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1. Introduction

For k,j € Z>0, we denote by My, ;(I'®) the space of vector valued Siegel modular
forms of weight det® ®@Sym(j). Here, Sym(j) is the symmetric tensor representation
of degree j of GLy(C). Let Ay be the ring of scalar valued Siegel modular forms of
degree2, level 1 and even weights:

Aoy = @ M (I'®),

ke2Z

where My (I'®)) = My, o(I'®). For j € Zsg and € = 0,1, we define the graded Ae,
module of vector valued Siegel modular forms as

MSym( )(F(Q)) @ Mk,J(F(Q))

k=e mod 2

For a graded module M = ), ., My and an integer a define M(a) by M(a), =
M- Roughly speaking, our first main theorem is stated as follows.
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Theorem 1.1. As a grated Ae, module, M?

Syln(lO)(F(2)) has the following free

resolution.
0 — Aev(—24) & Aev(—26)
— Aoy (—6) @ Acy (—8) @ Ay (—10)? @ Aey (—12)* @ Aoy (—14)°
D Aoy (—16)% © Aey(—18) @ Aoy (—20) — MY, 10)(IP) — 0. (L.1)
As a grated Aey module, Mslym(lo)
0 = Aev(—27) & Aev(—29)
— Ay (—9) D Ay (—11) @ Aoy (—13) @ Aoy (—15)° @ Aoy (—17)°
® Aey(—19)? @ Acy(—21) @ Acy(—23) = My10)T?) — 0. (1.2)

(I'®)) has the following free resolution.

Moreover, maps in the free resolutions can be given explicitly. In other words,
ngm(lo)(F(2)) is generated by 13 modular forms of determinant weights
6,8,10,10,12,12,14,14,14,16,16,18,20 and they satisfy two fundamental rela-
tions. Mslym(lo)(F(2)) is generated by 13 modular forms of determinant
weights 9,11,13,15,15,15,17,17,17,19,19, 21, 23 and they satisfy two fundamental

relations.

In Sec. 6, we give relations and generators explicitly.
By Igusa [10], there exists a cusp form x35 € M35(I"®) of weight 35 and we
have

Mslym(o) (F(Z)) = AcvX35-

And by Tgusa [9], Aey, is isomorphic to the polynomial ring of four variables over
C and is generated by ¢4, ¢6, X10 and x12. Here, ¢4 (respectively ¢g) is the Siegel—
Eisenstein series of weight 4 (respectively 6). And x10 (respectively x12) is the cusp
form of weight 10 (respectively 12). We put K, = Frac(Aey). Let j € 2Z>¢ and
e =0 or 1. By [20, Proposition 3.1], we have

dimg,, Méym(j)(F(Q)) Aoy Kev =7+ 1. (1.3)
We put
det(MSSym(j) (F(z))) = /\j+1M§ym(j) (F(2))

then det(ngm(j)(F@))) # 0. We fix an isomorphism AJt1Sym(j) = det?+D/2,

Then for f; € My, ;(I'®) (1 < i < j+1), we have fi A -+ A fi11 € Mp(I'?),
where k=", k; + j(j + 1)/2. Since j is even, we have
Aoy, if j/2 + € is even,

det(MS, . (I'®)) c
( Sym(J)( ) Aevxss, if j/2+ € is odd.
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Thus, there exists a non-zero ideal I . of Ae, such that
L, if j/2 + € is even,

det M§ m(j F(Q) =
My T =1 o i 7724 ¢ s odd.

Definition 1.1. For j € 2Z>¢ and € = 0, 1, we denote by ged(; ) the greatest com-
mon divisor of generators of the ideal I; . above. We define f; . € Acv @ AcvXss by

ged(Zje), if j/2 + € is even,
o ged(Ze)xss, if 7/2+ € is odd.
The element f; . is defined up to a non-zero constant.

Remark 1.1.

(1) In Sec. 4, we construct f;. by the alternating product of minors of matrices
appearing in a free resolution of Mseym(j)(F(Q)).

(2) If ngm(j)(l“@)) is a free Aoy module and {fi,..., fj+1} is its basis, we can
take fje as fi Ao+ A fipa.

(3) By structure theorems of M§ym(2)(F(2)) (cf. [17, 7]) and the result on a Wron-
skian of scalar valued Siegel modular forms (cf. [1]), we have

det (ngm@) (F(2))) = (¢4, b6, X10, X12)* X35,

det <Mslym(2)(F(2))> = (¢4, b6, X10, X12)X35-
Thus, we have fo 0 = x35 and fa1 = X35 up to non-zero constants.
In Sec. 4, we shall prove

Proposition 1.1. For j € 2Z>q and € = 0,1, we have
Fie € Mas(jjae) ().

The second main result of this paper is the following theorem.

Theorem 1.2. Let j be an even number and assume 0 < j < 10. For e = 0,1, we
have

_ j/2+e
fie = X35

up to a non-zero constant.

Remark 1.2. The statement of the theorem was conjectured by Ibukiyama [7] if
7=4,6,8.

We recall preceding results on the structure theorems of the graded Ao, module

)(F(Q)). First, Igusa [9, 10] gave generators of Ao, = M2 )(F(Q)) and

Mg Sym(0

Sym(j
proved that Mslym(o)(F@)) is a free Ao, module of rank 1. Satoh [17] proved the
structure theorem of Mg (I'®). The module Mg ) (I'®) is generated by

six modular forms, they satisfy four relations and the four relations satisfy one
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relation. Ibukiyama [7] proved structure theorems of Mslym@)(f'(?)), ngln(4)(1"(2)),
Méym(4)(l“(2)) and Mg, ) (I'®). The module M, ,(I"®) is generated by four
modular forms and they satisfy one relation. M§ . (I'®) is free of rank j + 1 for
(4,e) = (4,0),(4,1),(6,0). Van Dorp [22] proved Mslym(G)(F(2)) is free of rank 7.
Kiyuna [13] proved ngm(s)(l“@)) is free of rank 9 for e = 0,1. And they all gave
generators and relations explicitly.

By Theorem 1.1 and Sec. 6, we can compute a basis of My, 10(I"?) explicitly.
This is one of motivations of this paper. In Sec. 8, we give some examples of Hecke
eigenforms. A program for computing MMO(F(Q)) can be found at [19].

2. Definition and Notation

In this section, we define Siegel modular forms of degree two and introduce notation
used throughout in this paper. We define Siegel upper half space Hs of degree two by

Hy = {x + iy |z, y € Sym,(R),y is positive definite}.

Here, Sym,(R) is the space of symmetric matrices with entries in R. For a commu-
tative ring R, we define the symplectic group of degree 2 by

Spa(R) = {g € GL4(R) | 'gwag = ws},

where wy = ((1)2 _0122). Then Spy(R) acts on Hy by

a b a b
( d).zz(az+b)(cz+d)_1, (c d)eSpQ(R), z € Hos.

c

Here a,b,¢,d € My(R). We put I'® = Sp,(Z).

Let p : GLa(C) — Autc(V) be an irreducible polynomial representation of
GL5(C) and x : Spy(Z) — C* a character. A V-valued holomorphic function f :
Hy — V is said to be a (holomorphic) Siegel modular form of degree two, weight p
and character x if

a b
flg-z) =plcz+d)x(9)f(2), forallg= (C d) € Spy(Z).

We denote the space of Siegel modular forms of degree two, weight p and character
X by M,(I'®,x). If x is the trivial character, we simply denote M,(I"®),y) by
M, (I'®),

For a non-negative integer j, we denote by V; the space of homogeneous poly-
nomials of u; and us of degree j, where u; and us are variables. We define the
symmetric representation Sym(j) of degree j by

(Sym(5) (@) P)(u1 u2) = P((uruz)a)

for P € V; and o € GL2(C). We denote by det the determinant representa-
tion of GLy(C). When p = det® @Sym(j), we put M ;(I'®) = M,(I'®). For

1650101-4



Int. J. Math. 2016.27. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF OKLAHOMA on 01/06/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Structure theorems for vector valued Siegel modular forms

Fe M;w»(l“(z)), we define the Siegel operator by

Then by Arakawa [2], we have
O(F) € Sy (SLa(Z))u]

if j > 0. Here Sk, (SL2(Z)) is the space of elliptic cusp forms of weight k + j, level
1. For F € My, ;(I'®), we call F a cusp form if ®(F) = 0 and denote by Sy ; (")
the space of cusp forms.

