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We study degree 2 paramodular eigenforms of level 8 and weights 10 and 12, and deter-
mine all their local representations. We prove dimensions by the technique of Jacobi
restriction. A level divisible by a cube permits a wide variety of local representations,
but also complicates the Hecke theory by involving Fourier expansions at more than
one zero-dimensional cusp. We overcome this difficulty by the technique of restriction to
modular curves. An application of our determination of the local representations is that
we obtain the Euler 2-factor of each newform.
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1. Introduction

Let H= {Z ∈ M2(C) | tZ =Z, Im(Z)> 0} be the Siegel upper half space of degree 2.
Siegel modular forms of weight k are holomorphic functions H → C satisfying a
transformation property with respect to a congruence subgroup Γ of Sp(4, Q). In
recent years Siegel modular forms with respect to Γ = K(N), the paramodular group
of level N , have received much attention, partly due to the paramodular conjecture

417

http://dx.doi.org/10.1142/S1793042118500288


November 2, 2017 19:41 WSPC/S1793-0421 203-IJNT 1850028

418 C. Poor, R. Schmidt & D. S. Yuen

formulated in [6], and partly due to the theory of newforms on paramodular groups,
see [12, 23].

The space Sk(K(N)) of paramodular cusp forms of weight k and level N contains
the subspace S∗

k(K(N)) spanned by Gritsenko lifts Grit(φ), where φ runs through
Jacobi cusp forms of weight k and index N , see [9]. The same subspace can also be
obtained as generalized Saito–Kurokawa liftings from the space of elliptic newforms
in S2k−2(Γ0(N)), as in [23, Theorem 6.1]. We will refer to the non-zero elements
of S∗

k(K(N)) simply as lifts. Any non-zero element of Sk(K(N)) in the orthogonal
complement S′

k(K(N)) of S∗
k(K(N)) is a non-lift.

The spaces Sk(K(N)) also admit a theory of oldforms and newforms, analogous
to the familiar Atkin–Lehner theory for elliptic modular forms. In particular, there
is an orthogonal decomposition

Sk(K(N)) = Sk(K(N))new ⊕ Sk(K(N))old,

where Sk(K(N))old consists of forms arising from lower paramodular level via a
fixed set of three level raising operators θ, θ′ and η (for each prime). The level
raising operators take lifts to lifts and non-lifts to non-lifts, so that if we define

S∗
k(K(N))old/new = S∗

k(K(N)) ∩ Sk(K(N))old/new,

and similarly define S′
k(K(N))old/new, then we have orthogonal decompositions

S∗
k(K(N)) = S∗

k(K(N))old ⊕ S∗
k(K(N))new,

S′
k(K(N)) = S′

k(K(N))old ⊕ S′
k(K(N))new.

Oldforms are old in the sense of arising from a discrete group of smaller level,
and lifts are old in the sense of arising from a Lie group of smaller rank. Each
of the spaces mentioned so far has a basis consisting of eigenforms with respect
to the local Hecke algebras for all p not dividing N . At least conjecturally, the
eigenforms in Sk(K(N))new are in one-to-one correspondence with a set of cuspidal,
automorphic representations of conductor N of the adelic group GSp(4, AQ). More
precisely, each eigen-newform should adelize to a distinguished vector in such an
automorphic representation. The oldforms adelize to give non-distinguished vectors
in automorphic representations of strictly smaller conductor.

Consider the set of all cuspidal, automorphic representations of GSp(4, AQ) con-
tributing to Sk(K(N)). Some of these automorphic representations will be “lifts”
Λ1, . . . , Λm of automorphic representations of GL(2, AQ), in the sense of [29, The-
orem 3.1]; these correspond to the eigenforms in S∗

k(K(N)). The rest, Π1, . . . , Πn,
will be cuspidal, automorphic representations of GSp(4, AQ) that are not lifts; they
correspond to the eigenforms in S′

k(K(N)).
Our goal in this paper is to analyze the spaces S10(K(8)) and S12(K(8)) with

respect to these structures, and to discover, by examples, which local representations
can actually be hit by global automorphic forms. We will determine the dimension of
the spaces of old/new lifts and old/new non-lifts. The starting point is to determine
the dimension of the full spaces S10(K(8)) and S12(K(8)). By Theorems 4.3 and 6.4,
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these dimensions are 6 and 12, respectively. Our method for proving dimensions is
to find an upper bound on the dimension using “Jacobi restriction” [5, 13], and
then to find a lower bound by constructing lifts of theta blocks, and products of
such lifts. This method gives not only the dimensions, but also the initial Fourier
expansions of a Q-basis.

We then consider the automorphic representations generated by these eigen-
forms. For both weights k = 10 and k = 12 we determine the automorphic lifts
Λ1, . . . , Λm precisely in terms of their GL(2) data; we have m = 3 for k = 10 and
m = 4 for k = 12. Some of the automorphic representations Π1, . . . , Πn contain cusp
forms with respect to other congruence subgroups that have previously appeared
in the literature, in particular in [11]. The rest of Π1, . . . , Πn are newly discovered
automorphic representations, generated by certain eigen-newforms in Sk(K(8)). We
have two non-lift newforms for k = 10 and 4 for k = 12.

Let Π be one of the cuspidal, automorphic representations generated by a non-lift
eigen-newform F in Sk(K(N)). We can decompose Π as a restricted tensor product
Π = ⊗Πp, where Πp is an irreducible, admissible representation of the local group
GSp(4, Qp). Since we are working with level N = 8, the Πp are unramified repre-
sentations for each finite p > 2. It is an interesting problem to determine the local
representation at p = 2 of this global automorphic form in terms of the classifica-
tion of [24, Table A.1]. Even for elliptic modular forms the analogous problem is
generally not easy; see [17]. In degree 2 it does not seem to have been addressed
beyond the Iwahori-spherical cases in [28]. In our case, we are getting some help
from the fact that there are no characters of Q×

2 of conductor exponent 1. This
limits the possibilities for Π2 to a small number of families; see Table 2.

To determine Π2 precisely requires additional information. We extract this infor-
mation from F with the help of two paramodular Hecke operators T0,1 and T1,0,
which are the topic of Sec. 5. These operators have their origin in the local theory
of the paramodular group; their local counterparts appear in [24, Sec. 6.1]. The
local newform theory implies that eigenforms (at all good places) in Sk(K(N))new,
provided they generate an irreducible automorphic representation, are also eigen-
forms (at all bad places) for the operators T0,1 and T1,0. The calculation of these
operators can be challenging however, since some of their double coset represen-
tatives consist of lower triangular matrices. In other words, these Hecke operators
can mix the Fourier expansions at different zero-dimensional cusps. The difficulty
of simultaneously accessing Fourier expansions at multiple cusps is one reason that
the computations here have not been previously attempted. We explain in Sec. 5.2
how we overcome this difficulty by using the method of restriction to a modular
curve. Here again we receive some help from the fact that our only ramified place
is p = 2, since in this case the number of problematic double coset representatives
is small. The results of our eigenvalue calculations are contained in Table 7 (for
k = 10) and 17 (for k = 12). With this information we can determine the local
components Π2 precisely; see Proposition 6.2, which contains the arguments in full
detail for the k = 10 case.
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Our main results are Table 11 (for k = 10) and 16 (for k = 12). These tables
show precisely how the eigenforms in Sk(K(8)) are distributed among the various
automorphic representations. We also include the spaces Sk(B(2)) and Sk(Γ0(2)),
since there is significant overlap of their automorphic representations with those of
Sk(K(8)). As an application, we obtain the “correct” Euler factors at p = 2 for all
eigenforms considered; see Tables 12 and 18.

2. Notation

For any commutative ring R, let

GSp(4, R) = {g ∈ GL(4, R) | tgJg = λ(g)J, for some λ ∈ R×}, J =

[
12

−12

]
.

The kernel of the multiplier homomorphism λ : GSp(4, R)→R× is the group
Sp(4, R).

Let G = GL(2) or G = GSp(4). Let G(R)◦ be the identity component of G(R).
Let H be the usual upper half plane if G = GL(2), or the Siegel upper half space
of degree 2 if G = GSp(4). Hence, in the latter case, H consists of all symmetric
complex (2× 2)-matrices Z whose imaginary part is positive definite. In either case
G(R)◦ acts on H by

g〈Z〉 = (AZ + B)(CZ + D)−1, g =

[
A B

C D

]
∈ G(R)◦.

For a function f on H, an integer k, and an element g ∈ G(R)◦, let

(f |kg)(Z) = det(CZ + D)−k det(g)k/2f(g〈Z〉). (2.1)

This defines a right action of G(R)◦ on functions f : H → C. The center of G(R)◦

acts trivially, both in the GL(2) and the GSp(4) cases. (This would not have been
the case with the “classical” normalization of |k, which uses λ(g)nk−n(n+1)/2 instead
of det(g)k/2.)

Let N be a positive integer. The only congruence subgroup we need in the GL(2)
case is

Γ0(N) = SL(2, Z) ∩
[

Z Z

NZ Z

]
.

In the GSp(4) case we consider both the Borel and the Siegel congruence subgroups,
defined respectively by

B(N) = Sp(4, Z) ∩




Z NZ Z Z

Z Z Z Z

NZ NZ Z Z

NZ NZ NZ Z


,
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Γ0(N) = Sp(4, Z) ∩




Z Z Z Z

Z Z Z Z

NZ NZ Z Z

NZ NZ Z Z


. (2.2)

It will be clear from the context whether Γ0(N) stands for a subgroup of SL(2, Z)
or of Sp(4, Z). In addition, we consider the paramodular group

K(N) = Sp(4, Q) ∩




Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z


. (2.3)

Let Γ be one of these congruence subgroups, and let k be a non-negative integer. A
modular form of weight k with respect to Γ is a holomorphic function f : H → C

satisfying f |kγ = f for all γ ∈ Γ, and being holomorphic at the cusps of Γ. If f

vanishes at the cusps, then it is called a cusp form. The space of cusp forms of
weight k with respect to Γ is denoted by Sk(Γ), both in the GL(2) and the GSp(4)
cases. For g ∈ G(Q), a double coset ΓgΓ acts as a Hecke operator on Mk(Γ) via
f |kΓgΓ =

∑
j f |kgj, for any finite disjoint union

⋃
j Γgj = ΓgΓ.

3. Modular Forms and Representations

3.1. Obtaining modular forms from automorphic

representations

In this section, we explain the mechanism of constructing modular forms from
special vectors inside the space of an automorphic representation of a reductive
algebraic group. We only consider the groups relevant for this work, namely GL(2)
and GSp(4). These lead to elliptic modular forms and Siegel modular forms of
degree 2, respectively. We also limit ourselves to cusp forms and trivial central
character, thus avoiding a number of technical issues irrelevant for this paper.

Let A be the ring of adeles of Q. Let G be either GL(2) or GSp(4). Recall that
automorphic forms are complex-valued functions on G(A), left-invariant under the
diagonally embedded G(Q), and satisfying certain regularity conditions; we refer
to [4] for details. The group G(A) acts on the space of automorphic forms, and on
the subspace of cuspidal automorphic forms, by right translation. Strictly speak-
ing, at the Archimedean place we have to consider the action of a (g, K)-module,
but we will allow ourselves the usual simplification and speak of “representations
of G(A)”.

Let π be a cuspidal, automorphic representation of G(A). Hence, π is an irre-
ducible representation which can be realized on a space V consisting of cuspidal,
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automorphic forms on G(A). By the tensor product theorem, π is isomorphic
to a restricted tensor product

⊗
p≤∞ πp, where πp is an irreducible, admissible

representation of the local group G(Qp). (Again, when p = ∞, we really mean a
(g, K)-module.)

We assume that π has trivial central character. The same is then also true for
all the local representations πp. The restriction to trivial central character means
that the modular forms we can construct from π will have trivial character (i.e. no
nebentypus).

Since our goal is to construct holomorphic modular forms, we will require that
the Archimedean component π∞ is an infinite-dimensional lowest weight module.
Hence, if G = GL(2), we will assume that π∞ is the unique representation of
GL(2, R) with trivial central character and a lowest weight vector of weight k ≥ 1;
see [15, §5]. It is a discrete series representation if k ≥ 2, and a limit of discrete series
if k = 1. If G = GSp(4), then we will assume that π∞ is the unique representation
of GSp(4, R) with trivial central character and a lowest weight vector of weight
(k, k), where k ≥ 1 (see [18] for more details). It is a holomorphic discrete series
representation if k ≥ 3, a limit of such if k = 2, and a certain non-tempered
representation if k = 1. In each case, let v∞ be the lowest weight vector; it is unique
up to scalars.

We will construct a vector in π ∼=⊗πp by choosing local distinguished vectors vp

in each πp and piecing them together to a “pure tensor”
⊗

vp. At the Archimedean
place we have the lowest weight vector v∞. For almost all primes p the representation
πp is unramified, meaning it has a non-zero vector fixed under the maximal compact
subgroup G(Zp) of G(Qp); we let vp be such a fixed vector. (In fact, the restricted
tensor product

⊗
πp is constructed with respect to a choice of such fixed vectors

at almost all places, and pure tensors in
⊗

πp are forced to have vp be this fixed
vector almost everywhere.)

