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Introduction

For representations of GL(2) over a p–adic field F there is a well-known
theory of local newforms due to Casselman, see [Cas]. This local theory
together with the global strong multiplicity one theorem for cuspidal auto-
morphic representations of GL(2) is reflected in the classical Atkin–Lehner
theory for elliptic modular forms.

In contrast to this situation, there is currently no satisfactory theory of local
newforms for the group GSp(2, F ). As a consequence, there is no analogue of
Atkin–Lehner theory for Siegel modular forms of degree 2. In this paper we
shall present such a theory for the “square-free” case. In the local context
this means that the representations in question are assumed to have non-
trivial Iwahori–invariant vectors. In the global context it means that we are
considering congruence subgroups of square-free level.

We shall begin by reviewing some well known facts from the classical the-
ory of elliptic modular forms. Then we shall give a definition of a space
Sk(Γ0(N)(2))new of newforms in degree 2, where N is a square-free positive
integer. Table 1 on page 8 lies at the heart of our theory. It contains the
dimensions of the spaces of fixed vectors under each parahoric subgroup in
every irreducible Iwahori–spherical representation of GSp(2) over a p–adic
field F .

Section 4 deals with a global tool, namely a suitable L–function theory for
certain cuspidal automorphic representations of PGSp(2). Since none of the
existing results on the spin L–function seems to fully serve our needs, we have
to make certain assumptions at this point. Having done so, we shall present
our main result in the final section 5. It essentially says that given a cusp
form f ∈ Sk(Γ0(N))new, assumed to be an eigenform for almost all unramified
Hecke algebras and also for certain Hecke operators at places p|N , we can
attach a global L–packet πf of automorphic representations of PGSp(2, AQ)
to f . This allows us to associate with f a global (spin) L–function with a
nice functional equation. We shall describe the local factors at the bad places
explicitly in terms of certain Hecke eigenvalues.
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1 Review of classical theory

We recall some well-known facts for classical holomorphic modular forms.
Let f ∈ Sk(Γ0(N)) be an elliptic cuspform, and let G = GL(2), considered
as an algebraic Q–group. It follows from strong approximation for SL(2)
that there is a unique associated adelic function Φf : G(A) → C with the
following properties:

i) Φf (ρgz) = Φf (g) for all g ∈ G(A), ρ ∈ G(Q) and z ∈ Z(A). Here Z is
the center of GL(2).

ii) Φf (gh) = Φf (g) for all g ∈ G(A) and h ∈ ∏
p<∞ Kp(N). Here Kp(N) ={(

a b
c d

)
∈ GL(2, Zp) : c ∈ NZp

}
is the local analogue of Γ0(N).

iii) Φf (g) = (f
∣∣
k
g)(i) := det(g)k/2j(g, i)−kf(g〈i〉) for all g ∈ GL(2, R)+

(the identity component of GL(2, R)).

Since f is a cusp form, Φf is an element of L2(G(Q)\G(A)/Z(A)). Let πf be
the unitary PGL(2, A)–subrepresentation of this L2–space generated by Φf .

1.1 Theorem. With the above notations, the representation πf is irredu-
cible if and only if f is an eigenform for the Hecke operators T (p) for almost
all primes p. If this is the case, then f is automatically an eigenform for T (p)
for all p - N .

Idea of Proof: We decompose the representation πf into irreducibles,
πf =

⊕
i πi. Each πi can be written as a restricted tensor product of lo-

cal representations,

πi '
⊗
p≤∞

πi,p, πi,p a representation of PGL(2, Qp).

Assuming that f is an eigenform, one can show easily that for almost all p we
have πi,p ' πj,p. But Strong Multiplicity One for GL(2) says that two cuspidal
automorphic representations coincide (as spaces of automorphic forms) if
their local components are isomorphic at almost every place. It follows that
πf must be irreducible.

