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Abstract

By Ihara (J Math Soc Jpn 16:214–225, 1964) and Langlands (Lectures in modern analysis
and applications III, lecture notes in math, vol 170. Springer, Berlin, pp 18–61, 1970), it is
expected that automorphic forms of the symplectic group Sp(2,R) ⊂ GL4(R) of rank 2
and those of its compact twist have a good correspondence preserving L functions.
Aiming to give a neat classical isomorphism between automorphic forms of this type
for concrete discrete subgroups like Eichler (J Reine Angew Math 195:156–171, 1955)
and Shimizu (Ann Math 81(2):166–193, 1965) (and not aiming the general
representation theory), in our previous papers Hashimoto and Ibukiyama (Adv Stud
Pure Math 7:31–102, 1985) and Ibukiyama (J Fac Sci Univ Tokyo Sect IA Math
30:587–614, 1984; Adv Stud Pure Math 7:7–29 1985; in: Furusawa (ed) Proceedings of
the 9-th autumn workshop on number theory, 2007), we have given two different
conjectures on precise isomorphisms between Siegel cusp forms of degree two and
automorphic forms of the symplectic compact twist USp(2), one is the case when
subgroups of both groups are maximal locally, and the other is the case when
subgroups of both groups are minimal parahoric. We could not give a good conjecture
at that time when the discrete subgroups for Siegel cusp forms are middle parahoric
locally (like �

(2)
0 (p) of degree two). Now a subject of this paper is a conjecture for such

remaining cases. We propose this new conjecture with strong evidence of relations of
dimensions and also with numerical examples. For the compact twist, it is known by
Ihara that there exist liftings of Saito–Kurokawa type and of Yoshida type. It was not
known about the description of the image of these liftings, but we can give here also a
very precise conjecture on the image of the Ihara liftings.
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1 Introduction
In this paper, we first show certain newdimensional relations between Siegel cusp forms of
degree two and automorphic forms belonging to the compact twist of Sp(2,R) ⊂ SL(4,R).
More precisely, the discrete subgroups we treat here for Siegel modular forms are mainly
those of prime level p whose p-adic completions are parahoric subgroups of Sp(2,Qp)
which are not maximal, but not minimal. On the other hand, the adelic open subgroups
of the compact twist are those which correspond with the subgroup stabilizing a fixed
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lattice in the principal genus of binary quaternion hermitian lattices over the definite
quaternion algebra overQwith prime discriminant p. We give a new dimensional relation
between Siegel cusp forms and automorphic forms of the compact twist belonging to
such groups (§3 Main Theorem). Such relation leads naturally to conjectures on corre-
spondence between automorphic forms (See Conjectures 3.2, 3.3.) In particular, we give a
precise conjecture on the image of Ihara lifts in Conjecture 3.2. The Ihara lift is a compact
analogue of Saito–Kurokara lift and Yoshida lift, though actually it appeared much earlier
in the paper [27] (See also [22]). In §4, we give numerical examples of the lifts and the
correspondence for the most cases explained in §3. In particular, Ihara gave in [27] an
example consisting of two automorphic forms of the compact twist which seem to be
very different but to have the same Hecke eigenforms. We will explain in §4.3 that both
forms should correspond to essentially the same Siegel modular form belonging to mid-
dle parahoric subgroups, and this fact supports the last claim of Conjecture 3.3, though
we do not know if this is a counter example to the multiplicity one property or not. In
§5, we give a proof of the Main Theorem, first for p �= 2, 3 and then for p = 2, 3 and
j = 0.

2 Definitions and notation
2.1 Siegel modular forms

We denote by Hn the Siegel upper half space of degree n and Sp(n,R) ⊂ M2n(R) the real
symplectic group of degree n. For any irreducible representation (ρ, V ) of GLn(C), any

V -valued holomorphic function f : Hn → V , and any g =
(
A B
C D

)
∈ Sp(n,R), we write

(f |ρ[g])(τ ) = ρ(Cτ + D)−1f (gτ ) (τ ∈ Hn).

For any discrete subgroup � ⊂ Sp(n,Q) with vol(�\Hn) < ∞, a V -valued holomorphic
function f is said to be a Siegel modular form of weight ρ of degree n with respect to �

if f |ρ[γ ] = f for any γ ∈ �, with extra condition that it is holomorphic at cusps when
n = 1, which is automatic when n > 1 by the Koecher principle. We denote the space of
such modular forms by Aρ(�). For f ∈ Aρ(�), we define the Siegel � operator by

(�f )(τ1) = lim
t→+∞ f

(
τ1 0
0 it

)
(τ1 ∈ Hn−1, t ∈ R).

If we have �(f |ρ[g]) = 0 for any g ∈ Sp(n,Q), we say that f is a cusp form. We denote
by Sρ(�) the space of cusp forms. In the paper, we mainly consider the case n = 2. Any
rational irreducible representation of GL2(C) is given by ρ = detk Sym(j) for some k ∈ Z

and j ∈ Z≥0, where Sym(j) is the symmetric tensor representation of degree j and detk is
the k-th power of the determinant. For the sake of simplicity, we write Aρ(�) = Ak,j(�)
and Sρ(�) = Sk,j(�) for such representations. When n = 2, if −14 ∈ �, then we have
Ak,j(�) = 0 if j is odd. For n = 1, we denote as usual by Ak (�) and Sk (�) the space of
modular forms and cusp forms of weight k belonging to �, respectively.

2.2 Discrete subgroups

We explain discrete subgroups of Sp(2,R) ⊂ GL4(R) that we want to treat in the paper.
We fix a prime p and define a subgroup B(p) of Sp(2,Q) by
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B(p) =

⎛
⎜⎜⎜⎝

Z Z Z Z

pZ Z Z Z

pZ pZ Z pZ

pZ pZ Z Z

⎞
⎟⎟⎟⎠ ∩ Sp(2,Q).

The p-adic completion of B(p) is the minimal parahoric subgroup (i.e., the Iwahori sub-
group) of Sp(2,Qp). There are seven (proper) standard parahoric subgroups of Sp(2,Qp)
containing B(p). Corresponding to those local subgroups, we can define global subgroups
as follows. We define

S0 =

⎛
⎜⎜⎜⎝
0 0 −p−1 0
0 1 0 0
p 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ , S1 =

⎛
⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ ,

S2 =

⎛
⎜⎜⎜⎝
1 0 0 0
0 0 0 − 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟⎠ , ω =

⎛
⎜⎜⎜⎝
0 0 0 − 1
0 0 − 1 0
0 p 0 0
p 0 0 0

⎞
⎟⎟⎟⎠ .

We put

�0(p) = B(p) ∪ B(p)S1B(p),

�
′
0(p) = B(p) ∪ B(p)S2B(p), �

′′
0(p) = B(p) ∪ B(p)S0B(p).

We call these subgroups the subgroups of middle parahoric type, since these are not
maximal but not minimal p-adically. More concretely, these groups are given as follows.

�0(p) =

⎛
⎜⎜⎜⎝

Z Z Z Z

Z Z Z Z

pZ pZ Z Z

pZ pZ Z Z

⎞
⎟⎟⎟⎠ ∩ Sp(2,Q),

�
′
0(p) =

⎛
⎜⎜⎜⎝

Z Z Z Z

pZ Z Z Z

pZ pZ Z pZ

pZ Z Z Z

⎞
⎟⎟⎟⎠ ∩ Sp(2,Q),

�
′′
0(p) =

⎛
⎜⎜⎜⎝

Z Z p−1
Z Z

pZ Z Z Z

pZ pZ Z pZ

pZ pZ Z Z

⎞
⎟⎟⎟⎠ ∩ Sp(2,Q).

We have �
′′
0(p) = ω�

′
0(p)ω−1. There are three other subgroups which are maximal p-

adically. Two are Sp(2,Z) = M4(Z) ∩ Sp(2,Q) and ωSp(2,Z)ω−1 and the remaining one
is the paramodular group K (p) generated by �

′
0(p) and �

′′
0(p). We can write K (p) =

B(p) ∪ B(p)S0B(p) ∪ B(p)S2B(p) ∪ B(p)S0S2B(p) and more concretely we have
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K (p) =

⎛
⎜⎜⎜⎝

Z Z p−1
Z Z

pZ Z Z Z

pZ pZ Z pZ

pZ Z Z Z

⎞
⎟⎟⎟⎠ ∩ Sp(2,Q).

2.3 Automorphic forms on the compact twist

Wefix a prime p as before.We denote byH the unique division quaternion algebra overR.
Let D be the definite quaternion algebra over Q with discriminant p. For any prime q, we
putDq = D⊗Q Qq , whereQq is the q-adic number field and also putD∞ = D⊗Q R ∼= H.
We define the group of similitudes of the positive definite binary quaternion hermitian
form over D by

G = {g ∈ M2(D); g tg = n(g)12 for some n(g) ∈ Q
×+}

and call it shortly a quaternion hermitian group. Here, we denote by ∗ themain involution

ofD and for g =
(
a b
c d

)
∈ M2(D), we write t g =

(
a c
b d

)
. We denote byGA the adelization

of G and by Gv the v-component of GA for places v ≤ ∞. For example, we have

G∞ = {g ∈ M2(H); g tg = n(g)12, n(g) > 0}
and if we putG1∞ = {g ∈ G∞; n(g) = 1}, then this is the compact twistUSp(2) of Sp(2,R).
For a prime q, we also have

Gq = {g ∈ M2(Dq); g tg = n(g)12 for some n(g) ∈ Q
×
q }.

For any prime q �= p, we have

Gq ∼= GSp(2,Qq) = {g ∈ M4(Qq); t gJg = n(g)J for some n(g) ∈ Q
×
q },

where J =
(
02 −12
12 02

)
.

Now we describe a subgroup of GA for which we define automorphic forms of GA in
this paper. LetO be a maximal order of D. For a prime q, we writeOq = O ⊗Z Zq where
Zq is the ring of q-adic integers. We write

GL2(Oq) = {g ∈ GL2(Dq); g ∈ M2(Oq) and g−1 ∈ M2(Oq)},
the group of invertible elements of M2(Oq). We put Uq = Gq ∩ GL2(Oq). This is the
subgroup ofGq which stabilizes themaximal latticeO2

q , and amaximal compact subgroup
of Gq . When q �= p, then we have

Uq ∼= GSp(2,Zq) = {g ∈ GSp(2,Qq) ∩ M4(Zq); n(g) ∈ Z
×
q }.

We define an open subgroup Upr(p) of GA by

Upr(p) = G∞
∏

q;prime
Uq.

Weexplain that this group is related to the genus ofmaximal quaternion hermitian lattices
containingO2. A lattice L ⊂ D2 is called anO lattice ifOL ⊂ L. The set � of quaternion
hermitian O lattices L in D2 such that Lv := L ⊗Z Zv = O2

vgv for some gv ∈ Gv for
all v < ∞ is called the principal genus. Two O lattices L1 and L2 in � are said to be
isomorphic if L1 = L2g for some g ∈ G. The number of isomorphism classes ofO lattices
in � is finite and called the class number h = h(�) of �. The group GA acts on � by
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L → Lg := ⋂
v<∞(Lvgv ∩ D2) for g = (gv) ∈ GA. Then the group Upr(p) is the stabilizer

of the latticeO2. We use the subscript “pr” for Upr(p) to indicate the principal genus. We
have h(�) = #(Upr(p)\GA/G) (cardinality). Here as usual G is identified with the image
of the diagonal embedding of G into GA ([39]).
We explain weights of our automorphic forms. Let (τ∞, V ) be a (finite dimensional)

irreducible representation of the compact group G1∞. Any such representation of G1∞
corresponds with the Young diagram parameter (ν1, ν2) with ν1 ≥ ν2 ≥ 0, νi ∈ Z. We
denote this representation by τ∞ = τν1 ,ν2 . We assume that τν1 ,ν2 (− 12) = idV , which is
equivalent to the condition that ν1 ≡ ν2 mod 2. Associated with such τν1 ,ν2 , we define a
representation of GA by

GA → G∞ → G∞/center = G1∞/{±12}
τν1 ,ν2−→ GL(V ).

This is denoted by the same letter τν1 ,ν2 . Any V -valued function f of GA is said to be
an automorphic form of GA of weight τ = τν1 ,ν2 with respect to Upr(p) if it satisfies the
following condition.

f (uga) = τν1 ,ν2 (u)f (g) for any a ∈ G, g ∈ GA, u ∈ Upr(p).

We denote the space of such automorphic forms by Mν1 ,ν2 (Upr(p)). More down to earth
description of this space is given as follows (See [27] and [10]). We take a double coset
decomposition GA = ∪h

κ=1Upr(p)gκG and for each κ , put �κ = G ∩ g−1
κ Upr(p)gκ . This is

a finite group. We put

V �κ = {v ∈ V ; τν1 ,ν2 (γκ )v = v for all γκ ∈ �κ },
Mν1 ,ν2 (Upr(p)) = ⊕h

κ=1V
�κ .

Then we have a following isomorphism.

Mν1 ,ν2 (Upr(p)) ∼= Mν1 ,ν2 (Upr(p)). (1)

Anexplicit isomorphismof (1) is givenbymapping f ∈ Mν1 ,ν2 (Upr(p)) to
∑h

κ=1 τ (gκ )−1f (gκ ).
We often identify these two spaces in Sect. 4. The action of Hecke operators is defined as
follows. For any z ∈ GA, we take a double coset

Upr(p)zUpr(p) =
⋃
i
ziUpr(p).

Then the action of this double coset on f ∈ Mν1 ,ν2 (Upr(p)) is defined by

([Upr(p)zUpr(p)]f )(g) =
∑
i

τν1 ,ν2 (zi)f (z
−1
i g).

On the element (fκ ) ∈ Mν1 ,ν2 (Upr(p)) corresponding to f in the isomorphism (1), the
action of Upr(p)zUpr(p) is given by

([Upr(p)zUpr(p)]f )κ =
h∑

μ=1

∑
t∈Tκμ/�μ

τν1 ,ν2 (t)fμ (1 ≤ κ ≤ h),

where ([Upr(p)zUpr(p)]f )κ denotes the κ component of [Upr(p)zUpr(p)]f inMν1 ,ν2 (Upr(p))
and the set Tκμ is defined by

Tκμ = G ∩ g−1
κ Upr(p)zUpr(p)gμ.
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For any positive integer n, we put T (n) = ∑
z Upr(p)zUpr(p), where z runs over elements

z = (zv) ∈ GA ∩ G∞
∏

q M2(Oq) with n(zq) = nZ
×
q for all primes q. The action of T (n)

on Mν1 ,ν2 (Upr(p)) ∼= Mν1 ,ν2 (Upr(p)) is defined by the linear prolongation of the action of
double cosets. The Hecke algebra C[T (n); p � n] is isomorphic to that of the split group
GSp(2,Q), since Gq ∼= GSp(2,Qq) and Uq ∼= GSp(2,Zq) for q �= p. If f is an eigenform of
all the Hecke operators T (n), we denote by λ(n) the eigenvalues of T (n) on f and define
an Euler q-factor for q �= p by

1 − λ(q)q−s + (λ(q)2 − λ(q2) − qν1+ν2+2)q−2s − λ(q)qν2+ν2+3−3s + q2ν1+2ν2+6−4s.