Let p be a prime for which πp is ramified. Let Vp be the space of πp; which
model we take for πp is irrelevant. Consider the case G = GL(2) first. By the local
newform theory of [8], the space Vp contains a non-zero vector fixed by the local
congruence subgroup

Γ0(pn) = GL(2, o) ∩
[

Zp Zp

pnZp Zp,

]
, (3.1)

for some n. Let np be the minimal n such that the space of fixed vectors Vp(n) :=
V

Γ0(p
n)

p is non-zero; then it is known that Vp(np) is one-dimensional. We let vp be
any non-zero vector in this one-dimensional space. It is known that pnp coincides
with the conductor of the representation πp. This implies that the integer N =

∏
pnp

appears in the global functional equation of the L-function L(s, π); see [15].
Now assume that G = GSp(4) and that π is not of “Yoshida type” or “CAP

type”, notions that are explained in [31]. In this case, by the results of [24], the
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space Vp contains a non-zero vector fixed under the local paramodular group

K(pn) = {g ∈ GSp(4, Qp) | det(g) ∈ Z×
p } ∩




Zp pnZp Zp Zp

Zp Zp Zp p−nZp

Zp pnZp Zp Zp

pnZp pnZp pnZp Zp


, (3.2)

for some n. Let np be the minimal n such that the space of fixed vectors Vp(n) :=
V

K(pn)
p is non-zero; then we know from [24] that Vp(np) is one-dimensional. We let

vp be any non-zero vector in this one-dimensional space. As in the GL(2) case, the
number pnp coincides with the conductor of the representation πp.

For either group G = GL(2) or G = GSp(4), we have now chosen local vectors
vp at each place, canonical up to normalization. To have a unified notation for
p < ∞, let us write Cp for the compact group under which vp is invariant, i.e.
Cp = Γ0(pnp) in the GL(2) case, and Cp = K(pnp) in the GSp(4) case. Via π ∼= ⊗πp,
the pure tensor

⊗
vp corresponds to an automorphic form Φ on G(A). Among other

properties, Φ satisfies, for all g ∈ G(A),

Φ(ρg) = Φ(g), ρ ∈ G(Q), (3.3)

Φ(gh) = Φ(g), h ∈
∏

p<∞
Cp, (3.4)

Φ(gκ) = ρk(κ)Φ(g), κ ∈ K∞. (3.5)

Property (3.3) holds simply because Φ is an automorphic form. Property (3.4)
follows from our choice of local vectors vp at all non-Archimedean places. Prop-
erty (3.5) follows from our choice of v∞. The group K∞ is the identity component
of the standard maximal compact subgroup of G(R), and ρk is its weight k represen-
tation. Explicitly, in the GL(2) case, K∞ = SO(2) and ρk

([ cos(θ) sin(θ)
−sin(θ) cos(θ)

])
= eikθ.

In the GSp(4) case, K∞ = Sp(4, R) ∩O(4, R) consists of all matrices in Sp(4, R) of
the form κ =

[
A B
−B A

]
, and ρk(κ) = det(A + iB)k.

The strong approximation theorem implies that G(A) = G(Q)G(R)◦
∏

p<∞ Cp,
where G(R)◦ is the identity component of G(R). In view of the above transformation
properties, Φ is determined by its values on G(R)◦. Let H be the usual upper half
plane if G = GL(2), and the Siegel upper half space of degree 2 if G = GSp(4).
Using the property (3.5), it is easy to verify that there exists a unique function f

on H for which

(f |kg)(i1n) = Φ(g) for all g ∈ G(R)◦, (3.6)

where n = 1 in the GL(2) case and n = 2 in the GSp(4) case. Since v∞ is a
lowest weight vector, the function f is holomorphic; see [1, Sec. 4.2]. One verifies
immediately that

f |kγ = f for γ ∈ Γ := G(Q) ∩ G(R)◦
∏

p<∞
Cp. (3.7)
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Evidently, Γ = Γ0(N) in the GL(2) case, and Γ = K(N) in the GSp(4) case, where
N =

∏
pnp . The function f is holomorphic at the cusps of Γ, since Φ is of moderate

growth. In fact, f vanishes at the cusps, since Φ is a cuspidal automorphic form,
hence f ∈ Sk(Γ).

We have thus extracted a cusp form f from π of the same level N as the rep-
resentation. Since the numbers np above were chosen to be minimal, this f will be
a newform. Here, for G = GL(2), we mean a newform in the traditional sense of
Atkin–Lehner, and for G = GSp(4) we mean a paramodular newform as defined in
[23]. In each case, a consequence of being new is that the level lowering operators
annihilate f at each finite place, just as a consequence of being holomorphic is that
the weight lowering operators annihilate f .

Especially in the GSp(4) case, there are other important choices for the local
congruence subgroups instead of the K(pn) defined in (3.2). For example, we could
have taken vectors vp fixed under

Γ0(pn) = GSp(4, Zp) ∩




Zp Zp Zp Zp

Zp Zp Zp Zp

pnZp pnZp Zp Zp

pnZp pnZp Zp Zp


, (3.8)

for some minimal n = np. Any resulting f would then be a cusp form with respect to
some Γ0(N) ⊂ Sp(4, Z), but only rarely will N =

∏
pnp coincide with the conductor

of π. Another choice of local congruence subgroup, important for this paper, is the
Borel congruence subgroup

B(pn) = GSp(4, Zp) ∩




Zp pnZp Zp Zp

Zp Zp Zp Zp

pnZp pnZp Zp Zp

pnZp pnZp pnZp Zp


. (3.9)

If n = 1, this is also called an Iwahori subgroup. The resulting global congruence
subgroups are the B(N) defined in (2.2).

We note that the cusp forms f constructed from automorphic representations
by the above procedure are automatically eigenforms for the local Hecke algebras
Hp at all places p where p �N . Conversely, the adelization Φ of any eigenform f

(meaning eigenform for Hp for almost all good places p) can be used to generate
a representation π. Automorphic representations generated by paramodular eigen-
forms with respect to K(N) will always have local representations with a fixed
vector for some K(pn), for pn |N . Here, a technical issue arises in the GSp(4) case
in that π need not be irreducible; this is due to the failure of strong multiplicity
onea for GSp(4). It is still true though that the eigenforms constructed from all

aExamples for the failure of strong multiplicity one for GSp(4) are provided by the Yoshida liftings;
see [2, 3], and the exposition in [26, Sec. 3].
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cuspidal, automorphic representations π (with the correct Archimedean type and
the correct choice of local congruence subgroups) span the entire space Sk(Γ).

3.2. Local representations

In this section, we will take a closer look at the local non-Archimedean representa-
tions πp occurring in an automorphic representation π = ⊗πp of either G = GL(2)
or G = GL(4). Recall that πp is an irreducible, admissible representation of G(Qp).
The only ramification that will occur in our examples is at the place p = 2. For all
other primes πp will always be an unramified principal series representation. Only
representations with trivial central character will be relevant for us.

First, we consider characters χ of Q×
2 , meaning continuous homomorphisms

χ : Q×
2 → C×. If χ is trivial on Z×

2 , then we say that χ is unramified and write
a(χ) = 0. Otherwise let a(χ) be the smallest positive integer a such that χ is trivial
on 1 + paZ2, but not on (1 + pa−1Z2)∩Z×

2 . Note that a(χ) = 1 is impossible, since
1 + 2Z2 = Z×

2 .

The GL(2) case

We first recall some general facts for irreducible, admissible representations of
GL(2, Qp) that hold for any p. Since we will be considering local representations
only, we change notation and write π instead of πp. We will assume throughout that
π is infinite-dimensional and has trivial central character.

Recall that the (exponent of the) conductor a(π) of π is characterized as the
smallest integer n such that the space V of π contains a non-zero vector fixed under
the congruence subgroup Γ0(pn) defined in (3.1). If V (n) = V Γ0(pn) is the space
of fixed vectors, then dimV (a(π) + i) = i + 1 for i ≥ 0. In other words, starting
at level a(π), the dimensions grow like 1, 2, 3, . . . . The essentially unique vector at
level a(π) is called a local newform; the spaces V (a(π) + i) for i > 0 consist of local
oldforms.

The Atkin–Lehner element

un =

[
1

pn

]
∈ GL(2, Qp) (3.10)

normalizes the group Γ0(pn), and hence acts on the space V (n). In particular, the
Atkin–Lehner action on the one-dimensional space V (a(π)) defines a sign ±1 canon-
ically attached to the representation. It follows from the local functional equation
for zeta integrals that this sign coincides with the value at 1/2 of the ε-factor, so we
will denote these signs by ε(1/2, π). In case that a newform f ∈ Sk(Γ0(N)) corre-
sponds to an automorphic representation ⊗πp, as in the previous section, the sign
ε(1/2, πp) coincides with the classical Atkin–Lehner eigenvalue at p of the modular
form f , for each prime p.

In a standard notation, as in [27], the principal series representations (with
trivial central character) of GL(2, Qp) are written in the form π = χ × χ−1, where
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χ is a character of Q×
p not of the form | · |±1/2. The conductor of π can be cal-

culated as a(π) = 2a(χ), and the Atkin–Lehner eigenvalue of the newform as
ε(1/2, π) = χ(−1). The simplest case occurs if χ is unramified, i.e. a(χ) = 0. Then
π is called unramified, or spherical. In a global representation ⊗πp, almost every πp

is unramified.
There are exactly two representations with conductor a(π) = 1, the Steinberg

representation StGL(2), and its twist ξStGL(2) by the unique non-trivial, unramified,
quadratic character ξ of Q×

2 . The two representations can be distinguished by their
Atkin–Lehner eigenvalue, as ε(1/2, StGL(2)) = −1 and ε(1/2, ξStGL(2)) = 1.

From now on we consider only p = 2. Since there are no characters χ of Q×
2 with

a(χ) = 1, any representation π (always assumed to have trivial central character)
with a(π) = 2 must be supercuspidal, i.e. not accessible via parabolic induction.
Using [34, Proposition 3.5] one can show that there is a unique such supercuspidal.
We denote it by sc(4), since it contributes a factor 4 = 22 to the conductor in a
global situation. It is not difficult to show that ε(1/2, sc(4)) = −1.

By the remark after [34, Theorem 3.9], or alternatively [7, Theorem 5], applied
to the field Q2, there are exactly two supercuspidal representations π of GL(2, Q2)
with trivial central character and a(π) = 3. We denote these two supercuspidals by
sc(8)+ and sc(8)−. They are unramified twists of each other and can be distinguished
by their Atkin–Lehner eigenvalue; we fix the notation such that ε(1/2, sc(8)±) = ±1.

It follows from the conductor formulas for principal series representations and
for twists of the Steinberg representation that there are no other π with a(π) = 3.
Table 1 summarizes all the representations of GL(2, Q2) with trivial central char-
acter and conductor up to 3.

The GSp(4) case

We next consider several irreducible, admissible representations of GSp(4, Qp) rel-
evant for our analysis of spaces of Siegel modular forms. Even though we will only

Table 1. The irreducible, admissible, infinite-dimensional represen-
tations π of GL(2, Q2) with trivial central character and a(π) ≤ 3.

a(π) π ε(1/2, π) V (0) V (1) V (2) V (3)

0 Unramified 1 1 2 3 4

1 StGL(2) −1 0 1 2 3

ξStGL(2) 1 0 1 2 3

2 sc(4) −1 0 0 1 2

3 sc(8)+ 1 0 0 0 1

sc(8)− −1 0 0 0 1
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Table 2. Some irreducible, admissible, infinite-dimensional representations Π of GSp(4, Qp) with
trivial central character and a(Π) ≤ 3. For each types X and XIb, the supercuspidal representation

π of GL(2, Qp) is assumed to have a(π) = 3, and the character σ is unramified. For type XIa, the
supercuspidal representation π of GL(2, Qp) is assumed to have a(π) = 2, and the character σ is
unramified. The number α for types X abbreviates σ(p). The quantity σ(p) for type XIa and XIb
is ±1.

a(Π) Π Type ε(1/2, Π) V (0) V (1) V (2) V (3) V I T0,1 T1,0

0 χ1 × χ2 � σ I 1 1 2 4 6 8 Irrelevant

χ1GL(2) � σ IIb 1 1 1 2 2 4 Irrelevant

2 τ(T, ν−1/2σ) VIb 1 0 0 0 0 1 — —

3 σStGSp(4) IVa −σ(p) 0 0 0 1 1 σ(p) −p2

π � σ X ε(1/2, σπ) 0 0 0 1 0 p
3
2 (α + α−1) 0

δ(ν1/2π, ν−1/2σ) XIa σ(p) 0 0 0 1 0 σ(p)p −p2

L(ν1/2π, ν−1/2σ) XIb ε(1/2, σπ) 0 0 0 1 0 σ(p)p(p + 1) 0

Supercuspidal 0 0 0 1 0 0 −p2

need the case p = 2, it is not more difficult to work with general p. Just as in the
GL(2) case, all representations are assumed to be infinite-dimensional and to have
trivial central character.

Table 2 lists all the representations Π that are important for our purposes. The
precise meaning of the notation in the “Π” column need not concern us; it is taken
from [27]. We shall mostly refer to these representations by their “type”, which
is simply a label. The symbols χ, χi, σ stand for characters of Q×

p , which are all
assumed to be unramified. The symbol π stands for a supercuspidal representation
of GL(2, Qp). For types X and XIb, we assume a(π) = 3, and for type XIa we assume
a(π) = 2. We make these assumptions so that the conductor a(Π) is as listed in the
first column. See [24, Table A.9], where the conductors for all non-supercuspidal
representations of GSp(4, Qp) are listed.

Let V be the space of one of these representations Π. For n ≥ 0, let V (n) be the
subspace of vectors fixed under the local paramodular group K(pn) defined in (3.2).
We note that for all representations in Table 2, except for VIb, the conductor a(Π)
coincides with the minimal n such that V (n) �= 0. This is a general feature of
the paramodular theory. The VIb representation does not admit any paramodular
vectors at all, but it shares an L-packet with a representation of type VIa, for which
a(Π) coincides with the minimal paramodular level.