Let F € My ;(I" (?)). Then by Kécherer principle, we have the following Fourier
expansion:

' ((ZH Zm)) = > al(n,r,m); F)exp(2m(nzn +rzip + ma)).

212 222

n,r,m
Here a((n,r,m); F') € V; and the summation index runs over the following set:
{(n,r,m)|n,r,m € Z,n,m,4nm — r? > 0}.

Let qi11, q12, 22 be variables and Clg;a, qﬁl}[qlh g22] a ring of formal power series.
We embed M;, ;(I'®@) to Clgia, 415 /[q11, g22] ®c V; by

J
Py ( S al(m ) F>iq;aq;2q;z)
1=0

n,r,m

where for v € Vj, we denote by v; the coefficient of ul ~"uj of v.

3. Generators of the Ring of Scalar Valued Modular Forms

Later, we construct vector valued Siegel modular forms by scalar valued Siegel
modular forms. We recall well-known results on the generator of the ring of scalar
valued modular forms of degree two.

For an even integer k > 4, we denote by ¢, the Siegel-Eisenstein series of degree
two and weight k. We normalize ¢y, so that a((0,0,0); ¢x) = 1. We put

210.39.5%.7.53

Xi0 = T pgggr (Pads ~ o),
211 .36.53.72.337 ., ., . 3,2
X2 = BT s0s (8 T01+2-5°0F — 691615).

Then we have xx € Si(I'®) and a((1,1,1);xx) = 1 for k& = 10,12. We can also
construct x19 and y12 by the Saito—Kurokawa lift.

Theorem 3.1 (Igusa [9, 10]). The modular forms ¢4, ¢, x10 and x12 are alge-
braically independent over C and we have

Acy = Cloa, d6,X10: X12)s My (I'®) = X35 Aev,

where x5 € S35(I'?) is a cusp form of weight 35.
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Let sgn be the unique non-trivial character of I'"®) (see [14]). Then sgn is
quadratic. There exists a square root ys € S5(I'®),sgn) of x10. The cusp form
x5 has the following Fourier expansion:

x5(Z) = Z a((n,r,m); xs)e(nzi1 + rziz + mzaz).
n,m,4nm7r220
n,r,mel /247
We normalize x5 so that a((1/2,1/2,1/2);x5) = 1.

Fourier coefficients of Siegel-Eisenstein series ¢y, are explicitly known and the
computation is not difficult. We can compute Fourier coefficients of ys5 by the
Wronskian given in [1, Proposition 2.1]. Since x5 is the Saito-Kurokawa lift of a
Jacobi theta series (see [15, 6]), we can easily compute Fourier coefficients of ys.

4. The Determinant of the Module of Vector Valued Siegel
Modular Forms

In this section, we give an another interpretation of f; . in Definition 1.1 and prove
Proposition 1.1.

4.1. The determinant of a based exact sequence

We recall the definition and basic property of the determinant of a based exact
sequence over a field. We follow [5, Appendix A].

Let K be a field and W a vector space of dimension n < oo over K. We put
det(W) = A"W. For a one-dimensional vector space V, we put V~! = Homg (V, K).
For a non-zero element v € V, we denote by v~! the element of V! such that
v v) = 1.

For i € 7Z, let W; be a finite-dimensional vector space over a field K and d; :
W; — Wi41 a linear map. We put d = {d; | i € Z} and W = D, Wi. We assume
(W, d) forms a finite exact sequence, that is there exists n € Z>¢ such that W; =0
for |i| > n and ker(d;) = Im(d,;_1) for all 7. We define the determinant of W, by

det(Wa) = Q) det(W;) V"
Then by [5, Appendix A, Proposition 3], there is a natural isomorphism called the
FEuler isomorphism
Eug : det(W,) — K.
For a three term exact sequence
0— Wo 2w, LW, -0

the Euler isomorphism det(Wy) @ det(Ws) ® (det(W7))™! — K is given as follows.
Suppose ay A -+ Aay € det(Wy), c1 A+ Acy, € det(Ws) and f € (det(W)) L. For
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¢; € Wa, we take ¢; € Wy such that di(¢;) = ¢;. Then we define Eug(ai1 A--- Aap A
1 Aem A f) by

f(do(al) A A do(an) ANCLA--- AEm)

It is easy to see that this is well-defined. The definition for general exact sequences
is reduced to this case.

Let W be a vector space and e = {e, | 1 < a < dimg (W)} a basis of W.
Denote by det(e) by the wedge product e A -+ A €gim, (w)- Let (W, d) be a finite
exact sequence and suppose that e = {e(i)} is a system of bases in all W; so that
each e(i) is a basis in W;. We define det(e) € det(W,) by

det(e ® det(e ( D'

Here, we put det(e(i)) = 1 if W; = {0}. We call (W,,d, e) a based exact sequence.

Definition 4.1. For a based exact sequence (W,, d, €), we define its determinant by
det(Ws,,d, e) = Euy(det(e)) € K*.

Next, we explain how to compute determinants of based exact sequences. Let
(We,d, e) be a based exact sequence. For i € Z, let B; = {1 < a < dimg W;} be an
ordered set of indices of basis. Assume d; # 0. We denote by D; the matrix represen-
tation of d; with respect to e(i) and e(i +1). We put D; = (m Ef)g)aeBl+1,ﬁeBi- For

subsets X C B4 and Y C B;, we define (D;) x,y by the submatrix (m( )g)an BeY -

Definition 4.2. A collection of subsets I; C B; (i € Z) is called admissible if
1] = (=1)! dimg Wiy
>0

and (D;)r,,, B,\ 1, is invertible if d; # 0.

z+17

Remark 4.1. It can be easily proved that an admissible collection exists (see
[5, Appendix A, Proposition 13]).

We can compute the determinant of a based exact sequence by the alternating
product of minors. For the proof of the following theorem, see [5, Appendix A,
Theorem 14].

Theorem 4.1. Let (I;) be an admissible collection for a based exact sequence
(We,d,e). We put A; = det((D;)r,.,,B\1,)- Then, we have

det(Wa,d,e) = [[ A
€L

Here, we understand A; =1 if d; = 0.
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Example 4.1. Let n € Z>;. We define a three term based exact sequence as
follows.

0—Woo 2w, N wy o, (4.1)

where W_o = K, W_; = K" W, = K". We take a basis e(i) of W; by the
standard basis of W;. Let Y(ay,as,...,a,11) be the matrix representation of d_o
with respect to the standard bases, e, es,...,e,11 the standard basis of W_; and
f1s f2,..., fn the standard basis of Wy. Let B; = {1 < o < dimg W;} be the
ordered set of indices of basis. We assume a,,1+1 # 0. We define a subset I; C B; by

B;, if i >0,
L={{n+1}, ifi=—1,
0, if i < —2.

Then I; is an admissible collection. Let A; be the determinant defined in Theo-
rem 4.1. Then, we have

A_1fiNfaoN- A fp=doq(er) Nd_q(e2) A Ad_q(en),
A9 =apq1.
Thus by Theorem 4.1,
det(We,d,e)fi A fa A A fr, = a;}rld,l(el) Ndy(e2) AN+ ANd_q1(en),

where det(W,,d, e) is the determinant of (4.1).

4.2. The determinant of a free resolution of M§ym(j)(1"(2))

Next, we define the determinant of a given free resolution of Mg j)(F 2)) for
e = 0,1. And we shall prove that this determinant satisfies the property given in
Definition 1.1.

Definition 4.3. Let ¢ = 0,1 and

Y_r Yor+1 P2

0_>F7T—)F7T+l =

F_ M —0 (Rsl)

a free resolution of M = Mg (I'®) as a graded Ao, module. Here

ym(j)

Fi= @ Aw(=al)), for —r<i<-—1

1<v<n;

be a graded free module, where o\ € 7. We take a basis e(0) = {fi,---, fj+1}
of M. Define a based exact sequence (W,,d, e¢) associated with the free resolution
Rsl and e(0) as follows. We put Wy = M ®4,, Koy and W; = F; ®4,, Koy for
—r <i¢< —1.Fori>0ori< —r, weput W; = 0. We take a basis e(i) of W;
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as the basis obtained by the standard basis of F;. We define d; : W; — W;;1 by
di = ; ®a4,, idk., . Then, we define the determinant of the free resolution Rsl by

det(Rsl) = det(W,,d,e)fi A--- A fit1.

