is the Schrödinger–Weil representation of GJ . We refer to chapter 2 of [1] for the funda-

mentals of this theory.

On the other hand, on page 41 of Eichler and Zagier [5] one can find the definition of two Hecke
operators changing the level of classical Jacobi forms:

Ud : Jk,m 7−→ Jk,md2 , Vd : Jk,m 7−→ Jk,md. (1)

They are the analogues of the maps F (z) 7→ F (dz) for elliptic modular forms F , and are therefore
the basis for the theory of Jacobi old- and newforms. For elliptic modular forms, the theory of old-
and newforms is completely unvisible on the level of representations: The modular forms F (z) and
F (dz) generate the same automorphic GL(2)-representation (provided F is an eigenform). However,
the analogous statement for Jacobi forms is not true, since the central character of the resulting GJ -
representation is directly connected with the index of a Jacobi eigenform. This indicates that the
operators Ud and Vd above should at least partly correspond to manipulations on representations. The
purpose of this paper is to demonstrate how this can be accomplished.

In the first section we introduce the Jacobi group as a subgroup of GSp(4). The obvious fact that the
normalizer of GJ is more than GJ itself yields some automorphisms of the Jacobi group affecting the
center. This simple observation leads to the definition of operators Us and Vs defined on equivalence
classes of representations. Since they affect the index (i.e., the central character) of a representation,
we call them index shifting operators. In section 2 we examine the effect of these operators on the



2

various classes of local representations (principal series representations, special representations, . . . ).
It turns out that for Us we have the very simple description

Us(π̃ ⊗ πm
SW ) = π̃ ⊗ πms2

SW ,

while Vs is a little bit more complicated. Nevertheless, Us = V 2
s .

Since we are interested in a group theoretic “explanation” of the classical operators (1), we are led to
examine the effect of the index shifting operators on spherical representations. Section 3 takes first
steps in this direction, but some questions remain open.

In section 4 we define global index shifting operators, which are compatible with the local ones, and
describe their basic properties. Section 5 contains our main result (Theorem 5.1):

The index shifting operators are compatible with the classical operators (1).

The proof is based on a strong multiplicity-one result for the Jacobi group. Using this fact, section 6
presents some more detailed remarks on the relation between classical Jacobi forms and automorphic
GJ -representations. In particular, classical dimension formulas lead us to make a conjecture about the
dimension of the space of spherical vectors in local GJ -representations. Since the classical formulas
are not elementary and are only obtained with the help of a trace formula, it might finally turn out
difficult to prove the stated conjecture.

But there is some more evidence for this conjecture coming from considering the “certain space” of
classical modular forms in the title of Skoruppa and Zagier [11]. We investigate this space and its
local analogues more closely in section 7. We define local and global analogues for elliptic modular
forms of the index shifting operators, and with their help state a structure theorem for the “certain
space”, which matches perfectly the corresponding statement for Jacobi forms (see Theorem 7.6 and
formula (7)).

The last section is devoted to give an application of the index shifting operators by determining the
local components of automorphic representations of the Jacobi group attached to Jacobi forms of
square free index.

We are assuming some familiarity with the representation theory of the Jacobi group, in particular
the classification of local representations. A detailed account is given in [1]. Incidentally we shall also
make use of the results of [8] and [9].
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1 The Jacobi group and some related groups

All of the groups appearing in the following are over an arbitrary commutative ring R. The group
containing all the other groups we are considering is

GSp(4) =
{(

A B
C D

)
∈ GL(4) : ∃x ∈ GL(1) ADt −BCt = x1, ABt = BAt, CDt = DCt

}
.

GSp(4) has a three-dimensional maximal torus consisting of the scalar matrices. We define the one-
dimensional subtori

T1 =




1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 a−1

 : a ∈ GL(1)

 , T2 =




1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 a

 : a ∈ GL(1)

 .

We will consider SL(2) as a subgroup of GSp(4) via the embedding

(
a b
c d

)
7−→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 .

Let P be the standard parabolic subgroup of GSp(4) consisting of matrices whose bottom row is
(0, 0, 0, ∗). Then P is a proper maximal parabolic subgroup containing T1, T2, and SL(2). The
unipotent radical of P is the Heisenberg group

H =




1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1

 : λ, µ, κ ∈ R

 ;

the elements of H will often be abbreviated as (λ, µ, κ). The parabolic P is a semidirect product

P = T1T2SL(2) nH.

The Jacobi group is by definition the subgroup

GJ = SL(2) nH

of P . We will also have reasons to consider the extended Jacobi groups

GJ
1 = T1 nGJ , GJ

2 = T2 nGJ .

For x, y ∈ GL(1) identify x with the element diag(1, x, 1, x−1), of T1, and y with the element
diag(1, 1, y−1, y−1) of T2. Then the action of T1 resp. T2 on GJ by conjugation is given by

x

(
a b
c d

)
(λ, µ, κ)x−1 =

(
a b
c d

)
(xλ, xµ, x2κ),
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y

(
a b
c d

)
(λ, µ, κ)y−1 =

(
a yb

y−1c d

)
(λ, yµ, yκ).

The fact that GJ is normalized by the tori Ti thus produces non-trivial automorphisms

Ux :
(
a b
c d

)
(λ, µ, κ) 7−→

(
a b
c d

)
(xλ, xµ, x2κ) (2)

and

Vy :
(
a b
c d

)
(λ, µ, κ) 7−→

(
a yb

y−1c d

)
(λ, yµ, yκ) (3)

of GJ , for any x, y ∈ R∗. These automorphisms affect the center Z = (0, 0, ∗) of GJ . We will see that
they have a lot to do with the operators U and V appearing in [5].

2 Local index shifting

Now let R = F be a local field of characteristic zero. We fix an element s ∈ F ∗ and consider the
automorphisms Us, Vs of GJ of the last section. We define operators of the same name acting on the
set of (equivalence classes of) irreducible, admissible representations of GJ with non-trivial central
character. If π is such a representation, then let

Usπ := π ◦ Us, Vsπ := π ◦ Vs.

Let ψ be a fixed additive character of F . Then the central character of π is ψm for some uniquely
determined m ∈ F ∗. With the classical theory of Jacobi forms in mind, we also say that π has index
m. It is clear by the formulas (2) and (3) that if π is of index m, then Usπ (resp. Vsπ) is of index ms2

(resp. ms). For this reason we say that Us and Vs are index shifting operators.

We want to know explicitly the effect of these operators on irreducible representations. We first have
a look at what happens to the Schrödinger and Weil representations. For these representations and
the fundamental role they play in the representation theory of the Jacobi group, see [1] 2.5, 2.6.

2.1 Proposition. For any m, s ∈ F ∗ we have

Usπ
m
S = πms2

S , Usπ
m
SW = πms2

SW , Usπ
m±
W = πms2±

W ,

Vsπ
m
S = πms

S , Vsπ
m
SW = πms

SW , Vsπ
m±
W = πms±

W .