Another feature of the paramodular theory, proven in [24], is that if n is minimal
such that V (n) �= 0, then V (n) is one-dimensional. Any non-zero vector in this
one-dimensional space is called a local newform. As in the GL(2) case, there is an
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Atkin–Lehner element

un =




1

−1

pn

−pn


 ∈ GSp(4, Qp) (3.11)

normalizing K(pn). The action of un on the one-dimensional V (n) thus defines a sign
canonically attached to each paramodular representation. Since this sign coincides
with the value of the ε-factor at 1/2, we denote it by ε(1/2, Π). Table 2 lists these
ε-factors, except for supercuspidal representations, for which we make no general
statement.

Also listed in Table 2 are the dimensions of the space of fixed vectors V I under
the Iwahori subgroup

I = GSp(4, Qp) ∩




Zp pZp Zp Zp

Zp Zp Zp Zp

pZp pZp Zp Zp

pZp pZp pZp Zp


. (3.12)

Representations for which V I is non-zero are called Iwahori-spherical. In a
global setting the group I corresponds to the Borel congruence subgroup B(p);
see (2.2).

It remains to explain the last two columns in Table 2. The T0,1 and T1,0 are
certain paramodular Hecke operators, which we consider in more detail in Sec. 5.1
below. They act on the one-dimensional space V (n), where n is minimal such that
V (n) �= 0, and thus produce two eigenvalues. It is these eigenvalues that are listed
in Table 2. The source of this information is [24, Tables A.9 and A.14]. The repre-
sentations of types I and IIb also define T0,1 and T1,0 eigenvalues, given by slightly
more complicated expressions; since they are irrelevant for our purposes, we refrain
from listing them.

4. S10(K(8))

The main goal of this section is to prove Theorem 4.3, which says that
dimS10(K(8)) = 6.

4.1. Cusp structure of K(8)

In this section, we reduce the task of computing the Fourier expansion of a paramod-
ular form slashed by an arbitrary element of Sp(4, Q) to a finite number of cases,
one for each zero-dimensional cusp. The cusp structure of K(8) is as follows: Define
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Fig. 1. The cusp structure of K(8) and double coset representatives.

C0(m) and C1(m) by

C0(m) =




1 0 0 0

0 1 0 0

0 m 1 0

m 0 0 1


, C1(m) =



1 m 0 0

0 1 0 0

0 0 1 0

0 0 −m 1


,

P2,0(Q) =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


∩ Sp2(Q), P2,1(Q) =



∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗


∩ Sp2(Q);

the Ci(m) are the standard double coset representatives corresponding to the zero-
dimensional and one-dimensional paramodular cusps given by P2,i(Q). Applying
[21, Theorems 1.2 and 1.3], we have the following double coset decompositions:

Sp(4, Q) = K(8)C0(0)P2,0(Q) ∪ K(8)C0(2)P2,0(Q),

Sp(4, Q) = K(8)C1(0)P2,1(Q) ∪ K(8)C1(1)P2,1(Q)

∪K(8)C1(2)P2,1(Q) ∪ K(8)C1(4)P2,1(Q).

So there are two zero-dimensional cusps and four one-dimensional cusps. When we
slash a form f ∈ Sk(K(8)) and take the Fourier expansion, we may need the Fourier
expansion of f at either of these two zero-dimensional cusps. This will come up when
we apply certain Hecke operators later. Figure 1 shows how the cusps intersect each
other.

4.2. Upper bound on the dimension

Denote

X2(N) =

{[
a b/2

b/2 cN

] ∣∣∣∣∣ a, b, c ∈ Z, a, c > 0, 4acN − b2 > 0

}
.
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These are the indices that occur in the Fourier expansion of a form in Sk(K(N)).
Let 〈A, B〉 = tr(AB). For t ∈ X2(N), define

m∗
N (t) = min

{
1
N

〈
gttg,

[
0 0

0 1

]〉 ∣∣∣∣∣ g ∈ Γ∗
0(N)

}
,

where Γ∗
0(N) is generated by Γ0(N) and all the Atkin–Lehner involutions. Let Pn(R)

be positive definite symmetric real matrices. Let φ : Pn(R) → R+ be type one, which
means

(i) φ(αt) = αφ(t), for all α > 0 and t ∈ Pn(R),
(ii) φ(s + t) ≥ φ(s) + φ(t) for all s, t ∈ Pn(R).

For λ > 0, define

J∗
N (φ, λ) = max{m∗

N (t) : t ∈ X2(N), φ(t) ≤ λ}.
The following is [5, Theorem 7.3].

Theorem 4.1. Let φ be a type one function that is a GL(2, Z)-class function. Let
f ∈ Sk(K(N)) be an eigenform under all paramodular Atkin–Lehner involutions.
Let

f

([
τ z

z w

])
=

∞∑
j=1

φNj(τ, z)(exp(2πiw))Nj

be its Fourier–Jacobi expansion, where φNj ∈ Jcusp
k,Nj are Jacobi cusp forms. Let

λ = φ

(
1
30

[
3 1

1 3

])
kN

∏
qr‖N

qr + qr−2

qr + 1
.

If φNj = 0 for all j ≤ J∗
N (φ, λ), then f = 0.

Applying this to S10(K(8)) and using the reduced trace function φ = t̃r,
where t̃r(t) = min{tr(gt tg) | g ∈ GL(2, Z)}, we calculate that λ = 160

9 and
J∗

8 (t̃r, 160
9 ) = 9. We conclude that nine Fourier–Jacobi coefficients determine a

paramodular Atkin–Lehner eigenform in S10(K(8)). Note that because 8 = 23,
there is only one Atkin–Lehner involution. We run the “Jacobi restriction” method
with a chosen determinant bound of B = 800. This value of B was just a choice.
Here is a short summary of the Jacobi restriction method; see [5, 13].

Fix an Atkin–Lehner sign ε = 1 or ε = −1.

(i) Find bases of Jacobi cusp forms Jcusp
10,8m for m = 1, . . . , 9. Call such a basis

{gmj}dm

j=1, where dm = dimJcusp
10,8m. The dimensions of these spaces are 4, 9,

13, 19, 24, 28, 34, 40, 43, respectively. These bases were found by searching
for theta blocks of the shape 26 thetas over 6 etas, and possibly using a down
operator from Jacobi forms of higher index on a theta block of this same shape.



November 2, 2017 19:41 WSPC/S1793-0421 203-IJNT 1850028

Paramodular forms of level 8, weights 10 and 12 431

(ii) Find the subspace (φ1, . . . , φ9) ∈
∏9

m=1 Jcusp
10,8m such that:

• (Involution condition) For all (n, r, m) ∈ Z3 with 1 ≤ m ≤ 9, 1 ≤ n ≤ 9, and
with the determinant bound 0 < 4nm · 8 − r2 ≤ B, we have

c(n, r; φm) = εc(m,−r; φn).

• (Siegel modular form consistency condition) Let Γ̂0(8) =
{[a b

c d

] ∈ GL(2, Z) |
b ∈ 8Z

}
. For all (ni, ri, mi), i = 1, 2, where

[ n1 r1/2
r1/2 8m1

]
= tg

[ n2 r2/2
r2/2 8m2

]
g for

some g ∈ Γ̂0(8), we have, whenever 1 ≤ m1, m2 ≤ 9,

c(n1, r1; φm1) = det(g)kc(n2, r2; φm2).

(iii) Here, we are really solving for linear conditions on αmj , 1 ≤ m ≤ 9, 1 ≤
j ≤ dm, such that the Jacobi forms φm =

∑dm

j=1 αmjgmj satisfy these two
conditions. The dimension of the null space of these relations is an upper
bound on the dimension of S10(K(8))ε, which is the subspace of S10(K(8))
where the paramodular Atkin–Lehner sign is ε.

With our choice of B = 800, the above instructions, when run with ε = 1,−1, return
the results

dimS10(K(8))+ ≤ 6, dimS10(K(8))− = 0. (4.1)

So the total dimension of S10(K(8)) is at most 6.

4.3. Lower bound on the dimension

The theory of theta blocks is due to Gritsenko, Skoruppa, and Zagier [10], see also
[5, 22] for applications. We review a simpler version of theta blocks that fits our
needs. Let ϑ be Jacobi’s odd theta function and η be the Dedekind eta function,
letting e(z) = e2πiz , q = e(τ), and ζ = e(z),

ϑ(τ, z) =
∑
n∈Z

(−1)nq
(2n+1)2

8 ζ
2n+1

2 , η(τ) =
∑

n∈Z+

(
12
n

)
qn2/24.

For positive integers k, d1, . . . , d�, define a theta block to be

TBk(d1, . . . , d�) = η(z)2k−�
�∏

i=1

ϑ(τ, diz).

Theorem 4.2 (Gritsenko, Skoruppa, Zagier). Define B̄2(x) = (x − �x�)2 −
(x − �x�) + 1

6 . Let k, d1, . . . , d� be positive integers. If

(i) k
12 + 1

2

∑�
i=1 B̄2(dix) > 0 for all x ∈ [0, 1],

(ii) 12|(k + �),
(iii)

∑�
i=1 d2

i = 2m for some m ∈ Z+,

then TBk(d1, . . . , d�) ∈ Jcusp
k,m .
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We will use the down operator, see [16], W� : Jcusp
k,m� → Jcusp

k,m defined for prime
� by

(φ |W�)(τ, z) = �−2
∑

β,γ mod �

φ

(
τ + γ

�
,
z + β

�

)

+ �k−2
∑

α mod �

φ(�τ, z + ατ)e(m(2αz + α2τ)).

We now explain how to use the above theorem and the down operators to span
spaces of Jacobi forms. By using the formula for dimensions of Jacobi forms from
[33], we know dimJcusp

10,8 = 4. We find a basis by searching for theta blocks in Jcusp
10,8 ,

and if there are not enough then we search for theta blocks in Jcusp
10,8p for p = 2, 3, 5, . . .

and apply the down operator Wp to get back to Jcusp
10,8 . Using this method, here is

one basis of Jcusp
10,8 :

Ξ1 = TB10(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 5) |W5,

Ξ2 = TB10(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4) |W5,

Ξ3 = TB10(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5) |W5,

Ξ4 = TB10(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3) |W5.

We construct paramodular forms via Grit(Ξi) ∈ S10(K(8)) for i = 1, 2, 3, 4, where

Grit : Jcusp
k,N → Sk(K(N))

is the Gritsenko lift; see [9]. Let Ξ5 = TB5(1, 1, 1, 1, 2, 2, 2) ∈ Jcusp
5,8 , and consider

the lift Grit(Ξ5) ∈ S5(K(8)). Let

hi = Grit(Ξi) for i = 1, 2, 3, 4; h5 = Grit(Ξ5)2; h6 = Grit(Ξ5)2|T (3).

Computing several Fourier coefficients, these six forms are seen to be linearly inde-
pendent, and therefore, combined with the upper bound dimS10(K(8)) ≤ 6, we
have the following theorem.

Theorem 4.3. dimS10(K(8)) = 6.

Now that we know the relations generated by the Jacobi restriction method up
to nine Jacobi coefficients with determinant bound 800 actually specify the space
S10(K(8)), we can use these relations to determine all Fourier coefficients within
the first nine Jacobi coefficients whose indices have determinant bounded by 800.
It turns out that, up to Γ̂0(8) equivalence, there are 7320 Fourier coefficient indices[ n r/2
r/2 8m

] ∈ X2(8) satisfying 32nm − r2 ≤ 3200 and m ≤ 9. If we needed to, we
could try to prolong these expansions further (either by going farther with the
Jacobi expansion method or by expanding h1, . . . , h6 further). But it turns out that
the set of coefficients that we already have is sufficient for the calculations in this
paper.
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Computing the action of the Hecke operator T (3) on this basis, we get eigenforms
N(8)a, N(8)b and L1, L2, L(8)a, L(8)b. To aid the presentation, we write “L” for
“lift” and “N” for “non-lift”. The number 8 in parentheses indicates that the forms
live in an automorphic representation of conductor 8, as we will see later. The
forms L1 and L2 turn out to be oldforms, living in an automorphic representation
of conductor 1.

Table 3 expresses each eigenform as a linear combination
∑6

i=1 cihi of the basis
h1, . . . h6. Note that L1, L2, L(8)a, L(8)b are Gritsenko lifts because they are each
a linear combination of h1, . . . , h4, which are Gritsenko lifts. The eigenforms N(8)a

and N(8)b are non-lifts. The test for being a lift is simple: f ∈ Sk(K(N)) is a
Gritsenko lift if and only if f = Grit(φ1), where φ1 ∈ Jcusp

k,N is the first Fourier–Jacobi
coefficient of f . Table 4 shows some Fourier coefficients of these six eigenforms; note
that L2 is a conjugate of L1 and L(8)b is a conjugate of L(8)a.

