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IRREDUCIBILITY CRITERIA

FOR LOCAL AND GLOBAL REPRESENTATIONS

HIRO-AKI NARITA, AMEYA PITALE, AND RALF SCHMIDT

(Communicated by Kathrin Bringmann)

Abstract. It is proved that certain types of modular cusp forms generate irre-
ducible automorphic representations of the underlying algebraic group. Anal-
ogous Archimedean and non-Archimedean local statements are also given.

Introduction

One of the motivations for this paper was to show that full level cuspidal Siegel
eigenforms generate irreducible, automorphic representations of the adelic symplec-
tic similitude group. Such a result is well known for the case of classical elliptic
modular forms. Given an elliptic cusp form f (of some weight and some level), an
adelic function Φf can be constructed (see [Ge], §5), which is a cuspidal automor-
phic form on the adelic group GL(2,A); here, A denotes the ring of adeles of Q.
Let Vf be the space of automorphic forms generated by all right translates of Φf .
In this classical situation it turns out that Vf is irreducible precisely when f is an
eigenform for the Hecke operators Tp for almost all primes p. The proof uses the
strong multiplicity one property for cuspidal automorphic representations of GL(2).

For most other types of modular forms, strong multiplicity one, or even weak
multiplicity one, is not available. The goal of this paper is to show that, under
certain circumstances, the automorphic representation Vf is still irreducible, even
if multiplicity one is not known. Loosely speaking, this is the case whenever f is a
holomorphic type of modular form and is an eigenfunction for all Hecke operators.
See Corollary 3.2 for a precise statement. We stress that this result does not prove
multiplicity one for full level automorphic forms; for example, under our current
state of knowledge, it is still conceivable that two holomorphic Siegel cusp forms of
degree n > 1 have the same weight and the same Hecke eigenvalues for all primes
p, yet are linearly independent.

While our results are applicable mainly in a reductive setting, we keep the def-
initions general enough to include certain non-reductive situations, such as Jacobi
forms. For completeness we also include analogous local Archimedean and non-
Archimedean irreducibility criteria. All of this is well known to experts, but for
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56 HIRO-AKI NARITA, AMEYA PITALE, AND RALF SCHMIDT

lack of a good reference we found it useful to collect the relevant results in this
paper.

1. Local non-Archimedean theory

Let G be a group of td-type, as in [Ca]. We fix a left-invariant Haar measure on
G. The Hecke algebra H(G) consists of the locally constant, compactly supported
functions f : G → C, with product given by

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h
−1g) dh.

Given an open-compact subgroup K of G, the symbol H(G,K) denotes the subal-
gebra of H(G) consisting of left and right K-invariant functions. If A is a subset
of G, let IA be the characteristic function of A. Then vol(K)−1IK is an identity
element of H(G,K). As usual, a representation π of G on a complex vector space
V is called smooth if every v ∈ V is stabilized by some open-compact K. In this
case H(G) acts on V via

π(f)v =

∫
G

f(g)π(g)v dg.

The algebra H(G,K) acts on the space V K of K-invariant vectors. We say that
v ∈ V K is an eigenvector for H(G,K) if for all f ∈ H(G,K) there exists a scalar
λ(f) such that π(f)v = λ(f)v.

Lemma 1.1. Let (π, V ) be a smooth representation of G. Let K be an open-compact
subgroup of G. Then, for v ∈ V and g ∈ G,

∫
K

∫
K

π(k1gk2)v dk2 dk1 =
vol(K)2

vol(KgK)
π(IKgK)v.

Proof. Let KgK =
⊔
giK, a finite disjoint union. Then

π(IKgK)v =
∑
i

∫
giK

π(h)v dh =
∑
i

∫
K

π(gik2)v dk2.

Applying π(k1) to both sides and integrating over K, we obtain

vol(K)π(IKgK)v =
∑
i

∫
K

∫
K

π(k1gik2)v dk2 dk1 =
∑
i

∫
K

∫
K

π(k1gk2)v dk2 dk1.

The assertion follows. �

Proposition 1.2. Let (π, V ) be a smooth representation of G such that every G-
invariant subspace has a G-invariant complement.1 Let K be an open-compact
subgroup of G, and let v0 ∈ V K be a non-zero vector with the following properties.

i) The vectors π(g)v0, where g runs through G, span V .
ii) v0 is an eigenvector for H(G,K).