Proof: The representation Usπ
m
S is obviously an irreducible, admissible representation of GJ with

index ms2. Because of the Stone–von Neumann theorem, it must equal πms2

S . The defining property
of the Weil representation is

πm
W (M)πm

S (h)πm
W (M)−1 = πm

S (MhM−1)

for all M ∈ SL(2, F ), h ∈ H. Because Us is an automorphism of GJ , it follows that

πm
W (UsM)πm

S (Ush)πm
W (UsM)−1 = πm

S (Us(MhM−1))
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for all M and h. Because πm
S ◦ Us = Usπ

m
S ' πms2

S , this exactly says that Usπ
m
W ' πms2

W .

We have proved that Usπ
m
SW = πms2

SW . Analogously one can show that Vsπ
m
SW = πms

SW . Of course one can
also accomplish this by giving explicit isomorphisms on the Schrödinger models of these representations:
f 7→ f̃ with f̃(x) = sx is a vector space automorphism of the Schwartz space S(F ) which intertwines
Usπ

m
SW and πms2

SW . This is proved by a simple calculation using the well-known explicit formulas for the
Schrödinger–Weil representation. Similarly the identity intertwines Vsπ

m
SW and πms

SW . These explicit
maps make the assertion about the representations πm±

W obvious.

We recall from [1] 2.6 that every irreducible, admissible representation πJ of GJ is of the form πJ =
π̃ ⊗ πm

SW with an irreducible, admissible representation π̃ of the metaplectic group Mp.

2.2 Proposition. Assume πJ = π̃ ⊗ πm
SW is an irreducible, admissible representation of GJ . Then

Usπ
J = π̃ ⊗ πms2

SW .

In particular, for F = R we have

Usπ
J
m,t,ν = πJ

ms2,t,ν

(
ν ∈ {−1/2, 1/2}, t ∈ C \ (Z + 1/2)

)
,

Usπ
J±
m,k = πJ±

ms2,k (k ≥ 1).

If F is non-archimedean, then Us maps supercuspidals to supercuspidals, and

Usπ
J
χ,m = πJ

χ,ms2 , Usσ
J
ξ,m = σJ

ξ,ms2 , Usσ
J±
ξ,m = σJ±

ξ,ms2 .

Proof: The first assertion simply follows from formula (2), showing that the SL(2)-part of GJ is
unaffected by the automorphism Us. The assertions in the case F = R are then trivial, because
πJ

m,t,ν = π̃t,ν ⊗ πm
SW , and similarly for the discrete series representations. In the non-archimedean case

the assertions are slightly less trivial, because with our notations the metaplectic part of, say, the
principal series representations depends on the index:

πJ
χ,m = π̃χ,−m ⊗ πm

SW .

So we have to use the fact that

π̃χ,−m = π̃χ,−ms2 ,

and similarly for the special and Weil representations (see also the previous proposition). Since Us

permutes all the (equivalence classes of) irreducible, admissible representations of GJ , it must map
supercuspidals to supercuspidals.

2.3 Proposition. For F = R we have

Vsπ
J
m,t,ν = πJ

ms,t,ν

(
ν ∈ {−1/2, 1/2}, t ∈ C \ (Z + 1/2)

)
,

Vsπ
J±
m,k = πJ±

ms,k (k ≥ 1).

If F is non-archimedean, then Vs maps supercuspidals to supercuspidals, and

Vsπ
J
χ,m = πJ

χ,ms, Vsσ
J
ξ,m = σJ

ξ,ms, Vsσ
J±
ξ,m = σJ±

ξ,ms.
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Proof: We first treat the non-archimedean case. For π to be supercuspidal means that for any vector
v in the space of π we have∫

p−l

∫
p−n

π

((
1 x
0 1

)
(0, µ, 0)

)
v dx dµ = 0

for any large enough l, n ∈ N (p is the maximal ideal of O, the ring of integers of F ). This property is
clearly preserved by Vs. (Of course, we could also have used the argument of the previous proposition.)
Now let π = πJ

χ,m be a principal series representation. It can be realized on the space BJ
χ,m of smooth

functions f : GJ → C which transform as follows:

f

((
a 0
0 a−1

)(
1 x
0 1

)
κg

)
= ψm(κ)χ(a)|a|3/2f(g) for a ∈ F ∗, x ∈ F, κ ∈ Z ' F, g ∈ GJ

(Z is the center of GJ ; see [1] 5.4). The action of GJ on this space is by right translation ρ. A quick
calculation shows that the map f 7→ f ◦ Vs establishes an isomorphism

Bχ,m
∼−→ Bχ,ms.

In fact, this is an intertwining map for ρ ◦ Vs on the left hand side, and right translation on the
right hand side. This proves that Vsπ

J
χ,m = πJ

χ,ms. A similar argument is applicable to the special
representations. The assertion about the Weil representations follows from Proposition 2.1.

The case F = R can be handled similarly to the non-archimedean principal series representations,
since by [1] 3.3 the real representations of GJ can also be obtained as induced representations.

We stress the fact that, in contrast to the operator Us, it is not true in general that Vsπ = π̃ ⊗ πms
SW if

π = π̃⊗ πm
SW . The proposition shows that it is true for the real representations, but not, for example,

for the non-archimedean principal series representations: The representation

πJ
χ,m = π̃χ,−m ⊗ πm

SW

is sent to

πJ
χ,ms = π̃χ,−ms ⊗ πms

SW ,

and π̃χ,−ms is different from π̃χ,−m. In fact, directly from the definition in [12] (or [1] 5.3) we have

π̃χ,−ms = π̃χχs,−m,

where χs denotes the quadratic character

χs(x) = (x, s) (x ∈ F ∗)

(Hilbert symbol).

2.4 Proposition. As operators on representations we have Us = V 2
s .
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Proof: By formulas (2) and (3) we have

V 2
s

((
a b
c d

)
(λ, µ, κ)

)
=

(
a s2b

s−2c d

)
(λ, s2µ, s2κ)

=
(
s 0
0 s−1

)(
a b
c d

)
(sλ, sµ, s2κ)

(
s−1 0
0 s

)
,

showing that V 2
s (g) and Us(g) are conjugate by the matrix

(
s 0
0 s−1

)
, for every g ∈ GJ . The assertion

follows.

For later use, we note the following lemma. The function δ appearing here is the Weil character, cf.
[1] 5.3.

2.5 Lemma. Let π = π̃ ⊗ πm
SW be an irreducible, admissible representation of GJ , and let Vsπ =

π̃′ ⊗ πm
SW , with the corresponding representations π̃ resp. π̃′ of the metaplectic group. Let λ resp. λ′

be the central characters of π̃ resp. π̃′. Then

λ(−1)δm(−1) = λ′(−1)δms(−1).