Table 5 shows the eigenvalues of the Hecke operators T (3), T (5), T (7) and
T (9) on the eigenforms in S10(K(8)). It is possible to compute the action of these
Hecke operators because we have expansions up to nine Jacobi coefficients. Letting

Table 4. Fourier coefficients of the eigenforms in S10(K(8)). The index t =
[
a b
b c

]
is

denoted by [a, b, c].

t a(t; N(8)a) a(t; N(8)b) a(t; L1) a(t; L(8)a)

[1, 5/2, 8] 1 1 1 −9 +
√

114

[1, 7/2, 16] 15 15 15 281 − 17
√

114

[2, 7/2, 8] 15 15 15 281 − 17
√

114

[1, 2, 8] 64 0 −49 +
√

4449 0

[1, 3/2, 8] 469 −715 −171 −157 + 117
√

114

[3, 13/2, 16] −171 341 −171 −157 + 117
√

114

[2, 13/2, 24] −171 341 −171 −157 + 117
√

114

[1, 1, 8] 896 −800 8(−81 +
√

4449) 256(−9 +
√

114)

[1, 3, 16] 128 800 8(−17 +
√

4449) −256(−9 +
√

114)

[2, 3, 8] 128 800 8(−17 +
√

4449) −256(−9 +
√

114)

[2, 5, 16] −640 −800 8(47 +
√

4449) 256(−9 +
√

114)

[1, 1/2, 8] −214 970 426 4518 − 374
√

114

[4, 15/2, 16] 426 −86 426 4518 − 374
√

114

[2, 15/2, 32] 426 −86 426 4518 − 374
√

114

[1, 0, 8] −2432 1088 −18(−49 +
√

4449) −4096

[1, 4, 24] 128 −1088 −18(−49 +
√

4449) 4096

[3, 4, 8] 128 −1088 −18(−49 +
√

4449) 4096

[3, 8, 24] 2688 1088 −18(−49 +
√

4449) −4096



November 2, 2017 19:41 WSPC/S1793-0421 203-IJNT 1850028

Paramodular forms of level 8, weights 10 and 12 435

Table 5. Hecke eigenvalues and eigenforms, f | T (q) = λqf , for f ∈ S10(K(8)).

f 37λ3 57λ5 77λ7 97λ9

N(8)a −18360 741900 −2990960 −2973591

N(8)b −3672 −253300 13196624 −167855895

L1 21960 1317900 49344400 293343849

L2 21960 1317900 49344400 293343849

L(8)a 72(445 + 16
√

114)
1947788

− 78336
√

114

36652112

− 1822464
√

114

81(8943385

+ 538112
√

114)

L(8)b 72(445 − 16
√

114)
1947788

+ 78336
√

114

36652112

+ 1822464
√

114

81(8943385

− 538112
√

114)

Table 6. The 3-Euler factors of the eigenforms in S10(K(8)). Arithmetic (respectively, analytic)
normalization indicates that the factors fit into an L-function with a functional equation relating
s and 2k−2−s (respectively, 1−s). If the arithmetic normalization is Qp(x, f), then the analytic

normalization is Qp(p
3
2−kx, f). The actual Euler factor is Q3(3−s, f)−1.

f Q3(x, f)

Arithmetic normalization Analytic normalization

N(8)a 1 + 18360x + 297016470x2 1 +
680

311/2
x +

5030

37
x2 +

680

311/2
x3 + x4

+ 2371013392680x3 + 334x4

N(8)b 1 + 3672x + 138292758x2 1 +
136

311/2
x +

2342

37
x2 +

136

311/2
x3 + x4

+ 474202678536x3 + 334x4

L1 (1 − 38x)(1 − 39x)(1 + 4284x + 317x2)

„
1 − 1√

3
x

«
(1 −√

3x)

„
1 +

476

313/2
x + x2

«

L2 (1 − 38x)(1 − 39x)(1 + 4284x + 317x2)

„
1 − 1√

3
x

«
(1 −√

3x)

„
1 +

476

313/2
x + x2

«

L(8)a (1 − 38x)(1 − 39x)(1 − (5796

„
1 − 1√

3
x

«
(1 −√

3x)

+ 1152
√

114)x + 317x2) ×
 

1 −
 

644

313/2
+

128
√

38

36

!
x + x2

!

L(8)b (1 − 38x)(1 − 39x)(1 − (5796

„
1 − 1√

3
x

«
(1 −√

3x)

− 1152
√

114)x + 317x2) ×
 

1 −
 

644

313/2
− 128

√
38

36

!
x + x2

!

Γ = K(8), the definitions of T (q2) and T (q), for a good prime q, are

T (q2) = Γ



1

1

q2

q2


Γ + Γ



1

q

q2

q


Γ + Γ



q

q

q

q


Γ;
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T (q) = Γ




1

1

q

q


Γ.

Table 6 shows the 3-Euler factors of the eigenforms in S10(K(8)). We note that
(1−√

3
−1

x)(1−√
3x) is the 3-Euler factor of ζ(s−1/2)ζ(s+1/2), which must be a

factor of the L-function of a Gritsenko lift. All other polynomials in this table have
roots of absolute value 1. The spin q-Euler factor Qq(x, f), for a good prime q, is
given, in the arithmetic normalization, by

Qq(x, f) = 1 − qk−3λqx + q2k−6(λ2
q − λq2 − q2)x2 − q3k−6λqx

3 + q4k−6x4.

We note from Table 6 that L1 and L2 have the same Euler factor at p = 3. We
will see later that this is explained by the fact that L1 and L2 are vectors in the
same automorphic representation. In fact, they are oldforms originating from Igusa’s
X10, which also has this same 3-Euler factor. Similarly, the factor for N(8)a given
in Table 6 is the same as the factor for the cusp form F10 ∈ S10(B(2)) given by
Ibukiyama in [11, Theorem 3.3]. This is also explained by the fact that both modular
forms lie in the same automorphic representation; see Table 11.

5. Paramodular Hecke Operators

We introduce two Hecke operators T0,1(p) and T1,0(p) acting on Sk(K(N)) for p |N .
We calculate the eigenvalues of these operators on the eigenforms in S10(K(8)) con-
structed in the previous section. Knowledge of these eigenvalues is key to determin-
ing the local components at p = 2 of the underlying automorphic representations.

5.1. Classical and adelic Hecke operators

Let (π, V ) be an irreducible, admissible representation of GSp(4, Qp) with triv-
ial central character. As before, let V (n) be the subspace of vectors fixed by the
paramodular group K(pn) defined in (3.2). Any double coset T = K(pn)gK(pn),
where g ∈ GSp(4, Qp), defines an endomorphism of V (n) by

Tv =
r∑

i=1

π(gi)v, if T =
r⊔

i=1

giK(pn).

Of particular interest are the double cosets

T0,1 = K(pn)



p

p

1

1


K(pn), T1,0 = K(pn)




p

p2

p

1


K(pn). (5.1)
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If n = 0, then T0,1 and T1,0, together with a central element, generate the local Hecke
algebra. This is no longer the case if n > 0, but the action of these two elements
on the minimal paramodular level still reveals interesting information about the
representation π. Recall that if n is minimal such that V (n) �= 0, then dim V (n) = 1.
The action of T0,1 and T1,0 thus gives two eigenvalues. These can be calculated for
any π that admits non-zero paramodular vectors; see [24, Table A.14]. For some of
the representations of interest to us, we have listed these eigenvalues in Table 2.
The main goal of this section is to rewrite the local operators T0,1 and T1,0 in terms
of operators on Siegel paramodular forms.

Lemma 5.1. We have the following coset decompositions in GSp(4, Qp).

(i) For any n ≥ 1,

K(pn)



p

p

1

1


K(pn)

=
⊔

x,y,z∈Z/pZ



1 x y

1 y zp−n

1

1







p

p

1

1


K(pn)

�
⊔

x,z∈Z/pZ




1

x 1 zp−n

1 −x

1







1

p

p

1


K(pn)

�
⊔

x,y∈Z/pZ




1 −ypn x

1

1

ypn 1







p

1

1

p


K(pn)

�
⊔

x∈Z/pZ




1

1

xpn 1

xpn 1






1

1

p

p


K(pn). (5.2)

In particular, the number of cosets for T0,1 is p(p + 1)2.
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(ii) For any n ≥ 1,

K(pn)



p

p2

p

1


K(pn)

=
⊔

x,y∈Z/pZ

⊔
z∈Z/p2Z




1

x 1

1 −x

1







1 y

1 y zp−n

1

1




×



p

p2

p

1


K(pn)

�
⊔

x,y,z∈Z/pZ



1 −ypn

1

1

ypn 1







1

1

xpn 1

xpn zpn+1 1






p

1

p

p2


K(pn). (5.3)

Alternatively,

K(pn)



p

p2

p

1


K(pn)

=
⊔

x,y∈Z/pZ

⊔
z∈Z/p2Z




1

x 1

1 −x

1






1 y

1 y zp−n

1

1
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×



p

p2

p

1


K(pn)

�
⊔

x,y∈Z/pZ



1 −ypn

1

1

ypn 1







1

1

xpn 1

xpn 1




×



p

1

p

p2


K(pn)

�
⊔

x,y∈Z/pZ

z∈(Z/pZ)×

p



1 −ypn

1

1

ypn 1




×




1

−xp−1 1 zp−n−1

1 xp−1

1


K(pn). (5.4)

In particular, the number of cosets for T1,0 is p3(p + 1).

Proof. Single coset representatives for T0,1 and T1,0 are given in [24, Lemma 6.1.2].
We modify these representatives slightly by moving the element tn appearing in
these representatives to the right and absorbing tn into K(pn); this gives us (5.2)
and (5.3). To obtain the alternative formula (5.4) for T1,0, we use the matrix identity



1

1

1

zpn+1 1






p

1

p

p2
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= p



1

1 z−1p−n−1

1

1






1

−p−n

1

pn




×



1

1 zp−n+1

1

1







1

z

1

z−1


,

which holds for z ∈ (Z/pZ)×. Since the three right-most matrices are in K(pn), we
can rewrite the terms in the second line of (5.3) for which z ∈ (Z/pZ)× as follows:

⊔
x,y∈Z/pZ

z∈(Z/pZ)×

p



1 −ypn

1

1

ypn 1







1

1

xpn 1

xpn 1







1

1 z−1p−n−1

1

1


K(pn).

Since 


1

1

xpn 1

xpn 1







1

1 z−1p−n−1

1

1




=




1

−xz−1p−1 1 z−1p−n−1

1 xz−1p−1

1







1

1

−x2z−1pn−1 xpn 1

xpn 1


,

the same terms also equal the last line in (5.4); note that we have replaced x by xz

and then z by z−1.

Now let F ∈ Sk(K(N)) for some positive integer N . We recall the definition of
the associated adelic function Φ on G(A), where G = GSp(4). Let N =

∏
pnp be

the prime factorization of N . The corresponding global compact subgroup is

KN := K∞ ×
∏

p<∞
K(pnp);

if np = 0, then K(pnp) = G(Zp). It follows from strong approximation for Sp(4)
that G(A) = G(Q)G(R)◦KN . There is then a unique function Φ : G(A) → C that
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is left invariant under G(Q), right invariant under KN , and satisfies

Φ(g) = (F | g)(i12), for g ∈ G(R)◦. (5.5)

We say that Φ is the automorphic form corresponding to F .
The double cosets T0,1 and T1,0, defined with respect to pn, act not only on

local representations, but also on automorphic forms that are right invariant under
K(pn). In particular, we may apply them to the function Φ. The action is given
by right translation, so that (T0,1Φ)(g) =

∑
i Φ(ghi), where hi runs through the

representatives given in (5.2) for n = np; similarly for T1,0. Here, g is any element
in G(A), but the hi, which are rational matrices, are embedded at the place p

only.

Proposition 5.2. Let N be a positive integer, and let F ∈ Sk(K(N)). Let p be a
prime such that pn‖N with n ≥ 1. Let M be any integer such that M(N/pn) ≡ 1
mod p.

(i) Define

T0,1(p)F =
∑

x,y,z∈Z/pZ

F |



1

1

p

p







1 x y

1 y zp−n

1

1




+
∑

x,z∈Z/pZ

F |




p

1

1

p







1

x 1 zp−n

1 −x

1




+
∑

x,y∈Z/pZ

F |



1

p

p

1






1 −yMN x

1

1

yMN 1




+
∑

x∈Z/pZ

F |



p

p

1

1







1

1

xMN 1

xMN 1


. (5.6)

Then T0,1(p)F ∈ Sk(K(N)). If Φ corresponds to F in the sense of (5.5), then
T0,1(p)F corresponds to T0,1Φ.
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(ii) Define

T1,0(p)F =
∑

x,y∈Z/pZ

∑
z∈Z/p2Z

F |



p

1

p

p2






1 y

1 y zp−n

1

1




×




1

x 1

1 −x

1




+
∑

x,y,z∈Z/pZ

F |



p

p2

p

1







1

1

xMN 1

xMN zpMN 1




×



1 −yMN

1

1

yMN 1


, (5.7)

or alternatively,

T1,0(p)F =
∑

x,y∈Z/pZ

∑
z∈Z/p2Z

F |



p

1

p

p2






1 y

1 y zp−n

1

1




×




1

x 1

1 −x

1




+
∑

x,y∈Z/pZ

F |



p

p2

p

1







1

1

xMN 1

xMN 1
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×



1 −yMN

1

1

yMN 1




+
∑

x,y∈Z/pZ

z∈(Z/pZ)×

F |




1

−xp−1 1 zp−n−1

1 xp−1

1






1 −yMN

1

1

yMN 1


.

(5.8)

Then T1,0(p)F ∈ Sk(K(N)). If Φ corresponds to F in the sense of (5.5), then
T1,0(p)F corresponds to T1,0Φ.

Proof. We will only prove (i), since the proof for (ii) is analogous. For h ∈ G(Q),
write hQ for h diagonally embedded into G(A), and hv for h embedded at the place
v only (meaning hv ∈ G(A) is such that the v-component equals h and all other
components equal 1).

We first note that in (5.2) we may

replace



1 −ypn x

1

1

ypn 1







p

1

1

p


 by



1 −yMN x

1

1

yMN 1






p

1

1

p




and

replace




1

1

xpn 1

xpn 1






1

1

p

p


 by




1

1

xMN 1

xMN 1






1

1

p

p


,
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since MN p−n is a p-adic unit and x, y run over Z/pZ. By these replacements, all
representatives h in (5.6) have the property that hq ∈ KN for all q �= p. As a
consequence, for any g ∈ G(R)◦,

G(Q)ghpKN = G(Q)h−1
Q ghpKN = G(Q)h−1

∞ gKN .