(The Euler q factor for q = p is given in Ihara [27] and we omit it here.)We define a spinor
L function of f as the product over primes of the inverse of all these Euler factors. (See
[10,22,27].)

2.4 Ihara lifts

We review shortly a theory of Ihara lifts ([22,27]) to Mν1 ,ν2 (Upr(p)). Although they are
compact versions of the Saito–Kurokawa lifts and the Yoshida lifts (published in 1978
and 1980, respectively), Ihara’s lifts appeared much earlier (around in 1963 in Ihara’s
master thesis in Univ. Tokyo and partly published in [27]). We take a basis of H over
R as H = R + Ri + Rj + Rk with i2 = j2 = k2 = − 1, ij = −ji = k . We identify
H

2 = R
8 for (x, y) ∈ H

2 by taking (x1, x2, x3, x4 , y1, y2, y3, y4) for x = x1 + x2i + x3j + x4k ,
y = y1 + y2i + y3j + y4k , and consider a polynomial f (x, y) in eight variables. We denote
by �x,y the usual Laplacian of these eight variables:

�x,y =
4∑

i=1

∂2

∂x2i
+

4∑
i=1

∂2

∂y2i
.

We say that a polynomial f (x, y) is harmonic if �x,yf = 0. We denote by Hml(H2) the
space of harmonic polynomials in (x, y) ∈ R

8 of homogeneous degree l. For λ ∈ H, we
denote by �λ the Laplacian of H ∼= R

4 in the same sense. We assume that l is even. For
each (a, b) with a ≥ b ≥ 0 and a + b = l, we define a subspace Va,b ofHml(H2) by

Va,b = {f (x, y) ∈ Hml(H2); f (λx, λy) = n(λ)bϕ(x, y, λ) for any λ, x, y ∈ H,

where ϕ is a polynomial with �λϕ = 0},
where n(λ) = λλ. This space is invariant by the action f → f (h(x, y)g) for h ∈ H

× and
g ∈ G∞. This is the representation Syma−b ⊗ τa,b of USp(1) × USp(2), where Syma−b is
the symmetric tensor representation of USp(1) ∼= SU (2) (the compact twist of SL2(R)) of
degree a − b. So as a representation of USp(2), Va,b is not multiplicity free unless a = b.
We denote by h0 the class number of D. We take representatives {bi} of the double coset
decomposition D×

A = ∪h0
i=1(H

× ∏
q:primeO×

q )biD× and put Oi = ∩q:prime(b−1
i Oqbi ∩ D)

for i with 1 ≤ i ≤ h0. We denote by V (i,κ)
a,b = VO×

i ×�κ

a,b the space of polynomials in Va,b
such that f (u(x, y)γ ) = f (x, y) for all (u, γ ) ∈ O×

i × �κ . Then the space

V = ⊕h0
i=1 ⊕h

κ=1 V
(i,κ)
a,b

is naturally identified with the tensor product of the space of automorphic forms on D×
A

with respect to O×
A = H

× ∏
q O×

q of weight Syma−b and the space Ma,b(Upr(p)). For an
element F = (Fiκ )1≤i≤h0 ,1≤κ≤h of this space V , we define a theta function of τ ∈ H1 by

ϑF (τ ) =
h0∑
i=1

h∑
κ=1

|O×
i |−1|�κ |−1ϑ (iκ)

F (τ ),
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where

ϑ
(iκ)
F (τ ) =

∞∑
m=0

∑
x∈Liκ ,

niκ (x)=m

Fiκ (x)e2π imτ

and Liκ = biO2gκ , nik (x) = n(x)/n(Liκ ) and n(Liκ ) is the fractional Z ideal spanned by all
n(x) with x ∈ Liκ . For any integer N ≥ 1, we define a subgroup �

(1)
0 (N ) of SL2(Z) by

�
(1)
0 (N ) =

{
g =

(
a b
c d

)
∈ SL2(Z); c ≡ 0 mod N

}
.

Then we see that ϑF (τ ) ∈ Aa+b+4(�
(1)
0 (p)) and this is also a cusp form unless a = b = 0.

Now assume that F is an Hecke eigenform as an automorphic form F1 × F2 on D×
A × G.

The theory of Ihara lifts claims that if ϑF does not vanish, then ϑF is also an eigenform
and we have

L(s, F2) = L(s − b − 1, F1)L(s,ϑF ) = L(s − k + 2, F1)L(s,ϑF ),

where L(s, F2) is the spinor-type L function of F2, L(s, F1) is usual Hecke’s L function of
the elliptic modular form of �(1)

0 (p) associated with F1 by the Eichler–Jacquet–Langlands
correspondence. Here we put k = b + 3. For more details, see [22,27].

3 Main theorem and conjectures
3.1 Main theorem

Note that we write superscript (1) always for subgroups�
(1)
0 (p) of SL2(Z). By�0(p) without

superscript, we always mean a subgroup of Sp(2,Z) ⊂ GL4(Z) defined before. We denote
by Sk (�

(1)
0 (N )) the space of elliptic cusp forms of �(1)

0 (N ) of weight k and by Snewk (�(1)
0 (N ))

the subspace of new cusp forms.

Theorem 3.1 We fix a prime p. Notation being the same as before, for integer k ≥ 3 and
nonnegative even integer j, we have the following dimensional identities

dim Sk,j(�′
0(p)) + dim Sk,j(�′′

0 (p)) − dim Sk,j(�0(p)) − 2 dim Sk,j(K (p))

= dimMk+j−3,k−3(Upr(p)) − δj0δk3

− (dim Snewj+2 (�
(1)
0 (p)) + δj0) ×

(
dim Snew2k+j−2(�

(1)
0 (p)) + dim S2k+j−2(SL2(Z))

)

under the following additional assumptions: k ≥ 5 if j ≥ 2, and p �= 2, 3 if j ≥ 2. Here δj0
and δk3 are the Kronecker deltas.

The condition k ≥ 3 is essential, but the conditions k ≥ 5 for j ≥ 2 and p �= 2, 3 for
j ≥ 2 are technical. We believe that the same equality holds for any k ≥ 3 with even
j ≥ 0 for any primes p without extra conditions. We note that since �′′

0 (p) = ω�′
0(p)ω−1,

we have dim Sk,j(�′
0(p)) = dim Sk,j(�

′′
0(p)), and the sum of the first two terms of LHS in

Theorem 3.1 can be written as 2 dim Sk,j(�
′
0(p)).

Of course we expect that the same sort of relation as Theorem 3.1 hold also for Hecke
operators, interpreting the endoscopic part coming from elliptic modular forms into
appropriate combinations of Hecke operators of one variable, but at the moment we
do not have results for that since the trace formula is muchmore complicated in that case.
The proof of Theorem 3.1 will be given in the last two sections.
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3.2 Conjectures on lifts and non-lifts

After explaining the possible appearance of lifts, we give a concrete conjecture on Ihara
lifts (See Conjecture 3.2).We also give some conjectural correspondence for non-lifts (See
Conjecture 3.3). Numerical evidence of automorphic forms will be given in Sect. 4. About
local representations which have the Iwahori subgroup fixed vector, there is a work on
classification by Roberts and Schmidt [33]. The author learned more details on this from
Professor Ralf Schmidt. He confirmed author’s partly conjectural tables of the number of
local fixed vectors in the first manuscript by secure results of the classification of local
representations in [33,36,37] and made it much clearer. The author would like to thank
him for this discussion.
For f ∈ Sk (�

(1)
0 (p)), we define the Atkin–Lehner involutionWp,k by

(f |kWp,k ) = p−k/2τ−1f (−(pτ )−1).

For each ε = + or −, define a subspace Sε
k (�

(1)
0 (p)) of Sk (�

(1)
0 (p)) by

Sε
k (�

(1)
0 (p)) = {f ∈ Sk (�

(1)
0 (p)); f |kWp,k = εf }.

We also put Snew,εk (�(1)
0 (p)) = Snewk (�(1)

0 (p)) ∩ Sε
k (�

(1)
0 (p)). If f is a Hecke eigenform and

f |kWp.k = εf , then the functional equation of L(s, f ) is given by

L(k − s, f ) = (−1)k/2εL(s, f ).

It is known that there exist Saito–Kurokawa type lifts to Sk (�0(p)) from S2k−2(�
(1)
0 (p)) for

even k , and Yoshida type lifts from Snew,εj+2 (�(1)
0 (p))× Snew,ε2k+j−2(�

(1)
0 (p)) to Sk,j(�0(p)) for the

same ε = ± (see [3,21].) There also exist Gritsenko lifts (an analogue of Saito–Kurokawa
lifts) to Sk (K (p)). This last lift is a little more complicated. Although this lift does not
play an essential role in our lifting conjecture compared with the former two liftings,
we review this shortly for readers’ convenience since we use this later in our numerical
calculation. We denote by J cuspk,p (SL2(Z)) the space of Jacobi cusp forms of index p with
respect to the group SL2(Z) (See Eichler–Zagier in [6].) By Skoruppa–Zagier [40], we have
an isomorphism

J cuspk,p (SL2(Z)) ∼= Snew,(−1)k
2k−2 (�(1)

0 (p)) ⊕ δk,evenS2k−2(SL2(Z))

where δk,even = 1 if k is even and 0 otherwise. There exists a lifting from Jk,p(SL2(Z)) to
Sk (K (p)) ⊂ Sk (�

′
0(p)), Sk (�

′′
0(p)) by Gritsenko (See [9]).

Now we see how both sides of the dimensional relation in the Main Theorem 3.1 are
explained for various types of liftings.
(1) Saito–Kurokawa lifts of level 1 and Ihara lifts.

We consider the case j = 0 now.When k is even, for aHecke eigenform f of S2k−2(SL2(Z)),
there exists the Saito–Kurokawa lift from f to F ∈ Sk (Sp(2,Z)). By virtue of [36], the num-
ber of local (p-adic) fixed vectors belonging to this automorphic representation containing
F is as follows. (See also [33] Table A15 II b.)

Sp(2,Z) �0(p) �
′
0(p) ∼= �

′′
0(p) K (p)

1 3 2 1

So the contribution of this part to the LHS of Theorem 3.1 is

2 + 2 − 3 − 2 · 1 = −1
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On the other hand, in RHS of Theorem 3.1, we have − dim S2k−2(SL2(Z)), which
should cancel with the above. This means that there should not exist an Ihara lift to
Mk−3,k−3(Upr(p)) from S2k−2(SL2(Z)) when k is even. On the other hand, when k is odd,
there is no Saito–Kurokawa lift to LHS. This means that the term − dim S2k−2(SL2(Z)) of
the RHS should be canceled with the Ihara lift inMk−3,k−3(Upr(p)), so there should exist
the Ihara lift of Saito–Kurokawa type in this case.
(2) Saito–Kurokawa lifts of level p and Ihara lifts.

Again we assume that j = 0. We consider the Saito–Kurokawa lifting from Snew2k−2(�
(1)
0 (p))

(See [21,36]). If we assume that k is even, then by [33] A15, the number of local fixed
vectors is given by

�0(p) �
′
0(p) ∼= �

′′
0(p) K (p)

1 a a

Here a = 1 if f ∈ Snew,(−1)k
2k−2 (�(1)

0 (p)) (The case Vb of A15, loc.cit.,) and a = 0 otherwise
(the case VIb of A15). Anyway the contribution to the LHS is 2a − 2a − 1 = −1. So in
RHS, there should not exist an Ihara lift from Snew2k−2(�

(1)
0 (p)) to Mk+j−3,k−3(Upr(p)). If k

is odd, then there exists no Saito–Kurokara lift to LHS. So judging from the dimensional
relation, there should exist an injective Ihara lift from Snew2k−2(�

(1)
0 (p)) toMk−3,k−3(Upr(p))

if k is odd.
(3) Yoshida lifts of level p and Ihara lifts.

Yoshida constructed in [44] a lift from pairs of elliptic new cusp forms of level p to Siegel
cusp forms of degree two belonging to �0(p), which vanishes when the signs of the Atkin-
Lehner involution are not equal, and Boecherer and Schulze-Pillot proved injectivity of
the lift in [3] when the signs are the same. More precisely, if we set ε = ±, there exists an
injective lift from (f1, f2) ∈ Snew,εj+2 (�(1)

0 (p)) × Snew,ε2k+j−2(�
(1)
0 (p)) to F ∈ Sk,j(�0(p)) such that,

if (f1, f2) are Hecke eigenforms, then F is also a Hecke eigenform and we have L(s, F ) =
L(s − k + 2, f1)L(s, f2), where L(s, F ) is the spinor L function. For a fixed pair of Hecke
eigenforms (f1, f2) ∈ Snewj+2 (�

(1)
0 (p)) × Snew2k+j−2(�

(1)
0 (p)) with the Atkin-Lehner sign εi for

i = 1, 2, denote the dimensions of forms in Sk,j(�
′
0(p)), in Sk,j(K (p)), and in Sk,j(�0(p))

coming from lifts of the fixed pair by a, b, and c, respectively. Here we have a ≥ b ≥ 0
since �

′
0(p) ⊂ K (p). So the contribution of lifts to the dimension of LHS is given by

2(a − b) − c, where we have c = 0 and 1 when ε1 = − ε2 and ε1 = ε2, respectively.
Actually, by virtue of [37] Table (30), for Yoshida lifts, we have a = b = 1 and c = 0
or 1, or a = b = 0 and c = 1. (See also [33] A 15 VIc, Vb, VIb.) The counter part of
this lift for the compact twist is the Ihara lift ([22,27]). For Mk+j−3,k−3(Upr(p)), there is
the theory of lift from the same pair, but there is no theory how big the image of these
lifts is. It is very plausible that the image is at most one dimensional from a fixed pair. If
so, the contributions from the pair to the dimension of RHS is 0 if there exists a lift to
Mk+j−3,k−3(Upr(p)) and −1 if there does not exist. This fits the result 2(a− b)− c = 0 or
−1 for LHS. Hence there should exists an Ihara lift to the compact twist if and only if the
parity of the signs of the Atkin-Lehner involution of new cusp forms of level p are not the
same.
(4) Ihara lifts from pairs of level 1 and level p.
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There is one remaining term in the dimensional relation in theMain Theorem suggesting
lifts: the term Snewj+2 (�0(p)) × S2k+j−2(SL2(Z)). Numerical examples in Sect. 4 strongly
suggest that there is an injective Ihara lift from whole of this space toMk+j−3,k−3(Upr(p)).
Summing up all these, it is natural to propose the following conjecture on the image of

the Ihara lifting.