Proof: Let W be a space for π̃, regarded as a projective representation of SL(2), and let W ′ be a
space for π̃′. By definition of Vs there exists an isomorphism

ϕ : W ∼−→W ′,

which intertwines the (projective) SL(2)-actions π̃ ◦ Vs on W and π̃′ on W ′. Let

ψ : S(F ) ∼−→ S(F )

be the isomorphism f 7−→ (x 7→ f(xs)) which was already mentioned in the proof of Proposition 2.1;
it intertwines the (projective) GJ -actions πm

SW ◦ Vs on the left hand side, and πms
SW on the right hand

side. Now consider the isomorphism

ϕ⊗ ψ : W ⊗ S(F ) ∼−→W ′ ⊗ S(F ),

which by construction is an intertwining map for Vsπ and π′. Let f be an even Schwartz function,
and let w be any non-zero element of W . Since ψ leaves the space S(F )+ invariant, we compute

(ϕ⊗ ψ)
(
(Vsπ)(−1)(w ⊗ f)

)
= π′(−1)

(
ϕ⊗ ψ(w ⊗ f)

)
= π′(−1)

(
ϕ(w)⊗ ψ(f)

)
=

(
π̃′(−1)ϕ(w)

)
⊗

(
πms

W (−1)ψ(f)
)

= λ′(−1)δms(−1)ϕ(w)⊗ ψ(f),

by the explicit formulas for the Weil representation. On the other hand,

(ϕ⊗ ψ)
(
(Vsπ)(−1)(w ⊗ f)

)
= (ϕ⊗ ψ)

(
π(−1)(w ⊗ f)

)
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= (ϕ⊗ ψ)
(
λ(−1)δm(−1)w ⊗ f

)
= λ(−1)δm(−1)ϕ(w)⊗ ψ(f).

The assertion follows.

We recall that in the non-archimedean case a local representation of GJ is called spherical if it contains
a non-zero vector invariant under KJ = GJ(O). The so-called Heisenberg involutions act on the space
of spherical vectors by id or −id ([1] Proposition 7.5.3).

2.6 Proposition. Consider the non-archimedean case. Assume that both π and Vsπ are spherical
GJ -representations. Then the spherical vectors in both representations have the same eigenvalue under
the respective Heisenberg involutions.

Proof: Let ε ∈ {±1} be the eigenvalue under the Heisenberg involution of a spherical vector in π.
Writing π = π̃⊗πm

SW as usual, let λ be the central character of the metaplectic representation π̃. Then
by [1] 7.5.3 the relation

ε = λ(−1)δm(−1)

holds. An analogous formula is valid for Vsπ. Thus our assertion follows from the previous lemma.

3 Hecke algebra automorphisms and spherical vectors

Let G be a p-adic group and K an open-compact subgroup. The Hecke algebra H(G,K) of the pair
(G,K) is the space of compactly supported left and right K-invariant complex-valued functions on G,
endowed with the multiplication

(f ∗ g)(x) =
∫
G

f(xy)g(y−1) dy (f, g ∈ H(G,K)).

Let V : G → G be an automorphism which induces an automorphism K → K. A routine argument
shows that∫

G

f(V (x)) dx =
∫
G

f(x) dx

for all locally constant and compactly supported functions f on G. Using this fact, a simple calculation
shows that the map

H(G,K) −→ H(G,K)
f 7−→ f ◦ V

is an isomorphism of C-algebras.
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Now let F be a p-adic field with ring of integers O. We specialize to the case G = GJ(F ), K = KJ =
GJ(O), and V = Vs with s a unit in O. It is trivial by formula (3) that Vs induces an automorphism
of KJ . Hence we obtain an automorphism

Vs : H(GJ ,KJ) ∼−→ H(GJ ,KJ) (4)

of the Jacobi Hecke algebra, denoted also by Vs. When considering representations of GJ with a fixed
index m, the relevant Hecke algebra is not H(GJ ,KJ) itself, but the algebra H(GJ ,KJ)m consisting
of left and right KJ -invariant functions f which are compactly supported modulo the center Z of GJ ,
and which satisfy f(xz) = ψ−m(z)f(x) for all x ∈ GJ and z ∈ Z ' F (the additive character ψ is
fixed throughout). As is not hard to show, the map

Ξm : H(GJ ,KJ) −→ H(GJ ,KJ)m,

f 7−→
(
x 7→

∫
Z

f(xz)ψm(z) dz
)
,

is a surjective algebra homomorphism. If f is in the kernel of Ξm, it is easy to see that f ◦ Vs is in the
kernel of Ξms. Hence the automorphism (4) identifies ker(Ξm) with ker(Ξms). Passage to the quotient
yields the following result.

3.1 Proposition. If s ∈ O∗, then the automorphism Vs induces an automorphism of Hecke algebras

H(GJ ,KJ)m
∼−→ H(GJ ,KJ)ms.

In [4] and [7] the following results about the structure of H(GJ ,KJ)m were proved. We assume ψ has
conductor O. Let v be the normalized valuation on F . In the good case v(m) = 0 we have

H(GJ ,KJ)m ' C[X±1]W ,

and in the almost good case v(m) = 1 we have

H(GJ ,KJ)m ' C[X±1]W × C.

Here C[X±1]W means those polynomials which are invariant under the Weyl group action X 7→
X−1. Our Proposition 3.1 now explains why the structure of H(GJ ,KJ)m really only depends on the
valuation of m, a fact which one might wonder of while reading the above mentioned papers. It is
true that while this valuation increases, the structure becomes more and more complicated. In fact, if
v(m) ≥ 2, which are called the bad cases, the Hecke algebra H(GJ ,KJ)m is no longer commutative.

The Hecke algebra isomorphisms we constructed in Proposition 3.1 simply reflect the fact that if v is a
spherical vector (meaning non-zero and KJ -invariant) in some representation π of GJ , then the same
v is also a spherical vector for the representation Vsπ = π ◦ Vs (we are still assuming s ∈ O∗). Now
we examine what happens if s is no longer assumed to be a unit.

Thus let 0 6= s ∈ O be arbitrary. From (2) the following observation is trivial:

If π is spherical, and 0 6= s ∈ O, then Usπ is spherical. (5)



10 4 GLOBAL INDEX SHIFTING

Assume v(s) is even and non-negative. Then we can write s = uω2l where u ∈ O∗ and where ω ∈ O
is a prime element (i.e. v(ω) = 1). By Proposition 2.4 we then have

Vs = Vu ◦ U l
ω.

Since Vu leaves the property of being spherical unaffected, it follows from (5) that

If π is spherical, and 0 6= s ∈ O with v(s) even, then Vsπ is spherical.