Then the representation π is irreducible.

1For example, this is satisfied if π is unitarizable.
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IRREDUCIBILITY CRITERIA FOR REPRESENTATIONS 57

Proof. We first show that V K is spanned by v0. Let v ∈ V K . By hypothesis i), we
can write

v =

n∑
i=1

ci π(gi)v0 for some ci ∈ C, gi ∈ G.

Since v0 is K-invariant,

v =
1

vol(K)

n∑
i=1

ci

∫
K

π(gik2)v0 dk2.

Applying π(k1) and integrating over K, we obtain

v =
1

vol(K)2

n∑
i=1

ci

∫
K

∫
K

π(k1gik2)v0 dk2 dk1.

By Lemma 1.1 and hypothesis ii), the right hand side is a multiple of v0. This
proves our claim that V K is spanned by v0.

Now let W be a G-invariant subspace of V , and let W ′ be a G-invariant com-
plement. Write

v0 = w + w′, w ∈ W, w′ ∈ W ′.

Since v0 is K-invariant, the same must be true for w and w′. By what we already
proved, w and w′ are both multiples of v0. It follows from the first hypothesis that
V is entirely contained in W or in W ′. This proves that V is irreducible. �

Remark. Let F be a p-adic field with ring of integers o. Let G = GL(2, F ) and
K = GL(2, o). Let V = | |1/2×| |−1/2 be the parabolically induced representation of
G which has the Steinberg representation as its unique subrepresentation and the
trivial representation as its unique quotient. Then dimV K = 1, and the translates
of a non-zero v0 ∈ V K span all of V , yet V is reducible. This example shows that
the hypothesis about invariant complements in Proposition 1.2 is not indispensable.

2. Local Archimedean theory

Let G be a real Lie group and K a subgroup. We assume that K is of the
form center times compact subgroup.2 An equivalence class of irreducible (finite-
dimensional) representations of K will be called a K-type. With g denoting the
Lie algebra of G, we have the following simple irreducibility criterion.

Lemma 2.1. Let (π, V ) be a (g,K)-module such that every invariant subspace has
an invariant complement (for example, this is satisfied if π is unitarizable). Let τ
be a K-type with the following properties:

i) V is spanned by the vectors π(X)v, where X runs through U(gC) and v runs
through the τ -isotypical component of V .

ii) V contains the K-type τ exactly once.

Then π is irreducible.

Proof. Let W be an invariant subspace of V . Let W ′ be an invariant complement.
By ii), exactly one of W or W ′ contains the K-type τ . Then i) implies that either
V = W or V = W ′. �

2The reason for not assuming that K itself is compact will become apparent once we consider
the Jacobi forms example below.
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As above let g be the Lie algebra of G, and let k be the Lie algebra of K. Let
gC and kC be their complexifications. We will assume that K is connected, so that
K-types are in one-to-one correspondence with the equivalence classes of irreducible
representations of kC. We will assume that gC admits a direct sum decomposition

(1) gC = p
+
C
+ kC + p

−
C

with Lie subalgebras p
+
C

and p
−
C

such that [kC, p
±
C
] ⊂ p

±
C
. Given a K-type τ , we

extend τ to a representation of kC + p
−
C

on which p
−
C

acts trivially and define the
gC-module

(2) Lτ := U(gC)⊗U(kC+p
−
C
) τ.

Proposition 2.2. Let G and K be as above. Let (π, V ) be a (g,K)-module such
that every invariant subspace has an invariant complement. Let v0 be a vector in
V with the following properties:

i) V is spanned by the vectors π(X)v0, where X runs through U(gC).
ii) The span of the vectors π(k)v0, where k runs through K, is an irreducible

representation τ of K.
iii) The K-type τ occurs in Lτ exactly once.
iv) π(p−

C
)v0 = 0.

Then π is irreducible.

Proof. Let Vτ be the span of the vectors π(k)v0, where k runs through K. By iv),
p
−
C

annihilates all of Vτ . Therefore, there exists a map

(3) Lτ
∼= U(gC)⊗U(kC+p

−
C
) Vτ −→ V

given by X⊗v �→ π(X)v. By i), this map is surjective. Hypothesis iii) implies that
V contains the K-type τ only once. Hence, we can apply Lemma 2.1 to see that π
is irreducible. �

Remark. Hypothesis iii) is satisfied ifG is linear, simple and connected, of Hermitian
type, K is maximal compact, p+

C
(resp. p−

C
) denotes the space spanned by the root

vectors for the non-compact positive (resp. negative) roots, and τ is equivalent to
the minimal K-type in a holomorphic discrete series representation.