Conjecture 3.2 (1) When k is even, there should be no Ihara lift from S2k−2(�
(1)
0 (p))

to Mk−3,k−3(Upr(p)). When k is odd, then the Ihara lifting from S2k−2(SL2(Z)) +
Snew2k−2(�

(1)
0 (p)) toMk−3,k−3(Upr(p)) is injective.

(2) There exists an injective Ihara lifting from Snew,+j+2 (�(1)
0 (p)) × Snew,−2k+j−2(�

(1)
0 (p))

and Snew,−j+2 (�(1)
0 (p)) × Snew,+2k+j−2(�

(1)
0 (p)) to Mk+j−3,k−3(Upr(p)) and no lift from

Snew,εj+2 (�(1)
0 (p)) × Snew,ε2k+j−2(�

(1)
0 (p)) for the same sign ε = ±.

(3) There exists an injective Ihara lifting from Snewj+2 (�
(1)
0 (p)) × S2k+j−2(SL2(Z)) to

Mk+j−3,k−3(Upr(p)).

Now we give some description of non-lifts. The local admissible representations at p
of Sp(2,Qp) which have Iwahori subgroup fixed vectors are classified by Roberts and
Schmidt [33]. If we write the dimension of vectors of a local admissible representation
fixed by �′

0(p), �0(p), K (p) by a, c, b and put c0 = 2a − c − 2b, then by table A.15 of
[33], we have c0 = −1, 0, 1, 2. As we have seen already, the case c0 = −1 appears for
lifts in several cases. The case c0 = 0 appears in an example in the next section for
non-lifts and there is no corresponding form in the compact twist in this case except
for lifts. Interesting cases for the correspondence with RHS is the case c0 = 1 or 2. If
c0 = 2, which happens for Va in their table, then it means that there should exist two
automorphic forms Mk+j−3,k−3(Upr(p)) corresponding to a form in Sk,j(�′

0(p)) with the
same L function, though we do not know if two forms in Mk+j−3,k−3(Upr(p)) generate
the same automorphic representation or not. Anyway, the correspondence for c0 �= −1
should be as in the following conjecture.

Conjecture 3.3 Notation being as above, for a global representation coming from a holo-
morphic Siegel cusp form such that c0 = 0 locally at p, there is no corresponding auto-
morphic form inMk+j−3,k−3(Upr(p)) except for the case obtained by lifting. If c0 = 1, then
global automorphic representations coming from holomorphic Siegel cusp forms having
�′
0(p) fixed vector should correspond one to one to eigenforms in Mk+j−3,k−3(Upr(p)). If

c0 = 2, then a Siegel cusp eigenform in Sk,j(�′
0(p)) should correspond with two eigenforms

inMk+j−3,k−3(Upr(p)) having the same L function.

Here we excluded lifts for c0 = 0 because of the following reason. If k is odd, then there
is no Saito–Kurokawa lift to Sk (�0(p)) but there would exist a lift to a paramodular form
in Sk (K (p)) as we explained before. This lift also belongs to Sk (�′

0(p)) and Sk (�′′
0 (p)) and

the contribution to LHS of Theorem 3.1 is zero. On the other hand, there should exist an
Ihara lift to Mk−3,k−3(Upr(p)) by Conjecture 3.2 (1) and the contribution to RHS is also
zero as a total. So even if c0 = 0, there should exist a correspondence between a lift to
Sk (�′

0(p)) and that toMk−3,k−3(Upr(p)). Later we give concrete examples of c0 = 2 for the
above conjectural correspondence, including an explanation of Ihara’s example in [27].
There he gave two concrete automorphic forms inM8,8(Upr(3)) which looks very different
but have the same Euler 2 factors, and seem to have the same Euler factors for all primes.
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We will give a corresponding Siegel cusp form concretely. It is an interesting problem
to see if these two forms in M8,8(Upr(3)) span the same representation or not. This is a
problem if the multiplicity one theorem holds forMν1 ,ν2 (Upr(p)) or not.

4 Numerical examples
Before giving numerical examples, we quote the trace formula of the Atkin-Lehner invo-
lutionWp,k for prime p on Sk (�

(1)
0 (p)) from [43]. For p �= 2, 3, we have

Tr(Wp,k ) = − (−1)k/2−1

2

(
h(−4p)
w(−4p)

+ h(−p)
w(−p)

)
+ δk2,

where δk2 is the Kronecker delta and w(d) is the half of the number of roots of unity in
the quadratic order of the discriminant d. We also have

Tr(W2,k ) = (−1)k/2 − (−1)(k−4)(k−2)/8

2
+ δ2k ,

Tr(W3,k ) = δ2k +

⎧⎪⎨
⎪⎩

− 1 if k ≡ 2, 6 mod 12,
0 if k ≡ 4, 10 mod 12,
− 1 if k ≡ 0, 8 mod 12.

For f (τ ) ∈ Sk (SL2(Z)), the signs of the forms f (τ )±pk/2f (pτ )w.r.t.Wp,k are±, respectively,
so this part cancels in Tr(Wp,k ). For new forms, we have

dim Snew,±k (�(1)
0 (p)) = 1

2

(
dim Snewk (�(1)

0 (p)) ± Tr(Wp,k )
)
.

4.1 The scalar-valued case for p = 2

In this subsection, we consider the case p = 2 and j = 0. We have examples of Euler 3-
factors in [14], though the emphasis there is on theminimal parahoric subgroups. Here we
review the results there and add somemore examples. Firstwe give a table of dimensions of
Mk−3,k−3(Upr(2)) and dimMk−3,k−3(Upr(2))−(dim S2k−2(SL2(Z))+dim Snew2k−2(�

(1)
0 (2)))−

δk3. The latter is indicated by RHS in the following table.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
dim 1 0 1 0 1 0 2 0 3 0 3 0 6 1 7
RHS 0 0 0 − 1 0 − 2 0 − 2 0 − 3 0 − 4 2 − 3 2

We give a table of dimensions of Siegel cusp forms and LHS of Theorem 3.1.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�0(2) 0 0 0 1 0 2 0 4 0 7 0 10 0 15 0
�

′
0(2) 0 0 0 0 0 1 0 2 1 4 0 5 2 10 2

K (2) 0 0 0 0 0 1 0 1 1 2 0 2 1 4 1
LHS 0 0 0 − 1 0 − 2 0 − 2 0 − 3 0 − 4 2 − 3 2

Of course we have LHS=RHS as we claimed in Theorem 3.1. The point is the corre-
spondence of automorphic forms.We see each k more precisely. For k ≤ 11, all the forms
are lifts. We can check this fact by giving elements of Mk−3,k−3(Upr(2)) concretely, but
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we omit it here since there is nothing new. When k = 12, an interesting thing happens
and we will explain that. The following table is a resumé extracted from [14], where the
column T (3) indicates the eigenvalues of the Hecke operator T (3) and the column under
the group indicates the dimension having that eigenvalue.

k T (3) �
(2)
0 (2) �

′
0(2) �

′′
0(2) K (2) Lift from

6 168 1 0 0 0 S10(�(1)
0 (2))

8 4152 1 0 0 0 S+
14(�

(1)
0 (2))

8 1080 1 1 1 1 S−
14(�

(1)
0 (2))

10 21960 3 2 2 1 S18(SL2(Z))
10 32328 1 0 0 0 Snew,+18 (�(1)

0 (2))
12 107352 3 2 2 1 S22(SL2(Z))
12 307800 1 1 1 1 Snew,−22 (�(1)

0 (2))
12 − 88488 2 1 1 0 Non-lift

Here all the examples fit the conjecture in Sect. 3. The most interesting examples in
the above table are the non-lift case of weight 12. In dim S12(�

′
0(2)) + dim S12(�

′′
0(2)) −

dim S12(�(2)
0 (2)), the contribution of non-lift is 1 + 1 − 2 = 0. So these Siegel cusp forms

exist but should not correspond with automorphic forms of the compact twist. Indeed we
have dimM9,9(Upr(2)) = 0 and there is no corresponding automorphic form.
We add here one more interesting example of weight k = 15. First we give a table of

dimensions of Siegel cusp forms for each eigenvalues of T (3).

T (3) S15(�′
0(2)) S15(�′′

0 (2)) S15(�0(2)) S15(K (2)) LHS Lift from
5360904 1 1 0 1 0 S−

28(�
(1)
0 (2))

− 4260600 1 1 0 0 2 Non-lift

Next we give a table for the compact twistM12,12(Upr(2)).

T (3) Upr (2) RHS Lift from
− 4260600 2 2 Non-Lift
10362120 1 0 Snew(�(1)

0 (2))
5360904 1 0 Snew28 (�(1)

0 (2))
648(8849 + 32

√
18209) 1 0 S28(SL2(Z))

648(8849 − 32
√
18209) 1 0 S28(SL2(Z))

Here the case LHS=RHS=2 is an interesting new example. This is the case c0 = 2 in
the notation of Sect. 3, where both eigenvalues of T (3) are − 4260600.
Concrete automorphic forms in each of the above two tables are newly obtained this

time, so we give them here. We know that dim S11(K (2)) = dim S11(B(2)) = 1 and a
nonzero form χ11 ∈ S11(B(2)) is explicitly given in [17] and [24] by theta constants (See
also [1].) On the other hand, we put

F4 = X2 + 3Y + 3072Z + 960T
where X , Y , Z, T are Siegel modular forms of weight 2, 4, 4, 4 of B(2) given explicitly in
[17]. Then we have F4 ∈ S4(K (2)) ([24]). We denote by ϕ4 the Siegel Eisenstein series of
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weight 4 of Sp(2,Z) with constant term 1. Since dim S15(�′
0(2)) = 2 ([14]), we see that

ϕ4χ11 and F4χ11 spans S15(�′
0(2)) and F4χ11 ∈ S15(K (2)). We have Tr(W2,28) = 0 and

dim Snew28 (�(1)
0 (2)) = 2, so we have dim Snew,±28 (�(1)

0 (2)) = 1 for each ±. So F4χ11 should be
the Gritsenko lift from Snew,−28 (�(1)

0 (2)). By using Fourier coefficients, we have

T (3)φ4χ11 = 57729024F4χ11 − 4260600φ4χ11,

T (3)F4χ11 = 5360904F4χ11.

So eigenforms are F4χ11 and φ4χ11 − 6F4χ11 and we have the above table.
For the compact twist, we have dimM12,12(Upr(2)) = 6 and a basis is given as follows.

For any w ∈ H, we denote by w1, w2, w3, w4 the coefficients of 1, i, j, k of w, respectively,
and n(w) = w2

1 + w2
2 + w2

3 + w2
4. For x, y ∈ H , we put z = yx. For any positive integer i,

we put ti = zi1 + zi2 + zi3 + zi4. Then a basis of M12,12(Upr(2)) is given by the following 6
automorphic forms.

P12a = (z21 − z22)(z
2
1 − z23)(z

2
1 − z24)(z

2
2 − z23)(z

2
2 − z24)(z

2
3 − z24),

P12b = 226512n(x)6n(y)6 − 169884n(x)5n(y)5(n(x)2 + n(y)2)

+ 70785n(x)4n(y)4(n(x)4 + n(y)4) − 15730n(x)3n(y)3(n(x)6 + n(y)6)

+ 1716n(x)2n(y)2(n(x)8 + n(y)8) − 78n(x)n(y)(n(x)10 + n(y)10) + n(x)12 + n(y)12,

P12c = 279(n(x)12 + n(y)12)/169380640 − 837n(x)n(y)(n(x)10 + n(y)10)/6514640

+ 837n(x)2n(y)2(n(x)10 + n(y)10)/296120 − 1915n(x)3n(y)3(n(x)6 + n(y)6)/139984

+ 6963n(x)4n(y)4(n(x)4 + n(y)4)/279968 − 137n(x)5n(y)5(n(x)2 + n(y)2)/5384

− 428n(x)n(y)(n(x)6 + n(y)6)t4/8749 + 2568n(x)2n(y)2(n(x)4 + n(y)4)t4/8749

− 428/673n(x)3n(y)3(n(x)2 + n(y)2)t4 + n(x)4n(y)4t4 + 1070(n(x)4 + n(y)4)t24/8749

− 428/673n(x)n(y)(n(x)2 + n(y)2)t24 + 330/673nx2ny2t24 + 476t34/2019

+ 1712(n(x)6 + n(y)6)t6/43745 − 5992n(x)n(y)(n(x)4 + n(y)4)t6/43745

+ 448/673n(x)n(y)t4t6 − 12840(n(x)4 + n(y)4)t8/61243

+ 5136n(x)n(y)(n(x)2 + n(y)2)t8)/4711 − 7656n(x)2n(y)2t8/4711 − 336t4t8/673,

P12d = 181(n(x)12 + n(y)12)/215575360 − 543n(x)n(y)(n(x)10 + n(y)10)/8291360

+ 543n(x)2n(y)2(n(x)8 + n(y)8)/376880 − 13661n(x)3n(y)3(n(x)6 + n(y)6)/1959776

− 35181n(x)4n(y)4(n(x)4 + n(y)4)/3919552 + 3753n(x)5n(y)5(n(x)2 + n(y)2)/37688

− 873n(x)n(y)(n(x)6 + n(y)6)t4/34996 + 20571n(x)2n(y)2(n(x)4 + n(y)4)t4/69992

− 723/673n(x)3n(y)3(n(x)2 + n(y)2)t4 − 2365(n(x)4 + n(y)4)t24/69992

+ 473n(x)n(y)(n(x)2 + n(y)2)t24/2692 + 4851n(x)2n(y)2t24/1346

+ 473n(x)n(y)(n(x)2 + n(y)2)t24/2692 − 1122t34/673 + 873(n(x)6 + n(y)6)t6/43745

− (11468n(x)n(y)(n(x)4 + n(y)4)t6/43745 + n(x)2n(y)2(n(x)2 + n(y)2)t6
− 3168/673n(x)n(y)t4t6 + 7095(n(x)4 + n(y)4)t8/122486

− 1419n(x)n(y)(n(x)2 + n(y)2)t8/4711 − 2970n(x)2n(y)2t8/4711 + 2376t4t8/673,
P12e = 1943(n(x)12 + n(y)12)/1552142592 − 1943n(x)n(y)(n(x)10 + n(y)10)/19899264