By [5, Appendix Proposition 9], det(Rsl) does not depend on the choice of the basis
f17"'7fj+1'

Proposition 4.1. For j € 2Z>o and e = 0,1, let det(Rsl) be the determinant given
in Definition 4.3 and fj. an element of Aey @ Aevx3s given in Definition 1.1. Then,
we have

det(Rsl) = fje

up to a non-zero constant.

Proof. By definition of f;, it is enough to prove
Ap det(Rsl) = det(M) ®4 Ap

for any height one prime P of A. Here M = ngm(j)(f'(?)) and A = Ag,. In the
proof, we use the same notation in Definition 4.3. Let P be a height one prime of
A. Since Ap is a discrete valuation ring, we can take a basis {f1,..., fj+1t} of M
so that det(M) XA AP = Apfl VANRIERIVAN fj+1. Put x = AP/PAP. Since M and Fi
(—r <i < —1) are torsion-free A modules, the following sequence Rsl® 4 k is exact.

0—=F_ @4k —=F 1 @4k —F_ 1Q@a—=M®®srk—0.

We define a based exact sequence (V,,d,€) over & as follows. We put Vo = M ®4 K
and V; = F; @4 k for —r < i < —1. Otherwise, we put V; = 0. Define d; : V; — V41
by d; = ;@ aid,. Let €(0) = {fi®1,, ..., fj+1®1,} and €() a basis obtained by the
standard basis of F; for —r <14 < —1. Denote by B;, the ordered index set of (7).
We take an admissible collection {I;} for a based exact sequence (V,,d,€). Then
{I;} is an admissible collection for (W, d, ) in Definition 4.3. Then by Theorem 4.1,
we have det(W,, d, e) € AF. Therefore, we have Ap det(Rsl) = Apfi A+ A fiy1 =
det(M) @4 Ap. O

Since Rsl is a free resolution as a graded module, there exist f € My (I'®)) and
g € M;(I'®) for some k and [ such that det(Rsl) is equal to f/g. By Proposition 4.1,
we can take g = 1. We can compute the weight of f.

Proposition 4.2. Let det(Rsl) be the determinant given in Definition 4.3. Then
the weight of det(Rsl) is equal to 35(j/2 + ¢).

Proof. Let (W,,d,e) be a based exact sequence given in Definition 4.3, D; the
matrix representation of d; with respect to e(i) and e(i+1) and B; the ordered index
set of e(i). We take an admissible collection {I;} for (Ws,d,e). For f € My(I'®),

1650101-9
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we denote by wt(f) the weight of f. For —r <i<-2and o € Bjy1, B € By, the
weight of (a, B)-entry of D; is equal to ag) - a((xH'l). Therefore, we have
wt((A)r,.BL) = Z al)) — Z alt
a€B;\I; a€lit

for —r <14¢ < —2. By Theorem 4.1, we have

wi(det(Wa,die)) = > (17 S o@D+ Y alh.

—r<i<-2 a€B; acl_y
By
_ 1.
wh(fiAAfp) = Y, el +5i(G+1)
a6371\171
we have
) . 1
_ _1)i—1 (2) Z s
wt(det(Rsl)) o DT Y a5+,
—r<i<-—1 a€B;

Therefore, we obtain the assertion of our Proposition by [20, Proposition 3.1]. O
Corollary 4.1. Proposition 1.1 is true.
Proof. This follows from Propositions 4.1 and 4.2. O

Next, we compute f; . given in Definition 1.1 for j < 8.
Proposition 4.3. Forj =0,2,4,6,8 and ¢ = 0,1, let f;. be a Siegel modular form
given in Definition 1.1. Then, we have

_ j/2+e
Jie = X35

up to a non-zero constant.

Proof. If j = 0, the assertion follows from the structure theorem proved by Igusa
[9, 10]. If j = 4,6, the assertion follows from [20], since Mg . (I'®) is free in
this case. We can check the assertion in the case when 7 = 8 by a similar compu-
tation to [20]. Source code, for checking this, can be found at https://github.com/
stakemori/det_vec_vald_SMFs. Suppose j = 2. For simplicity, we assume ¢ = 1. By
Ibukiyama [7, Theorem 4.1], M = Mslym(Q)(F(z)) has the following free resolution.

0— A(—33) — A(—21) ® A(—23) @ A(—27) & A(—29) - M — 0. (Rsl-1)
Here A = Aqy. In the matrix form, the second map is given by

{(—12x12, 10x10, —66, 4¢4).

The third map sends the standard basis to elements defined in [7, Theorem 4.1] of
determinant weights 21, 23, 27, 29 respectively. We write them as go1, g23, g27 and
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g29. We use the same notation in Definition 4.3 and put f1 = g21, fo = g23, f3 = go7.
We define I; C B; by

B, ifi>0,
L =4 {4), iti=—1,
0, ifi<-—2.

Then {I;} is an admissible collection. By Theorem 4.1, we have
det((We,d, e)) = (44)~".
By the proof of [7, Theorem 4.1}, we have

921 A 923 N\ gor = PaXas

up to a non-zero constant. By definition, the determinant of the free resolution is
equal to 47 x2.. By Proposition 4.1, we have our assertion. O

5. Rankin—Cohen—Ibukiyama Type Differential Operators

We use Rankin—Cohen—Ibukiyama type differential operators to construct genera-
tors of ngm(lo)(F(z)) and Mslym(lo)(‘r(z))‘ We recall differential operators defined
by Eholzer-Ibukiyama [3] and van Dorp [22]. We use the same notation used in [11].

Let k,1 be positive integers and , 1 characters of I'®). We take scalar valued
Siegel modular forms f € My (I'®, x) and g € M;(I'® ). For j € Zs¢, Eholzer-

Ibukiyama [3] constructed vector valued Siegel modular forms

{fag}Sym(j) € Mk+l,j(r(2)7X7/))7

{f) g}det2 Sym(j) € Mk+l+2,j (F(z)a qu)

by Rankin—Cohen—Ibukiyama type differential operators.

Next, we review the differential operator defined by van Dorp [22]. As before,
let k,1 be positive integers and , characters of I'?). Let F € My, ;(I'®, ) and
g € My(I'™®,4) be a vector valued Siegel modular form and a scalar valued Siegel
modular form respectively. Then van Dorp [22, Proposition 3.6.1] constructed

{Fag}det Sym(3j) S Mk+l+l,j(r(2)7 qu))

by a differential operator. Though he proved the proposition only when both x and
1 are trivial characters, the same proof works for this case.

Finally, we define differential operators on three scalar valued Siegel modular
forms. We use these differential operators in order to construct vector valued Siegel
modular forms of odd determinant weights from scalar valued Siegel modular forms.
For i = 1,2,3, let k; be a positive integer and y; a character of I'®. For f; €
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My, (I'® | x;) (i = 1,2,3), we define differential operators as follows:

{f1, fos fatdetsym(j) = {15 f2tsym(i)s f3}det Sym(s)
€ My thpthst1, 5(IP, x1x2X3),

{f17f27f3}det3 Sym(j) = {{f17f2}det2 Sym(j f3}det5ym(ﬁ)

€ My 4rathets, j (TP, x1x2X3)-

6. Precise Statement of the Structure Theorems

In this section, we give generators and relations of MY (10)( 2)) and ngm(lo)
(I"®) explicitly.

6.1. Generators of ngm(lo)(F(2))

In this subsection, we define thirteen generators M m(lO)(F(2))' We define ten of
them as follows.

Fio = {4, ¢6 }sym(10), Fiz = {¢4, 1 }sym(10)»
G12 = {4, 96 fder? Sym(10)> Py = {4, 904<)06}Sym(10)a
Gia = {804,X10}Sym(10)7 Hiy = {xs, <P4X5}sym(1o),
Fi6 = {4, 9§ }sym(10)» Gi6 = {P4; X12}8ym(10)>

Fig = {4, pax10tsym(10),  F20 = {¥4, paX12}sym(10)-
We define remaining three modular forms as follows.