It seems much more difficult to decide if Vωπ is spherical, provided π is spherical. In general this is
not true: By [8], Theorem 3.3.1, the positive Weil representation π = σJ+

ξ,m with ξ ∈ O∗ \ O∗2 and
v(m) = 0 is spherical, while its image Vωπ = σJ+

ξ,mω is not spherical. However, it is also shown in [8]
that the principal series representations π = πJ

χ,m with v(m) = 0 and unramified χ are spherical, as
well as their images Vωπ = πJ

χ,mω. We thus make the following conjecture.

Conjecture: If π is a spherical principal series representation, and 0 6= s ∈ O, then Vsπ is also
spherical.

4 Global index shifting

Now assume that F is a global field with adele ring A. We fix a non-trivial character ψ of A, trivial
on F . Any such character is then of the form ψm for a uniquely determined m ∈ F ∗. If a global
representation π of GJ = GJ(A) has central character ψm, we also say that π has index m.

Now if s is any idele, we can introduce automorphisms Us and Vs of GJ(A) given by the formulas
(2) and (3). Exactly as in the local case we define the index shifting operators Us and Vs on global
representations π of GJ by

Usπ := π ◦ Us, Vsπ = π ◦ Vs.

It is clear that if π is of index m, then Usπ (resp. Vsπ) is of index ms2 (resp. ms).

4.1 Proposition. Assume s ∈ F ∗. Then Us and Vs take (cuspidal) automorphic representations to

(cuspidal) automorphic representations. If ĜJ
m denotes the set of (equivalence classes of) automorphic

representations of GJ with index m, then Us and Vs induce bijections

Us : ĜJ
m −→ ĜJ

ms2 , Vs : ĜJ
m −→ ĜJ

ms.

Us and Vs are compatible with their local versions defined in the previous section:

If π = ⊗πp, then Usπ = ⊗(Us,pπp) and Vsπ = ⊗(Vs,pπp).

The operator Us is simply the map

π = π̃ ⊗ πm
SW 7−→ π̃ ⊗ πms2

SW ,

while Vs is definitely not of this simple form. We have Us = V 2
s .
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Proof: Suppose π is an automorphic representation of GJ of index m. Let W be the space of
automorphic forms on GJ realizing π. If we associate with any f ∈ W the function f ◦ Us, then we
get a new space W ′ of automorphic forms on GJ . The map f 7→ f ◦ Us certainly is an isomorphism

W
∼−→W ′,

and takes cuspidal functions to cuspidal functions. This isomorphism is compatible with the actions
of GJ on both sides, where we let GJ act on W ′ by right translation, and on W by right translation
composed with Us (i.e., by Usπ). This proves that Usπ is again automorphic, and the asserted bijection
is evident. The assertions about Vs are proved analogously.

The compatibility of the local and global index shifting operators is obvious. Using this, the remaining
assertions follow from the remarks made after the proof of Proposition 2.3, and from Proposition 2.4.

Let ĜJ be the disjoint union of all the sets ĜJ
m with m ∈ F ∗, i.e., ĜJ is the set of all (equivalence

classes of) automorphic representations of GJ with non-trivial central character. Let P̂GL(2) be the
set of (equivalence classes of) automorphic representations of PGL(2) (everything is over our global
field F ).

It was shown in [9] that there is a canonical lifting map

ĜJ −→ P̂GL(2), (6)

i.e., a correspondence which also has a local definition, and the local and global maps are compatible.
The lift (6) is obtained as follows. For πJ ∈ ĜJ , there is a unique m ∈ F ∗ such that πJ ∈ ĜJ

m, namely,
m is the index of πJ . Then there is a unique automorphic representation π̃ of the metaplectic group
Mp such that

πJ = π̃ ⊗ πm
SW .

The image of πJ under the lift (6) is then defined as the image of π̃ under the m-th Waldspurger
correspondence, by which we mean the correspondence between automorphic representations of Mp
and of PGL(2) described in [12] and [13], where the underlying character is ψm.

4.2 Proposition. For any πJ ∈ ĜJ and s ∈ F ∗, the representations πJ , Usπ
J and Vsπ

J have the
same image under the lift (6).

Proof: Since Us = V 2
s , it is enough to prove this for Vs. Let πJ = ⊗πJ

p be the decomposition of
πJ ∈ ĜJ in local components, and let π = ⊗πp be the decomposition of the image of πJ under
the Jacobi-PGL(2)-lift. It is known that for almost every finite place p, the local component πJ

p is
a principal series representation πJ

χ,m, for some character χ of F ∗p . By the properties of the local
Jacobi-PGL(2)-lift (see [9]), we have πp = π(χ, χ−1), the well-known principal series representation
for GL(2). Now, by Proposition 2.3, at the same place p the representation Vsπ

J has local component
πJ

χ,ms, which is also mapped to π(χ, χ−1) under the local lift. Thus our assertion follows by strong
multiplicity one for GL(2).

In other words, the operators Us and Vs respect the fibres of the lift (6). An L-packet of GJ is defined
to be the set of all automorphic representations of GJ of a fixed index sharing the same image under
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the Jacobi-PGL(2)-lift. We can take over Waldspurger’s results [13] and conclude that L-packets of
GJ are finite, but may contain more than one element.

4.3 Corollary. The bijections Us : ĜJ
m → ĜJ

ms2 and Vs : ĜJ
m → ĜJ

ms induce bijections of L-packets.

5 Index shifting and classical Jacobi forms

It was shown in the last chapter of [1] that there is a correspondence between classical Jacobi forms
on H × C and automorphic representations of the Jacobi group. We shall now show that under this
correspondence our global index shifting operators correspond to the operators U and V on classical
Jacobi forms defined in [5]. We first recall from [1] what is needed from the correspondence between
Jacobi forms and representations. Our attention will mainly be restricted to cusp forms.

On the space Jk,m of Jacobi forms of weight k and index m we have the following Hecke operators.
For any prime number p - m there is an operator TEZ(p), defined on page 41 of [5]. Moreover, for
any prime number p|m there is an operator Wp, defined on page 60 of [5], which is an involution. An
element of Jk,m is called an eigenform if it is a simultaneous eigenvector for all TEZ(p) and Wp. Since
all of these operators commute, there exists a basis of Jk,m consisting of eigenforms.

Now let f be a cuspidal eigenform. In a straightforward manner we can associate to f a function Φf

on the group GJ(A), where A denotes the adeles of Q. This Φf is an automorphic form on GJ and
lies in a canonically defined Hilbert space

L2
0(G

J(Q)\GJ(A))m.

The Jacobi group GJ(A) acts on this space by right translation. Let πf be the subrepresentation of
L2

0(G
J(Q)\GJ(A))m generated by Φf . Then it is a consequence of a strong multiplicity one result for

the Jacobi group that πf is irreducible (cf. [1] 7.5). πf is the automorphic representation associated
with the classical Jacobi form f . Since f has index m, the representation πf will also have index m,
in the sense of the previous section, provided that for ψ the global “standard character” is chosen.