As an application of Proposition 2.2, we consider holomorphic Jacobi forms on
H×C, as in [EZ]. Let GJ = SL(2,R)�H(R) be the real Jacobi group, where H is
a three-dimensional Heisenberg group; see [BS], Sect. 1.1, for the precise definition.
Let K be the subgroup SO(2) × Z, where Z ∼= R is the center of the Heisenberg
group. Then, by [BS], Sect. 1.4, the complexified Lie algebra gC of GJ admits a
decomposition of the type (1).

Now let f be a Jacobi form of weight k and index m. We associate to f the
function φf : GJ → C given by φf (g) = (f

∣∣
k,m

g)(i, 0), where the slash action is

the same as in Definition 4.1.1 of [BS]. Then the holomorphy of f is equivalent
to R(p−

C
)φf = 0, where R denotes right translation; see Proposition 4.1.2 of [BS].

Moreover, φ transforms by scalars under right translation by elements of K. Con-
dition iii) of Proposition 2.2 is also satisfied, as is apparent from the description of
the lowest weight representation π+

k,m of GJ in [BS], Sect. 3.1. Therefore, we obtain

the following corollary (which could be generalized to higher degree Jacobi forms).
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IRREDUCIBILITY CRITERIA FOR REPRESENTATIONS 59

Corollary 2.3. Let f be a holomorphic Jacobi form on H×C of weight k and index
m. Then, under right translation, the associated function φf : GJ → C generates
an irreducible (g,K)-module.

We also seek an irreducibility criterion for non-connected Lie groups; this is
important for certain global applications, which we will give below. Hence assume
that G is a Lie group with connected component G0 such that G0 has finite index
in G. Let K be a compact subgroup of G whose connected component K0 has finite
index in K. If (π, V ) is a gC-module and σ ∈ K is an element, let (πσ, V ) be the
gC-module with underlying space V and action given by

(4) πσ(X)v = π(Ad(σ)X)v, X ∈ gC, v ∈ V.

Again we assume that gC admits a decomposition as in (1).

Proposition 2.4. Let G and K be as above. Let (π, V ) be a (g,K)-module such
that every invariant subspace has an invariant complement. Let v0 be a vector in
V with the following properties:

i) V is spanned by the vectors π(X)π(k)v0, where X runs through U(gC) and
k runs through K.

ii) The span of the vectors π(k)v0, where k runs through K0, is an irreducible
representation τ of K0.

iii) The K0-type τ occurs in Lτ (defined as in (2)) exactly once.
iv) For σ ∈ K, σ /∈ K0, the gC-modules Lτ and (Lτ )

σ have no K0-type in
common.

v) π(p−
C
)v0 = 0.

Then π is irreducible.

Proof. By i),

V =
∑

σ∈K/K0

π(σ)π(U(gC))v0.

As in the proof of Proposition 2.2, there is a surjective map Lτ → π(U(gC))v0.
Hence, by iii), the K0-type τ occurs in π(U(gC))v0 exactly once. Using iv), it
follows that the K0-type τ occurs in all of V exactly once.

Now let W ⊂ V be an invariant (g,K)-submodule, and let W ′ be an invariant
complement. Then exactly one of W or W ′ contains the K0-type τ , and hence the
vector v0. It follows from i) that either V = W or V = W ′. �

In this section we have kept our hypotheses general in order to accommodate
examples such as that of Jacobi forms. For background on highest weight modules
and irreducibility in the semisimple setting, see Sect. 7 of [Ya].