1
Fo = 299617786417098240 F'
5 = G6TT0526222078 1424640000 5 > 01 7786417098240 15

+ 17895013431753(0) - 2697884306920857600B(1) + 44996927501753(2)

— 3530479328750 B2 + 1270685788932672000B. )

5)

+310661133307499520 B2 + 1407858543008

+142952698392B'7) — 153516996000B\%) + 141514665062400005.5

— 553525841756160000B.3").

1
Fy = —8434553345905639680 F
8 5007789466655860684800000X10( 18

0)

—667318653114753( +161806890613036032OOB 75624543557850B 2

+5670763346875B\%) — 142126285976539200005. %)
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+4104176746346127360 B — 27222227916975B.2) — 2824331333544 B
+ 3053137050008\ — 15590027386483200005.%

— 3590159128657920000B ).

1
138001252939149600003

(—15916405775169019760640F

— 132162848896253175BL2 — 36964508172629003366400B. %)

— 61881543692326050B\7 + 4575977962943750 B2

— 20639189761094963520000B' % + 5162305610166648652805.2

— 23611666345271550B.9) — 2865001595829912B!7 + 215990508690000B.%
— 2792613466587732480000B. — 91477416441367756800008. 1"

— 39157855521483699000000 B ").

Here ng% Cey B%l) are given as follows:

B = {¢4, 9396} sym(10); B = {x5. 93 x5 }sym(10)

B2 = {96, 9} sym(10); B = {vs, 93} sym(10);

18 - {@G,Xlz}sym 10)5 13 = {@4,X10}Sym 10)»

18 = {804» 804806}Sym(10)» 18 = {4, 804}det2 Sym(10)»
B = {04, 92 }aet? sym(10): BY) = {4, x12 }aet? sym(10)»
B = {x5. 9o x5 baer2 Sym(10)> B = papeF.

We note that the set {Fis, B%g% o B%l)} forms a basis of the space Mis, 10(I®),
In Sec. 7.3, we shall explain Fg, Fg and Fpp are holomorphic Siegel modular

forms.

6.2. Generators of Mslym(lo) (r®)

We define seven of thirteen generators of M, Sym(lO) (I'®) as follows:

Fi7 = {4, 96,96} qet sym(i0y G171 = {4, 43, <‘04}det Sym(10)”
Hi7 = {X5,96, X5 Yaer sym10yr  £19 = {45 X5+ P4X5 et sym(10):
Gy = {@4»%0421»906}detsym(10)’ For = {04, 06, X10 et syma1ops
Fp3 = {¢a, 906aX12}detSym(10)'
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We define remaining six modular forms as follows:

1
Fy = —6725180154 19200 F
’ 4636508397286125012516864000X10( 6725180134573619200 19

— 7089754342125G 19 + 22117267502616 8. + 4205094643659571200 8.5
— 7138425156720B'2) — 5140411073357414400B'5)

— 28473519757610188800B3) — 78089462464 B.3)).

1
Fy = —29326410727288012800 F"
H 67079114544070095667200&/;2( 9326410727288012800 1

— 154720948329675G 19 + 296435594930904 B
+47067973368230707200 8.5 — 112872064939920B.7)
— 81197866538488627200BL3) — 357184189630601625600B. ¢

— 20661646909696 8.5 — 670791145440700956672000B.%).

1
Fis = —5870720280512102400 F
1 17600933845382823936000@6( 1

+3571610126175G19 — 17576872544088 B — 3898171979838259200 8.1
+4328987691600B.2) + 3418705164194611200B.%
+18831546114903244800 B3 — 286545870208 B3

— 17600933845382823936000B.5).

1 @
Fis = 258020594380800F19 — 12669930 B!
o 13165054156800@4( 1

+37752728832000B2) — 143718507878400 B3 — 37349B\Y)).

Gis = MBQ
Hys = ! (594965135278080B.5) — 944735220 B2
92155379097600¢4
+97485935339520 B\5) — 4267924896614400 B3 + 550172207B'Y).
Here ng), cee B%g) are given by

BY = {04, 06, 02 }aet Sym(10)> %) = {4, PaX5, X5 }det Sym(10)5
Bg) - {@4,@4¢6,@4}detsym(10)7 19 = {X5a<p47x5}det8ym (10)»
B = {X5, ©4X5, P4 }det sym(10)5 By = {©6, 93, 04} det sym(10),
B = ¢apeFo.
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We note that the set {Flg,Glg,ng),...,Bg)} forms a basis of the space
M19710(F(2)). In Sec. 7.3, we shall explain that Fy, F11, Fi3, F15, G5 and Hys are
holomorphic modular forms.

6.3. Relations of ngm(m) (@)

Lemma 6.1. Generators of even determinant weights satisfy the following two
relations.

a18Fs + a16Fg + a14F10 + b14G1o + a12F12 + b12G12 + a10F14 + 010G 14 + croH1a
+agFig + bsG16 + agFig + asFog = 0 (6.1)
and

oo Fs + aigFg + a6 Fio + Bi6Gio + a1aF12 + $14Gr2 + a12F14 + 312G14
+v12H14 + a10F16 + Br0Gie + agFig + agFap = 0. (6.2)

Here, a1 and ayg are defined by

a1s = 15643660032(67331642279¢70s — 668922800045 + 237092318952652803x10
+4612035407616000¢6X12)

and

a16 = 5105916816000(387254979¢% — 202406085402 + 6135186530304¢¢10
+ 411492333772804x12)-

Coefficients a1y, ...,aq4 are defined by

a1 = —11824384¢,4(—392419241 0406 + 145847127883968x10),
bia = —1986496512¢4(—31914599¢46 + 10054388155392x10),
a1 = 830289075(23924401 7 — 165484807 + 1331133253632 12),
bia = 76257199200(23313¢3 — 20803 + 1434101760 12),
aro = —135273640320(5849¢4p6 + 412304256 x10),

bio = 41009272012800(—909943p4p6 + 34633557504010),

c10 = 261554147777367244800( —paps + 3468906 10),

ag = 312420856840400¢32,

bg = 705526755069575577607,

ag = —89694864607315968000¢%,

as = 165176542976857251840¢,.
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Coefficients asg, a1s, a1 and (i are defined by

(rop = —5214553344(425048543296 ¢ + 484587670889¢3¢%
+15696098336318400¢ 46 X 10 + 62924853322985472¢7 12
— 890719685310873600000x3,),

a1z = 5105916816000(—1811050991¢3¢s — 2402086407 — 1452831159312004%x10
+87510477938688¢¢x12),

16 = 5912192(19495410909¢7 — 23419603319¢403 — 1950560293550400¢6 10
+ 2818879454297088¢4x12)

and

Bie = 1986496512 (649847848¢7 — 809420843 ¢4 — 86364658900800¢6X 10
+ 87573208859136¢4x12)-
Coefficients a4, - .., aq are defined by

—4151445375¢4(22269553pacbs + 1622175242688 x10),

Q14
Brs = —38128599600064(21233 ¢4 + 192707424010),

a1z = —135273640320(1491164° — 4415642 + 3872074752x12),

Bra = —205046360064000(2855021¢% — 376496462 -+ T18771802112x12),
Y19 = —16347134236085452800(1649¢)3 — 1729¢2 + 211323168y12),

oo = 11238160318000(—139¢a¢ps + 11793600 10),

Bio = —59317870781030400(5947¢aps + 1014249600 10),
g = 44847432303657984000067,

o = —825882714884286259200¢¢.
We shall prove Lemma 6.1 in Sec. 7.4.

6.4. Relations of Mg (@)

ym(10)

Lemma 6.2. Generators of odd determinant weights satisfy the following two
relations.

digFo + die 11 + diaFi3 + dioFis 4 e12G1s + fioHis + dioFi7 + e10Gir
+ fioH17 + dsFig + esG1g + deFo1 + dafo3 =0 (6.3)
and
020Fy + 018 F11 + 016 F13 + 014F15 + €14G15 + QuaHis + 012 F17 + €12G7
+Ci2H17 + 010819 + €10G19 + dsF21 + d6Fa3 = 0. (6.4)
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Here dig and dyg are defined by
dig = —195284202946560(—199029244391¢Z¢6 + 2697950850992640¢§X10

+3549133607846400¢6X12)
and
dis = —341747355156480(6216500122¢] — 25056024021 p4¢2
—471257790566400¢6x 10 + 2428645469322240¢4x12).
Coefficients di4,...,ds are defined by

dyg = —74893556325778260295680¢4( —433p4¢6 + 14131200x10),
diz = —102195265536(—685230911¢3 + 35309376921600x12),
e12 = —1093591536500736(39827745779¢5 + 468263910297600x 12),
f12 = —255488163840(193718497¢3 + 4258403020800 12),
d1o = 955493351615296(—49p¢s + 3686400x10),
e10 = 387290963292597(7pape + 115200x10),
f10 = 5177826116350101946368(— 746 + 460800x10),

dg = —2133719553440976076800¢3,

eg =0,

dg = —396262202781895557120¢s,

dy = —66043700463649259520¢4.