+ 1943n(x)2n(y)2)(n(x)8 + n(y)8)/904512

− 473225n(x)3n(y)3(n(x)6 + n(y)6))/70551936

− 137455n(x)4n(y)4(n(x)4 + n(y)4)/15678208

+ 17305n(x)5n(y)5(n(x)2 + n(y)2)/301504

− 3635n(x)n(y)(n(x)6 + n(y)6)t4/69992 + 10905n(x)2n(y)2(n(x)4 + n(y)4)t4/34996
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− 3635n(x)3n(y)3(n(x)2 + n(y)2)t4/5384 + 18175(n(x)4 + n(y)4)t24/139984

− 3635n(x)n(y)(n(x)2 + n(y)2)t24/5384 + 8265n(x)2n(y)2t24/2692

− 1700t34/2019 + 727(n(x)6 + n(y)6)t6/17498 − 5089n(x)n(y)(n(x)4 + n(y)4)t6/34996

+ n(x)3n(y)3t6 − 5089n(x)n(y)(n(x)4 + n(y)4)t6/34996

− 1600/673n(x)n(y)t4t6 − 54525(n(x)4 + n(y)4)t8/244972

+ 10905n(x)n(y)(n(x)2 + n(y)2)t8/9422 − 11595n(x)2n(y)2t8/4711 + 1200t4t8/673),

P12f = 9557(n(x)12 + n(y)12)/34147137024 − 9557n(x)n(y)(n(x)10 + n(y)10)/437783808

+ 9557n(x)2n(y)2(n(x)8 + n(y)8))/19899264

− 204145n(x)3n(y)3(n(x)6 + n(y)6))/141103872

− 73895n(x)4n(y)4(n(x)4 + n(y)4)/31356416

+ 8401n(x)5n(y)5(n(x)2 + n(y)2)/603008

− 1655n(x)n(y)(n(x)6 + n(y)6)t4/139984 + 4965n(x)2n(y)2(n(x)4 + n(y)4)t4/69992

− 1655n(x)3n(y)3(n(x)2 + n(y)2)t4/10768 + 8275(n(x)4 + n(y)4)t24/279968

− 1655n(x)n(y)(n(x)2 + n(y)2)t24/10768 + 1215n(x)2n(y)2t24/1346

− 1655n(x)n(y)(n(x)2 + n(y)2)t24/10768 + 8275(n(x)4 + n(y)4)t24/279968

+ 2465t34/8076 + 331(n(x)6 + n(y)6)t6/34996 − 2317n(x)n(y)(n(x)4 + n(y)4)t6/69992

− 2205n(x)n(y)t4t6/1346 + t26 − 24825(n(x)4 + n(y)4)t8/489944

+ 4965n(x)n(y)(n(x)2 + n(y)2)t8/18844 + 2175n(x)2n(y)2t8/18844 − 435t4t8/673.

Then the calculation of the Hecke operator of T (3) on this basis is done as in [14] and the
representation matrix is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 4260600 0 0 0 0 0

0
24471033464

4719
6514848604160 5210296565760 − 9797033000960 1484944179200

0
7065888393688
524545376355

4894275883592
22231209

− 30934808064
7403

25469246095360
22231209

300405188472832
111156045

0
749043686198
15895314435

− 36811760958272
673673

− 22903592184
673

41544307693568
673673

2182786574336
3368365

0
1059206285026
28611565983

− 234578046469280
6063057

− 18952326720
673

283013189393288
6063057

10809831953920
6063057

0
827764143017
44961032259

− 186715877065360
9527661

− 109169658720
7403

219950269849600
9527661

46482782141288
9527661

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of T (3) are given by

− 4260600 (2 -dimensional), 10362120,

5360904, 648(8849 ± 32
√
18209).

The eigenvalues at 3 of Hecke eigenforms of S28(SL2(Z)) are given by −643140 ±
20736

√
18209 and the eigenvalues of T (3) of the associated Ihara lifts are given by

313 + 314 − 643140 ± 20736
√
18209 = 648(8849 ± 32

√
18209).

Also the eivenvalues at 3 of the Hecke eigenforms in the two-dimensional space
Snew28 (�(1)

0 (2)) are given by − 1016338 and 3984828. The eigenvalues of T (3) of the associ-
ated Ihara lifts are 5360904 and 10362120. This fits the above data. So we explained all the
lifts which appears in the table. The remaining two-dimensional eigenvalues − 4260600
are non-lifts. The eigenvalue suggests that these should correspond with S15(�′

0(2)) and
S15(�′′

0 (2)).
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4.2 The vector-valued case for p = 2 and p = 3

In this subsection, we consider the case (k, j) = (3, 6), (4, 6) for p = 2 and (k, j) = (3, 8) for
p = 3. These cases correspond to the cases M6,0(Upr(2)), M7,1(Upr(2)), and M8,0(Upr(3)).
These examples give good evidence for our Conjectures 3.2 on Ihara lifts, so we do not
explain Siegel cusp forms here. Before giving concrete examples of automorphic forms,
we explain the results. First we give a table of various dimensions.

M6,0(Upr (2)) M7,1(Upr (2)) M8,0(Upr (3))
(k, j) (3,6) (4,6) (3,8)
dimM 1 1 3
dim Snewj+2 (�

(1)
0 (p)) 1+ 1+ 1+,1−

dim Snew2k+j−2(�
(1)
0 (p)) 1− 0 1+

dim S2k+j−2(SL2(Z)) 0 1 1

Here we put k = ν2 + 3, j = ν1 − ν2 for the column Mν1 ,ν2 (Upr(p)). For �
(1)
0 (p), we

put p = 2 for the first two columns and p = 3 for the last one, and a+, b− means the
dimension of the Atkin-Lehner plus (resp. minus) is a (resp. b). By concrete automorphic
forms given below, we see the following results. The space M6,0(Upr(2)) consists of the
Ihara lift from Snew,+8 (�(1)

0 (2)) × Snew,−10 (�(1)
0 (2)). The space M7,1(Upr(2)) consists of the

Ihara lift from Snew,+8 (�(1)
0 (2))× S12(SL2(Z)). The spaceM8,0(Upr(3)) consists of the Ihara

lifts from Snew,−10 (�(1)
0 (3))×Snew,+12 (�(1)

0 (3)) and Snew10 (�(1)
0 (3))×S12(SL2(Z)). More precisely

speaking, the Ihara lifts from Snew10 (�(1)
0 (3))× S12(SL2(Z)) consist of eigenforms from pairs

of (f +
10 ,�(τ ) − 36�(3τ )) and (f −

10 ,�(τ ) + 36�(τ )), where f ±
10 are elements in S10(�(1)

0 (3))
which have ± as the sign of the Atkin-Lehner involution. Here �(τ ) ± 36�(3τ ) are old
forms in S12(�(1)

0 (3)) with Atkin-Lehner plus and minus, so the signs of the pairs are
opposite in this case too.
Now we give concrete automorphic forms of Mν1 ,ν2 (Upr(p)) in the above cases. For

λ ∈ H, we consider a polynomial P(λ) in four variables identifying H ∼= R
4 by λ1 + λ2i +

λ3j + λ4k with (λi). It is well known that any homogeneous polynomial P(λ) is a direct
sum of products of a power of n(λ) and harmonic polynomials. We can explicitly give the
harmonic projection �λ of this direct sum decomposition to the harmonic part by the
following map.

�λ(P(λ)) =
∑

0≤b≤d/2
(−1)b

1
22b(b!)2

(d
b
)n(λ)b�b

λ(P),

where
(d
b
)
is the binomial coefficient and we put d = deg(P). (See [25]).

First we give automorphic forms when p = 2. The definite quaternion algebra with
discriminant 2 is given by

D2,∞ = Q + Qi + Qj + Qk

with i2 = j2 = − 1, ij = − ji = k . The class number of D2,∞ is one, and any maximal
order of D2,∞ is conjugate to

O = Z + Zi + Zj + Z
1 + i + j + k

2
.

We have

O× =
{
± 1,± i,± j,± k,

± 1 ± i ± j ± k
2

}
.
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The class number of the principal genus in (D2,∞)2 is one (See [12] I) and the automor-
phism group ofO2 is given by

� =
{(

u1 0
0 u2

)
,
(
0 u1
u2 0

)
;u1, u2 ∈ O×

}
.

First we explain the case (k, j) = (3, 6). For x ∈ H, we put

h(x) = 6(x61 + x62 + x63 + x64) − 5(x21 + x22 + x23 + x24)(x
4
1 + x42 + x43 + x44)

+ 30(x21x
2
2x

2
3 + x21x

2
2x

2
4 + x21x

2
3x

2
4 + x22x

2
3x

2
4).

This is harmonic with respect to x ∈ H. For (x, y) ∈ H
2, we put

F (x, y) = h(x) + h(y),

then we see that this is harmonic with respect to (x, y) ∈ H
2 and invariant by �, and it is

obvious that f (λx, λy) is also harmonic for λ. So we have f ∈ M6,0(Upr(2)). If we put

ϑF (τ ) =
∑
x,y∈O

F (x, y)e2π i(n(x)+n(y))τ ,

then we see that this is nonzero and ϑF ∈ Snew10 (�(1)
0 (2)) = Snew,−10 (�(1)

0 (2)). As a func-
tion of λ, F (λx, λy) corresponds with Snew,+8 (�(1)

0 (2)) and this gives the Ihara lift from
Snew,+8 (�(1)

0 (2)) × Snew,−10 (�(1)
0 (2)).

Next we explain the case (k, j) = (4, 6). We put

A(x, y) = x61 − 15x41y
2
1 + 15x21y

4
1 − y61,

B(x, y) = 3x51y1 − 10x31y
3
1 + 3x1y51,

f (x, y) = (n(x) − n(y))A(x, y) − 4(x, y)B(x, y),

h(x, y, λ) = (n(x) − n(y))A(λx, λy) − 4(x, y)B(λx, λy),

φ(x, y, λ) = �λ(h(x, y, λ)).

Here if we put F (x, y) = φ(x, y, 1), then we see that F is harmonic w.r.t. (x, y), and
F (λx, λy) = n(λ)φ(x, y, λ). (This can be proved directly or by an easy abstract calcula-
tion coming from the shape of �λ and h). This F (x, y) is not invariant by �, so we must
take an average over �. We see that this average does not vanish and give a nonzero ele-
ment of M7,1(Upr(2)). We also write this average by F . By calculating ϑF as before, up to
constant we have

ϑF = �(τ ) − 64�(2τ ).

By calculating the action of the Hecke operators on λ, we see that φ(x, y, λ) corresponds
with an element in Snew,+8 (�(1)

0 (2)) = Snew8 (�(1)
0 (2)). So this gives a lift from Snew8 (�(1)

0 (2))×
S12(SL2(Z)).
Next we give an example for (k, j) = (3, 8) and p = 3. The definite quaternion algebra

which ramifies exactly at 3 and ∞ is given by

D3,∞ = Q + Qα + Qβ + Qαβ

with α2 = −3, β2 = −1, αβ = −βα. So in D3,∞ ⊗Q R = H, we may regard β = i,
α = √

3j, αβ = √
3k . The class number of D3,∞ is one, and any maximal order of D3,∞ is

conjugate to

O = Z + Zβ + Z
1 + α

2
+ Z

(1 + α)β
2

.
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As before we identify H ∼= R
4 and for x = x1 + x2i + x3j + x4k ∈ H, we define

h1(x) = 54x21x
2
2x

2
3x

2
4 − 3(x41x

2
2x

2
3 + x21x

4
2x

2
3 + x21x

2
2x

4
3 + x42x

2
3x

2
4

+ x22x
4
3x

2
4 + x22x

2
3x

4
4 + x41x

2
3x

2
4 + x21x

4
3x

2
4 + x21x

2
3x

4
4 + x41x

2
2x

2
4

+ x21x
4
2x

2
4 + x21x

2
2x

4
4) + (x41x

4
2 + x41x

4
3 + x41x

4
4 + x42x

4
3 + x42x

4
4 + x43x

4
4),

h2(x) = x81 − 28x61x
2
2 + 70x41x

4
2 − 28x21x

6
2 + x82 ,

h3(x, y) = x81 − 28x61y
2
1 + 70x41y

4
1 − 28x21y

6
1 + y81,

φ(x, y, λ) = �λ(h3(λx, λy)).

The polynomials h1, h2 are harmonic with respect to x, so hi(λx) for i = 1, 2 are also
harmonicwith respect to λ. The polynomial h3(x, y) is harmonicwith respect to (x, y) ∈ H

2

and φ(x, y, λ) is harmonic with respect to (x, y) and λ.We also have φ(λx, λy, 1) = φ(x, y, 1).
We put

G1(x, y) = h1(x) + h1(y),

G2(x, y) = h2(x) + h2(y),

G3(x, y) = φ(x, y, 1).

The class number of the principal genus in (D3,∞)2 is one ([12] I), but these functions Gi
are not invariant by � = GL2(O) ∩ G, and we take the average

Fi(x, y) =
∑
γ∈�

Gi((x, y)γ ) (i = 1, 2, 3).

Then we see that these are linearly independent and form a basis of M8,0(Upr(3)). If we
define

P1(x, y) = 84F1(x, y) − 4F2(x, y) + 64F3(x, y),

P2(x, y) = 5F1(x, y) + 3F2(x, y) − 48F3(x, y),

P3(x, y) = − 70F1(x, y) + 6F2(x, y),

then these are Hecke eigenforms, and the associated theta functions are given up to
constant by

χ12(τ ) = q + 78q2 − 243q3 + 4036q4 + · · · ,
�(τ ) + 36�(3τ ) = q − 24q2 + 981q3 − 1472q4 + · · · ,
�(τ ) − 36�(3τ ) = q − 24q2 − 477q3 − 1472q4,

where Snew12 (�(1)
0 (3)) = Snew,+12 (�(1)

0 (3)) = Cχ12. On the other hand, a basis of each
Snew,±10 (�(1)

0 (3)) is given by

χ10+ = q − 36q2 − 81q3 + 784q4 + · · · ,
χ10− = q + 18q2 + 81q3 − 188q4 + · · · .

So calculating the Hecke action on the λ part of Pi, we see that P1, P2, and P3 are lifts
from pairs (χ10−, χ12), (χ10−, �(τ )+36�(3τ )), and (χ10+, �(τ )−36�(3τ )). So this gives
evidence of Conjecture 3.2 (2) and (3).
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4.3 The scalar-valued case for p = 3: comparison with Ihara’s examples

In this section, we write the same sort of example as the one given in Sect. 4.1. Here we
treat the case p = 3. Ihara calculated in [27] all the Hecke eigenforms ofMk−3,k−3(Upr(3))
for k ≤ 12 and k = 14, giving eigenvalues forT (2),T (4), determining Euler 2 factors of the
spinor L function. The smallest k where non-lift appears is k = 11. For k = 11, we have
dimM8,8(Upr(3)) = 6. He observed that in this space M8,8(Upr(3)), there are four lifts of
Ihara type, coming from the three-dimensional space Snew20 (�(1)

0 (3)) and one-dimensional
space S20(SL2(Z)). These cancel with−(dim Snew20 (�(1)

0 (3))+dim S20(SL2(Z))) of the RHSof
Theorem3.1. The other two linearly independent eigenforms ofM8,8(Upr(3)) are non-lifts,
having the same Euler 2 factors given by

(1 − 12(−9 + √
1489)2−s + 219−2s)(1 − 12(−9 − √

1489)2−s + 219−2s)

= 1 + 216 · 2−s + 845824 · 2−2s + 216 · 219−3s + 238 · 238−4s.