Thus to each eigenform f we can attach an automorphic representation
πf = ⊗πp. A natural problem is to identify the local representations πp

given only the classical function f . This is easy at the archimedean place:
π∞ is the discrete series representation of PGL(2, R) with a lowest weight
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vector of weight k. It is also easy for finite primes p not dividing N . At
such places πp is an unramified principal series representation, i.e., πp is
an infinite-dimensional representation containing a non-zero GL(2, Zp)–fixed
vector. These representations are characterized by their Satake parameter
α ∈ C∗, and the relationship between α and the Hecke–eigenvalue λp is
λp = p(k−1)/2(α + α−1).

In general it is not easy to identify the local components πp at places p|N .
But if N is square-free, we have the following result.

1.2 Theorem. Assume that N is a square-free positive integer, and let f ∈
Sk(Γ0(N)) be an eigenform. Further assume that f is a newform. Then
the local component πp of the associated automorphic representation πf at
a place p|N is given as follows:

πp =

{
StGL(2) if a1f = −f,
ξ StGL(2) if a1f = f.

Here StGL(2) is the Steinberg representation of GL(2, Qp), and ξ is the unique
non-trivial unramified quadratic character of Q∗

p. The operator a1 is the
Atkin–Lehner involution at p.

Idea of Proof: It follows from the fact that f is a modular form for Γ0(N)
that πp contains non-trivial vectors invariant under the Iwahori subgroup

I =

{(
a b
c d

)
∈ GL(2, Zp) : c ∈ pZp

}
.

The following is a complete list of all such Iwahori-spherical representations
together with the dimensions of their spaces of fixed vectors under I and
under K = GL(2, Zp).

representation K I

π(χ, χ−1), χ unramified, χ2 6= | |±1 1 2

StGL(2) or ξ StGL(2) 0 1

(1)

We recall the definition of newforms, for notational simplicity assuming that
N = p. We have two operators

T0, T1 : Sk(SL(2, Z)) −→ Sk(Γ0(p)), (2)
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where T0 is simply the inclusion and T1 is given by (T1f)(τ) = f(pτ). Then
the space of oldforms is defined as

Sk(Γ0(p))old = im(T0) + im(T1), (3)

and the space of newforms Sk(Γ0(p))new is by definition the orthogonal com-
plement of Sk(Γ0(p))old with respect to the Petersson inner product. Now it
is easily checked that locally, in an unramified principal series representation
π(χ, χ−1) realized on a space V , we have

V I = T0V
K + T1V

K . (4)

Hence the fact that f is a newform means precisely that πp cannot be an un-
ramified principal series representation π(χ, χ−1). Therefore πp = StGL(2) or
πp = ξ StGL(2), and easy computations show the connection with the Atkin–
Lehner eigenvalue (cf. [Sch], section 3).

Knowing the local components πp allows to correctly attach local factors to
the modular form f . For example, if f is a newform as in Theorem 1.2, one
would define for p|N

Lp(s, f) = Lp(s, πp) =

{
(1− p−1/2−s)−1 if a1f = −f,
(1 + p−1/2−s)−1 if a1f = f.

εp(s, f) = εp(s, πp) =

{ −p1/2−s if a1f = −f,
p1/2−s if a1f = f.

With these definitions, and unramified and archimedean factors as usual,
the functional equation L(s, f) = ε(s, f)L(1 − s, f) holds for L(s, f) =∏

p Lp(s, f) and ε(s, f) =
∏

p εp(s, f).

2 Newforms in degree 2

It is our goal to develop a similar theory as outlined in the previous section
for the space of Siegel cusp forms Sk(Γ0(N)(2)) of degree 2 and square-free
level N . Here we are facing several difficulties.

• Strong multiplicity one fails for the underlying group GSp(2), and even
weak multiplicity one is presently not known. Thus it is not clear how
to attach an automorphic representation of GSp(2, A) to a classical
cusp form f .
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• The local representation theory of GSp(2, Qp) is much more compli-
cated than that of GL(2, Qp). In particular, there are 13 different
types of infinite-dimensional representations containing non-trivial vec-
tors fixed under the local Siegel congruence subgroup, while in the
GL(2) case we had only 2 (see table (1)).

• There is currently no generally accepted notion of newforms for Siegel
modular forms of degree 2.