Coefficients 620,018 and 016 are defined by
90 = —27897743278080(—1439954360064¢ + 4674964932732
+ 30085945775101440¢4¢p6 X 10 + 34225097039884800643x 12
— 7541542192496423731200x3,),
518 = 341747355156480(16282786754¢3ps + 255673714507

— 5088306946498560@21)(10 + 895389802076160¢6X12)
and

S16 = —10699079475111180042240(—3036¢7; + 5pada — 4945920066 10

+ 13063680004 x12)-
Coefficients 614, . ..,0¢ are defined by
014 = —8073425977344¢4(—8673809¢4¢6 + 260218327680x10),

€14 = —1093591536500736¢4(39827745779¢a¢ps + 659445588817920x10),
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C1a = —25548816384064(193718497¢ 46 + 11030709116160x 1),
812 = 955493351615296(—44¢3 — 5¢Z + 4838400 12),

€12 = —55327280470371(—44¢7 — 502 + 967680 12),

C12 = 739689445192871706624(—44¢3 — 562 + 4193280 12),

510 = 2133719553440976076800(— ¢acps + 64512x10),

€10 = —35692735177045739520 10,

0s = —39626220278189555712052,

56 = —66043700463649259520¢.

We shall prove Lemma 6.2 in Sec. 7.4.

7. Proof of the Main Results

In this section, we prove Theorems 1.1 and 1.2. Also, we prove generators given
in Sec. 6 are holomorphic modular forms. The actual computation is done by a
computer algebra system. We use SageMath [18] and a SageMath package for Siegel
modular forms degree two [19].

7.1. Hilbert series
For j € Z>o and € € {0,1}, we define the Hilbert series h;(t) of Mgyuj)(I"®) by

hie(t) = dime My ;(I'®)e*.
k=0
Then hio(t) is given as follows.

Lemma 7.1.
0t 210 4 2412 4 3 4 2010 418 420 — 42 %0

Paoo(t) = (1—t4)(1 —6)(1 — t10)(1 — ¢12) ’

A A LA L i e o el e
(1= (1 —©)(1 — 10)(1 — 1) |
In particular, expansions of these Hilbert series are given by

hioo(t) = % + 1% + 3t10 + 412 + 7' + 9¢16 + 13418

hio,1(t) =

+ 1720 4+ 22¢%2 4 2724 + 35¢20 4 411%° + O(+*)
and
hioa(t) =t + ' 4 2613 4+ 5¢15 4 6¢17 4 919
+ 13t + 16t + 21¢% + 28¢7 + 33t* + O(¢3!).

Proof. hip(t) is given in [7]. But for the sake of completeness, we give a proof.
By Tsushima [21], the dimension of Sy ;(I"®) is known if k > 4. By Arakawa [2],
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we can compute dime My ;(I'?) — dimc Sy, ;(I'®) if k > 4. Therefore, we have
to prove MkJo(F(z)) = 0 if £ < 4. The vanishing of Mk,lo(f'(?)) for k < 0 follows
from Freitag’s work [4]. We prove My 19(I'®) = Sk 1o(I'®) for 1 < k < 4. If k is
odd, this follows from the definition. By Thukiyama [7, Lemma 2], My 1o(I"?) =
Sg,lo(r(z)). Since 514(SL2(Z)) = O7 we have M4,10(F(2)) = 54710(1—'(2)). Thus7 we
have My 10(I'®) = Sy.10(I'®) for 1 < k < 4. Again, by Ibukiyama [7, Lemma 2],
we have Sk,lo(l“(z)) = 0if 0 < k < 4. Therefore, we have MkJo(F(z)) = 0if
0<k <4 O

7.2. Precision

We explain to what extent we compute Fourier coefficients of the generators. For
f € My(I'®), we consider f as an element of C[q12, ¢15][q11, ¢22] as in Se. 2.

We recall Sturm type theorem for scalar valued Siegel modular forms of degree
2 for our need. We introduce some notation. For f € Clgi2, qﬁl][qll, @22], we denote
coeflicients of f as follows:

=3 al(n,r,m); g di2a5.

(n,m,m)
For a € R>o and a subring B C C, we define a ring by
Ra(B) = R (B)/(ai{ ™ a3 ™"). (7.1)
Here [-] is the Gauss symbol and R/(B) is defined by
R'(B) = {f € Blai2, 415 |[a11, g22] | a((n, 7,m); f) = 0 if dnm —r* < 0}.
Theorem 7.1 (Kikuta—Takemori [12]). Let k € Z>o and p a prime number.
Suppose f € M(I'®) has Zp) tntegral Fourier coefficients. We put
f=The image of f in Z/pZlg:2, 415 |[g11, 022]
and
b — {19/107 if k is even,
(k—5)/10, if k is odd.
If the image of f in Ry, (Z/pZ) vanishes, then we have f = 0.
By the theorem above and the fact that Mj,(I"(®) has a basis of modular forms

with integral Fourier coefficients, we have the following lemma.

Lemma 7.2. Let f € My(I'®) and assume the image of f in Ry, (C) vanishes,
where by is as in Theorem 7.1. Then we have f = 0.

Remark 7.1. The statement of [20, Lemma 5.1 is true, but the proof is not
sufficient.

In Lemma 7.5, we shall prove the determinant of the first 11 generators (ordered

by the determinant weight) of M (I'@) (respectively MJ (I'®)) is equal

Sym(10) ym(10)
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to x35(¢3 —¢2) (respectively x55(43 —¢2)) up to a non-zero constant. By Lemma 7.2,
it is enough to compute generators of MSOym(lo)(F(2)) (respectively M} (@)
in R15(C) ®c Vig (respectively Ras(C) ®c Vip).

ym(10)

7.3. Holomorphy of generators

In Sec. 6, we constructed generators of small determinant weights by dividing mod-
ular forms. Since dividing by a cusp form is subtle, we introduce the following
lemma.

Lemma 7.3. For a € Z>1, let Ro(C) be the ring defined by (7.1). Let

f=>_ al(n,r,m); f)atiq7sg5 mod (¢i ", g53™),

(n,r,m)
g=>_ a((n,r,m); g)ql1q12q5s mod (¢{;"*, ¢35 ")
(n,r,m)
be elements of R,(C). Assume a((1,—1,1);9) = 1 and g is cuspidal, that is
a((n,m,m);g) = 0 if 4nm — 12> = 0 and n,m < a. Then there uniquely exists

h € Rq—1(C) such that f = gh. Here f(respectively q) is the image of f (respectively
g) in R,—1(C). Moreover, we have the following recursive equation.

a((n,r,m);h) +a((1,1,1); g)a((n,r — 2,m); h) = a((n+ 1,r —=1,m+1); f) (7.2)
for (n,r,m) € Z with 0 <n,m < a—1 and 4nm —r? > 0.

Proof. We put S = {(n,r,m) € Z3|n,m,4nm —r? > 0}. We define an order < of
S so that (n,r,m) < (n’,7’,m’) if and only if one of following conditions holds.

Dn+m<n+m.

(

(2) n+m=n"4+m' and n <n’.
(3) n=n',m=m'and r <71’

Let h = 32, .mys0a((n,r,m); h)qtyqi2q35 + mod(qfy,q3,) be an element of
R,—1(C). By the condition ]?: gh, we have
> a(Ti:g)a(Ty;h) = a((n+ Lr—Lm+1):f)  (73)
T1+4T>=(n+1,r—1,m+1)
Tl,Tzes

for (n,r,m) € S with n,m < a — 1. Here addition of S is defined by entry-wise.
By (7.3) and the cuspidality of g, we obtain (7.2). Thus, we can recursively define
a((n,r,m); h) for (n,r,m) € S with n,m < a — 1 by the order of S. Uniqueness
follows from the recursive equation above. O

Next, we prove holomorphy of generators.