3. Global theory

Let F be a number field, and let G be an algebraic group defined over F . Let
Z be the center of G. Let A be the ring of adeles of F , and let A∞ and Af be the
subrings of Archimedean and finite adeles, respectively. Then we have the adelized
groups G(A), G(A∞) and G(Af ). Let K∞ be a fixed maximal compact subgroup
of G(A∞). For present purposes, we call a function Φ : G(A) → C an automorphic
form on G(A) if the following conditions are satisfied.
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i) Φ is smooth; i.e., Φ is right invariant under some open-compact subgroup
Kf of G(Af ), and for any fixed h ∈ G(A) the function G(A∞) 	 g �→ Φ(gh)
is C∞.

ii) Φ is K∞-finite; i.e., the space spanned by the functions G(A) 	 g �→ Φ(gκ),
where κ runs through K∞, is finite-dimensional.

iii) Φ(γg) = Φ(g) for all g ∈ G(A) and γ ∈ G(F ).
iv) There exists a unitary character χ of Z(A) such that Φ(zg) = χ(z)Φ(g) for

all g ∈ G(A) and z ∈ Z(A).

The usual definition of automorphic forms includes conditions such as slow growth,
but for our purposes it is irrelevant whether we include such additional conditions
or not. The important fact is that the space of automorphic forms is preserved by
right translation R by elements of G(Af ) and of K∞. It is also preserved by the
action of g, the Lie algebra of G(A∞), given by

(R(X)Φ)(g) =
d

dt

∣∣∣
0
Φ(g exp(tX)).

This action extends to an action of gC and the universal enveloping algebra U(gC).
We call any subspace of the space of automorphic forms invariant under right
translation by G(Af ), K∞ and g, irreducible or not, an automorphic representation
of G(A) (even though it might not be a representation of G(A) at all). If Φ is
an automorphic form, then the automorphic representation generated by Φ is by
definition the linear span of all functions obtained by the right action of G(Af ), g
and K∞ on Φ. The automorphic form Φ is called square-integrable if∫

G(F )Z(A)\G(A)

|Φ(g)|2 dg < ∞.

Here, the integration is with respect to a Haar measure on G(A). The space of
square-integrable automorphic forms with respect to a fixed unitary character of
the center Z(A) is invariant under right translation and carries an obvious inner
product.

Theorem 3.1. For each finite place v, let Kv be an open-compact subgroup of
G(Fv); we assume that almost all, but not necessarily all, Kv are maximal com-
pact in Gv. Let Φ be a square-integrable automorphic form on G(A) satisfying the
following properties:

i) The (g,K∞)-module spanned by the functions R(X)R(k)Φ, where X runs
through gC and k runs through K∞, is irreducible.

ii) For each finite place v, the function Φ is right invariant under Kv and is
an eigenvector under the action of the local Hecke algebra H(G(Fv),Kv).

Then the automorphic representation of G(A) generated by Φ is irreducible.

Proof. Let V be the automorphic representation generated by Φ. Let F be a non-
zero function in V which is right invariant under Kv for all finite v. We can write

(5) F =
n∑

i=1

R(Xi)R(κi)R(hi)Φ, Xi ∈ U(gC), κi ∈ K∞, hi ∈ G(Af ).

Since Φ is right invariant under almost all local maximal compact subgroups, we
may assume that there exists a finite set S of finite places such that each hi has
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IRREDUCIBILITY CRITERIA FOR REPRESENTATIONS 61

trivial components outside of S. For v ∈ S, since F and Φ are both Kv-invariant,

F =
1

vol(Kv)2

n∑
i=1

R(Xi)R(κi)

∫
Kv

∫
Kv

R(k1hik2)Φ dk1 dk2.

By Lemma 1.1, the double integration coincides, up to a multiple, with the action
of the double coset Kv(hi)vKv on Φ. By hypothesis ii), this action reproduces Φ
up to a multiple. We may therefore assume that all of the hi’s in (5) have trivial v-
component. Continuing through all places v ∈ S, we may assume that the elements
hi are not present at all, so that

(6) F =
n∑

i=1

R(Xi)R(κi)Φ, Xi ∈ U(gC), κi ∈ K∞.

Hence F lies in the (g,K∞)-module generated by Φ, which is irreducible by hy-
pothesis i). It follows that

(7) Φ =

m∑
i=1

R(Yi)R(σi)F, Yi ∈ U(gC), σi ∈ K∞.

We proved that whenever F is non-zero and right invariant under all Kv, then a
relation of the form (7) holds.

Now let W be an invariant subspace of V . Since V consists entirely of square-
integrable functions, there exists an invariant complement W ′ to W inside V . Write

Φ = F + F ′, F ∈ W, F ′ ∈ W ′.