The last two problems are of course related. Let P1 be the Siegel congruence
subgroup of level p, i.e.,

P1 =

{(
A B
C D

)
∈ GSp(2, Zp) : C ≡ 0 mod p

}
. (5)

Every classical definition of newforms with respect to P1 must in particular
be designed to exclude K–spherical representations, where K = GSp(2, Zp).
Since an unramified principal series representation of GSp(2, Qp) contains a
four–dimensional space of P1–invariant vectors (see Table 1 below), we expect
four operators

T0, T1, T2, T3 : Sk(Sp(2, Z)) −→ Sk(Γ0(p))

whose images would span the space of oldforms. (From now on, when we
write Γ0(N), we mean groups of 4 × 4–matrices.) For this purpose we are
now going to introduce four endomorphisms T0(p), . . . , T3(p) of the space
Sk(Γ0(N)), where N is square-free and p|N .

• T0(p) is simply the identity map.

• T1(p) is the Atkin–Lehner involution at p, defined as follows. Choose
integers α, β such that pα− N

p
β = 1. Then the matrix

ηp =




pα 1
pα 1

Nβ p
Nβ p




is in GSp(2, R)+ with multiplier p. It normalizes Γ0(N), hence the map
f 7→ f

∣∣
k
ηp defines an endomorphism of Sk(Γ0(N)). Since η2

p ∈ pΓ0(N),
this endomorphism is an involution (we always normalize the slash
operator as

(f
∣∣
k
g)(Z) = µ(g)kj(g, Z)−kf(g〈Z〉) (µ is the multiplier),

which makes the center of GSp(2, R)+ act trivially). This is the Atkin–
Lehner involution at p. It is independent of the choice of α and β.
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• We define T2(p) by

(T2(p)f)(Z) =
∑

g∈Γ0(N)\Γ0(N)
(

1
p1

)
Γ0(N)

(
f
∣∣
k
g
)
(Z)

=
∑

x,µ,κ∈Z/pZ


f

∣∣∣
k




1
1

p
p







1 x µ
1 µ κ

1
1





 (Z). (6)

This is a well-known operator in the classical theory. In terms of
Fourier expansions, if f(Z) =

∑
n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′) with Z =(

τ z
z τ ′

)
, then

(T2(p)f)(Z) =
∑
n,r,m

c(np, rp,mp)e2πi(nτ+rz+mτ ′). (7)

• Finally, we define T3(p) := T1(p) ◦ T2(p).

Now we are ready to define newforms in degree 2.

2.1 Definition. Let N be a square-free positive integer. In Sk(Γ0(N)) we
define the subspace of oldforms Sk(Γ0(N))old to be the sum of the spaces

Ti(p)Sk

(
Γ0(Np−1)

)
, i = 0, 1, 2, 3, p|N.

The subspace of newforms Sk(Γ0(N))new is defined as the orthogonal com-
plement of Sk(Γ0(N))old inside Sk(Γ0(N)) with respect to the Petersson scalar
product.

Note that this definition is analogous to the definition of oldforms in the
degree 1 case. The operator T1 given in (2) has the same effect as the Atkin–
Lehner involution on modular forms for SL(2, Z).

See [Ib] for more comments on the topic of old and new Siegel modular forms.

3 Local newforms

Let us realize G = GSp(2) using the symplectic form

(
1

−1

)
. In this

section we shall consider G as an algebraic group over a p–adic field F . Let
o be the ring of integers of F and p its maximal ideal. Let K = G(o) be
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the standard special maximal compact subgroup of G(F ). As an Iwahori
subgroup we choose

I =





g ∈ K : g ≡




∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


 mod p





The parahoric subgroups of G(F ) correspond to subsets of the simple Weyl
group elements in the Dynkin diagram of the affine Weyl group C2:

• • •
s0 s1 s2

The Iwahori subgroup corresponds to the empty subset of {s0, s1, s2}. The
numbering is such that s1 and s2 generate the usual 8–element Weyl group
of GSp(2). The corresponding parahoric subgroup is P12 = K. The Atkin–
Lehner element

η =




1
1

$
$


 ∈ GSp(2, F ) ($ a uniformizer) (8)

induces an automorphism of the Dynkin diagram. The parahoric subgroup
P01 corresponding to {s0, s1} is therefore conjugate to K via η. We further
have the Siegel congruence subgroup P1 (see (5)), the Klingen congruence
subgroup P2, its conjugate P0 = ηP2η

−1, and the paramodular group

P02 =





g ∈ G(F ) : g, g−1 ∈




o p o o

o o o p−1

o p o o

p p p o








.