5.1 Theorem. Let Q be the underlying global field. For any natural number s, our index shifting
operators Us and Vs on automorphic representations are compatible with the classical operators Us,
Vs defined on Jacobi forms, in the sense that the following diagrams are commutative:

ĜJ
m

Us−−−−→ ĜJ
ms2x x

Jcusp
k,m −EF Us−−−−→ Jcusp

k,ms2−EF

ĜJ
m

Vs−−−−→ ĜJ
msx x

Jcusp
k,m −EF Vs−−−−→ Jcusp

k,ms−EF

Here Jcusp
k,m −EF stands for the set of eigenforms in Jcusp

k,m

Proof: We prove this for Vs, the other case being treated similarly. Let f ∈ Jcusp
k,m be an eigenform,

and πf = ⊗πq the associated representation, where q runs over the places of Q. Similarly, let π′ = ⊗π′q
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be the representation generated by f
∣∣∣Vs. We have to show Vsπ = π′. By Proposition 2.3 this is true

at the archimedean place, since π∞ = πJ
m,k and π′∞ = πJ

ms,k by [1] 7.5.5.

As for the finite places, fix any q - ms∞. Let c(q) be the corresponding Hecke eigenvalue of f :

f
∣∣∣TEZ(q) = c(q)f.

By [1] 7.5, this eigenvalue determines the local component πq. Namely, πq is a principal series repre-
sentation πJ

χ,m with (the Weyl group orbit of) the unramified character χ of Q∗
q determined by

c(q) = qk−3/2(χ(q) + χ(q)−1).

Since the classical Hecke operators TEZ(q) and Vs commute, the Jacobi form f
∣∣∣Vs also has TEZ(q)-

eigenvalue c(q). It follows that π′q = πJ
χ,ms with the same χ. By Proposition 2.3, it follows that

π′q = Vsπq. We have proved that π and π′ have the same local components at almost all places.

By strong multiplicity one for the metaplectic group (see [1] 7.5) we are done if we can show that
the metaplectic representations corresponding to π and π′ have the same central character. Let q be
any prime number. If q divides the index of a Jacobi form, we have the classical operator Wq. If q
does not divide the index, we let Wq be the identity. Hence we have commuting operators Wq for
all q, and f is a simultaneous eigenfunction for all of these. Since the Wq commute with Vs (any q

and s), f
∣∣∣Vs is also an eigenfunction, with the same eigenvalues. Fix any q, and let ε ∈ {±1} be the

corresponding eigenvalue. By [1] 7.4.8 and 7.5.3, the local Mp-representation corresponding to πq has
central character λ determined by

ε = λ(−1)δm(−1),

and the local Mp-representation corresponding to π′q has central character λ′ determined by

ε = λ′(−1)δms(−1).

In particular, we find

λ(−1)δm(−1) = λ′(−1)δms(−1).

By Lemma 2.5 it follows that λ′ is also the central character of the Mp-representation corresponding
to Vsπq. This is exactly what had to be shown.

In this proof we could not make use of Proposition 2.6, because it is not clear a priori that the
representation Vsπf is spherical (meaning at every finite place). However, now that Theorem 5.1 is
proved, we know that Vs sends spherical representations to spherical representations, provided s ∈ N
(and the underlying number field is Q). This leads us to make the following definition. A cuspidal
automorphic representation π of GJ over Q is called classical if

• π is spherical at every finite place,

• the index m of π is a natural number (we have fixed the global standard character), and
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• the infinite component of π is πJ
k,m for some integer k ≥ 1, called the weight of π.

It is clear that the classical automorphic representations of GJ are exactly those containing a classical
cuspidal Jacobi eigenform (considered as a function on GJ(A)). Let us denote the set of classical
automorphic representations of GJ with index m and weight k by the symbol

ĜJ,0
k,m.

Theorem 5.1 proves that the index shifting operators Us and Vs for s ∈ N induce maps

ĜJ,0
k,m −→ ĜJ,0

k,ms2 and ĜJ,0
k,m −→ ĜJ,0

k,ms.

From what we have said at the end of section 3, this is trivial for Us, but surprising for Vs, since it
is not true in general for local representations that if π is spherical, then Vsπ is also. As we have
mentioned in section 3, a counterexample is the spherical positive Weil representation of GJ(Qp)

σJ+
ξ,m with ξ ∈ Z∗p \ Z∗2p

for p - m. We can thus conclude:

5.2 Corollary. For any prime number p not dividing m, the spherical representation σJ+
ξ,m of GJ(Qp)

with ξ ∈ Z∗p \ Z∗2p does not appear as a local component in any automorphic representation attached
to a cuspidal Jacobi eigenform f ∈ Jk,m.

This is a very special case of a theorem of Waldspurger, stating that positive Weil representations do
not appear as local components in cuspidal automorphic representations of the metaplectic group (cf.
[12] Prop. 23 and [1] 7.5.7).

6 Conjectures about oldforms and newforms

In this section we are working mostly over the global field Q. We have proved in Theorem 5.1 that
our index shifting operators Us and Vs are compatible with the classical operators of the same name
(s ∈ N). However, something is lost in changing from classical Jacobi forms to representations, since on
the level of representations we have Us = V 2

s , while this is definitely not true for the classical operators.
For example, consider a cuspidal Jacobi eigenform f ∈ Jk,1 with corresponding representation π = πf .
By the formula

Jcusp,old
k,m =

⊕
l,l′∈N, ll′ 6=1

l2l′|m

Jcusp,new
k,m/l2l′

∣∣∣UlVl′ (7)

(see p. 49 of [5]), the Jacobi forms

f
∣∣∣Vp2 and f

∣∣∣Up,
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both elements of Jk,p2 (where p is any prime), are linearly independent. On the other hand, both of
them generate the same representation π′ := Upπ = V 2

p π. Hence the space of Jacobi forms (considered
as functions on GJ(A)) contained in π′ is at least two-dimensional. In fact, this can be seen locally:
The local components of π′ at finite places q 6= p are spherical principal series representations in the
good case, which have one-dimensional space of spherical vectors, while the p-component equals πJ

χ,p2

for some unramified character χ of Q∗
p, and this representations has a space of spherical vectors which

is at least two-dimensional by [7] 1.3.9. Actually, we now see that it must be exactly two-dimensional,
because otherwise we had a contradiction to formula (7).

The situation for GJ is thus different from the one for GL(2). Consider a classical modular form f ∈
Sk(Γ0(m)), assumed to be a newform and a Hecke eigenform. Let π be the associated representation
of GL(2). For any integer s ≥ 2, the function z 7→ f(sz) is an old eigenform of level ms. But it also
lies in the space of π, and hence the GL(2)-representation associated with this oldform is again π. In
other words, the oldforms are not visible on the level of representations. For the Jacobi group, they
are partly. If f ∈ Jk,m is a cuspidal new eigenform, it generates an automorphic GJ -representation π

of index m. But, for instance, the oldform f
∣∣∣Us (with s ∈ N) generates a representation of index ms2,

which is certainly different from π. On the other hand, we have seen that Jacobi oldforms are not
completely visible on the level of representations, since for example the linearly independent functions
f
∣∣∣Us and f

∣∣∣V 2
s generate the same representation.