These twonon-lifts come apparently fromvery different construction and it seems as if the
multiplicity one breaks here, though this is not known.Anyway, wewill compare these two
non-lift eigenforms with one of Siegel Hecke eigenforms of weight 11 of�′

0(3) and see that
the Euler 2-factors coincide completely. So this suggests that two forms in S11(�

′
0(3)) ∼=

S11(�
′′
0(3)) (one for each) correspond with two non-lifts of M8,8(Upr(3)). We explain the

part for Siegel cusp forms here. We know that dim S11(�0(3)) = 0, dim S11(K (3)) = 1,
dim S11(�

′
0(3)) = 2. (See [11,16] and the last section of this paper.) Here we have a lift by

Gritsenko [9] from J11,3(SL2(Z)) (one dimensional) to S11(K (3)) ⊂ S11(�
′
0(3)). The spinor

L function of this lift is (up to Euler 3 factor), equal to

ζ (s − 9)ζ (s − 10)L(s, f ),

where f ∈ S−
20(�

(1)
0 (3)) ∼= J11,3(SL2(Z)), and the Euler 2 factor is

(1 − 29−s)(1 − 210−s)(1 + 1104 · 2−s + 219−2s).

These lifts cancel in S11(�
′
0(3))+ S11(�

′′
0(3))− 2S11(K (3)) in the LHS and no contribution

to the RHS of Theorem 3.1 (though there is the Ihara lift inM8,8(Upr(3)) corresponding to
this Gritsenko lift). So if we take the other Hecke eigenforms in S11(�

′
0(3)) and S11(�

′′
0(3)),

we can expect that these correspond with two non-lifts in M8,8(Upr(3)). We will see in
this section that the Euler 2 factors of these forms coincide completely.
More concrete description of the non-lifted form in S11(�

′
0(3)) will be given in the

following way. We denote by �(3) the principal congruence subgroup of level 3, which is
by definition

�(3) = {γ ∈ Sp(2,Z) ⊂ M4(Z) : γ ≡ 14 mod 3}.
The graded ring A(�(3)) of Siegel modular forms of integral weight of �(3) has been
determined by Freitag and SalvatiManni [8]. They are generated by 5 formsAi of weight 1,
and 5 formsCi of weight 3 with 1 ≤ i ≤ 5 with 20 relations. The action of Sp(2,Z)/�(3) on
(A1, . . . , A5) and (C1, . . . , C5) are explicitly known (at least for generators of Sp(2,Z)/�(3)).
Of course we have�(3) ⊂ �

′
0(3), so in principle we can obtain forms in Sk (�

′
0(3)) by taking

invariant forms in Sk (�(3)) by this action. Professor Hidetaka Kitayama kindly did this
calculation for k = 11, responding to author’s request, giving also the general dimension
formula for Sk (�

′
0(3)) for general k by calculating the invariant part. According to him, we
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have S11(�
′
0(3)) = CF11,a + CF11,b, where

F11,a = (A3
1A

3
3A

2
4C4 − A3

1A
3
3A

2
5C5 − A3

1A
2
3A

3
4C3 + A3

1A
2
3A

3
5C3 + A3

1A
3
4A

2
5C5

− A3
1A

2
4A

3
5C4 − 3A2

1A2A4
3A4C5 + 3A2

1A2A4
3A5C4 + 3A2

1A2A3A4
4C5

− 3A2
1A2A3A4

5C4 − 3A2
1A2A4

4A5C3 + 3A2
1A2A4A4

5C3 − 4A3
2A

3
3A

2
4C4

+ 4A3
2A

3
3A

2
5C5 + 4A3

2A
2
3A

3
4C3 − 4A3

2A
2
3A

3
5C3 − 4A3

2A
3
4A

2
5C5

+ 4A3
2A

2
4A

3
5C4)/2592,

F11,b = (A6
3A

2
4C4 − A6

3A
2
5C5 + 2A5

3A
3
4C3 − 2A5

3A
3
5C3 − 2A3

3A
5
4C4 + 2A3

3A
5
5C5

− A2
3A

6
4C3 + A2

3A
6
5C3 + A6

4A
2
5C5 + 2A5

4A
3
5C4 − 2A3

4A
5
5C5 − A2

4A
6
5C4)/2592.

Here the forms Ai are defined by

Ai =
∑

G∈M2(Z)
exp(π iTr(S[G + Pi/3]Z)),

where S = ( 2 1
1 2

)
, S[X] = tXSX and

P1 =
(
0 0
0 0

)
, P2 =

(
1 0
1 0

)
, P3 =

(
0 1
0 1

)
, P4 =

(
1 1
1 1

)
, P5 =

(
1 − 1
1 − 1

)
.

The definitions of Ci are complicated. If we use the linear relation in [8] Proposition 10,
then Ci are given by a rational function of Ai and the denominator is X10 = 2592χ10 ∈
S10(Sp(2,Z)) where χ10 is the unique cusp form of weight 10 with Fourier coefficient 1 at(

1 1/2
1/2 1

)
. Apparently these Ci have a denominator in this expression, but actually they

are all holomorphic functions. Since we do not need C1 and C2, we write down only C3,
C4, C5 for the completeness.

X10C3 = − 48(−A6
1A

3
2A

4
3 + 5A3

1A
6
2A

4
3 − 4A9

2A
4
3 + A3

1A
3
2A

7
3 + 4A6

2A
7
3 + 7A6

1A
3
2A3A3

4

− 11A3
1A

6
2A3A3

4 + 4A9
2A3A3

4 − A6
1A

4
3A

3
4 + 10A3

1A
3
2A

4
3A

3
4 + 4A6

2A
4
3A

3
4 + A3

1A
7
3A

3
4

− 8A3
2A

7
3A

3
4 − 11A3

1A
3
2A3A6

4 − 8A6
2A3A6

4 + 5A3
1A

4
3A

6
4 + 4A3

2A
4
3A

6
4 + 4A7

3A
6
4

+ 4A3
2A3A9

4 − 4A4
3A

9
4 + A8

1A2A2
3A4A5 − 11A5

1A
4
2A

2
3A4A5 + 10A2

1A
7
2A

2
3A4A5

+ A5
1A2A5

3A4A5 − 34A2
1A

4
2A

5
3A4A5 − 2A2

1A2A8
3A4A5 − 11A5

1A2A2
3A

4
4A5

+ 50A2
1A

4
2A

2
3A

4
4A5 − 34A2

1A2A5
3A

4
4A5 + 10A2

1A2A2
3A

7
4A5 − 8A7

1A
2
2A

2
4A

2
5

+ 16A4
1A

5
2A

2
4A

2
5 − 8A1A8

2A
2
4A

2
5 + 25A4

1A
2
2A

3
3A

2
4A

2
5 − 28A1A5

2A
3
3A

2
4A

2
5

+ 64A1A2
2A

6
3A

2
4A

2
5 + 16A4

1A
2
2A

5
4A

2
5 + 8A1A5

2A
5
4A

2
5 − 28A1A2

2A
3
3A

5
4A

2
5

− 8A1A2
2A

8
4A

2
5 + 7A6

1A
3
2A3A3

5 − 11A3
1A

6
2A3A3

5 + 4A9
2A3A3

5 − A6
1A

4
3A

3
5

+ 10A3
1A

3
2A

4
3A

3
5 + 4A6

2A
4
3A

3
5 + A3

1A
7
3A

3
5 − 8A3

2A
7
3A

3
5 + 7A6

1A3A3
4A

3
5

− 90A3
1A

3
2A3A3

4A
3
5 + 10A3

1A
4
3A

3
4A

3
5 − 8A7

3A
3
4A

3
5 − 11A3

1A3A6
4A

3
5

+ 4A4
3A

6
4A

3
5 + 4A3A9

4A
3
5 − 11A5

1A2A2
3A4A4

5 + 50A2
1A

4
2A

2
3A4A4

5 − 34A2
1A2A5

3A4A4
5

+ 50A2
1A2A2

3A
4
4A

4
5 + 16A4

1A
2
2A

2
4A

5
5 + 8A1A5

2A
2
4A

5
5 − 28A1A2

2A
3
3A

2
4A

5
5

+ 8A1A2
2A

5
4A

5
5 − 11A3

1A
3
2A3A6

5 − 8A6
2A3A6

5 + 5A3
1A

4
3A

6
5 + 4A3

2A
4
3A

6
5 + 4A7

3A
6
5

− 11A3
1A3A3

4A
6
5 + 4A4

3A
3
4A

6
5 − 8A3A6

4A
6
5

+ 10A2
1A2A2

3A4A7
5 − 8A1A2

2A
2
4A

8
5 + 4A3

2A3A9
5 − 4A4

3A
9
5 + 4A3A3

4A
9
5),

X10C4 = − 48(7A6
1A

3
2A

3
3A4 − 11A3

1A
6
2A

3
3A4 + 4A9

2A
3
3A4 − 11A3

1A
3
2A

6
3A4 − 8A6

2A
6
3A4

+ 4A3
2A

9
3A4 − A6

1A
3
2A

4
4 + 5A3

1A
6
2A

4
4 − 4A9

2A
4
4 − A6

1A
3
3A

4
4

+ 10A3
1A

3
2A

3
3A

4
4 + 4A6

2A
3
3A

4
4 + 5A3

1A
6
3A

4
4



18 Page 20 of 36 Ibukiyama ResMath Sci (2018) 5:18

+ 4A3
2A

6
3A

4
4 − 4A9

3A
4
4 + A3

1A
3
2A

7
4 + 4A6

2A
7
4 + A3

1A
3
3A

7
4 − 8A3

2A
3
3A

7
4 + 4A6

3A
7
4

+ A8
1A2A3A2

4A5 − 11A5
1A

4
2A3A2

4A5 + 10A2
1A

7
2A3A2

4A5 − 11A5
1A2A4

3A
2
4A5

+ 50A2
1A

4
2A

4
3A

2
4A5 + 10A2

1A2A7
3A

2
4A5 + A5

1A2A3A5
4A5 − 34A2

1A
4
2A3A5

4A5

− 34A2
1A2A4

3A
5
4A5 − 2A2

1A2A3A8
4A5 − 8A7

1A
2
2A

2
3A

2
5 + 16A4

1A
5
2A

2
3A

2
5

− 8A1A8
2A

2
3A

2
5 + 16A4

1A
2
2A

5
3A

2
5 + 8A1A5

2A
5
3A

2
5 − 8A1A2

2A
8
3A

2
5

+ 25A4
1A

2
2A

2
3A

3
4A

2
5 − 28A1A5

2A
2
3A

3
4A

2
5 − 28A1A2

2A
5
3A

3
4A

2
5 + 64A1A2

2A
2
3A

6
4A

2
5

+ 7A6
1A

3
2A4A3

5 − 11A3
1A

6
2A4A3

5 + 4A9
2A4A3

5 + 7A6
1A

3
3A4A3

5 − 90A3
1A

3
2A

3
3A4A3

5

− 11A3
1A

6
3A4A3

5 + 4A9
3A4A3

5 − A6
1A

4
4A

3
5 + 10A3

1A
3
2A

4
4A

3
5 + 4A6

2A
4
4A

3
5

+ 10A3
1A

3
3A

4
4A

3
5 + 4A6

3A
4
4A

3
5 + A3

1A
7
4A

3
5 − 8A3

2A
7
4A

3
5 − 8A3

3A
7
4A

3
5 − 11A5

1A2A3A2
4A

4
5

+ 50A2
1A

4
2A3A2

4A
4
5 + 50A2

1A2A4
3A

2
4A

4
5 − 34A2

1A2A3A5
4A

4
5 + 16A4

1A
2
2A

2
3A

5
5

+ 8A1A5
2A

2
3A

5
5 + 8A1A2

2A
5
3A

5
5 − 28A1A2

2A
2
3A

3
4A

5
5 − 11A3

1A
3
2A4A6

5 − 8A6
2A4A6

5

− 11A3
1A

3
3A4A6

5 − 8A6
3A4A6

5 + 5A3
1A

4
4A

6
5 + 4A3

2A
4
4A

6
5 + 4A3

3A
4
4A

6
5

+ 4A7
4A

6
5 + 10A2

1A2A3A2
4A

7
5 − 8A1A2

2A
2
3A

8
5 + 4A3

2A4A9
5 + 4A3

3A4A9
5 − 4A4

4A
9
5),

X10C5 = − 48(−8A7
1A

2
2A

2
3A

2
4 + 16A4

1A
5
2A

2
3A

2
4

− 8A1A8
2A

2
3A

2
4 + 16A4

1A
2
2A

5
3A

2
4 + 8A1A5

2A
5
3A

2
4 − 8A1A2

2A
8
3A

2
4

+ 16A4
1A

2
2A

2
3A

5
4 + 8A1A5

2A
2
3A

5
4 + 8A1A2

2A
5
3A

5
4 − 8A1A2

2A
2
3A

8
4 + 7A6

1A
3
2A

3
3A5

− 11A3
1A

6
2A

3
3A5 + 4A9

2A
3
3A5 − 11A3

1A
3
2A

6
3A5 − 8A6

2A
6
3A5 + 4A3

2A
9
3A5 + 7A6

1A
3
2A

3
4A5

− 11A3
1A

6
2A

3
4A5 + 4A9

2A
3
4A5 + 7A6

1A
3
3A

3
4A5 − 90A3

1A
3
2A

3
3A

3
4A5 − 11A3

1A
6
3A

3
4A5

+ 4A9
3A

3
4A5 − 11A3

1A
3
2A

6
4A5 − 8A6

2A
6
4A5 − 11A3

1A
3
3A

6
4A5 − 8A6

3A
6
4A5 + 4A3

2A
9
4A5

+ 4A3
3A

9
4A5 + A8

1A2A3A4A2
5 − 11A5

1A
4
2A3A4A2

5 + 10A2
1A

7
2A3A4A2

5 − 11A5
1A2A4

3A4A2
5

+ 50A2
1A

4
2A

4
3A4A2

5 + 10A2
1A2A7

3A4A2
5 − 11A5

1A2A3A4
4A

2
5 + 50A2

1A
4
2A3A4

4A
2
5

+ 50A2
1A2A4

3A
4
4A

2
5 + 10A2

1A2A3A7
4A

2
5 + 25A4

1A
2
2A

2
3A

2
4A

3
5 − 28A1A5

2A
2
3A

2
4A

3
5

− 28A1A2
2A

5
3A

2
4A

3
5 − 28A1A2

2A
2
3A

5
4A

3
5 − A6

1A
3
2A

4
5 + 5A3

1A
6
2A

4
5 − 4A9

2A
4
5 − A6

1A
3
3A

4
5

+ 10A3
1A

3
2A

3
3A

4
5 + 4A6

2A
3
3A

4
5 + 5A3

1A
6
3A

4
5 + 4A3

2A
6
3A

4
5 − 4A9

3A
4
5 − A6

1A
3
4A

4
5

+ 10A3
1A

3
2A

3
4A

4
5 + 4A6

2A
3
4A

4
5 + 10A3

1A
3
3A

3
4A

4
5 + 4A6

3A
3
4A

4
5 + 5A3

1A
6
4A

4
5

+ 4A3
2A

6
4A

4
5 + 4A3

3A
6
4A

4
5 − 4A9

4A
4
5 + A5

1A2A3A4A5
5 − 34A2

1A
4
2A3A4A5

5

− 34A2
1A2A4

3A4A5
5 − 34A2

1A2A3A4
4A

5
5 + 64A1A2

2A
2
3A

2
4A

6
5 + A3

1A
3
2A

7
5 + 4A6

2A
7
5

+ A3
1A

3
3A

7
5 − 8A3

2A
3
3A

7
5 + 4A6

3A
7
5 + A3

1A
3
4A

7
5 − 8A3

2A
3
4A

7
5 − 8A3

3A
3
4A

7
5 + 4A6

4A
7
5

− 2A2
1A2A3A4A8

5).