K and P02 represent the two conjugacy classes of maximal compact subgroups
of GSp(2, F ). By a well-known result of Borel (see [Bo]) the Iwahori–
spherical irreducible representations are precisely the constituents of repre-
sentations induced from an unramified character of the Borel subgroup. For
GSp(2), such representations were first classified by Rodier, see [Rod], but
in the following we shall use the notation of Sally–Tadic [ST]. The fol-
lowing Table 1 gives a complete list of all the irreducible representations of
GSp(2, F ) with non-trivial I–invariant vectors. Behind each representation
we have listed the dimension of the spaces of vectors fixed under each para-
horic subgroup (modulo conjugacy). The last column gives the exponent of
the conductor of the local parameter of each representation.
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representation K P02 P2 P1 I a

I χ1 × χ2 o σ (irreducible) 1 2
+−

4 4
++
−−

8
++++
−−−−

0

a χStGL(2) o σ 0 1
−

2 1
−

4
+−−−

1
II

b χ1GL(2) o σ 1 1
+

2 3
++−

4
+++−

0

a χ o σStGSp(1) 0 0 1 2
+−

4
++−−

2
III

b χ o σ1GSp(1) 1 2
+−

3 2
+−

4
++−−

0

a σStGSp(2) 0 0 0 0 1
−

3

b L((ν2, ν−1σStGSp(1))) 0 0 1 2
+−

3
++−

2
IV

c L((ν3/2StGL(2), ν
−3/2σ)) 0 1

−
2 1

−
3

+−−
1

d σ1GSp(2) 1 1
+

1 1
+

1
+

0

a δ([ξ0, νξ0], ν
−1/2σ) 0 0 1 0 2

+−
2

b L((ν1/2ξ0StGL(2), ν
−1/2σ)) 0 1

+

1 1
+

2
++

1
V

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ)) 0 1

−
1 1

−
2
−−

1

d L((νξ0, ξ0 o ν−1/2σ)) 1 0 1 2
+−

2
+−

0

a τ(S, ν−1/2σ) 0 0 1 1
−

3
+−−

2

b τ(T, ν−1/2σ) 0 0 0 1
+

1
+

2
VI

c L((ν1/2StGL(2), ν
−1/2σ)) 0 1

−
1 0 1

−
1

d L((ν,1F ∗ o ν−1/2σ)) 1 1
+

2 2
+−

3
++−

0

Table 1: Dimensions of spaces of invariant vectors in
Iwahori–spherical representations of GSp(2, F ).
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The signs under the entries for the “symmetric” subgroups P02, P1 and I
indicate how these spaces of fixed vectors split into Atkin–Lehner eigenspaces,
provided the central character of the representation is trivial. The signs listed
in Table 1 are correct if one assumes that

• in Group II, where the central character is χ2σ2, the character χσ is
trivial.

• in Groups IV, V and VI, where the central character is σ2, the character
σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and
minus signs in Table 3 to get the correct dimensions.

The information in Table 1 is essentially obtained by computations in the
standard models of these induced representations. Details will appear else-
where.

Imitating the classical theory, one can define oldforms by introducing natural
operators from fixed vectors for bigger to fixed vectors for smaller parahoric
subgroups. Here “bigger” not always means inclusion, since we also consider
K “bigger” than P02. More precisely, we consider R′ bigger than R, and shall
write R′ Â R, if there is an arrow from R′ to R in the following diagram.