Lemma 7.4. Meromorphic modular forms Fg, Fgs, G0, Fy, F11, F13, F15 and His
given in Secs. 6.1 and 6.2 are holomorphic.
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Proof. For simplicity, we only prove Fy is holomorphic. We can prove other
cases in a similar way. Let Njg9 be the subspace of M19,10(F(2)) spanned by
Flg,Glg,Bg),...,Bg). Then Nyg is a subspace of Mg 10(I'®) of codimension
1. And we can calculate a basis of Nig explicitly from Fourier coefficients of
scalar valued Siegel modular forms. Put Cy9 = Fi9|T(2), where T'(2) is the Hecke
operator. For the explicit action of T(2) on My ;(I'®), see [2]. Then, we have
Nig+CCig =M 19,10(1“(2)). We can check this equality by computing vector valued
modular forms in Rg(Q)'!. By Lemma 7.1, there uniquely exists Fy € My 19(I"?))
such that F§ # 0 up to a non-zero constant. By a similar argument in [11, Sec. 7.4],
we can explicitly find rational numbers o, 3,7, 8, ¢®,d® for —1 < i < 5 such that

5
paeFy = aFig + BCro + TV Grg + ZCU)BQ,
i=0

5
$10Fy = 1Fig +8C1g +d VG + 3 dV BY.
i=0
Then, we have § = 0 # 0 and a # ~. Since C1g is computationally expensive, we
remove C1g. Then, we have

5
XlOFé = O/Flg + ﬂ/Glg + Z e(i)B%)
i=0
for some rational numbers o/, e (0 < i < 5). By explicit computation of

these rational numbers, we have F§ = Fy up to a non-zero constant. Thus Fy is
holomorphic. O

7.4. Relations

In this subsection, we prove Lemmas 6.1 and 6.2. For simplicity, we only prove

relation (6.1).

Proof [Proof of relation (6.1)]. For k € Z>, let X} be the following set of

monomial of ¢4, ¢g, Y10 and Y12;
Xi = {0888 xSox% | a,b, ¢, d € Z>o,4a + 6b + 10c + 12d = k}.

We define a finite set S by

XisFp U X163 U X14F10 U X14G1o U X12F12 U X12G12 U Xi0F14 U X10G14

UX10H14 U XgF16 U XgG16 U XgFis.

Then, we have |S| = 27. By computing elements of S in Rg(C) ®¢ Vio, we see that
S is linearly independent over C. By Lemma 7.1, S is a basis of May 10(I"?). By
numerical computation, we can check that the image of the left-hand side of (6.1)
in R¢(C) ®c Vi is equal to 0. Therefore the left-hand side of (6.1) is equal to 0.
O
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7.5. Determinants of generators and structure theorems

Determinants of modular forms given in Secs. 6.1 and 6.2 are given as follows.

Lemma 7.5.
Fg A Fy A Fig AGro A Fia A Gia A Fig A Gia A Hig A Fig A Gig = (85 — 63) X35
(7.4)
up to a mon-zero constant and
Fy A Fi1 A Fiz A Fis A Gis A His A Fiz A Gir A Hiz A Fig A Gig = (65 — 62)X55
(7.5)

up to a non-zero constant.

Proof. As is explained in Sec. 7.2, we have to compute both sides of (7.4)
(respectively (7.5)) in Rig(Q) (respectively Rgo(Q)). Computation is done by
using SageMath [18] and a package [19] for Siegel modular forms of degree 2. See
https: //github.com/stakemori/det_vec_vald_SMF's for a script to check this. O

Next, we prove Theorem 1.1.

Theorem 7.2. Theorem 1.1 is true, that is the sequences (1.1) and (1.2)
are exact. Here the second linear map of the sequence (1.1) is given by

sending the standard basis to (ais,ais,-..,a4) and (g, qas,...,qs), where
a1s, a16, - - -, A4; 20, 18, - - -, g are give in (6.1) and (6.2). The third map of the
sequence (1.1) is given by sending the standard basis to Fg, Fs, ..., Fa. Linear
maps of the sequence (1.2) is given in a similar way by using Fy, F11, ..., Hys, (6.3)
and (6.4).

Proof. For simplicity, we only prove that (1.1) is exact. We denote by ¥_o the
second map of (1.1) and by «_; the third map of (1.1). Because

det (aG a4) =61 - & (7.6)
ag Qg

up to a non-zero constant, 1)_o is injective. By Lemma 6.1, we have Im(¢_2) C
ker(s_1). By (1.3) and Lemma 7.5,

{Fs, Fg, F10, G0, Fi2, G12, F14, G14, H14, F16,G16 }
is a basis of MSOym(lo)(F(2)) ® 4., Kev. Therefore, we have
(ker(¥-1)/Im(¥—2)) ®4,, Key = {0},

Since det (ZZ Z‘;) and det (;180 Z‘;) are co-prime in Ae,, we have ker(¢_;) =

Im(v_2). Therefore the Hilbert series of Im(v¢_1) is equal to

10 15 4 2610 4+ 2612 4 3t1 4+ 2410 4 18 420 — 24 120
(L= )1 —t6)(1 — t10)(1 — t12)
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which is equal to that of ngm(lo) (F(z)) by Lemma 7.1. Therefore 1_; is surjective.
This completes the proof. O

Finally, we prove Theorem 1.2.

Proof [Proof of Theorem 1.2]. By Proposition 4.3, it is enough to prove the

assertion when j = 10. We can prove the assertion of the theorem by a simi-
lar argument to the proof of Proposition 4.3 by using Theorem 4.1, Lemma 7.5
and (7.6). |

8. Examples and a Table of Fourier Coefficients

Since constructions of modular forms given in Secs. 6.1 and 6.2 are complicated,
the author has tested them in several ways. By the explicit structure theorems, we
can construct a basis of the space MkJo(F(z)) and compute the action of Hecke
operators on the space. In the case, when Hecke eigenvalues are known, we test
if eigenforms have correct eigenvalues. We also test the generalized Ramanujan
conjecture for a non-CAP cuspidal eigenform.

For tests, we introduce the following notation. Let F € My ;(I"®) be a Hecke
eigenform and p a prime number. We denote by Q,(F; X) the polynomial of degree
4 of X so that [, . ime @p(F;p )" is the spinor L-function of F and denote by
Ry (F; X) the polynomial of degree 5 of X so that [[, .. R,(F;p~)~! is the
standard L-function of F'. That is, Q,(F; X) and R,(F; X) are defined as follows.

QP(F;X) = (1 - O(0X)(1 — OzoO(lX)(l — OzoOng)(l - OéoOqugX),
Ry(F;X)=(1-X)1- a1 X)(1—-a;'X)(1 - aeX)(1 —ay'X).

Here ag, a1, as are the p-Satake parameters of F'.

8.1. Test for Klingen—FEisenstein series and the K—R-S lift

Since Hecke eigenvalues of Eisenstein series and lifts are known, we test them. Let
k,j € 2Z>¢. For a normalized eigenform f = >""", a(n; f)q" € S+, (SL2(Z)) with
k > 4, Arakawa [2] defined the Klingen-Eisenstein series E(f) € My ;(I"®). The
Klingen—Eisenstein series E(f) satisfies the following identities:

O(E(f)) = ful, o
Qp(E(f): X) = QW (f; X)QM (f; p* 2 X). ‘

Here p is a prime number and QI(,I)(f;X) =1—a(p; f)X +prti—1X2,

For a normalized eigenform f =3 a(n; f)¢" € Sk(SL2(Z)), Ramakrishnan
and Shahidi [16] constructed a lift KS(f) € Myy15—2(SL2(Z)) called the Kim—
Ramakrishnan—Shahidi lift (K-R-S lift in short). The K-R-S lift KS(f) satisfies
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the following identity:

3

Qp(KS(f); X) = [J(1 = 0} 85°X), (8.2)

i=0
where p is a prime number. «, and 3, are defined by 1 — a(p; f)X + pF~1X2 =
(1 —apX)(1 = BpX).
Let
A =g —24¢% + 252¢° — 1472¢" + 4830¢° + O(¢°) € S12(SL2(Z)),
fi6 = q +216¢* — 3348¢” + 13888¢™ + 52110¢° + O(¢°®) € Si6(SL2(Z))
be normalized eigenforms of weight 12 and 16, respectively. Then, we have

Fourier coefficients of Fs and Fi3 are given in Table 1. We test (8.3). By Table 1 and
the explicit action of Hecke operators given in [2], we have the following identities.