We denote by f (Z) = ∑
T A(T )e2π iTr(TZ) the Fourier expansion of a Hecke eigenform

f ∈ Sk (�
′
0(3)) and for any positive integer n prime to 3, we define a double coset T (n) by

T (n) =
⋃

g∈M4(Z), t gJg=nJ

�′
0(3)g�

′
0(3).

The action of T (n) on Siegel modular forms is defined as usual (See [7] for example). We
review how to calculate the action ofT (2) from the Fourier coefficients. For a half-integral

matrix T =
(

a b/2
b/2 c

)
and a Siegel modular form f , we write Fourier coefficients of f at

T by A(T ) = A(f ; a, c, b) = A(a, c, b). We note here that A(a, c, b) and A(c, a, b) might be
different. Then we have

A(T (2)f ; (2, 1, 1)) = A(4, 2, 2) + 2k−2(A(1, 2, 1) + A(4, 2,−5))

= A(4, 2, 2) + 2k−2(A(1, 2, 1) + A(4, 1, 3)),

A(T (4)f ; (2, 1, 1)) = A(8, 4, 4) + 2k−2(A(2, 4, 2) + A(8, 4,−10))
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+ 22(k−2)(A(2, 4,−5) + A(11, 4, 13))

= A(8, 4, 4) + 2k−2(A(2, 4, 2) + A(8, 2, 6))

+ 22(k−2)(A(2, 1,−1) + A(8, 1, 5))

= A(8, 4, 4) + 2k−2(A(2, 4, 2) + A(8, 2, 6))

+ 22k−3A(2, 1,−1),

A(T (2)f ; (3, 1, 1)) = A(6, 2, 2),

A(T (4)f ; (3, 1, 1)) = A(12, 4, 4).

By computer calculation, we have the following table of the Fourier coefficients of F11,a
and F11,b.

(a, b, c) F11,a/2592 F11,b/2592
(1, 2, 1) 0 0
(2, 1, 1) − 314928 0
(2, 1,− 1) 314928 0
(2, 4, 2) 0 0
(4, 1, 3) 0 0
(4, 2,− 5) 0 0
(4, 2, 2) 2 × 34012224 0
(8, 1, 5) 314928 0
(8, 2, 6) 0 0
(8, 4,− 10) 0 0
(8, 4, 4) 537024 × 314928 0
(3, 1, 1) − 3936600 − 1771470
(6, 2, 2) − 314928 × 7020 − 765275040
(3, 1, 2) − 393660 − 177147
(6, 2, 4) − 314928 × 62 14171760

So we have

A(T (2)F11,a, (2, 1, 1)) = 170061120,

A(T (2)F11,b, (2, 1, 1)) = 0,

A(T (2)F11,a, (3, 1, 1)) = − 314928 × 7020,

A(T (2)F11,b, (3, 1, 1)) = − 765275040,

and (
T (2)F11,a
T (2)F11,b

)
=

(
− 216 1728
0 432

) (
F11,a
F11,b

)
.

So Hecke eigenforms are given by f11,a = − 3F11,a +8F11,b and f11,b = F11,b. We denote by
λ(f, n) the Hecke eigenvalue of f at T (n) for (n, 3) = 1. By the above Fourier coefficients,
we easily have

λ(f11,a, 2) = − 216,

λ(f11.a, 4) = − 1061312,

λ(f11,b, 2) = 432,



18 Page 22 of 36 Ibukiyama ResMath Sci (2018) 5:18

Here f11,b corresponds with the Gritsenko lift from J11,3(SL2(Z)). More concretely, the
space ⊕∞

k=0Ak (�
(1)
0 (3)) is generated by forms g2, g4, χ6 of weight 2, 4, 6, respectively,

where g2 = g21 , g1 = ∑
m,n∈Z qn2+3nm+3m2 with q = e2π iτ (τ ∈ H1), g4 = E4 where Ek is

the normalized Eisenstein series of weight k of SL2(Z) with constant term 1, and χ6 is a
cusp form defined by χ6 = (2E6 −9g32 +7g2E4)/432. The ideal of relations is generated by
1728χ6 = −9g42 + 10g22 g4 − g24 (See [17]). The eigenform corresponding to f11,b is given
by − (g4 − 5g22 )g

5
2χ6 + 1128g22 (g4 − 5g22 )χ

2
6 , where the eigenvalue at 2 is −1104. Here the

signs of the Atkin-Lehner involution are all minus for g2, g4 − 5g22 and χ6. On the other
hand, the Euler 2 factor L2(s, f11,a) of f11,a is given by

(1 − 12(−9 + √
1489)2−s + 219−2s)(1 − 12(−9 − √

1489)2−s + 219−2s),

which is exactly the same as Ihara’s example.

4.4 The case p = 11

The example in this subsection is essentially extracted from thesis [29] of Löschel, though
a new observation on Atkin-Lehner parity and calculation are added here. We have
dimM0,0(Upr(11)) = 5 and dimM1,1(Upr(11)) = 1 (See [12,13] p. 51). On the other
hand, we have the following table of dimensions of Siegel cusp forms ([20]).

k dim S4(�0(11)) dim S4(�
′
0(11)) dim S4(�

′′
0(11)) dim S4(K (11))

3 0 0 0 0
4 7 1 1 1

So for k = 3, the LHS of Theorem 3.1 is 0. For weight 0 = k − 3, we have exceptionally
the constant function in M0,0(Upr(11)), which corresponds with the lift from Eisenstein
series E4 of weight 4. The remaining four forms are all Ihara lifts, two of which are of
Yoshita type from

Snew2 (�(1)
0 (11)) × Snew4 (�(1)

0 (11)) = Snew,−2 (�(1)
0 (11)) × Snew,+4 (�(1)

0 (11)),

and two of which are of Saito–Kurokawa type from Snew4 (�(1)
0 (11)). This can be seen

by using Löschel’s description of explicit lattices and ideal classes in [29] and using the
theory of Ihara lifts in [22,27]. More precisely, this can be shown as follows. The definite
quaternion algebraD11,∞ of discriminant 11 is given byQ+Qα+Qβ+αβ withα2 = −11,
β2 = −1, αβ = −βα. The class number and the type number of D11,∞ are two. One of
maximal orders is given by

O = Z + Zβ + Z
1 + α

2
+ Z

(1 + α)β
2

,

and a rightO ideal class different fromO is represented by

J = 2Z + Z(1 + β) + Z
1 + αβ

2
+ Z

1 + 3β + α + αβ

4
.

(See [29]). Representatives of classes in the principal genus in this case are also given in
[29] by

Lκ = O2hκ , hκ ∈ GL2(D) for 1 ≤ κ ≤ 5,

where Hκ = hκ
thκ are given by
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H1 =
(
1 0
0 1

)
,

H2 =
(

2 (1 + α)/2
(1 − α)/2 2

)
,

H3 =
(

3 (1 + 3β + α + αβ)/2
(1 − 3β − α − αβ)/2 3

)
,

H4 =
(

7 1 + 2β + α + αβ

1 − 2β − α − αβ 4

)
,

H5 =
(

5 2 + 2β + α

2 − 2β − α 4

)
.

We also need more lattices to use in the theory of Ihara lifts, and for 1 ≤ κ ≤ 5, we define

LJκ = J2hκ .

We define theta functions associated with these lattices by

ϑκ (τ ) =
∑

(x,y)∈Lκ

e2π i(n(x)+n(y))τ , ϑ J
κ (τ ) =

∑
(x,y)∈LJκ

e2π i(n(x)+n(y))τ .

By easy computer calculation, we see

ϑ1(τ ) = 1 + 8q + 24q2 + 48q3 + 120q4 + · · · ,
ϑ2(τ ) = 1 + 24q2 + 24q3 + 168q4 + · · · ,
ϑ3(τ ) = 1 + 12q2 + 72q3 + 144q4 + · · · ,
ϑ4(τ ) = 1 + 4q + 16q2 + 68q3 + 128q4 + · · · ,
ϑ5(τ ) = 1 + 24q2 + 24q3 + 168q4 + · · · ,
ϑ
J
1(τ ) = 1 + 24q2 + 24q3 + 168q4 + · · · ,

ϑ
J
2(τ ) = 1 + 12q2 + 72q3 + 144q4 ,+ · · ·

ϑ
J
3(τ ) = 1 + 18q2 + 48q3 + 156q4 + · · · ,

ϑ
J
4(τ ) = 1 + 6q + 12q2 + 90q3 + 108q4 + · · · ,

ϑ
J
5(τ ) = 1 + 12q + 36q2 + 12q3 + 120q4 + · · · .

These theta functions are associated with 10 = 2 × 5 dimensional space of automorphic
forms in the product of forms on D×

A of weight 0 and M0,0(Upr(11)). The space spanned
by ϑi(τ )/4 + ϑ

J
i (τ )/6 is three-dimensional space spanned by E4(τ ) + 113E4(11τ ) and

S4(�(1)
0 (11)), and the space spanned by ϑi(τ ) − ϑ

J
i (τ ) is equal to S4(�(1)

0 (11)). Besides, the
first lattice combinations come fromconstant functionofD×

A and the second lattice combi-
nations come froma formonD×

A whichcorrespondswith a cusp formofweight 2of level 11
in the Eichler correspondence. Here we have dim S4(�(1)

0 (11)) = dim Snew,+4 (�(1)
0 (11)) = 2

and dim S2(�(1)
0 (11)) = dim Snew,−2 (�(1)

0 (11)) = 1. By the lifting theory of Ihara, the
above facts mean that the space M0,0(Upr(11)) consists of Saito Kurokawa type lifts
from the Eisenstein series of weight 4 and S4(�(1)

0 (11)), and Yoshida type lifts from
Snew,−2 (�(1)

0 (11)) × Snew,+4 (�(1)
0 (11)). This fits Conjecture 3.2 completely.
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For k = 4, the LHS of Theorem 3.1 in this case is 2 − 7 − 2 = −7. Here
we have dim Snew,−2 (�(1)

0 (11)) = dim Snew2 (�(1)
0 (11)) = 1, dim S6(�(1)

0 (11)) = 4,
dim Snew,+6 (�(1)

0 (11)) = 1. So the above −7 in LHS is explained by forms in S4(�0(11))
obtained by the Saito–Kurokawa lift from S6(�(1)

0 (11)) (4 dimensional) and the Yoshida
lift from Snew,−2 (�(1)

0 (11)) × Snew,−6 (�(1)
0 (11)) (three dimensional). On the other hand,

by [29] p. 77 and 78 (where there are several typos, in particular about the weights),
we can prove that one-dimensional space M1,1(Upr(11)) is spanned by a lift from
Snew,−2 (�(1)

0 (11)) × Snew,+6 (�(1)
0 (11)) as predicted by Conjecture 3.2.

5 Proof of Theorem 3.1
The dimension formula for each term in Theorem 3.1 is mostly known by the trace
formula. For readers’ convenience, we first explain what is known in which reference
and what is unknown. The dimension Mν1 ,ν2 (Upr(p)) is known for any ν1 ≥ ν2 ≥ 0 for
ν1 ≡ ν2 mod 2 for any prime p in [12] I. The dimension dim Sk,j(K (p)) is known for all
primes p if k ≥ 3 and j = 0, and if k ≥ 5 and j ≥ 2 ([16] for k ≥ 5 and j = 0 and [20] for
k = 3, 4 for j = 0, [19,23] for k ≥ 5 and j ≥ 2). The dimension dim Sk,j(�0(p)) is known
for all primes p for k ≥ 5, j = 0 by [11], for k = 3, 4 for j = 0 in [20], for j ≥ 2 with k ≥ 5
in [41]). Dimensions of Sk,j(�

′
0(p)) ∼= Sk,j(�

′′
0(p)) were given in [13], [20] for k ≥ 3, j = 0

and [41] for k ≥ 5, j ≥ 2, but we must assume that p �= 2, 3 as far as we give them by trace
formula as in [13] since some local calculations at 2 and 3 necessary for the trace formula
has never been done. When j = 0, we have another method to calculate dimensions for
p = 2, 3, which will be explained in §5.3. In §5.1 and 5.2, we prove Theorem 3.1 under the
assumptions that p �= 2, 3, and that k ≥ 3 for j = 0, and that k ≥ 5 for j ≥ 2.

5.1 Review on the compact twist and characters

Here for readers’ convenience, we quote the formula for dimMk+j−3.k−3(Upr(p)) from
[12](I) p. 591–591, restricting to the case that the level is a prime p.We define polynomials
fi(x) for 1 ≤ i ≤ 12 by

f1(x) = (x − 1)4 , f2(x) = (x − 1)2(x + 1)2,
f3(x) = (x − 1)2(x2 + 1), f4(x) = (x − 1)2(x2 + x + 1),
f5(x) = (x − 1)2(x2 − x + 1), f6(x) = (x2 + 1)2,
f7(x) = (x2 + x + 1)2, f8(x) = (x2 + 1)(x2 + x + 1),
f9(x) = (x2 + x + 1)(x2 − x + 1), f10(x) = x4 + x3 + x2 + x + 1,
f11(x) = x4 + 1, f12(x) = x4 − x2 + 1.