P01

!!DDDDDDDD

����

P12

}}zzzzzzzz

�� ��

P02

}}zzzzzzzz

!!DDDDDDDD

P0

""DDDDDDDDD P1

��

P2

||zzzzzzzzz

I

(9)

Whenever R′ Â R, one can define natural operators from V R′ to V R, where
V is any representation space. For example, our previously defined global
operators T0(p) and T2(p) correspond to two natural maps V K → V P1 . Our
T1(p) and T3(p) correspond to two natural maps V P01 → V P1 , composed with
the Atkin–Lehner element V K → V P01 .

This can be done for any parahoric subgroup, and it is natural to call any fixed
vector that can be obtained from any bigger parahoric subgroup an oldform.
Everything else would naturally be called a newform, but the meaning of
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“everything else” has to be made precise. Let it suffice to say that if the
representation is unitary one can work with orthogonal complements as in
the classical theory.

Once these notions of oldforms and newforms are defined, one can verify the
decisive fact that each space of fixed vectors listed in Table 1 consists either
completely of oldforms or completely of newforms. If this were not true, our
notions of oldforms and newforms would make little sense. In Table 1 we
have indicated the spaces of newforms by writing their dimensions in bold
face. We see that they are not always one-dimensional.

4 L–functions

For the applications we have in mind we need the spin L–function of cuspidal
automorphic representations of GSp(2, A) as a global tool. There are several
results on this L–function, see [No], [PS] or [An]. Unfortunately none of these
results fully serves our needs. What we need is the following.

4.1 L–Function Theory for GSp(2).

i) To every cuspidal automorphic representation π of PGSp(2, A) is asso-
ciated a global L–function L(s, π) and a global ε–factor ε(s, π), both
defined as Euler products, such that L(s, π) has meromorphic continu-
ation to all of C and such that a functional equation

L(s, π) = ε(s, π)L(1− s, π)

of the standard kind holds.

ii) For Iwahori–spherical representations, the local factors Lv(s, πv) and
εv(s, πv, ψv) coincide with the spin local factors defined via the local
Langlands correspondence as in [KL].

Of course such an L–function theory is predicted by general conjectures over
any number field. For our classical applications we shall only need it over
Q. Furthermore, we can restrict to the archimedean component being a
lowest weight representation with scalar minimal K–type (a discrete series
representation if the weight is ≥ 3). All we need to know about ε–factors is
in fact that they are of the form cpms with a constant c ∈ C∗ and an integer
m.

The local Langlands correspondence is not yet a theorem for GSp(2) (but see
[Pr], [Rob]), but for Iwahori–spherical representations it is known by [KL].
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In fact, the local parameters (four–dimensional representations of the Weil–
Deligne group) of all the representations in Table 1 can easily be written
down explicitly. Hence we know all their local factors. There is one case of
L–indistinguishability in Table 1, namely, the representations VIa and VIb
constitute an L–packet. The representation Va also lies in a two-element
L–packet. Its partner is a θ10–type supercuspidal representation.

4.2 Theorem. We assume that an L–function theory as in 4.1 exists. Let
π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic representations of
PGSp(2, AQ). Let S be a finite set of prime numbers such that the following
holds:

i) π1,p ' π2,p for each p /∈ S.

ii) For each p ∈ S, both π1,p and π2,p possess non-trivial Iwahori–invariant
vectors.

Then, for each p ∈ S, the representations π1,p and π2,p are constituents of
the same induced representation (from an unramified character of the Borel
subgroup).

Idea of proof: We divide the two functional equations for L(s, π1) and
L(s, π2) and obtain finite Euler products by hypothesis i). Since we are over
Q, and since the expressions p−s for different p can be treated as independent
variables, it follows that we get equalities

Lp(s, π1,p)

Lp(s, π2,p)
= cpms Lp(1− s, π1,p)

Lp(1− s, π2,p)
, c ∈ C∗, m ∈ Z,

for each p ∈ S. But we have the complete list of all possible local Euler
factors. One can check that such a relation is only possible if π1,p and π2,p

are constituents of the same induced representation.