To be a bit more specific, we make the following definition. Let F be a p-adic field and ω a prime
element in F . A spherical representation π of GJ(F ) is called a local newform, if it is not a positive
Weil representation, and if Vω−1π is not spherical (recall from section 3 that the property of being
spherical does only depend on the valuation of the index). The degree of a spherical representation is
defined to be the dimension of the space of KJ -invariant vectors.

6.1 Conjecture. Let π be a local newform.

i) The degree of V n
ω π is

[
n+2

2

]
for any n ≥ 0. In particular, the degree of π is 1.

ii) Vsπ is not spherical for any s ∈ F ∗ with v(s) < 0.

By the results of [7] we know that this conjecture is true for n = 0, 1, 2 for the local newforms πJ
χ,m in

the good case (χ an unramified character).

We will work now over Q to give some evidence for conjecture i). Recall the notation

ĜJ,0
k,m

for the set of classical automorphic representations introduced in the previous section. We have not
yet answered the following question: Can it happen that a Jacobi newform f and an oldform f ′, both
assumed to be cuspidal eigenforms of the same index, generate the same automorphic representation?
It can not: f and f ′ would have the same Hecke eigenvalues at almost every place. The same would
then be true for the corresponding elliptic modular forms F and F ′ under the Skoruppa-Zagier map
(see [11]). But then F and F ′ would certainly be multiples of each other.
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An element π ∈ ĜJ,0
k,m is called a newform if it is not of the form Vm/m′π′ for some π′ ∈ ĜJ,0

k,m′ with
a proper divisor m′ of m. By Theorem 5.1 and the last observation the newforms are exactly those
classical automorphic representations generated by classical Jacobi newforms. If conjecture ii) is true,
then it is also clear that the newforms are exactly those classical automorphic representations which
have local newforms as local components at every prime. In any case, the following holds, as is easy
to see from Theorem 5.1.

6.2 Proposition. The local components of an automorphicGJ -representation generated by a cuspidal
new Jacobi eigenform are local newforms.

Let ĜJ,0,new
k,m ⊂ ĜJ,0

k,m denote the set of newforms, and ĜJ,0,old
k,m its complement, so that

ĜJ,0
k,m = ĜJ,0,new

k,m

∐
ĜJ,0,old

k,m .

By what we have said above, the elements of ĜJ,0,old
k,m are exactly the representations attached to Jacobi

oldforms of index m. Taking conjecture i) for granted, let us count the degrees of all the elements of
ĜJ,0,old

k,m . Here the degree is certainly the dimension of the space of global spherical vectors, and equals
the product of all local degrees.

The analogue of formula (7) is

ĜJ,0,old
k,m =

∐
m′|m, m′ 6=m

Vm/m′ ĜJ,0,new
k,m .

Since everything is multiplicative, we restrict to the case m = pn, where we have

ĜJ,0,old
k,pn =

n−1∐
α=0

Vpn−αĜJ,0,new
k,pα .

Assuming conjecture i), it follows that

total degree of ĜJ,0,old
k,pn =

α−1∑
n=0

(
total degree of ĜJ,0,new

k,pα

)
·
[
n− α+ 2

2

]
.

By conjecture i) and Proposition 6.2 it further follows that

total degree of ĜJ,0,new
k,pα = dim Jcusp,new

k,pα .

Hence our formula reads

dim Jcusp,old
k,pn =

α−1∑
n=0

dim Jcusp,new
k,pα ·

[
n− α+ 2

2

]
. (8)

Now this is in fact the correct formula, which follows from (7). Thus we see that our conjecture i) is
exactly what we would need to reproduce the dimension formula (8).
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7 The “certain space” of Skoruppa and Zagier

This section collects some more evidence for Conjecture 6.1 by considering analogues of the operators
Ud and Vd for classical elliptic modular forms. The main result (Theorem 7.6) remains completely
within classical modular forms, and may be of some interest independently of the theory of Jacobi
forms.

The same considerations that lead to Conjecture 6.1 could also be made in the case of classical elliptic
modular forms. One would arrive at a conjecture about the dimensions of spaces of vectors in local
representations invariant under congruence subgroups, and this conjecture would match perfectly with
the results of Casselman in [3].
We recall this results here. Let F be a non-archimedean local field, and let O, ω and v have their
usual meanings. For every integer n ≥ 0 let

K0(ωn) =
{(

a b
c d

)
∈ GL(2,O) : v(c) ≥ n

}
be a local congruence subgroup. Thus K0(ω0) = GL(2,O). Let (π,V) be an irreducible, admissible,
infinite-dimensional representation of GL(2, F ). For an integer n ≥ 0 let V(n) be the space of elements
of V invariant under K0(ωn). Let V(−1) = {0}. Then it is known that there exists an integer n ≥ 0
such that V(n) is non-zero, but V(n−1) is zero. We call n the conductor of π. The following theorem
is due to Casselman (see [3]).

7.1 Theorem. Let n be the conductor of the irreducible, admissible, infinite-dimensional representa-
tion (π,V) of GL(2, F ). Then

dim(V(n+l)) = l + 1 for every l ≥ 0.

A non-zero element of V(n), where n is the conductor, is thus unique up to scalars, and is called a local

newform. For n = 0 the local newform is a spherical vector. It is obvious that the operator π
(
ω−1 0
0 1

)
induces a linear map

π

(
ω−1 0
0 1

)
: V(n+l) −→ V(n+l+1)

for every l ≥ 0. Another such map is the inclusion.

7.2 Proposition. Let (π,V) be an irreducible, admissible, infinite-dimensional representation of
GL(2, F ). Let n be the conductor of π, and let v ∈ V be a local newform. For every integer l ≥ 0, the
vectors

vi := π

(
ω−i 0
0 1

)
v, i = 0, . . . , l (9)

constitute a basis of V(n+l).
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Proof: The proof is by induction on l, the case l = 0 being trivial. Assume the assertion is true
for l, but wrong for l + 1. Since obviously vl+1 ∈ V(n+l+1), this would mean that vl+1 ∈ V(n+l). By

induction the space V(n+l) is then invariant under
(
ω−1 0
0 1

)
, and thus also under all matrices

(
a 0
0 1

)
,

a ∈ F ∗. Since the same space is invariant under
(

1 1
0 1

)
, it follows that it is also invariant under

(
a 0
0 1

)(
1 1
0 1

)(
a−1 0
0 1

)
=

(
1 a
0 1

)
,

hence under all of N(F ), where N is the unipotent radical of the standard Borel subgroup. Since N(F )

and any matrix
(
a b
c d

)
with non-vanishing c generate SL(2, F ), it follows that V(n+l) is invariant under

SL(2, F ). Together with the invariance under matrices
(
a 0
0 1

)
, we conclude that it is invariant under

all of GL(2, F ), an obvious contradiction.