We fix an integer k ≥ 3 and an even integer j ≥ 0 and we denote by τ = τk+j−3,k−3
the irreducible representation of G1∞ corresponding to the Young diagram parameter
(k + j − 3, k − 3). For each i (1 ≤ i ≤ 12), we fix an element gi ∈ G1∞ whose principal
polynomial is fi(x) or fi(−x). Since we assumed that j is even, we have τ (gi) = τ (−gi) and
we also have Tr(τ (gi)) = Tr(τ (−gi)), where Tr denotes the trace of matrices. The traces
Tr(τ (gi)) are easily obtained by the well-known character formula in [42]. For any integer
d and a prime p, we denote by

(−d
p

)
the Kronecker symbol for Q(

√−d), that is, if p �= 2,
then this is the Legendre symbol and if p = 2, then this is 1 for d ≡ 7 mod 8, −1 for
d ≡ 3 mod 8, and 0 otherwise.



Ibukiyama Res Math Sci (2018) 5:18 Page 25 of 36 18

Theorem 5.1 ([12](I)) For any prime p, and any integer k ≥ 3, any even integer j ≥ 0, we
have

dimMk+j−3,k−3(Upr(p)) =
12∑
i=1

(
Hcpt
i × Tr(τ (gi))

)
,

where Hcpt
i are given as follows.

Hcpt
1 = 1

26 · 32 · 5(p − 1)(p2 + 1),

Hcpt
2 = 1

26 · 32 (p − 1)2 ×
{
7 if p �= 2,
13 if p = 2,

Hcpt
3 = 1

24 · 3(p − 1)
(
1 −

(−1
p

))
,

Hcpt
4 = Hcpt

5 = 1
23 · 32 (p − 1)

(
1 −

(−3
p

))
,

Hcpt
6 = 1

25

(
1 −

(−1
p

))
(1 − δp2) + 5

25 · 3(p − 1),

Hcpt
7 = 1

22 · 32
(
1 −

(−3
p

))
+ 1

2 · 32 (p − 1)(1 − δp3),

Hcpt
8 = 1

22 · 3
(
1 −

(− 1
p

)) (
1 −

(− 3
p

))
,

Hcpt
9 =

⎧⎪⎪⎨
⎪⎪⎩

1
32

(
1 −

(− 3
p

))2
if p �= 2,

5
18

if p = 2,

Hcpt
10 = 1

5
×

⎧⎪⎨
⎪⎩
1 if p = 5,
4 if p ≡ 4 mod 5,
0 otherwise,

Hcpt
11 = 1

23
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if p = 2,
0 if p ≡ 1 mod 8,
2 if p ≡ 3, 5 mod 8,
4 if p ≡ 7 mod 8,

Hcpt
12 = 1

22 · 3
(
1 −

(−3
p

))
.

In order to compare this with the split group, we need the explicit shape of the characters.
We write this down here in the way suitable for the comparison. We define that the
notation [a0, . . . , am−1;m]n means ai if n ≡ i mod m. For 1 ≤ i ≤ 12 and any integers k
and j, we define notation Ci(k, j) and Ci,1(k, j), Ci,2(k, j) as follows.

C1(k, j) = (j + 1)(k − 2)(j + k − 1)(j + 2k − 3),

C2(k, j) = (− 1)k (k − 2)(j + k − 1),

C3(k, j) = [(k − 2)(− 1)j/2,−(j + k − 1),− (k − 2)(−1)j/2, j + k − 1; 4]k ,

C4(k, j) = (j + k − 1)[1,− 1, 0; 3]k + (k − 2)[1, 0,− 1; 3]j+k ,

C5(k, j) = (j + k − 1)[− 1,− 1, 0, 1, 1, 0; 6]k + (k − 2)[1, 0,− 1,− 1, 0, 1; 6]j+k ,

C6,1(k, j) = (− 1)j/2(2k + j − 3),
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C6,2(k, j) = (− 1)j/2+k (j + 1),

C7,1(k, j) = (2k + j − 3)[1,− 1, 0; 3]j ,

C7,2(k, j) = (j + 1)[0, 1,− 1; 3]j+2k ,

C8(k, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1, 0, 0,− 1,− 1,− 1,− 1, 0, 0, 1, 1, 1; 12]k · · · if j ≡ 0 mod 12,
[− 1, 1, 0, 1, 1, 0, 1,− 1, 0,− 1,− 1, 0; 12]k · · · if j ≡ 2 mod 12,
[1,− 1, 0, 0,− 1, 1,− 1, 1, 0, 0, 1,− 1; 12]k · · · if j ≡ 4 mod 12,
[− 1, 0, 0,− 1, 1,− 1, 1, 0, 0, 1,− 1, 1; 12]k · · · if j ≡ 6 mod 12,
[1, 1, 0, 1,−1, 0,− 1,− 1, 0,− 1, 1, 0; 12]k · · · if j ≡ 8 mod 12,
[− 1,− 1, 0, 0, 1, 1, 1, 1, 0, 0,− 1,− 1; 12]k · · · if j ≡ 10 mod 12,

C9(k, j) =

⎧⎪⎨
⎪⎩
[1, 0, 0,−1, 0, 0; 6]k · · · if j ≡ 0 mod 6,
[−1, 1, 0, 1,−1, 0; 6]k · · · if j ≡ 2 mod 6,
[0,−1, 0, 0, 1, 0; 6]k · · · if j ≡ 4 mod 6,

C10(k, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[1, 0, 0,− 1, 0; 5]k · · · if j ≡ 0 mod 10,
[− 1, 1, 0, 0, 0; 5]k · · · if j ≡ 2 mod 10,

0 · · · if j ≡ 4 mod 10,
[0, 0, 0, 1,− 1; 5]k · · · if j ≡ 6 mod 10,
[0,− 1, 0, 0, 1; 5]k · · · if j ≡ 8 mod 10,

C11(k, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[1, 0, 0,− 1; 4]k · · · if j ≡ 0 mod 8,
[− 1, 1, 0, 0; 4]k · · · if j ≡ 2 mod 8,
[− 1, 0, 0, 1; 4]k · · · if j ≡ 4 mod 8,
[1,−1, 0, 0; 4]k · · · if j ≡ 6 mod 8,

C12,1(k, j) = (− 1)k+j/2[1,− 1, 0; 3]j ,

C12,2(k, j) = − (− 1)j/2[0, 1,− 1; 3]j+2k .

Lemma 5.2 We have the following relations.

Tr(τ (g1)) = C1(k, j)/6,

Tr(τ (g2)) = −C2(k, j)/2,

Tr(τ (g3)) = C3(k, j)/2,

Tr(τ (g4)) = C4(k, j)/3,

Tr(τ (g5)) = C5(k, j),

Tr(τ (g6)) = (C6,1(k, j) − C6,2(k, j))/4,

Tr(τ (g7)) = (C7,1(k, j) − C7,2(k, j))/3,

Tr(τ (g8)) = −C8(k, j),

Tr(τ (g9)) = −C9(k, j),

Tr(τ (g10)) = −C10(k, j),

Tr(τ (g11)) = −C11(k, j),

Tr(τ (g12)) = − (C12,1(k, j) + C12,2(k, j)).

5.2 Comparison with split case

We review the dimension formula of Siegel cusp forms. For any discrete subgroup � ⊂
Sp(2,R), we may write the dimensions as a sum of contributions of � conjugacy classes
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in �, using the Selberg trace formula. We denote by Hi,� (1 ≤ i ≤ 12) the contribution
of semi-simple elements whose principal polynomials are fi(± x) and Hqu

i,� (1 ≤ i ≤ 7)
the contribution of non-semi-simple elements (unipotent and quasi unipotent elements)
whose principal polynomials are also fi(± x). Instead of the subscript� ofHi,� andHqu

i,� , we
writeHi,0 andH

qu
i,0 for�0(p),Hi,d andH

qu
i,d for�′

0(p),Hi,K andHqu
i,K forK (p). Sincewe should

compare2 dim Sk,j(�′
0(p))−dim Sk,j(�0(p))−2 dim Sk,j(K (p))withMk+j−3,k−3(Upr(p)), and

every element is semi-simple for compact twist, we define

H∗
i = 2Hi,d − Hi,0 − 2Hi,K − Hcpt

i , Hqu,∗
i = 2Hqu

i,d − Hqu
i,0 − 2Hqu

i,K .

We review here known formulas and give values of H∗
i and Hqu,∗

i . When j = 0, the
formula for Hi,0 and Hqu

i,0 are known in [11] for all primes p, for Hi,K and Hqu
i,K in [16,19]

for all primes, for Hi,d and Hqu
i,d in [13] for p �= 2, 3. Originally these are given for k ≥ 5

but the results for k = 3 and 4 are in [20]. For the case j > 0 and k ≥ 5, see [41].
In order to write down the contribution of non-semi-simple elements, we prepare some

more notation. We put

χ1 = 1
24 · 32 (j + 1)(2k + j − 3),

χ2,1 = 1
24

(−1)k ,

χ2,2 = (− 1)k (2k + j − 3),

χ3 = [(− 1)j/2,−1,− (− 1)j/2, 1; 4]k ,

χ4,1 = [1,− 1, 0; 3]k + [1, 0,− 1; 3]j+k ,

χ4,2 = [1, 0, 1; 3]k + [0,− 1,− 1; 3]j+k ,

χ5 = [− 1,− 1, 0, 1, 1, 0; 6]k + [1, 0,− 1,− 1, 0, 1; 6]j+k .

Proposition 5.3 We assume that p �= 2, 3. Then we have

H∗
1 = H∗

2 = H∗
3 = H∗

4 = H∗
5 = H∗

8 = H∗
9 = H∗

10 = H∗
11 = 0,

Hqu,∗
3 = Hqu,∗

5 = 0.

Proof The proof is a straight forward calculation, so here we give only data to use. For
p �= 2 and 3, we have

H1,0 = H1,d = 1
27 · 33 · 5(p + 1)(p2 + 1)C1(k, j),

H1,K = 1
27 · 33 · 5(p

2 + 1)C1(k, j),

H2,0 = 7
27 · 32 (p + 1)2C2(k, j),

H2,d = 7
26 · 32 (p + 1)C2(k, j),

H2,K = 7
26 · 32C2(k, j),

H3,0 = 1
25 · 3(p + 1)

(
1 +

(−1
p

))
C3(k, j),
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H3,d = 1
25 · 3

(
p + 2 +

(−1
p

))
C3(k, j),

H3,K = 1
24 · 3C3(k, j),

H4,0 = 1
23 · 33 (p + 1)

(
1 +

(− 3
p

))
C4(k, j),

H4,d = 1
23 · 33

(
p + 2 +

(− 3
p

))
C4(k, j),

H4,K = 1
22 · 33C4(k, j),

H5,0 = 1
23 · 32 (p + 1)

(
1 +

(− 3
p

))
C5(k, j),

H5,d = 1
23 · 32

(
p + 2 +

(− 3
p

))
C5(k, j),

H5,K = 1
22 · 32C5(k, j),

H8,0 = 1
22 · 3

(
1 +

(−1
p

))(
1 +

(− 3
p

))
C8(k, j),

H8,d = 1
22 · 3

(
2 +

(−1
p

)
+

(− 3
p

))
C8(k, j),

H8,K = 1
2 · 3C8(k, j),

H9,0 = 1
32

(
1 +

(− 3
p

))2
C9(k, j),

H9,d = 2
32

(
1 +

(− 3
p

))
C9(k, j),

H9,K = 2
32

C9(k, j),

H10,0 = 5−1C10(k, j)[1, 4, 0, 0, 0; 5]p,

H10,d = 5−1C10(k, j)[1, 4, 0, 0, 0; 5]p,

H10,K = 5−1C10(k, j)[1, 2, 0, 0, 2; 5]p,

H11.0 = 1
23

C11(k, j) ×

⎧⎪⎨
⎪⎩
4 if p ≡ 1 mod 8,
2 if p ≡ 3, 5 mod 8,
0 if p ≡ 7 mod 8,

H11,d = 1
2
C11(k, j) ×

{
1 if p ≡ 1 mod 8,
0 otherwise,

H11,K = 1
22

C11(k, j) ×
{
1 if p ≡ ±1 mod 8,
0 otherwise.

It is also known that

Hqu
3,0 = − 1

22

(
1 +

(−1
p

))
χ3,

Hqu
3,d = − 1

23

(
3 +

(−1
p

))
χ3,

Hqu
3,K = − 1

22
χ3,
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Hqu
5,0 = − 1

2 · 3
(
1 +

(− 3
p

))
χ5,

Hqu
5,d = − 1

22 · 3
(
3 +

(− 3
p

))
χ5,

Hqu
5,K = − 1

2 · 3χ5.

So the proposition is obtained by a direct calculation in each case.

Proposition 5.4 We have

H∗
6 = p

24 · 3
((−1

p

)
− 1

)
C6,1(k, j) + p − 1

24 · 3
(−1

p

)
C6,2(k, j),

H∗
7 = p

22 · 32
((− 3

p

)
− 1

)
C7,1(k, j) + p − 1

22 · 32
(− 3

p

)
C7,2(k, j),

H∗
12 = − 1

22 · 3
((− 3

p

)
− 1

) (−1
p

)
(− 1)k+j/2[1,− 1, 0; 3]j

− 1
22 · 3

((− 1
p

)
− 1

)(− 3
p

)
(− 1)j/2[0, 1,− 1; 3]j+2k ,

Hqu,∗
1 = p − 1

23 · 3 (j + 1) − p(p − 1)
24 · 32 (j + 1)(2k + j − 3),

Hqu,∗
2 = − (− 1)k

24

(
1 −

(− 1
p

))
,

Hqu,∗
4 = − 1

32
[1,− 1, 0; 3]j × [0, 1,− 1; 3]j+2k

(
1 −

(− 3
p

))
,

Hqu,∗
6 = − 1

23
(− 1)j/2

((− 1
p

)
− 1

)
,

Hqu,∗
7 = − 1

2 · 3
((− 3

p

)
− 1

)
× [1,− 1, 0; 3]j .

Proof We put

H6,1 = 1
25 · 3

(
p +

(− 1
p

))
+ 1

27 · 3
(
p

(− 1
p

)
+ 1

)
,

H6,2 = 1
25 · 3

(
p +

(− 1
p

))
− 1

27 · 3
(
p

(− 1
p

)
+ 1

)
.