Remark: In Table 1, for two representations to be constituents of the same
induced representation means that they are in the same group I–VI.

With some additional information on the representation this result sometimes
allows to attach a unique equivalence class of automorphic representations to
a classical cuspform f . For example, if N is square-free and f ∈ Sk(Γ0(N))new

is an eigenform for almost all the unramified Hecke algebras and also an
eigenvector for the Atkin–Lehner involutions for all p|N , then Theorem 4.2
together with the information in Table 1 show that the associated adelic
function Φf generates a multiple of an automorphic representation πf of
PGSp(2, A).
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5 The main result

Let N be a square-free positive integer. In the degree 1 case, given an
eigenform f ∈ Sk(Γ0(N))new, knowing the Atkin–Lehner eigenvalues for p|N
was enough to identify the local representations and attach the correct local
factors. In the degree 2 case, since there are more possibilities for the lo-
cal representations, and since some of them have parameters, we need more
information than just the Atkin–Lehner eigenvalues. For example, the repre-
sentations IIa or IIIa, both of which have local newforms with respect to P1,
depend on characters χ and σ. Hence there are additional Satake parameters
which enter into the L–factor. What we need are suitable Hecke operators on
Sk(Γ0(N))new to extract this information from the modular form f . It turns
out that the previously defined operator T2(p) works well, but we need even
more information. We are now going to define an additional endomorphism
T4(p) of Sk(Γ0(N))new.

For notational simplicity assume N = p is a prime and consider the following
linear maps:

Sk(Γ0(p))new
d02 // Sk(Γ

para(p))new

d1

oo (10)

Here d1 and d02 are trace operators which always exist between spaces of
modular forms for commensurable groups. Explicitly,

d02f =
1

(Γpara(p) : Γ0(p) ∩ Γpara(p))

∑

γ∈(Γ0(p)∩Γpara(p))\Γpara(p)

f
∣∣
k
γ.

It is obvious from Table 1 that these operators indeed map newforms to
newforms. The additional endomorphism of Sk(Γ0(p))new we require is

T4(p) := (1 + p)2 d1 ◦ d02. (11)

Similarly we can define endomorphisms T4(p) of Sk(Γ0(N))new for each p|N .
Looking at local representations, the following is almost trivial.

5.1 Proposition. Let N be square-free. The space Sk(Γ0(N))new has a basis
consisting of common eigenfunctions for the operators T2(p) and T4(p), all
p|N , and for the unramified Hecke algebras at all good places p - N .

We can now state our main result.
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5.2 Theorem. We assume that an L–function theory as in 4.1 exists. Let
N be a square-free positive integer, and let f ∈ Sk(Γ0(N))new be a newform
in the sense of Definition 2.1. We assume that f is an eigenform for the
unramified local Hecke algebras Hp for almost all primes p. We further
assume that f is an eigenfunction for T2(p) and T4(p) for all p|N ,

T2(p)f = λpf, T4(p)f = µpf for p|N. (12)

Then:

i) f is an eigenfunction for the local Hecke algebras Hp for all primes
p - N .

ii) Only the combinations of λp and µp as given in the following table can
occur. Here ε is ±1.

λ µ rep. Lp(s,f)−1 εp(s,f)

−εp /∈{0,2p} IIa (1+ε(p+1)(p−µ)p−3/2−s+p−2s)(1+εp−1/2−s) εp1/2−s

6=±p 0 IIIa (1−λp−3/2−s)(1−λ−1p1/2−s) p1−2s

−εp 2p Vb,c (1−εp1/2−s)(1−p−1/2−s)(1+p−1/2−s) εp1/2−s

−εp 0 VIa,b (1+εp−1/2−s)2 p1−2s

(We omit some indices p.)

iii) We define archimedean local factors according to our L–function theory
and unramified spin Euler factors for p - N as usual. For places p|N we
define L– and ε–factors according to the table in ii). Then the resulting
L–function has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(s, f) = ε(s, f)L(1− s, f), (13)

where L(s, f) =
∏

p≤∞ Lp(s, f) and ε(s, f) =
∏

p|N∞ εp(s, f).