Q2(Fs; X) = (1 -2 33X +2°X%)(1 - 27- 33X +273X?),
Qa(Fi3;X) = (1 —2°-3%.20X + 233 X?)(1 + 2™ . 3X + 233 Xx?).
Thus, we can check (8.1) and (8.2) for p = 2. We note that Fourier coefficients

of the K-R-S lift KS(A) and the non-lift eigenform of weight det™® Sym(10) were
given in [8].

8.2. Test for the generalized Ramanujan conjecture

Next, we test the generalized Ramanujan conjecture for the cusp form Fy. By
Table 1, we have

o 667 845 ., 845 . 667 ., s
RQ(Fg’X>_1+512X+2048X ooy Trey X

Roots of Ro(Fy; X)/(X — 1) in the complex field with 53 bits precision are given
by o, @, 3, 3. Here a and [ are given as

a = —0.966296691713208 — 0.257430968580139¢,
B = —0.185070495786792 — 0.982725247253387i.

Then, we have |a| = |3] = 1.00000000000000. Thus, we can check that the absolute
values of 2-Satake parameters of Fy are equal to 1.

8.3. Table of Fourier coefficients

For i,j € Z>o and v € Vj, we denote by v; the coefficient u? ‘ub. Then Fourier
coefficients of Fg, F}3 and Fy are given as follows.
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Fourier coefficients of some of generators.

Table 1.
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Table 1. (Continued)
(n,r,m),1 a((n,r,m); F);  a((n,r,m); F13);  a((n,r,m); Fy);
(1,0,3), 4 — 1933680 0 0
(1,0,3),5 0 29568 950208
(1,0,3), 6 1826160 0 0
(1,0,3),7 0 —27648 —3021696
(1,0,3), 8 —1731960 0 0
(1,0,3),9 0 55008 448416
(1,0, 3), 10 658584 0 0
(1,1, 3),0 —30600 0 0
(1,1,3),1 —153000 —198 —3162
(1,1, 3), 2 0 —891 —14229
(1,1,3),3 918000 —1824 —68064
(1,1,3), 4 1020600 ~922%6 —171822
(1,1,3),5 —793800 —9576 —538776
(1,1,3), 6 —1827000 —20454 —950586
(1,1,3),7 —954000 —49056 —1171296
(1,1,3),8 529200 53649 —882783
(1,1, 3),9 675000 —35286 —138762
(1,1, 3), 10 405000 ~9360 49680
(2,0,2),0 —1177200 0 0
(2,0,2), 1 0 —512 710656
(2,0, 2), 2 4669200 0 0
(2,0,2),3 0 51200 2936832
(2,0,2), 4 _ 4754400 0 0
(2,0,2), 5 0 0 0
(2,0,2), 6 _ 4754400 0 0
(2,0,2),7 0 —51200 —2936832
(2,0,2), 8 4669200 0 0
(2,0,2),9 0 512 —710656
(2,0, 2), 10 —1177200 0 0
(2,1,2),0 —857088 0 0
(2,1,2), 1 —2142720 3840 — 526080
(2,1,2), 2 959040 17712 —79920
(2,1,2),3 5132160 123456 2292960
(2,1,2), 4 544320 178752 4211760
(2,1,2), 5 — 6459264 0 0
(2,1,2), 6 544320 178752 —4211760
(2,1,2),7 5132160 —123456 —2292960
(2,1,2), 8 959040 17712 79920
(2,1,2),9 —2142720 —3840 526080
(2,1, 2), 10 —857088 0 0
(2, 2,2),0 —323136 0 0
(2,2,2), 1 —1615680 —3840 168960
(2,2,2),2 —2643840 —17280 760320
(2,2,2),3 —881280 —30720 1351680
(2,2,2),4 3084480 —26880 1182720
(2,2,2),5 5552064 0 0
(2,2,2),6 3084480 26880 —1182720
(2,2,2),7 —881280 30720 —1351680

1650101-26



Structure theorems for vector valued Siegel modular forms

Int. J. Math. 2016.27. Downloaded from www.worldscientific.com

by THE UNIVERSITY OF OKLAHOMA on 01/06/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

1650101-27

Table 1. (Continued)
(n,r,m),1 a((n,r,m); Fs);  a((n,r,m); Fi3);  a((n,r,m); Fy);
(2,2,2),8 —2643840 17280 —760320
(2,2,2),9 —1615680 3840 —168960
(2, 2,2), 10 ~323136 0 0
(1,0, 4), 0 ~169290 0 0
(1,0,4), 1 0 —2112 192
(1,0, 4), 2 2770200 0 0
(1,0, 4),3 0 18432 946176
(1,0,4), 4 ~11592000 0 0
(1,0,4),5 0 —40320 —806400
(1,0, 4), 6 15724800 0 0
(1,0,4),7 0 —279552 3600384
(1,0, 4), 8 —5961600 0 0
(1,0, 4),9 0 —58368 —15409152
(1,0, 4), 10 —2396160 0 0
(1,1, 4), 0 —130944 0 0
(1,1,4), 1 —654720 480 —8640
(1,1, 4), 2 535680 2160 —38880
(1,1, 4),3 6071040 7680 85440
(1,1,4), 4 4152960 16800 480480
(1,1,4),5 —11539584 —20160 1532160
(1,1, 4),6 —9495360 —87360 2538480
(1,1,4), 7 8634240 237120 12636960
(1,1, 4), 8 7974720 450000 16683120
(1,1, 4),9 526080 —98880 12584640
(1, 1, 4), 10 —1595136 —127680 3583680
(2,0,3),0 — 6886080 0 0
(2,0,3), 1 0 23424 18843648
(2,0, 3), 2 42832800 0 0
(2,0,3),3 0 —1112640 —40886016
(2,0,3), 4 — 77112000 0 0
(2,0,3),5 0 2711520 213393600
(2,0,3),6 48988800 0 0
(2,0,3),7 0 858240 —188828064
(2,0,3),8 —49021200 0 0
(2,0,3),9 0 94896 1836432
(2,0, 3), 10 14375880 0 0
(2,1,3),0 5889024 0 0
(2, 1,3), 1 — 14722560 —43776 ~12594432
(2,1,3),2 17876160 —180144 —41900112
(2,1,3),3 57836160 —619968 —69337824
(2,1, 3),4 15865920 —670656 —26205648
(2,1,3),5 —10668672 —608832 39412800
(2,1,3),6 5201280 454944 —81808608
(2,1,3), 7 —3536640 66048 —204111936
(2,1,3),8 —6860160 —452304 15414048
(2,1,3),9 20615040 —157152 28999872
(2,1, 3), 10 12369024 149760 11128320
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Table 1. (Continued)