Then we have

H6,0 = 1
27

(
p + 2 +

(− 1
p

))
C6,2(k, j) + 5

27 · 3
(
p + 2 +

(− 1
p

))
C6,1(k, j),

H6,d = 1
27

(p + 1)
(
1 +

(− 1
p

))
C6,2(k, j) + 5

27 · 3(p + 1)
(
1 +

(− 1
p

))
C6,1(k, j),

H6,K = H6,1C6,1(k, j) + H6,2C6,2(k, j),

Hcpt
6 =

(
1
27

(
1 −

(− 1
p

))
+ 5

27 · 3(p − 1)
)

× (C6,1(k, j) − C6,2(k, j)).
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So we easily see the result for H∗
6 . We put

H7,1 = 1
23 · 32

(
p +

(− 3
p

))
+ 1

23 · 33
(
p

(− 3
p

)
+ 1

)
,

H7,2 = 1
23 · 32

(
p +

(− 3
p

))
− 1

23 · 33
(
p

(− 3
p

)
+ 1

)
.

Then we have

H7,0 =
(
p + 2 +

(− 3
p

)) (
1

2 · 33C7,1(k, j) + 1
22 · 33C7,2(k, j)

)
,

H7,d = (p + 1)
(
1 +

(− 3
p

)) (
1

2 · 33C7,1(k, j) + 1
22 · 33C7,2(k, j)

)
,

H7,K = H7,1C7,1(k, j) + H7,2C7,2(k, j),

Hcpt
7 =

(
1

22 · 33
(
1 −

(− 3
p

))
+ 1

2 · 33 (p − 1)
)

× (C7,1(k, j) − C7,2(k, j)).

So we have the result for H∗
7 . We have

H12,0 = 1
22 · 3

(
2 +

(− 1
p

)
+

(− 3
p

))
C12,2(k, j),

H12,d = 1
22 · 3

(
1 +

(− 1
p

))(
1 +

(− 3
p

))
C12,2(k, j),

H12,K = 1
23 · 3

(
1 −

(− 1
p

))(
1 −

(− 3
p

))
C12,1(k, j)

+ 1
23 · 3

(
1 +

(− 1
p

)) (
1 +

(− 3
p

))
C12,2(k, j),

Hcpt
12 = − 1

22 · 3
(
1 +

(− 3
p

))
(C12,1(k, j) + C12,2(k, j)).

So we obtain H∗
12.

Next we consider the contribution of non-semi-simple elements. It is known that

Hqu
1,0 = 1

23 · 3(p + 3)(j + 1) − 1
23 · 3(p + 1) − (p + 1)χ1,

Hqu
1,d = 1

22 · 3(p + 1)(j + 1) − 1
24 · 3(p + 3) − (p + 1)2

2
χ1,

Hqu
1,K = 1

23 · 3(p + 1)(j + 1) − 1
23 · 3 − pχ1.

So we have

Hqu,∗
1 = 1

23 · 3(j + 1)(p − 1) − p(p − 1)χ1.

It is known that
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Hqu
2,0 =

(
7 −

(− 1
p

))
χ2,1 − 1

23 · 3(p + 1)χ2,2,

Hqu
2,d =

(
7 −

(− 1
p

))
χ2,1 − 1

24 · 3(p + 3)χ2,2,

Hqu
2,K =

(
4 −

(− 1
p

))
χ2,1 − 1

23 · 3χ2,2.

So we have

Hqu,∗
2 = −

(
1 −

(− 1
p

))
χ2,1.

It is known that

Hqu
4,0 = − 1

2 · 32
(
1 +

(− 3
p

))
χ4,1 − 2

32

(
1 +

(− 3
p

))
χ4,2,

Hqu
4,dash = 1

22 · 32
(

−5 +
(− 3

p

))
χ4,1 − 2

32

(
1 +

(− 3
p

))
χ4,2,

Hqu
4,K = − 1

2 · 32
(
3 − 2

(− 3
p

))
χ4,1 − 2

32

(− 3
p

)
χ4,2.

So we have

Hqu,∗
4 = 1

32

(
1 −

(− 3
p

))
(χ4,1 − 2χ4,2)

= − 1
32

[1,− 1, 0; 3]j × [0, 1,− 1; 3]j+2k

(
1 −

(− 3
p

))
.

It is known that

Hqu
6,0 = − 1

23

(
3 +

(− 1
p

))
(− 1)j/2,

Hqu
6,d = − 1

22

(
1 +

(− 1
p

))
(− 1)j/2,

Hqu
6,K = − 1

23

(
1 +

(− 1
p

))
(− 1)j/2.

So we have

Hqu,∗
6 = − 1

23

((− 1
p

)
− 1

)
(−1)j/2.

It is known that

Hqu
7,0 = − 1

2 · 3
(
3 +

(− 3
p

))
[1,− 1, 0; 3]j ,

Hqu
7,d = −1

3

(
1 +

(− 3
p

))
[1,− 1, 0; 3]j ,

Hqu
7,K = − 1

2 · 3
(
1 +

(− 3
p

))
[1,− 1, 0; 3]j .

So we have

Hqu,∗
7 = − 1

2 · 3
((− 3

p

)
− 1

)
[1,− 1, 0; 3]j .
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Proof of Theorem 3.1 To complete the proof of Theorem 3.1, we note that for even j ≥ 0,
we have

dim Snewj+2 (�0(p)) + δj0 = p − 1
12

(j + 1)

−1
4
(− 1)j/2

((− 1
p

)
− 1

)
− 1

3
[1,− 1, 0; 3]j

((− 3
p

)
− 1

)
,

and for k ≥ 3, we have

dim Snew2k+j−2(�0(p)) + dim S2k+j−2(SL2(Z))

= p(2k + j − 3)
12

− 1
4
(− 1)k+j/2

(− 1
p

)
− 1

3
[0, 1,− 1; 3]2k+j

(− 3
p

)
− 1

2
.

By the way, here each term in RHS of the above two equalities is the contribution of
± 12, of elements of order 4, of elements of order 3 and 6, and of unipotent elements
(which is zero for the first equality) in this order. Then we see easily that the sum of the
values given in Proposition 5.4 coincides with (− 1) times the product of the above two
dimensions, and we have Theorem 3.1. More precisely, we see by direct calculation that
−Hqu,∗

1 is the product of the contribution of ± 12 of the RHS of the first equality above
and the contribution of ± 12 and unipotent elements of the second equality above. We
see −Hqu,∗

4 is the product of the contribution of order 3 and 6 of RHS of the first and the
second. We see −Hqu,∗

7 is the product of the contribution of order 3, 6 of the first and
that of unipotent elements of the second. Similarly, −Hqu,∗

6 is the product of order 4 and
unipotent, −Hqu,∗

2 is the product of order 4 and order 4. Also −H∗
12 is the sum of the

product of order 3, 6 for the first and order 4 for the second, and order 4 for the first and
order 3, 6 for the second. Similarly, −H∗

6 is the sum of the product of order 4 for the first
and ± 12 for the second, and the product of ± 12 for the first and order 4 for the second.
Similarly−H∗

7 is the sum of the product of order 3, 6 for the first and± 12 for the second,
and ± 12 for the first and order 3, 6 for the second. ��

5.3 The case p = 2 and 3 with j = 0

Here we give a proof of Theorem 3.1 for j = 0 in case p = 2, 3, since these are given by
very different method from the one used in other cases.
Wedenote by�(N ) = {g ∈ Sp(2,Z); g ≡ 14 mod N } the principal congruence subgroup

of level N of Sp(2,Z). When p = 2 and 3, the actions of Sp(2,F2) ∼= Sp(2,Z)/�(2) and
Sp(2,F3)/{±14} on Ak (�(p)) for p = 2 and 3 are known, respectively, (See [26] for p = 2
and [8] for p = 3.) So for any group � with �(p) ⊂ � ⊂ Sp(2,Z) for p = 2 and p = 3,
we can calculate the dimensions dimAk (�). The dimensions of dim Sk (�) is obtained for
k ≥ 6 by the surjectivity of the Siegel � operator by [34] and for k ≤ 4 by checking
each case directly. Although K (p) is not contained in Sp(2,Z), the dimension of Sk (K (p))
is known for all k for p = 2, 3 (See [2,4,16,20,24]). On the other hand, the dimensions
of Mν1,ν2 (Upr(p)) have been given in [12] (I) for all p, ν1, ν2 with ν1 ≡ ν2 mod 2. The
dimension formula for �

(1)
0 (p) is classical. So gathering all these, we obtain the result.

Indeed, the generating functions of dimensions of cusp forms for p = 2, 3 are given as
follows.
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∞∑
k=0

dimAk (�0(2))tk = (1 + t19)
(1 − t2)(1 − t4)2(1 − t6)

,

∞∑
k=0

dim Sk (�0(2))tk = t6 + t8 − t14

(1 − t2)(1 − t4)2(1 − t6)
,

∞∑
k=0

dimAk (�′
0(2))t

k = (1 + t11)(1 + t6 + t8 + t10 + t12 + t18)
(1 − t4)2(1 − t6)(1 − t12)

,

∞∑
k=0

dim Sk (�′
0(2))t

k = t8 + 2t10 + 2t12 + t16 + 2t18 − t22 − t28

(1 − t4)2(1 − t6)(1 − t12)

+ t11(1 + t6 + t8 + t10 + t12 + t18)
(1 − t4)2(1 − t6)(1 − t12)

,

∞∑
k=0

dimAk (K (2))tk = (1 + t10)(1 + t12)(1 + t11)
(1 − t4)(1 − t6)(1 − t8)(1 − t12)

,

∞∑
k=0

dim Sk (K (2))tk = t8 + t10 + t12 + t22 + t24 − t32

(1 − t4)(1 − t6)(1 − t8)(1 − t12)

+ t11(1 + t10)(1 + t12)
(1 − t4)(1 − t6)(1 − t8)(1 − t12)

,

∞∑
k=3

dimMk−3,k−3(Upr(2))tk = t3(1 + t13)(1 − t4 + t8)
(1 − t2)(1 − t4)(1 − t6)(1 − t12)

,

= t3(1 + t13)(1 + t12)
(1 − t2)(1 − t6)(1 − t8)(1 − t12)

,

∞∑
k=2

dim S2k−2(�
(1)
0 (2))tk = t5

(1 − t)(1 − t2)
= t5 + t6

(1 − t2)2
,

∞∑
k=2

dim S2k−2(SL2(Z))tk = t7

(1 − t2)(1 − t3)
= t7 + t10

(1 − t2)(1 − t6)
.

Gathering all these together, we have

2 dim Sk (�′
0(2)) − dim Sk (�0(2)) − 2 dim Sk (K (2))

= dimMk−3,k−3(Upr(2)) − δk3 − dim S2k−2(�
(1)
0 (2)) + dim S2k−2(SL2(Z)).

Since S2(�0(2)) = S4(SL2(Z)) = 0 and

dim Snew2k−2(�
(1)
0 (2)) = dim S2k−2(�

(1)
0 (2)) − 2 dim S2k−2(SL2(Z)),

this is exactly the statement in Theorem 3.1 for j = 0 and p = 2.
Next we consider the case p = 3. We have

∞∑
k=0

dimAk (�′
0(3))t

k = f (t)
(1 − t4)2(1 − t6)(1 − t12)

,

∞∑
k=0

dimAk (�0(3))tk = 1 + 2t4 + t6 + t15(1 + 2t2 + t6)
(1 − t2)(1 − t4)(1 − t6)2

,

∞∑
k=0

dimAk (K (3))tk = (1 + t12)(1 + t8 + t9 + t10 + t11 + t19)
(1 − t4)(1 − t6)2(1 − t12)

,
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where we put

f (t) = 1 + 3t6 + 2t8 + t10 + 4t12 + 2t14 + 2t18 + t20

+ t9(1 + 2t2 + 2t6 + 4t8 + t10 + 2t12 + 3t14 + t20).

(Calculation for Sk (�
′
0(3)) was done by H. Kitayama by using [8]. The other cases has been

known as explained before.) By these, we can show that

∞∑
k=0

dim Sk (�′
0(3))t

k = fcusp(t)
(1 − t4)2(1 − t6)(1 − t12)

,

∞∑
k=0

dim Sk (�0(3))tk = (1 + 2t4 + t6)(t4 + t6 − t10) + t15(1 + 2t2 + t6)
(1 − t2)(1 − t4)(1 − t6)2

,

∞∑
k=0

dim Sk (K (3))tk = f Kcusp(t)
(1 − t2)(1 − t4)(1 − t6)(1 − t12)

,

where

fcusp(t) = t6 + 2t8 + t9 + 3t10 + 2t11 + 5t12 + 2t14 + 2t15 + t16 + 4t17

+ 4t18 + t19 + t20 + 2t21 − 2t22 + 3t23 − t28 + t29,

f Kcusp(t) = t6 + t9 + t12 − t13 − t14 + t15 + t18 + t21 + t24 − t25 − t26 + t27.

We also have

∞∑
k=2

dim Snew2k−2(�
(1)
0 (3)) = t4(1 + t + t2 − t3)

(1 − t2)(1 − t3)
,

∞∑
k=2

dim S2k−2(SL2(Z)) = t7 + t10

(1 − t2)(1 − t6)
,

and
∞∑
k=3

Mk−3,k−3(Upr(3)) = t3(1 + 2t8 + t9 + t12 + 2t13 + t21)
(1 − t2)(1 − t4)(1 − t6)(1 − t12)

.

So we have

2 dim Sk (�
′
0(3)) − dim Sk (�0(3)) − 2 dim Sk (K (3))

= dimMk−3,k−3(Upr(3)) − δk3 − dim Snew2k−2(�
(1)
0 (3)) − dim S2k−2(SL2(Z)).

Since S2(�(1)
0 (3)) = 0, we have the assertion of Theorem 3.1 for p = 3 and j = 0.

Correction:
In [12] I p. 592 l. 8, “if 6 � D(B)” should read “if 2 � D(B) and 3 � D(B)”.
In [13] p. 43 l. 6, in the explanation for f7(x), add “γ3”.

In [13] p. 44, the right-hand side of t(ˆ̂δ3, k) + t(ˆ̂δ4 , k) =
(
3 −

(− 1
p

))
/23 should read

(− 1)k
(
3 −

(− 1
p

))
/23.

In [13] p. 46, the right-hand side of t(ˆ̂δ3, k) + t(ˆ̂δ4 , k) =
(
3 −

(− 1
p

))
/24 should read

(− 1)k
(
3 −

(− 1
p

))
/24.
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In [13], p. 47, in the formula for T6, the denominator should read 25 · 3 instead of 26 · 3.
In [14] p. 590 l. 8, λ(q)q2m−4T should read λ(q)q2m−3T .
In [22] p. 321 l. 3, GSp(n − 1,Zp) should read GSp(n − 1,Qp) and np(η)Z±

p should read
np(η)Z×

p . Also in [22] p. 321 l. 14,GSp(n−1,Zp) should readGSp(n−1,Qp)∩M2n−2(Zp).
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