Sketch of proof: Statement i) follows from Theorem 4.2. Statement ii)
follows by explicitly computing the possible eigenvalues of T2(p) and T4(p)
in local representations. In the present case we cannot conclude that in
the global representation πf = ⊕πi all the irreducible components πi must
be isomorphic, because the eigenvalues in (12) cannot tell apart local rep-
resentations VIa and VIb. This is however the only ambiguity, so that we
can at least associate a global L–packet with f . (As mentioned before, VIa
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and VIb constitute a local L–packet.) The table in ii) indicates the possible
representations depending on the Hecke eigenvalues.

The L–factors given in the table are those coming from the local Langlands
correspondence. By hypothesis they coincide with the factors in our L–
function theory. Hence the L–function in (13) coincides with the L–function
of any one of the automorphic representations in our global L–packet. By
our L–function theory we get the functional equation.

5.3 Corollary. If a cusp form f ∈ Sk(Sp(2, Z)) is an eigenfunction for the
unramified Hecke algebras Hp for almost all primes p, then it is an eigen-
function for those Hecke algebras for all p.

Remarks:

i) The corollary does not claim that f generates an irreducible automor-
phic representation of PGSp(2, A), but a multiple of such a represen-
tation. Without knowing multiplicity one for PGSp(2) we cannot con-
clude that f is determined by all its Hecke eigenvalues.

ii) The local factors given in Theorem 5.2 are the Langlands L– and ε–
factors for the spin (degree 4) L–function. The following table lists the
Langlands factors for the standard (degree 5) L–function.

λ µ rep. Lp(s, f, st)−1 εp(s, f, st)

−εp /∈{0,2p} IIa (1−(p+1)(p−µ)p−2−s+p−1−2s)(1−p−s) p1−2s

6=±p 0 IIIa (1−λ2p−2−s)(1−λ−2p2−s)(1−p−1−s) p1−2s

−εp 2p Vb,c (1+p−1−s)(1+p−s)(1−p−s) p1−2s

−εp 0 VIa,b (1−p−s)2(1−p−1−s) p1−2s

iii) There is a statement analogous to Theorem 5.2 for modular forms with
respect to the paramodular group Γpara(N). Instead of T4(p) as defined
in (11) this result makes use of the “dual” endomorphism T5(p) :=
(1 + p)2 d02 ◦ d1 of Sk(Γ

para(N))new.

References

[An] Andrianov, A.: Euler products associated with Siegel modular
forms of degree two. Russ. Math. Surveys 29, 3 (1974), 45-116



REFERENCES 15

[AS] Asgari, M., Schmidt, R.: Siegel modular forms and representa-
tions. Manuscripta Math. 104 (2001), 173–200

[Bo] Borel, A.: Admissible representations of a semisimple group over
a local field with vectors fixed under an Iwahori subgroup. Invent.
Math. 35 (1976), 233–259

[Cas] Casselman, W.: On Some Results of Atkin and Lehner. Math.
Ann. 201 (1973), 301–314

[Ib] Ibukiyama, T.: On symplectic Euler factors of genus 2. J. Fac.
Sci. Univ. Tokyo 30 (1984), 587–614

[KL] Kazhdan, D., Lusztig, G.: Proof of the Deligne-Langlands con-
jecture for Hecke algebras. Invent. Math. 87 (1987), 153–215

[No] Novodvorski, A.: Automorphic L-functions for the symplectic
group GSp(4). Proc. Sympos. Pure Math. 33 (1979), part 2, 87–95

[PS] Piatetski-Shapiro, I.: L–functions for GSp(4). Pacific J. of
Math. 181 (1997), 259–275

[Pr] Prasad, D.: Some applications of seesaw duality to branching
laws. Math. Ann. 304 (1996), 1–20

[Rob] Roberts, B.: Global L-packets for GSp(2) and theta lifts. Doc.
Math. 6 (2001), 247–314

[Rod] Rodier, F.: Sur les représentations non ramifiées des groupes
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