From now on we will assume that π has trivial central character, i.e., we are dealing with a represen-
tation of PGL(2, F ). We shall define the local Atkin-Lehner involutions, which are involutions on the
finite-dimensional spaces V(n) (now n is not necessarily the conductor). Let

An =
(
a b
c d

)
∈ GL(2, F )

be any matrix with the property that

a, b, c, d ∈ O, v(a) ≥ n, v(c) ≥ n, v(d) ≥ n, det(An) = ωn.

Such an An exists, e.g.

An =
(

ωn 1
ωn(ωn − 1) ωn

)
.

The following facts are easily proved:

i) An is unique up to right multiplication by elements of K0(ωn).

ii) An normalizes K0(ωn).

iii) A2
n ∈ ωnK0(ωn).

In view of i), the effect of π(An) on an element of V(n) is well defined. Because of ii), the result will
again lie in V(n). We denote by Bn the endomorphism of V(n) thus defined. By iii) and our assumption
that π have trivial central character, Bn is an involution. This is the local Atkin-Lehner involution of
level n.

7.3 Proposition. Let n be the conductor of the irreducible, admissible, infinite-dimensional repre-
sentation (π,V) of GL(2, F ). Let v be a local newform for π and ε ∈ {±1} be defined by Bnv = εv.
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Then for every l ≥ 0, the matrix of the endomorphism Bn+l : V(n+l) → V(n+l) with respect to the
basis (9) is the (l + 1)× (l + 1)-matrix ε

. .
.

ε


Proof: The proof is by induction on l, the case l = 0 being trivial. Fix an l ≥ 1 and assume the
assertion is true for l − 1. Then for any i ∈ {1, . . . , l} we have, with vi as in Proposition 7.2,

Bn+lvi = π

(
ωn+l 1

ωn+l(ωn+l − 1) ωn+l

)
π

(
ω−1 0
0 1

)
vi−1 = π

(
ωn+l−1 1

ωn+l−1(ωn+l − 1) ωn+l

)
vi−1.

This last matrix is a version of An+l−1. Hence by the induction hypothesis

Bn+lvi = Bn+l−1vi−1 = εvl−i for i ∈ {1, . . . , l}. (10)

It remains to prove that this equation also holds for i = 0. Let

Bn+lv0 =
l∑

i=0

αivi (11)

with complex constants αi. Since the matrix of the involution Bn+l is non-singular, we must have
αl 6= 0. Applying to (11) the operator Bn+l and using (10), we obtain

v0 = ε
l∑

i=1

αivl−i + α0

l∑
i=0

αivi

=
l−1∑
i=0

(εαl−i + α0αi)vi + α0αlvl.

It follows that α0αl = 0, and since αl 6= 0, that α0 = 0. Then it further follows that

v0 = ε

l−1∑
i=0

αl−ivi,

and one sees that αl = ε and α1 = . . . = αl−1 = 0.

7.4 Corollary. Let V(n+l)
± be the ±1-eigenspace of the involution Bn+l on V(n+l). Then

dimV(n+l)
ε =

[
l + 2

2

]
, dimV(n+l)

−ε =
[
l + 1

2

]
.

We go one step further and define operators

U : V(n+l) −→ V(n+l+2), (12)
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w 7−→ π

(
ω−1 0
0 1

)
w,

and

V : V(n+l) −→ V(n+l+1), (13)

w 7−→ w + π

(
ω−1 0
0 1

)
w.

Note that we do not index these operators by l or n+ l. It is clear that U and V commute.

7.5 Corollary. If v is a local newform with Bnv = εv, then for any l ≥ 0, the space V(n+l)
ε has a

basis consisting of the vectors

UdV d′v, where d, d′ ≥ 0, 2d+ d′ = l.

In other words,

V(n+l)
ε =

⊕
d,d′≥0

2d+d′=l

UdV d′V(n).

Proof: If Bnw = εw for some w ∈ V(n+l), then

Bn+l+2(Uw) = ε(Uw) and Bn+l+1(V w) = ε(V w).

This follows by the equations

Bn+l+1π

(
ω−1 0
0 1

)
w = Bn+lw = εw, Bn+l+1w = ε π

(
ω−1 0
0 1

)
w

(the second follows from the first). Thus U (resp. V ) maps V(n+l)
ε to V(n+l+2)

ε (resp. V(n+l+1)
ε ). There

are exactly
[

l+2
2

]
pairs (d, d′) such that 2d + d′ = l. By Corollary 7.4, it remains only to prove that

the vectors UdV d′v are linearly independent. But knowing the linear independence of the vectors (9),
this is easily seen.

Now we turn to global considerations in the classical context. Let

f ∈ Sk(Γ0(m))

be any eigenform, and let π = ⊗πp be the automorphic GL(2)-representation generated by f . Let
f ′ be the newform from which f “comes from”, meaning f ′ is a newform of the same weight as f
and of a level m′|m, and for almost all primes p the modular forms f and f ′ share the same Hecke
eigenvalue. This f ′ is unique up to scalars, and also lies in the space of π. Indeed, f ′ is obtained by
piecing together the local newforms of the representations πp for every finite p, and the lowest weight
vector in π∞. Write

m′ =
∏

pnp , m =
∏

pnp+lp .
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Then np is the conductor of the local representation (πp,Vp), and the (adelic) function f is obtained
by piecing together local vectors contained in the spaces V(np+lp)

p .

The newform f ′ is automatically an eigenform for all Atkin-Lehner involutions Wp, p|m (if p|m but
p - m′, then Wp is the identity). Let εp ∈ {±1} be the eigenvalue. Now assume that f is also an
eigenform for all Wp, p|m. This is the case if and only if f is obtained by piecing together local vectors
contained in V(np+lp)

p,+ or in V(np+lp)
p,− . By the definitions, f will have the same eigenvalue εp as f ′

under the Atkin-Lehner involution at p if and only if the local component of f at p comes from the
space V(np+lp)

p,εp . Consider the subspace of Sk(Γ0(m)) spanned by all modular forms f with exactly this
property. This is the “certain space” in the title of [11]. As in this paper we denote it by

Sk(m).