The representatives h for T0,1 acting on Φ correspond to the representatives λ(h)h−1

for T0,1 acting on F . For example,

h =



1 x y

1 y zp−n

1

1






p

p

1

1


;

λ(h)h−1 =



1

1

p

p






1 −x −y

1 −y −zp−n

1

1


.

Since we may sum over −x,−y,−z as well as x, y, z, and since F is scalar invariant,
we have

(T0,1Φ)(g) =
∑

i

Φ(g(hi)p) =
∑

i

Φ((hi)−1
∞ g) =

∑
i

(F |h−1
i g)(iI2)

=
∑

i

(F |λ(hi)h−1
i g)(iI2) = ((T0,1F ) | g)(iI2).

Thus T0,1F corresponds to T0,1Φ in the sense of (5.5).

5.2. A method to compute T0,1

In order to get more information about S10(K(8)), we will apply the Hecke oper-
ators from Proposition 5.2 to the eigenforms in this space. Since only one prime
is involved, we will denote them simply by T0,1 and T1,0. From (5.6) we get the
formula

T0,1F =
∑

x,y,z∈{0,1}
F |



1 0 x y

0 1 y z/8

0 0 2 0

0 0 0 2


+

∑
x,z∈{0,1}

F |




2 0 0 0

x 1 0 z/8

0 0 1 −x

0 0 0 2
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+
∑

x,y∈{0,1}
F |



1 −8y x 0

0 2 0 0

0 0 2 0

0 0 8y 1


+ F |



2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1




+ F |



1 0 0 0

0 1 0 0

0 2 1 0

2 0 0 1







4 8 3 −1

−1 −4 1 −3/8

0 0 1 −1/4

0 0 2 −1


 (5.9)

for F ∈ Sk(K(8)). Note that we have replaced the last representative in (5.6) by an
equivalent one, which is more convenient for our computations. Let us write (5.9) as

T0,1F =
17∑

i=1

F |Ui + F |C0(2)U18, (5.10)

where U1, . . . , U17 are defined as the first 17 upper triangular matrices in some
order, and U18 is the last block upper triangular matrix. It will be straightforward
to apply |Ui for 1 ≤ i ≤ 17. The difficulty will be in applying |C0(2)U18, because
it seems we would need the expansion F |C0(2), namely the expansion of F at the
other cusp. In this section, we will present a method to calculate T0,1F that appears
to avoid the Fourier expansion of F |C0(2), but really does access information about
it, albeit in a targeted manner. This method can potentially be applied to more
general situations as well.

The technique we use is called restriction to a modular curve, compare [20]. Let
s be a symmetric positive definite 2 × 2 matrix with rational entries and let s′ be
a symmetric matrix. We will evaluate F at Ω = sτ + s′ to get a one-variable power
series in q = e2πiτ . If we can compute (T0,1F )(sτ + s′), then the eigenvalue is the
ratio of these two series, assuming of course that F (sτ + s′) is non-zero. We now
derive formulas for this purpose. Recall 〈t, Ω〉 = tr(tΩ). Let F have Fourier series
expansion

F (Ω) =
∑

t∈X2(N)

a(t; F )e(〈t, Ω〉);

we understand N = 8 in what follows. Then we have

F (sτ + s′) =
∑

n∈Q+


 ∑

t∈X2(N):〈s,t〉=n

a(t; F )e(〈s′, t〉)

 qn,

where q = e2πiτ . Let U =
[
A B
0 D

] ∈ GSp(4, Q). Then

(F |kU)(Ω) = det(AD)k/2(detD)−kF (AΩD−1 + BD−1),
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and so

(F |kU)(sτ + s′) = det(AD)k/2(det D)−kF (AsD−1τ + As′D−1 + BD−1), (5.11)

which can be calculated as another restriction. This restriction formula applies well
to U = U1, . . . , U17, which takes care of 17 of the 18 coset representatives of T0,1. But
the 18th coset representative will require a roundabout technique, to be described
presently. We have the following useful proposition, whose proof is a modification
of [19, Proposition 2.3].

Proposition 5.3. Let s ∈ P2(Q) have the form
[

Z Z
Z Z/N

]
. Let F ∈ Sk(K(N)) and

set g(τ) = F (sτ). Let σ =
[α β
γ δ

] ∈ SL(2, Z). If M :=
[ αI βs

γs−1 δI

] ∈ Sp(4, Q), then

(g|2kσ)(τ) = (F |kM)(sτ), (5.12)

where on the left-hand side we have the slash operator for functions on the upper half
plane. In particular, if � ∈ Z+ is such that �s−1 ∈ [ Z NZ

NZ NZ

]
, then g ∈ S2k(Γ0(�)). If

there are m ∈ Z, K ∈ K(N), and
[
A B
0 D

] ∈ GSp4(Q) such that M = KC0(m)
[
A B
0 D

]
,

then

(g|2kσ)(τ) = det(AD)k/2(det D)−k(F |kC0(m))(AsD−1τ + BD−1). (5.13)

Here is our method to deal with the 18th coset representative of T0,1. We pick
an s0 so that Proposition 5.3 applies, with the following additional three conditions.

(1) There exists σ =
[α β
γ δ

] ∈ SL(2, Z) such that[
αI βs0

γs−1
0 δI

]
= KC0(2)W0

for some K ∈ K(8) and some W0 =
[
A0 B0
0 D0

] ∈ P2,0(Q).
(2) There is an � ∈ Z+ such that �s−1

0 ∈ [ Z NZ
NZ NZ

]
, and we can effectively compute

g|σ when we are given a q-expansion for g ∈ S20(Γ0(�)).

Suppose for the moment that both (1) and (2) are feasible. Note that

F | C0(2)W0 = F |C0(2)U18|W1, where W1 = U−1
18 W0 =

[
A1 B1

0 D1

]
.

The key is now to choose

s = A1s0D
−1
1 and s′ = B1D

−1
1 ,

and compute the restriction (T0,1F )(sτ + s′) with this choice. As stated before,
(F |Ui)(sτ + s′), for i = 1, . . . , 17, will be straightforward using (5.11). To compute
(F | C0(2)U18)(sτ + s′), note that with g(τ) = F (s0τ) we have

(detA1D1)10/2(detD1)−10(F | C0(2)U18)(sτ + s′)

= (detA1D1)10/2(det D1)−10(F | C0(2)U18)(A1s0D
−1
1 τ + B1D

−1
1 )

= (F | C0(2)U18W1)(s0τ) = (F | C0(2)W0)(s0τ) = (g|20σ)(τ).
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In the last step we applied (5.12), with s0 instead of s. By assumption (2), we can
compute (g|20σ)(τ) by using the presumably known action on g(τ) ∈ S20(Γ0(�)).
Hence we can compute

(F | C0(2)U18)(sτ + s′) = (det A1D1)−10/2(detD1)10(g|20σ)(τ). (5.14)

This is where we access some targeted information about F |C0(2). Thus we would be
able to calculate the series (T0,1F )(sτ + s′). The last item required for this method
to succeed is that

(3) The restriction F (sτ + s′) must be non-zero.

5.3. Carrying out the computation for T0,1

We will show that the conditions (1)–(3) from the previous section are satisfied with
the following choice of s0, �, and σ = σ4 =

[α β
γ δ

]
:

s0 =

[
4 1

1 1/2

]
, � = 8, σ4 =

[
1 0

4 1

]
.

Following the above instructions, we compute that s−1
0 =

[
1/2 −1
−1 4

]
and

[
αI βs0

γs−1
0 δI

]
=




1 0 0 0

0 1 0 0

2 −4 1 0

−4 16 0 1


 =




3 8 −3 −1

2 5 −2 −5/8

−5 0 0 2

24 40 −16 −8






1 0 0 0

0 1 0 0

0 2 1 0

2 0 0 1


W0,

W0 =



−2 4 3 2

3/2 −2 1 5/8

0 0 1 3/4

0 0 2 1


.

So condition (1) holds. Since �s−1
0 =

[
4 −8
−8 32

]
, the first part of condition (2) also

holds. Next,

W1 = U−1
18 W0 =




1/2 0 0 0

−1/2 1/2 0 0

0 0 1 1

0 0 0 1


.

From this, we compute that s =
[ 2 −3/2
−3/2 5/4

]
, s′ =

[
0 0
0 0

]
.

The last thing we need before using this choice to compute T0,1F is a knowledge
of how forms in S20(Γ0(8)) transform by σ4, which is the second part of condition (2).
We discuss the ring generators of M(Γ0(8)) =

⊕∞
k=0 Mk(Γ0(8)). Let

E2(τ) = 1 − 24
∞∑

n=1

σ(n)qn = 1 − 24q − 72q2 − 96q3 − 168q4 − 144q5 − · · ·
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be the nearly modular weight two Eisenstein series transforming, for all
[
a b
c d

] ∈
SL(2, Z), by (

E2|2
[
a b

c d

])
(τ) = E2(τ) − 3

π2

(
2πic

cτ + d

)
. (5.15)

For d > 1, we define E−
2,d ∈ M2(Γ0(d)) by E−

2,d(τ) = 1
1−d(E2(τ) − dE2(dτ)). We

define three elements in M2(Γ0(8)) by

a(τ) = E−
2,2(2τ) = 1 + 24q2 + 24q4 + 96q6 + 24q8 + 144q10 + · · · ,

b(τ) = −1
3
(E−

2,2(τ) − 4E−
2,2(4τ)) = 1 − 8q − 8q2 − 32q3 + 24q4 − 48q5 − · · · ,

c(τ) =
1
3
(E−

2,2(τ) − 2E−
2,2(2τ) + 4E−

2,2(4τ))

= 1 + 8q − 8q2 + 32q3 + 24q4 + 48q5 − · · · .
Lemma 5.4. The graded ring M(Γ0(8)) consists of homogeneous polynomials in
the three elements a, b, c ∈ M2(Γ0(8)), subject to the relation c2 = 2a2 − b2. Every
element in Mk(Γ0(8)) can be uniquely written as Pk(a, b) + cQk−2(a, b), where Pk

and Qk−2 are homogeneous polynomials of degrees k/2 and (k − 2)/2. The ideal
of cusp forms is principal, and a generator is d = (η(2τ)η(4τ))4 ∈ S4(Γ0(8)).
Furthermore, we have

(a|2σ4)(τ) = +a

(
τ − 1

2

)
, (b|2σ4)(τ) = −b

(
τ − 1

2

)
, (c|2σ4)(τ) = −c

(
τ − 1

2

)
.

Proof. The transformation under SL(2, Z) of a, b, c may be worked out using (5.15).
The normalizer in GL(2, Q) of Γ0(8) modulo 〈QI, Γ0(8)〉 is a dihedral group of
order 8; we have T 4 ≡ I and STS ≡ T−1, for T =

[
0 1−8 4

]
and S =

[
2 1
0 2

]
. The

index of Γ0(8) in SL(2, Z) is 12, so, by the Valence Inequality, to prove equality in
dimMk(Γ0(8)) it suffices to check the equality of the first k +1 Fourier coefficients.
In this way we verify (a, b, c)|2T = (−a, c,−b), (a, b, c)|2S = (a,−c,−b), and c2 =
2a2 − b2. By the Riemann–Roch theorem, dim Mk(Γ0(8)) = k + 1 for even k ≥ 0,
and dimSk(Γ0(8)) = k − 3 for even k > 2. It follows that the ideal of cusp forms is
principal, and a non-trivial cusp form of weight 4 is d = 1

16 (a2−b2) = (η(2τ)η(4τ))4 .
Every modular form in Mk(Γ0(8)) that can be written as a polynomial in a, b, c,

may be written in the form Pk(a, b)+ cQk−2(a, b), where Pk and Qk−2 are homoge-
neous polynomials of degrees k/2 and (k− 2)/2, respectively. The modular forms a

and b have the same weight, and so are algebraically independent because b/a is non-
constant. No non-trivial relation of the form Pk(a, b) + cQk−2(a, b) = 0 exists bec-
ause slashing Pk(1, b/a)+ c

aQk−2(1, b/a) = 0 by T 3S implies Pk(1, b/a)− c
aQk−2(1,

b/a) = 0, so that Pk and Qk−2 are trivial. The dimension of C[a, b, c] ∩ Mk(Γ0(8))
is then (k

2 + 1) + (k−2
2 + 1) = k + 1, and thus M(Γ0(8)) = C[a, b, c] as graded

rings. Noting that T 2 ≡ [−2 −1
8 2

]
, the result of slashing a, b, c by σ4 follows from

σ4 =
[
1 0
4 1

]
= − 1

4

[
1 0
8 1

][−2 −1
8 2

][
2 −1
0 2

]
.
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We have dim S20(Γ0(8)) = 17, and a basis is

{aib8−id | 0 ≤ i ≤ 8} ∪ {caib7−id | 0 ≤ i ≤ 7}.
Using sufficiently many terms of the expansion of g(τ) := F (s0τ), we determine g

as a linear combination of this basis, and can then compute g|20σ4. For F = N(8)b,
we compute the first 17 terms of gb(τ) := N(8)b(s0τ) to be

gb(τ) := q3 − 684q5 + 17802q7 − 91144q9 + 208107q11

− 152172q13 − 3426194q15 + 9701496q17 + O(q18)

=
−a8d

128
+

5a6b2d

128
− 17a4b4d

256
+

3a2b6d

64
− 3b8d

256
.

Using the representation in a, b, c, d, we compute gb(τ)|σ4 = −q3+O(q4). By (5.14),
we have

(N(8)b | C0(2)U18)(sτ + s′) = −1024q3 + O(q4).