Then, evidently, F and F ′ are both invariant under Kv for all finite v. By what
we proved, Φ can be expressed in the form (7) if F is non-zero. A similar relation
holds if F ′ is non-zero. It follows that Φ is contained in W or in W ′. This proves
the asserted irreducibility of V . �

It is desirable to have a more practical criterion for the irreducibility expressed
in i) of Theorem 3.1. This is provided by the next result. We assume that G(A∞)
is of the form Z ′G′, where Z ′ lies in the center of G(A∞), and where G′ is a
Lie group whose connected component G′

0 is of finite index in G′. We assume
that K∞ = (Z ′∩K∞)K ′ with a maximal compact subgroup of G′ whose connected
component K ′

0 has finite index in K ′. We also assume that g′
C
, the complexification

of the Lie algebra g′ of G′, admits a direct sum decomposition as in (1), with k being
the Lie algebra of K ′. For a K ′

0-type τ , we define

(8) Lτ := U(g′C)⊗U(kC+p
−
C
) τ.

If (π, V ) is a g′
C
-module and σ ∈ K ′ is an element, we define the twisted g′

C
-module

(πσ, V ) as in (4).

Corollary 3.2. For each finite place v, let Kv be an open-compact subgroup of
G(Fv); we assume that almost all, but not necessarily all, Kv are maximal com-
pact in Gv. Let Φ be a square-integrable automorphic form on G(A) satisfying the
following properties:

i) The span of the vectors π(k)Φ, where k runs through K ′
0, is an irreducible

representation τ of K ′
0.

ii) The K ′
0-type τ occurs in Lτ exactly once.
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iii) For σ ∈ K ′, σ /∈ K ′
0, the gC-modules Lτ and (Lτ )

σ have no K ′
0-type in

common.
iv) R(p−

C
)Φ = 0.

v) For each finite place v, the function Φ is right invariant under Kv and is
an eigenvector under the action of the local Hecke algebra H(G(Fv),Kv).

Then the automorphic representation of G(A) generated by Φ is irreducible.

Proof. By Theorem 3.1, it suffices to show that the (g,K)-module generated by
Φ is irreducible. Since Φ transforms under central elements by a scalar, this is
equivalent to saying that the (g′,K ′)-module generated by Φ is irreducible. But
this is immediate from Proposition 2.4. �

As an application of Corollary 3.2, consider a Siegel modular cusp form F of
degree n with respect to the full modular group. We allow the vector-valued case;
i.e., F takes values in an irreducible, holomorphic (polynomial) representation τ of
GL(n,C). As in [AS], we associate with F an adelic function Φ : G(A) → C, where
G = GSp(2n) and A is the ring of adeles of Q. Note that Φ is complex-valued, even
if τ is more than one-dimensional; in this case the function Φ is not canonical, but
the space of right translates of Φ by elements of K ′

0
∼= U(n) is, and is isomorphic

to τ .

Corollary 3.3. Let F be a vector-valued holomorphic Siegel modular cusp form
of degree n and full level. Let Φ : G(A) → C be an adelic function attached to
F , where G = GSp(2n). If F is an eigenform under all Hecke operators, then Φ
generates an irreducible, automorphic representation of G(A).

Proof. We apply Corollary 3.2 with G′ = Sp(2n,R)±, the group of all g ∈
GSp(2n,R) with multiplier ±1. The identity component G′

0 = Sp(2n,R) has a
maximal compact subgroup K ′

0 isomorphic to U(n). By our remarks above, con-
dition i) of Corollary 3.2 is satisfied. Considering weights, it is easy to see that
conditions ii) and iii) in Corollary 3.2 are satisfied. Condition iv) is equivalent
to F being holomorphic; see [AS]. Condition v) is satisfied since F is a Hecke
eigenform. �

Corollary 3.4. Let F be a vector-valued holomorphic Siegel modular cusp form of
degree 2 and full level. Let Φ : G(A) → C be an adelic function attached to F ,
where G = GSp(4). If F is an eigenform under almost all Hecke operators, then Φ
generates an irreducible, automorphic representation of G(A).

Proof. By the argument in [Ve] (see also Corollary 3.1.7 of [Sc], where the same
argument is used), F is automatically an eigenform for all Hecke operators. Hence
the result follows from Corollary 3.3. �
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