Skoruppa and Zagier studied this space because S2k−2(m) contains the image of the Hecke-equivariant
embedding

Jcusp
k,m −→ S2k−2(Γ0(m)),

the existence of which is one of the main results of [11]. More precisely, let S−2k−2(Γ0(m)) be
the subspace of elements f ∈ S2k−2(Γ0(m)) satisfying f(−1/mτ) = (−1)kmk−1τ2k−2f(τ), and let
S−

2k−2(m) = S2k−2(m)∩S−2k−2(Γ0(m)). Then it is proved in [11] that there exists a Hecke-equivariant
isomorphism

Jcusp
k,m −→ S−

2k−2(m). (14)

[One can extend this map by considering the space J∗k,m of skew-holomorphic Jacobi forms, cf. [1] 4.1.
It can be shown that there exists a Hecke-equivariant isomorphism

Jcusp
k,m ⊕ J∗,cusp

k,m −→ S2k−2(m);

see [10]. We will content ourselves with the “incomplete” version (14).]

Now we define global analogues of the local operators (12) and (13). Let f ∈ Sk(Γ0(m)) be any
eigenform, considered as an adelic function. Assume that f =

∏
fp with respect to the decomposition

πf = ⊗πp, where fp lies in any fixed model Vp of πp. If m =
∏
pnp , then fp lies in V(np)

p . Now fix any
p, and apply to fp the local operator

Up : V(np)
p −→ V(np+2)

p

defined in (12). The resulting function

f
∣∣∣Up :=

∏
p′ 6=p

fp′ × Upfp

is an element of Sk(Γ0(mp2)). It is easy to see that Upf(z) = f(pz) when f and Upf are considered
as classical functions on the upper half plane. This leads us to define the operator

Up : Sk(Γ0(m)) −→ Sk(Γ0(mp2)), (15)
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f 7−→ (z 7→ f(pz)).

This is certainly the well-known operator producing oldforms from newforms, but we consider it as
an operator multiplying the level by p2, not only by p. By Corollary 7.5 this makes Up preserve
Atkin-Lehner eigenvalues.

Very similar considerations can be made with the local operator V defined in (13), and these lead to
a consistent definition of a global operator

Vp : Sk(Γ0(m)) −→ Sk(Γ0(mp)), (16)
f 7−→ (z 7→ f(z) + f(pz)),

which also preserves Atkin-Lehner eigenvalues.

We extend the definition of Up and Vp to an arbitrary positive integer d =
∏
pαp by setting

Ud =
∏

Uαp
p , Vd =

∏
Vαp

p .

Then Ud multiplies the level by d2, and Vd multiplies the level by d. The operator Ud simply sends
f(z) to the function f(dz), while Vd can not be described in such a simple manner.

The following theorem is an immediate consequence of the definitions and the local considerations
above, in particular Corollary 7.5.

7.6 Theorem. The Skoruppa-Zagier space Sk(m) may be described as follows:

Sk(m) =
⊕

l,l′∈N
l2l′|m

Sk(Γ0(m/l2l′))new
∣∣∣UlVl′ .

This is the analogue of formula (7) for Jacobi forms. Since the operators Ud and Vd were designed to
preserve Hecke eigenvalues for all Wp and almost all T (p), and their analogues Ud and Vd for Jacobi
forms do also, it follows that once one has defined for every level m ∈ N a Hecke-equivariant embedding

S : Jcusp,new
k,m −→ S2k−2(Γ0(m))new, (17)

this may be extended to a Hecke-equivariant embedding

Jcusp
k,m −→ S2k−2(Γ0(m)), (18)

by simply sending f |UlVl′ to (Sf)|UlVl′ . The image of (18) will lie in S2k−2(m) (and will in fact equal
S−

2k−2(m)). The hard thing is to prove the existence of the map (17), which is done in [11]. [As
mentioned before, these results can be improved by including skew-holomorphic Jacobi forms. The
resulting embeddings are then onto.]
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8 An application

As an application of index shifting we will now determine the local components of automorphic repre-
sentations attached to Jacobi forms of square free index.

In the following we will make use of the classification of the spherical representations of GJ in the
good and almost good case. We thus recall the results of [8]. Let F be a p-adic field with odd residue
characteristic, or let F = Q2. Let ψ be a character of F with conductor O, the ring of integers of F .
Recall that for an irreducible, admissible representation π of GJ = GJ(F ) we say that we are in the
good case, if v(m) = 0, or in the almost good case, if v(m) = 1. In these cases the Jacobi Hecke algebras
(defined in section 3) are commutative, and consequently the degree of any spherical representation is
1. The following is a complete list of all spherical representations in the good and almost good case.
The element ξ ∈ F ∗ which appears is any element of O∗ \O∗2 if the residue characteristic of F is odd,
resp. ξ = 5 if F = Q2.

representation T J(ω)-eigenvalue W -eigenvalue
good case

πJ
χ,m with χ unramified q3/2(χ(ω) + χ(ω)−1) 1
σJ+

1,m q(q + 1) 1
σJ+

ξ,m −q(q − 1) 1
almost good case

πJ
χ,m with χ unramified q3/2(χ(ω) + χ(ω)−1) + q(q − 1) 1
σJ+

1,m 2q2 1
σJ

ξ,m −2q 1
σJ−

1,m 0 −1

The last column gives the eigenvalue of a spherical vector under the Heisenberg involution (in the good
case, this is not really an involution, but the identity). The information in the middle column is not
really necessary for our purposes.

8.1 Proposition. Let f ∈ Jcusp
k,m be a new eigenform of square free index, and π = ⊗πp the associated

automorphic GJ -representation.

i) The archimedean component of π is π∞ = πJ+
m,k

ii) For p - m, the component πp is a principal series representation.

iii) For p|m, we have πp = σJ
ξ,m if Wpf = f , and πp = σJ−

1,m if Wpf = −f .

Proof: For statements i) and ii) we refer to [1] 7.5. Suppose p|m. Once we know that πp is a special
or a negative Weil representation, the assertions in iii) follow from the Heisenberg eigenvalues given
in the above table. Hence assuming that iii) is false, we are left with the possibilities

πp = πJ
χ,m with unramified χ, or πp = πJ+

1,m.

(As was mentioned earlier, we know that positive Weil representations can not occur, but we do not
need this result here.) Now apply the global index shifting operator Vp−1 to π. By the above table
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and Proposition 2.3, the result is a classical automorphic representation π′ of index mp−1. Let f ′ be
the Jacobi form contained in π′ (unique up to scalars, since we are in the good and almost good case
at all places). By Theorem 5.1, the Jacobi forms f and f

∣∣∣Vp and the representations π′ and π make a
commutative diagram. Since all local representations are of degree 1, we conclude that f is a multiple
of f ′

∣∣∣Vp. This is a contradiction to f being a newform.

We could have proved this result faster by using Proposition 6.2, but we wanted to avoid making
implicit use of the Skoruppa-Zagier correspondence. There is another proof of Proposition 8.1 which
uses the analogous result for elliptic cusp forms (see [6]) and the correspondence between the Jacobi
group and GL(2) (cf. [9] 8.3). However, the proof we gave here has the advantage of being purely
Jacobi theoretic. In turn we can then deduce the corresponding results for elliptic modular forms.
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