Here, we decided to truncate power series at q3. Note that exponents of q may
increase by 1/2 by looking at the entries of s. By contrast, it is fairly straightforward
to apply (5.11) to compute

17∑
j=1

(N(8)b |Uj)(sτ + s′) = −9
4
q

3
2 + 1539q

5
2 + 1024q3 + O(q7/2).

Combining these two equations, we have that

(T0,1N(8)b)(sτ + s′) = −9
4
q

3
2 + 1539q

5
2 + O(q7/2).

We also compute that

N(8)b(sτ + s′) = q
3
2 − 684q

5
2 + O(q7/2).

We conclude that the eigenvalue is

λ0,1(N(8)b) =
−9/4

1
=

1539
−684

= −9
4
.

The fact that we get the same answer from the coefficient of q3/2 as well as from
q5/2 provides a check on this calculation.

We apply the same choices of s0, �, σ4, s, s′ and compute that

N(8)a(sτ + s′) = q
3
2 + 64q2 + 500q

5
2 + 512q3 + O(q7/2),

(T0,1(N(8)a))(sτ + s′) = −q
3
2 − 64q2 − 500q

5
2 − 512q3 + O(q7/2).

We conclude that the eigenvalue is λ0,1(N(8)a) = −1. It turns out that this choice
of s0, �, σ4, s does calculate the action of T0,1 on the subspace spanned by L1, L2,
because the restriction applied to this two-dimensional space has an image of full
dimension 2. In fact, L1, L2 each span the one-dimensional eigenspaces of T0,1; they
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were chosen with hindsight to have this property. (There are other choices for which
the restriction yields an image of dimension less than 2, and in those cases, such
restrictions do not tell us what the map T0,1 is on the subspace spanned by L1, L2,
and those choices would not give us the eigenspaces under T0,1.) The results for the
Gritsenko lift eigenforms are

λ0,1(L1) =
1
16

(111 +
√

4449); λ0,1(L(8)a) = 6,

λ0,1(L2) =
1
16

(111 −
√

4449); λ0,1(L(8)b) = 6.

5.4. Calculating T1,0

The computation of T1,0 will be trickier because, as is evident from (5.8), there are
two coset representatives that are in the K(8)C0(2)P2,0(Q) double coset. We want to
modify the technique to take care of these two coset representatives simultaneously.
First, similar to the process for T0,1, we write the coset representatives of T1,0 as
follows. For F ∈ Sk(K(8)), we have

T1,0F =
22∑

i=1

F |Ui + F |



1 0 0 0

0 1 0 0

0 2 1 0

2 0 0 1







4 16 6 −1

−1 −8 2 −3/8

0 0 2 −1/4

0 0 4 −1




+ F |



1 0 0 0

0 1 0 0

0 2 1 0

2 0 0 1







4 16 10 −1

−1 −8 1 −3/8

0 0 2 −1/4

0 0 4 −1




=
22∑

i=1

F |Ui + F |C0(2)U23 + F |C0(2)U24,

where U1, . . . , U22 are defined as the 22 obviously upper triangular matrices in some
order, and U23, U24 are the upper triangular matrices to the right of C0(2) in the
last two coset representatives. It is straightforward to apply |Ui for 1 ≤ i ≤ 22. For
C0(2)U23 and C0(2)U24, we want to apply the trick from the previous section, but
simultaneously to both representatives.

It will turn out that with the following choices of s0, �, and σ, we will be
able to calculate the restriction to some (sτ + s′) of F | C0(2)U23 and F | C0(2)U24

simultaneously. Let

s0 =

[
2 1

1 1

]
, � = 8, σ4 =

[
1 0

4 1

]
.
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Following the instructions for T0,1, we compute that s−1
0 =

[
1 −1
−1 2

]
and


1 0 0 0

0 1 0 0

4 −4 1 0

−4 8 0 1


 =




3 8 −3 −1

3 10 −4 −7/8

−5 0 0 2

16 40 −16 −5






1 0 0 0

0 1 0 0

0 2 1 0

2 0 0 1


W0 ∈ K(8)C0(2)W0,

W0 =



−4 4 3 4

5/2 −2 1 7/8

0 0 1 5/4

0 0 2 2


.

Let

W23 = U−1
23 W0 =




1/2 0 0 0

−3/8 1/4 0 1/32

0 0 1/2 3/4

0 0 0 1


,

W24 = U−1
24 W0 =




1/2 0 −1/2 −3/4

−3/8 1/4 0 1/32

0 0 1/2 3/4

0 0 0 1


.

Setting g(τ) := F (s0τ), we get that

(F | C0(2)U23)(s23τ + s′23) = 1024(g |σ4)(τ),

(F | C0(2)U24)(s24τ + s′24) = 1024(g |σ4)(τ),

where

s23 =

[
2 −1

−1 5/8

]
, s′23 =

[
0 0

0 1/32

]
, s24 =

[
2 −1

−1 5/8

]
, s′24 =

[
−1 0

0 1/32

]
.

We choose s = s23 = s24, s′ = s′23. With this choice, we can compute (F | C0(2)U23)
(sτ +s′) as 1024(g |σ4)(τ). But the issue is to handle (F | C0(2)U24)(sτ +s′) as well.
Towards this end, define

τ0 = 1/2, B = sτ0 + s′24 − s′ =

[
0 −1/2

−1/2 5/16

]
.

We have that

C0(2)U24

[
I B

0 I

]
U−1

24 C0(2)−1 =




9 − 8 4 −4

−6 9 −4 3

−12 16 −7 6

16 −16 8 −7


 ∈ K(8),
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and thus

F | C0(2)U24

[
I B

0 I

]
= F | C0(2)U24.

We conclude

(F | C0(2)U24)(sτ + s′) = (F | C0(2)U24)(sτ + s′ + B)

= (F | C0(2)U24)(s(τ + τ0) + s′24) = 1024(g|σ4)(τ + τ0).

We now show how this works out in the case of F = N(8)a. As an element of
S20(Γ0(8)) in terms of the ring generators a, b, c, we compute

ga(τ) := N(8)a(s0τ) =
9a8d

4096
− 11a6b2d

1024
+

35a4b4d

2048
− 11a2b6d

1024

+
9b8d

4096
− a7cd

1024
+

5a5b2cd

1024
− 7a3b4cd

1024
+

3ab6cd

1024
.

We truncate our computations to q3. Using the action of σ4 on a, b, c as before, we
get

(N(8)a | C0(2)U23)(sτ + s′) = 1024(ga |σ4)(τ) = 1024q3 + O(q4),

(N(8)a | C0(2)U24)(sτ + s′) = 1024(ga |σ4)(τ + 1/2) = −1024q3 + O(q4).

Along with
22∑

i=1

(N(8)a|Ui)(sτ + s′) = −128iq2 + (2048 − 2048i)q3 + O(q4),

we get

(T1,0N(8)a)(sτ + s′) = −128iq2 + (2048− 2048i)q3 + O(q4).

We also compute

N(8)a(sτ + s′) = 32iq2 + (−512 + 512i)q3 + O(q4).

Table 7. The eigenvalues of T0,1(2) and T1,0(2)
on the eigenforms in S10(K(8)).

f λ0,1(f) λ1,0(f)

N(8)a −1 −4

N(8)b − 9
4

0

L1
111 +

√
4449

16

15 +
√

4449

8

L2
111 −√

4449

16

15 −√
4449

8

L(8)a 6 0

L(8)b 6 0
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We conclude that

λ1,0(N(8)a) =
−128
32

=
2048− 2048i

−512 + 512i
= −4.

Again, the fact that we see the same ratio from two different coefficients provides a
check on the calculation. We perform this calculation on the rest of the eigenforms
in S10(K(8)) and summarize the results, as well as those for λ0,1 from the previous
section, in Table 7.

6. Distributing Cusp Forms Among Automorphic Representations

Recall from Sec. 4.3 the eigenforms N(8)a, N(8)b and L1, L2, L(8)a, L(8)b spanning
the space S10(K(8)). We now identify the automorphic representations generated
by these eigenforms.

6.1. Some elliptic cusp forms and their lifts

In this section, we consider the cuspidal automorphic representations π of GL(2, A)
generated by the eigenforms in S18(Γ0(8)). It turns out that there are eight such
π. The reason we consider this weight and level is that these π lift to cuspidal
automorphic representations of GSp(4, A), some of which correspond to elements
of S10(K(8)), our space of interest. Here, by “lift” we mean the representation-
theoretic Saito–Kurokawa lifting constructed in [29, 30]. Only three of the eight
π’s lift to paramodular representations. Inside the lifts of these three, called Λ(1),
Λ(8)a− and Λ(8)b− we can find the Gritsenko lifts L1, L2, L(8)a, L(8)b considered
earlier.

Our notation will be as follows. Automorphic representations of GL(2, A) will be
called π(m), where m is the global conductor. Only m ∈ {1, 2, 4, 8} will appear. If
there is more than one π with the same conductor, we will write π(m)a, π(m)b, etc.
We may decompose a π(m) as ⊗π(m)p, a restricted tensor product of irreducible,

Table 8. Dimensions of spaces of elliptic modular forms of weight 18
and Jacobi forms of weight 10. The “new,−” row gives the dimension
of the space spanned by eigen-newforms that have a minus sign in the
functional equation of their L-function.

m = 1 m = 2 m = 4 m = 8

S18(Γ0(m)) (elliptic) Total 1 3 7 15

New 1 1 2 4

New,− 1 0 0 2

Jcusp
10,m 1 1 2 4

(6.1)
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admissible representations π(m)p of GL(2, Qp). For GSp(4) we use similar notations,
but with Λ or Π instead of π. We choose Λ if the GSp(4) representation is a lift
from GL(2), otherwise Π.

We start with some dimension data for the spaces of elliptic cusp forms
S18(Γ0(m)) for m ∈ {1, 2, 4, 8}. Table 8 lists these dimensions, together with the
dimensions of the spaces of newforms, and the space spanned by newforms whose
L-function has sign −1 in its functional equation. The reason we are looking at
weight 18 is that these forms lift to weight 10 Siegel modular forms; in general,
weight 2k − 2 lifts to weight k. Also given in Table 8 are the dimensions of spaces
of Jacobi cusp forms of weight 10 and index m for m ∈ {1, 2, 4, 8}; see [33].

The newforms in Table 8 generate eight automorphic representations of
GL(2, A):

• π(1): The representation generated by the eigenform in S18(Γ0(1)). Its
2-component π(1)2 has conductor a(π(1)2) = 0, i.e. it is an unramified principal
series representation of GL(2, Q2). The sign in the functional equation is the prod-
uct of all local ε-factors at 1/2. Since all p-adic components are unramified, the
only contribution comes from the Archimedean place. In general the Archimedean
contribution for weight k is (−1)k/2. Hence, in this case, the Archimedean con-
tribution is −1. This is the sign in the functional equation for L(s, π(1)).

• π(2): The representation generated by the eigen-newform in S18(Γ0(2)). Its
2-component π(2)2 has conductor a(π(2)2) = 1. Using the notation of Table 1,
we see that either π(2)2 = StGL(2) or π(2)2 = ξStGL(2). According to the table
above, the global sign is +1. Consequently, ε(1/2, π(2)2) = −1, and it follows
that π(2)2 = StGL(2).

• π(4)a and π(4)b: The representations generated by the two eigen-newforms in
S18(Γ0(4)). Their 2-components π(4)ab2 have conductor a(π(4)ab2 ) = 2. By Table 1,
π(4)ab2 = sc(4), the unique representation with conductor 2. Since ε(1/2, sc(4)) =
−1, it follows that L(s, π(4)a) and L(s, π(4)b) both satisfy a functional equation
with sign +1. This is consistent with the data in Table 8.

• π(8)a− and π(8)b−: The representations generated by the two eigen-newforms
in S18(Γ0(8)) for which the L-function satisfies a functional equation with sign
−1. Their 2-components π(8)ab−2 have conductor a(π(8)ab−2 ) = 3 and sign
ε(1/2, π(8)ab−2 ) = 1. By Table 1, this identifies them uniquely as π(8)ab−2 =
sc(8)+.

• π(8)a+ and π(8)b+: The representations generated by the two eigen-newforms in
S18(Γ0(8)) for which the L-function satisfies a functional equation with sign +1.
The same argument shows that π(8)ab+

2 = sc(8)−.

Table 9 summarizes the eight automorphic representations. Next we are going
to lift all these representations to GSp(4) using [29, Theorem 3.1]. The liftings
will be denoted by Λ(M), where M is the conductor of the lift. To lift any π =
⊗πp, [29, Theorem 3.1] requires the choice of a set of places S where πp is square
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Table 9. The automorphic representations π = ⊗πp of GL(2, A) generated by the newforms in
S18(Γ0(m)) for m ∈ {1, 2, 4, 8}. The notation for the 2-components π2 is the same as in Table 1.

The last four columns show the dimensions of the spaces of fixed vectors in π2 under the local
groups Γ0(2n) for n = 0, 1, 2, 3; this data is taken from Table 1. The “certain space” is the
subspace of fixed vectors that have the same Atkin–Lehner sign as the newform; it is the local
version of the “certain space” of Skoruppa and Zagier; see [32].

π ε(1/2, π) π2 ε(1/2, π2) V (0) V (1) V (2) V (3)

π(1) −1 Unramified 1 Total dim 1 2 3 4

“Certain space” 1 1 2 2

π(2) 1 StGL(2) −1 Total dim 0 1 2 3

π(4)ab 1 sc(4) −1 Total dim 0 0 1 2

π(8)ab− −1 sc(8)+ 1 Total dim 0 0 0 1

“Certain space” 0 0 0 1

π(8)ab+ 1 sc(8)− −1 Total dim 0 0 0 1

integrable. This set needs to satisfy the parity condition (−1)#S = ε(1/2, π). If this
condition is satisfied, the lift exists. Moreover, the lift is cuspidal as long as S is
non-empty.

In our situation, we always want S to contain ∞, since we want to produce
holomorphic Siegel modular forms. By [29, Sec. 4], these Siegel modular forms will
all have weight 10.

The only freedom then is whether S contains the place 2 or not. For π(1) there
is no choice, since π(1)2 is not square-integrable. Hence, for π(1) we are forced to
choose S = {∞}. But then the parity condition is satisfied, and we get a cuspidal
lifting Λ(1).

In all other cases the 2-component of π is square-integrable, so we have a choice
for S. There is exactly one choice that satisfies the parity condition. Hence all our π’s
can be lifted in a unique way to a cuspidal, automorphic representation of GSp(4, A).
Table 10 summarizes the lifts. Note here that π(2) lifts to a representation which
we call Λ(4), since it has conductor 4 = 22. Similarly, π(4)ab lifts to Λ(8)ab, and
π(8)ab+ lifts to Λ(16)ab+. In general, we know from [29] that whenever π lifts to Λ,
the rule for the global conductor is

a(Λ) = a(π)
∏

p<∞
p∈S

p. (6.2)

The last three columns in Table 10 summarize the 2-component of the lift. The
information in the “Λ2” column is taken from [29, Table 2]. The “Type” column
refers to the classification from [24, Table A.1]; we have already used this classi-
fication in Sec. 3.2. As indicated in the last column, some of these 2-components
have no paramodular vectors of any level; see [24, Theorem 3.4.3]. In the first row,
χ is an unramified character of Q×

2 , and χ × χ−1 is an unramified principal series
representation of GL(2, Q2) in standard notation.
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Table 10. The lifts Λ(M) of the automorphic representations π(m). We have M = m if 2 /∈ S
and M = 2m if 2 ∈ S. Here S is the set of places ν with πν square integrable. For the notations
in the Λ2 column, see [24, Table A.1], except for the supercuspidal representations δ∗(. . .), which
are explained in [25].

π ε(1/2, π) π2 S Λ Λ2 Type Para

π(1) −1 χ × χ−1 {∞} Λ(1) χ1GL(2) � χ−1 IIb Yes

π(2) 1 StGL(2) {∞, 2} Λ(4) τ(T, ν−1/2) VIb No

π(4)ab 1 sc(4) {∞, 2} Λ(8)ab δ∗(ν1/2sc(4), ν−1/2) XIa∗ No

π(8)ab− −1 sc(8)+ {∞} Λ(8)ab− L(ν1/2sc(8)+, ν−1/2) XIb Yes

π(8)ab+ 1 sc(8)− {∞, 2} Λ(16)ab+ δ∗(ν1/2sc(8)−, ν−1/2) XIa∗ No

We focus on those π that can be lifted to paramodular representations, namely,
π(1) and π(8)ab−. Given that the sequence of dimensions for the IIb type repre-
sentation in Table 2 is 1, 1, 2, 2, we see that inside Λ(1) we can find the following
modular forms:

• A full-level cusp form of weight 10. Up to multiples, there is only one such cusp
form, namely Igusa’s X10; see [14]. It is the Saito–Kurokawa lifting of the unique
eigenform in S18(SL(2, Z)).

• Two linearly independent oldforms in S10(K(8)). Since every oldform originates
from the newform via level raising operators, we may assume that these two
oldforms are θ3X10 and θηX10. Here, θ and η are the paramodular level raising
operators introduced in [23].

Since X10, θ3X10 and θηX10 originate from the same automorphic representation,
they have the same Euler factors at all places. We also know that θ3X10 and θηX10

must be in the span of the four Gritsenko-liftings L1, L2, L(8)a, L(8)b identified in
Sec. 4.3. It therefore follows from Table 6 that

span(θ3X10, θηX10) = span(L1, L2). (6.3)

In fact, the Fourier coefficients in Table 4 show that

θ3X10 = −8(L1 + L2) − 8
37

√
3√

1483
(L1 − L2), θηX10 =

−1√
3 · 1483

(L1 − L2).

(6.4)

As a Saito–Kurokawa lift, the 3-Euler factor for X10 is known, and is the same as
the quadratic factor of the 3-Euler factor for L1 and L2 given in Table 6.

Next consider Λ(8)a− and Λ(8)b−. Since the dimensions for the XIb representa-
tion in Table 2 are 0, 0, 0, 1, it follows that we can find inside Λ(8)ab− a newform in
S10(K(8)), unique up to multiples. These two newforms must match up with L(8)a

and L(8)b. In fact, the quadratic factors of the Hecke polynomials for L(8)a and
L(8)b in Table 6 are the 3-Hecke polynomials for the two newforms in S18(Γ0(8))
for which the L-function satisfies a functional equation with sign −1; compare label
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8.18.1b in the LMFDB. These independent consistency checks are reassuring when
a good deal of coding has been required. Since we have not specified the order of
these two newforms, we might as well assume that L(8)a lies in Λ(8)a− and L(8)b

lies in Λ(8)b−.

6.2. The non-lifts in S10(K(8))

In the previous section we identified the automorphic representation Λ(1) that con-
tains the eigenforms L1 and L2, and the representations Λ(8)a− and Λ(8)b− that
contain the eigenforms L(8)a and L(8)b. This covers all the lifts in S10(K(8)). We
now proceed to identify the representations generated by (the adelizations of) the
non-lifts N(8)a and N(8)b.

Lemma 6.1. Let Π(8)a and Π(8)b be the automorphic representations generated
by N(8)a and N(8)b, respectively.

(i) Π(8)a and Π(8)b are irreducible, cuspidal automorphic representations of G(A).
(ii) Let Π2 be the 2-component of either Π(8)a or Π(8)b. Then its conductor

(exponent) is a(Π2) = 3. If Π2 is not generic, then Π2 = L(ν1/2π, ν−1/2σ)
(type XIb) with unramified σ and a supercuspidal representation π of GL(2, Q2)
with trivial central character and conductor a(π) = 3.

Proof. (i) Certainly, Π(8)a and Π(8)b are cuspidal, since N(8)a and N(8)b are
cusp forms; we will prove irreducibility. Since we are within the space of cuspidal
automorphic forms, we can write

Π(8)a = Π1 ⊕ · · · ⊕ Πm, Π(8)b = Π′
1 ⊕ · · · ⊕ Π′

n, (6.5)

with irreducible, cuspidal representations Πi and Π′
i. None of the Πi or Π′

i can be
equal to one of the lifts Λ(1), Λ(8)a− and Λ(8)b−; one way to see this is to look at
the 3-Euler factors in Table 6. We write the adelization Φ of N(8)a (respectively,
Φ′ of N(8)b) as Φ1 + · · · + Φm (respectively, Φ′

1 + · · · + Φ′
n) according to (6.5).

The automorphic forms Φi and Φ′
i have the same invariance properties as Φ and Φ′.

Each one of them can therefore be de-adelized to an element of S10(K(8)). It follows
that each Πi and Π′

i contributes at least 1 to the dimension of S10(K(8)). Since
dimS10(K(8)) = 6 by Theorem 4.3, and four of these dimensions are contributed
by L1, L2, L(8)a, L(8)b, it follows that m = n = 1.

(ii) Let V2 be the space of Π2, and let V2(n) be the subspace of vectors invariant
under the local paramodular group K(2n); see (3.2). Then dim V2(3) ≥ 1, since Φ
and Φ′ are invariant under K(23). For reasons of dimension, similar to the argument
in (i), we cannot have dimV2(3) > 1. Hence dim V2(3) = 1.

Assume that Π2 is generic. Then the dimensions of the spaces V2(n), starting
with n = a(Π2), grow like 1, 2, 4, 6, . . .; see [24, Theorem 7.5.6]. Since dimV2(3) = 1,
it follows that a(Π2) = 3.

Assume that Π2 is non-generic. Then Π2 cannot be supercuspidal, since
non-generic supercuspidals do not admit paramodular vectors of any level by [24,
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Theorem 3.4.3]. Since we are within the space of cusp forms, all local representations
must be unitary. Going through [24, Table A.12], we find that the only irreducible,
non-supercuspidal, unitary representation satisfying dim V2(3) = 1 is of type XIb
with π and σ as indicated, and for this representation we have a(Π2) = 3.

By (ii) of this lemma, the 2-components of Π(8)a and Π(8)b contribute 23 to
the global conductor. Of course, the p-components for p ≥ 3 contribute nothing,
since everything is unramified outside 2. It follows that the global conductor is 8,
justifying our notation. Using the Hecke eigenvalue information from Table 7, we
can now completely determine the 2-components.

Proposition 6.2. For ∗ = a or ∗ = b, let Π(8)∗ = ⊗Π(8)∗p be the factorization of
Π(8)∗ into irreducible, admissible representations of GSp(4, Qp).

(i) The 2-component of Π(8)a is

Π(8)a2 = ξStGSp(4) (type IVa), (6.6)

where ξ is the non-trivial, unramified quadratic character of Q×
2 .

(ii) The 2-component of Π(8)b is

Π(8)b2 = π � σ (type X ), (6.7)

where π = σ−1sc(8)+ and σ is the unramified character of Q×
2 with

σ(2) =
−1

16
√

2
(9 + i

√
431). (6.8)

Proof. (i) According to Table 7, the T0,1 and T1,0 eigenvalues of N(8)a are λ0,1 =
−1 and λ1,0 = −4. The Hecke operators T0,1 and T1,0 are compatible with the
local operators at the place 2 of the same name; see Proposition 5.2. We are thus
looking for a representation Π2 where the local operators act on the newform with
eigenvalues −1 and −4. Moreover, Π2 must be unitary, and must be one of the
representations admitted by Lemma 6.1(ii). Going through [24, Table A.14], we see
that the only possibility is Π2 = ξStGSp(4), where ξ is the non-trivial, unramified
quadratic character of Q×

2 .
(ii) The argument in this case is similar. According to Table 7, the T0,1 and T1,0

eigenvalues of N(8)b are λ0,1 = −9/4 and λ1,0 = 0. The only unitary representation
with these eigenvalues and satisfying the conditions of Lemma 6.1(ii) is the type X
representation π � σ, where σ is unramified and a(π) = 3. By [24, Table A.14], we
must have

− 9
4

= 23/2(σ(2) + σ(2)−1). (6.9)

Solving the quadratic equation for σ(2) gives (6.8) as one of its roots (which root
we take is irrelevant). The central character of π � σ must be trivial, i.e. ωπσ2 = 1,
where ωπ is the central character of π. The twist σπ therefore has trivial central
character. By Table 1, it follows that σπ = sc(8)±. To determine the sign, we
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note from (4.1) that each eigenform in S10(K(8)) has Atkin–Lehner eigenvalue +1.
By [24, Table A.9], ε(1/2, σπ) = 1; note here that ε-factor values at 1/2 coincide
with Atkin–Lehner eigenvalues by [24, Corollary 7.5.5]. From Table 1 we thus see
σπ = sc(8)+.

We note that the number σ(2) in (6.8) has absolute value 1. This implies that
Π(8)b2 is a tempered representation, as it should be according to the Ramanujan
conjecture.

6.3. Eigenforms in S10(K(8)) and S10(B(2)) and their

representations

In the previous two sections we identified a total of five automorphic representations
that contribute to the six-dimensional space S10(K(8)). Recall that these were Λ(1),
Λ(8)a− and Λ(8)b−, which contain the lifts L1, L2, L(8)a, L(8)b, and Π(8)a, Π(8)b,
which contain the non-lifts N(8)a and N(8)b. Note that L1 and L2 are oldforms,
since they lie in Λ(1), a representation of conductor smaller than 8. The forms L(8)a,
L(8)b, N(8)a and N(8)b are new, since they lie in automorphic representations of
conductor 8. The notion of oldforms and newforms used here is the one defined in
[23].

We will now consider the automorphic representations that contribute to the
space S10(B(2)). First note that dimS10(B(2)) = 6 by [11, Theorem 3.3]. The
congruence subgroup B(2) corresponds to the Iwahori subgroup I in GSp(4, Q2).
By Table 10, the automorphic representation Λ(1) has an unramified representation
of type IIb as its 2-component. By Table 2, the space of I-invariant vectors in this
IIb representation is four-dimensional. It follows that Λ(1) contributes four of the
six dimensions of S10(B(2)).

Next consider Λ(4), which is the lift of π(2). By Table 10, Λ(4) has a represen-
tation of type VIb as its 2-component. By Table 2, the space of I-invariant vectors
in VIb is one-dimensional. Hence, Λ(4) contributes one of the six dimensions of
S10(B(2)).

The last of the six dimensions comes from Π(8)a, the automorphic representation
that also contains N(8)a. By Proposition 6.2(i), its 2-component is an unramified
twist of the Steinberg representation, ξStGSp(4). By Table 2, the space of I-invariant
vectors in this local representation is one-dimensional. Hence, Π(8)a contributes one
dimension to S10(B(2)).

Lemma 6.3. The cusp form in S10(B(2)) coming from Π(8)a is Ibukiyama’s F10.

Proof. The Steinberg representation StGSp(4) and its unramified twist are the only
representations of GSp(4, Q2) that contain an I-invariant vector that is not invariant
under any bigger parahoric subgroup; see [24, Table A.15]. This means that the cusp
form F constructed from Π(8)a is not invariant under any congruence subgroup
bigger than B(2), like Γ0(2). In other words, F is a newform in S10(B(2)) in the
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Table 11. The eigenforms in S10(K(8)), S10(B(2)) and S10(Γ0(2)) and their automorphic
representations. The K(n) column in the top half of the table gives the dimensions of the

spaces S10(K(n)), and their subspaces of newform/oldforms and lifts/non-lifts; similarly
for B(2) and Γ0(2), except that we give no concept of newform/oldform for Γ0(2).
Specific eigenforms in these spaces are indicated in small print under the dimension. The
lower half of the table shows the automorphic representations contributing to S10(K(8)),
S10(B(2)) and S10(Γ0(2)). The entries in the K(n), B(2) and Γ0(2) columns are now
the dimensions of the spaces of fixed vectors under the corresponding local groups in the
2-components of the automorphic representations. The local type of the 2-component is
indicated next to the name of the automorphic representation.

K(1) K(2) K(4) K(8) B(2) Γ0(2)

S10 Lifts 1
X10

1 2 4
L1,L2,L(8)a,L(8)b

5 4

Non-lifts 0 0 0 2
N(8)a,N(8)b

1
F10

0

Total 1 1 2 6 6 4

Sold
10 Lifts 0 1 2 2

L1,L2
5

Non-lifts 0 0 0 0 0

Total 0 1 2 2 5

Snew
10 Lifts 1 0 0 2

L(8)a,L(8)b
0

Non-lifts 0 0 0 2
N(8)a,N(8)b

1
F10

Total 1 0 0 4 1

Contributions from automorphic representations

Λ(1) IIb 1
X10

1 2 2
L1,L2

4 3 (lift)

Λ(8)a− XIb 0 0 0 1
L(8)a

0 0 (lift)

Λ(8)b− XIb 0 0 0 1
L(8)b

0 0 (lift)

Π(8)a IVa 0 0 0 1
N(8)a

1
F10

0

Π(8)b X 0 0 0 1
N(8)b

0 0

Λ(4) VIb 0 0 0 0 1 1 (lift)

sense of [11]. Since the space of newforms is one-dimensional and spanned by F10

according to the theorem in [11, §1], it follows that F = F10, up to multiples.

To illustrate the newform concept for B(2) further, consider the essentially
unique I-invariant vector in VIb, the 2-component of Λ(4). According to [24,
Table A.15], this vector is invariant under the bigger parahoric subgroup Γ0(2).
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Table 12. The Euler factors at p = 2 for the automor-
phic representations contributing to S10(K(8)) and
S10(B(2)). In the Λ(1) Euler factor, f is the newform
in S18(SL(2, Z)). All factors are normalized to fit into
a functional equation relating s and 1 − s.

Π L(s, Π2)−1

Λ(1) L2(s, f)−1(1 − p−s−1/2)(1 − p−s+1/2)

Λ(8)a− (1 − p−s−1/2)(1 − p−s+1/2)

Λ(8)b− (1 − p−s−1/2)(1 − p−s+1/2)

Π(8)a 1 + 2−s−3/2

Π(8)b 1 + 9 · 2−7/2−s + 2−2s

Λ(4) (1 − p−s−1/2)2

Thus the cusp form in S10(B(2)) constructed from Λ(4) lies in fact in S10(Γ0(2)),
i.e. it is an oldform in S10(B(2)) in the sense of [11].

Table 11 summarizes our findings. The dimension data for S10(K(2)) and
S10(B(2)) is taken from [11, Theorem 3.3], and the one for S10(K(4)) is taken
from [21]. We have also included the space S10(Γ0(2)) since its eigenforms are cov-
ered by the automorphic representations in our list. Note however that we do not
define oldforms or newforms for this space.

Using [24, Table A.8], it is easy to determine the 2-Euler factors of the auto-
morphic representations in Table 11. The results are summarized in Table 12. The
factors for Π(8)a and Π(8)b follow from Proposition 6.2. Note that, by (6.9), the
factor for Π(8)b equals L(s, σ)L(s, σ−1), with σ as in Proposition 6.2(ii).

6.4. Weight 12

With the methods explained in the previous sections we can also analyze the space
S12(K(8)). We list the results without giving all details. The starting point is the
following theorem.

Theorem 6.4. dim S12(K(8)) = 12.

Proof. The proof of this result is analogous to that of Theorem 4.3. Using
Theorem 4.1 and 11 Fourier-Jacobi coefficients, running the Jacobi restriction
method yields that the dimension is at most 11 for S12(K(8))+ and at most 1
for S12(K(8))−. Because the non-lift newform in S12(K(4)) yields an old form in
S12(K(8))−, it follows that dimS12(K(8))− = 1. We can generate 11 linearly inde-
pendent forms in S12(K(8))+ as follows: six weight 12 Gritsenko lifts, the square
of the weight 6 Gritsenko lift, the two products obtained by multiplying the one
weight 5 Gritsenko lift with the two weight 7 Gritsenko lifts, and T (3) applied to
these two products.
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Table 13. Dimensions of spaces of elliptic modular forms of weight 22
and Jacobi forms of weight 12. The “new,−” row gives the dimension
of the space spanned by eigen-newforms that have a minus sign in the
functional equation of their L-function.

m = 1 m = 2 m = 4 m = 8

S22(Γ0(m)) (elliptic) Total 1 4 9 19

New 1 2 2 5

New,− 1 1 0 2

Jcusp
12,m 1 2 3 6

Table 14. The automorphic representations π = ⊗πp of GL(2, A) generated by the newforms in
S22(Γ0(m)) for m ∈ {1, 2, 4, 8}. The notation for the 2-components π2 is the same as in Table 1.
The last four columns show the dimensions of the spaces of fixed vectors in π2 under the local
groups Γ0(2n) for n = 0, 1, 2, 3; this data is taken from Table 1. The “certain space” is the
subspace of fixed vectors that have the same Atkin–Lehner sign as the newform; it is the local
version of the “certain space” of Skoruppa and Zagier; see [32].

π ε(1/2, π) π2 ε(1/2, π2) V (0) V (1) V (2) V (3)

π(1) −1 Unramified 1 Total dim 1 2 3 4

“Certain space” 1 1 2 2

π(2)+ 1 StGL(2) −1 Total dim 0 1 2 3

π(2)− −1 ξStGL(2) 1 Total dim 0 1 2 3

π(4)ab 1 sc(4) −1 Total dim 0 0 1 2

π(8)ab− −1 sc(8)+ 1 Total dim 0 0 0 1

“Certain space” 0 0 0 1

π(8)abc+ 1 sc(8)− −1 Total dim 0 0 0 1

Table 15. The lifts Λ(M) of the automorphic representations π(m). We have M = m if 2 /∈ S
and M = 2m if 2 ∈ S.

π ε(1/2, π) π2 S Π Π2 Type Para

π(1) −1 χ × χ−1 {∞} Λ(1) χ1GL(2) � χ−1 IIb Yes

π(2)+ 1 StGL(2) {∞, 2} Λ(4) τ(T, ν−1/2) VIb No

π(2)− −1 ξStGL(2) {∞} Λ(2) L(ν1/2ξStGL(2), ν
−1/2) Vb Yes

π(4)ab 1 sc(4) {∞, 2} Λ(8)ab δ∗(ν1/2sc(4), ν−1/2) XIa∗ No

π(8)ab− −1 sc(8)+ {∞} Λ(8)ab− L(ν1/2sc(8)+, ν−1/2) XIb Yes

π(8)abc+ 1 sc(8)− {∞, 2} Λ(16)abc+ δ∗(ν1/2sc(8)− , ν−1/2) XIa∗ No
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Table 16. The eigenforms in S12(K(8)) and S12(B(2)) and their automorphic
representations.

K(1) K(2) K(4) K(8) B(2) Γ0(2)

S12 Lifts 1
X12

2 3 6 11 5

Non-lifts 0 0 1
N(4)

6 1
F12

2

Total 1 2 4 12 12 7

Sold
12 Lifts 0 1 3 4 7

Non-lifts 0 0 0 2 4

Total 0 1 3 6 11

Snew
12 Lifts 1

X12
1

L(2)
0 2

L(8)ab
0

Non-lifts 0 0 1
N(4)

4
N(8)∗

1
F12

Total 1 1 1 6 1

Contributions from automorphic representations

Λ(1) IIb 1
X12

1 2 2 4 3 (lift)

Λ(2) Vb 0 1
L(2)

1 2 2 1 (lift)

Π(4) IIIa 0 0 1
N(4)

2 4 2

Λ(8)a− XIb 0 0 0 1
L(8)a

0 0 (lift)

Λ(8)b− XIb 0 0 0 1
L(8)b

0 0 (lift)

Π(8)a IVa 0 0 0 1
N(8)a

1
F12

0

Π(8)b XIa 0 0 0 1
N(8)b

0 0

Π(8)c X 0 0 0 1
N(8)c

0 0

Π(8)d X 0 0 0 1
N(8)d

0 0

Λ(4) VIb 0 0 0 0 1 1 (lift)

The method also shows that the subspace of S12(K(8)) spanned by Gritsenko
lifts is six-dimensional. To understand the representation-theoretic lifts, we start
from Table 13, which shows the dimensions of some spaces of elliptic modular forms
of weight 22. Note that weight 22 on GL(2) lifts to weight 12 on GSp(4); in general,
weight 2k − 2 lifts to weight k. Table 14 shows the automorphic representations of
GL(2, A) generated by these eigenforms. Just as before, each of these representations
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Table 17. The newforms in the automorphic representations contributing to S12(K(8)).
The second and third columns show the eigenvalues of T0,1(2) and T1,0(2) on some of these

newforms. The last column shows the Hecke eigenvalue of T (3), normalized to facilitate
comparison with the eigenvalues given in [11, Theorem 3.4].

Form λ0,1 λ1,0 Representation Type 39λ3

X12 χ1GL(2) � χ−1 IIb 107352

L(2) L(ν1/2ξStGL(2), ν
−1/2) Vb 307800

N(4) − 7
2

χ � σStGSp(2) IIIa −88488

L(8)a 6 0 L(ν1/2sc(8)+, ν−1/2) XIb 24(7645 + 8
√

358549)

L(8)b 6 0 L(ν1/2sc(8)+, ν−1/2) XIb 24(7645 − 8
√

358549)

N(8)a −1 −4 ξStGSp(4) IVa −14760

N(8)b 2 −4 δ(ν1/2sc(4), ν−1/2) XIa −229032

N(8)c 1
8
(−12 − 5

√
6) 0 (σ−1sc(8)+) � σ X 504(65 + 64

√
6)

N(8)d 1
8
(−12 + 5

√
6) 0 (σ−1sc(8)+) � σ X 504(65 − 64

√
6)

Table 18. The Euler factors at p = 2 for the automorphic repre-
sentations contributing to S12(K(8)) and S12(B(2)). In the Λ(1)
Euler factor, f is the newform in S22(SL(2, Z)). All factors are
normalized to fit into a functional equation relating s and 1− s.

Π L(s, Π2)−1

Λ(1) L(s, f)−1(1 − p−s−1/2)(1 − p−s+1/2)

Λ(2) (1 + p−s−1/2)(1 − p−s−1/2)(1 − p−s+1/2)

Π(4) 1 + 7
4
p−s−1/2 + p−2s−1

Λ(8)a− (1 − p−s−1/2)(1 − p−s+1/2)

Λ(8)b− (1 − p−s−1/2)(1 − p−s+1/2)

Π(8)a 1 + p−s−3/2

Π(8)b 1 − p−s−1/2

Π(8)c 1 + 1
16

(6
√

2 + 5
√

3)p−s + p−2s

Π(8)d 1 + 1
16

(6
√

2 − 5
√

3)p−s + p−2s

Λ(4) (1 − p−s−1/2)2
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admits a unique lift to a cuspidal, automorphic representation of GSp(4, A); see
Table 15.

Table 16 is the main result for weight 12. There are nine automorphic representa-
tions that contribute to the 12-dimensional S12(K(8)). There is a tenth representa-
tion Λ(4) which does not contribute to S12(K(8)), but to S12(B(2)) and S12(Γ0(2)).
We have dim S12(B(2)) = 12 and dimS12(Γ0(2)) = 7 by [11, Theorem 3.4], showing
that no other automorphic representations contribute to these spaces besides the
ones in Table 16. Our F12 ∈ S12(B(2)) is the same F12 as in [11, Theorem 3.4]. Our
form L(2) is the same as the F

(2)
12 from [11].

To determine the local representations at two of the non-lifts, we again need
to calculate the T0,1 and T1,0 eigenvalues on the non-lift newforms. Because the
technique of choosing s0, σ, etc. is independent of the weight, the same technique
used to calculate T0,1 and T1,0 in weight 10 can be used for other weights. The
results are listed in Table 17. The characters of some of the local components in
Table 17 are determined as follows:

• For X12: χ is unramified such that (1 − χ(2)2−s)(1 − χ(2)−12−s) is the reciprocal
of the Euler factor at p = 2 (in the analytic normalization) of the elliptic cusp
form spanning the space S22(SL(2, Z)).

• For L(2) and N(8)a: ξ is unramified with ξ(2) = −1.
• For N(4): σ is unramified with 2(σ(2)+ σ(2)−1) = λ0,1 = −7/2. The character χ

is unramified with χσ2 = 1.
• For N(8)c: σ is unramified with 23/2(σ(2) + σ(2)−1) = λ0,1 = 1

8 (−12 − 5
√

6).
• For N(8)d: σ is unramified with 23/2(σ(2) + σ(2)−1) = λ0,1 = 1

8 (−12 + 5
√

6).

As an application we obtain the L-factors of all automorphic representations
involved; see Table 18. Observe that the Atkin–Lehner eigenvalue of all newforms
is +1. Hence ε(1/2, Π) = +1 for all representations Π in Table 16.
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