(n,r,m),1 a((n,r,m); F);  a((n,r,m); F13);  a((n,r,m); Fy);
(2,2, 3),0 —3043008 0 0
(2,2,3),1 —15215040 28800 3701760
(2, 2,3), 2 —18865440 129600 16657920
(2,2,3),3 15828480 —222528 26492160
(2, 2,3),4 38243520 —1383648 14985600
(2,2,3),5 —4572288 —1546272 —107190720
(2,2,3),6 —47416320 —104160 —266572320
(2,2,3),7 —38315520 1022208 —241800480
(2, 2,3),8 10149840 859248 —99740880
(2,2,3),9 21342960 87792 —27100080
(2, 2, 3), 10 6402888 —65520 —5613840
(2,0, 4), 0 —26840160 0 0
(2,0, 4), 1 0 9216 62435328
(2,0, 4), 2 218721600 0 0
(2,0,4),3 0 7716864 478814208
(2,0,4), 4 — 472550400 0 0
(2,0,4),5 0 —18192384 —2721890304
(2,0,4), 6 531014400 0 0
(2,0,4),7 0 19378176 878641152
(2,0,4), 8 168220800 0 0
(2,0,4),9 0 —3612672 —671612928
(2,0, 4), 10 57565440 0 0
(2,1,4), 0 —99394880 0 0
(2,1,4),1 —55987200 109056 19932672
(2,1, 4),2 114134400 638496 74130912
(2,1,4),3 312249600 1700736 —98737344
(2,1,4),4 —111081600 986496 —764603616
(2,1,4),5 —550851840 —451584 465768576
(2,1,4),6 —299779200 —2142336 1968341088
(2,1,4), 7 63187200 —10740096 2322377664
(2,1,4),8 2851200 —6888096 2872643616
(2,1,4),9 —77299200 2110848 662090112
(2,1, 4), 10 —41679360 309120 310270080
(2,2, 4),0 — 14625792 0 0
(2,2,4),1 —73128960 —69632 23166976
(2, 2,4), 2 —b58659840 —313344 104251392
(2, 2,4),3 204134400 2785280 347504640
(2,2,4),4 369546240 11210752 729759744
(2,2,4),5 87026688 13590528 1242759168
(2,2,4),6 —94456320 5218304 1525751808
(2,2,4), 7 50457600 1187840 727695360
(2, 2,4),8 4078080 2377728 —138829824
(2,2,4),9 — 62607360 2719744 147718144
(2, 2, 4), 10 —31494144 860160 —13762560
(3,0,3),0 90596880 0 0
(3,0,3),1 0 —7771680 293116320
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(n,r,m),1 a((n,r,m); Fs);  a((n,r,m); Fi3);  a((n,r,m); Fy);
(3,0, 3), 2 — 370623600 0 0
(3,0,3),3 0 31086720 —5276093760
(3,0,3), 4 576525600 0 0
(3,0,3),5 0 0 0
(3,0,3), 6 576525600 0 0
(3,0,3),7 0 —31086720 5276093760
(3,0,3),8 —370623600 0 0
(3,0,3),9 0 7771680 —293116320
(3,0, 3), 10 90596880 0 0
(3,1,3),0 76869648 982800 78246000
(3,1,3),1 128116080 6088572 127495620
(3,1, 3), 2 —215706240 6418602 —1735483050
(3,1,3),3 —500027040 —10190880 —4765793760
(3,1, 3), 4 —163462320 —12927348 —3737171340
(3,1,3),5 211495536 0 0
(3,1,3),6 —163462320 12927348 3737171340
(3,1,3), 7 —500027040 10190880 4765793760
(3,1,3),8 —215706240 —6418602 1735483050
(3,1,3),9 128116080 —6088572 —127495620
(3,1, 3), 10 76869648 —982800 —78246000
(3,2,3),0 52747524 —336960 —28019520
(3,2,3),1 175825080 —4224384 —185186304
(3,2,3), 2 73083060 —7988544 —238997952
(3,2,3),3 —230433120 —2283264 —681633792
(3,2,3),4 —91982520 3661056 —1807327872
(3,2,3),5 231544656 0 0
(3,2,3),6 —91982520 —3661056 1807327872
(3,2,3),7 —230433120 2283264 681633792
(3,2,3),8 73083060 7988544 238997952
(3,2,3),9 175825080 4224384 185186304
(3, 2,3), 10 52747524 336960 28019520
(3,3,3),0 24141672 0 0
(3,3,3),1 120708360 2822958 —60464718
(3,3,3), 2 209213280 12703311 —272091231
(3,3,3),3 112602960 22583664 —483717744
(3,3,3), 4 —136919160 19760706 —423253026
(3,3,3),5 —297892728 0 0
(3,3,3),6 —136919160 —19760706 423253026
(3,3,3),7 112602960 —22583664 483717744
(3,3,3),8 209213280 —12703311 272091231
(3,3,3),9 120708360 —2822958 60464718
(3,3, 3), 10 24141672 0 0
(3,0,4), 0 326856600 0 0
(3,0,4),1 0 2776320 2263168512
(3,0, 4), 2 — 1641477600 0 0
(3,0,4),3 0 —62830080 24539277312
(Continued)
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Table 1. (Continued)

(n,r,m),1 a((n,r,m); F);  a((n,r,m); F13);  a((n,r,m); Fy);
(3,0,4), 4 2166662400 0 0
(3,0,4),5 0 257897472 —67879440384
(3,0,4), 6 5298585600 0 0
(3,0,4),7 0 —56975360 —17592942592
(3,0,4), 8 1035417600 0 0
(3,0,4),9 0 25223168 —19634782208
(3,0,4), 10 | —337469440 0 0
(3,1,4),0 307618560 —3144960 147847680
(3,1,4),1 512697600 2991168 —3146836608
(3,1, 4), 2 —1336953600 15352416 8555416128
(3,1,4),3 —1717977600 2852352 30943036800
(3,1,4),4 1515628800 —8116416 28559248704
(3,1,4),5 1488533760 —170868096 31554907776
(3,1,4),6 1663804800 —222638976 53683211232
(3,1,4), 7 538617600 —21808512 11210955840
(3,1,4),8 667958400 24104736 28350336096
(3,1,4),9 —247795200 —10392192 10016214912
(3,1, 4), 10 —273231360 604800 —3811420800
(3,2,4),0 222409800 524160 —157783680
(3,2,4),1 741366000 —2020512 2059469856
(3,2, 4), 2 27518400 —22212576 4078981728
(3,2,4),3 —1971331200 —29117568 1767635712
(3,2, 4), 4 —1429344000 11738496 22163764224
(3,2,4),5 1016064000 79466688 41201572608
(3,2,4),6 1429747200 105032256 —6501266688
(3,2,4), 7 1036108800 46791168 —31413522432
(3,2, 4),8 —68040000 11937024 —18115881984
(3,2,4),9 —600624000 —24086016 1296961536
(3,2, 4), 10 —228153600 —8225280 198881280
(3,3, 4), 0 132554880 0 0
(3,3,4),1 662774400 —3103776 —221061312
(3,3, 4), 2 873763200 —13966992 —994775904
(3,3,4),3 —481593600 —28571904 —6932343744
(3,3,4),4 —1840003200 —34822368 —19620915552
(3,3,4),5 —1050779520 4584384 —36233378496
(3,3,4),6 247867200 65927232 —43852301136
(3,3,4), 7 359625600 78051264 —37908340896
(3,3,4),8 —382708800 43049808 —22157484048
(3,3,4),9 —458553600 17788992 —3375905472
(3, 3,4), 10 —117576960 4280640 977223360
(4,0, 4), 0 — 1297280640 0 0

(4,0, 4),1 0 39649280 102482575360
(4,0, 4), 2 4768675200 0 0

(4,0, 4), 3 0 —64225280 —515930849280
(4,0,4), 4 1794374400 0 0

(4,0, 4), 5 0 0 0
(4,0,4), 6 1794374400 0 0
(4,0,4),7 0 64225280 515930849280
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(n,r,m),1 a((n,r,m); Fs);  a((n,r,m); Fi3);  a((n,r,m); Fy);
(4,0, 4), 8 4768675200 0 0

(4,0, 4),9 0 —39649280 —102482575360
(4,0,4), 10 | —1297280640 0 0
(4,1,4),0 —1017027840 —12841920 —18394044480
(4,1,4),1 —1408876800 —25269696 —66242925504
(4,1, 4), 2 3807691200 29798928 —84305711952
(4,1,4),3 4438684800 —337919040 102921684768
(4,1, 4),4 —5083444800 —796243392 559765292688
(4,1,4), 5 3433691520 0 0
(4,1,4),6 —5083444800 796243392 —559765292688
(4,1,4), 7 4438684800 337919040 —102921684768
(4,1, 4),8 3807691200 —29798928 84305711952
(4,1,4),9 —1408876800 25269696 66242925504
(4,1, 4), 10 —1017027840 12841920 18394044480
(4, 2,4),0 —976318464 —16343040 7339376640
(4, 2,4), 1 —2521436160 —49397760 16163143680
(4, 2, 4), 2 817067520 193628160 150300794880
(4, 2, 4), 3 5306618880 354017280 378355630080
(4, 2, 4), 4 176924160 26664960 376012922880
(4, 2,4),5 —11901883392 0 0

(4, 2,4), 6 176924160 —26664960 —376012922880
(4, 2,4), 7 5306618880 —354017280 —378355630080
(4, 2, 4), 8 817067520 —193628160 —150300794880
(4, 2,4),9 —2521436160 49397760 —16163143680
(4, 2, 4), 10 —976318464 16343040 —7339376640
(4, 3,4),0 —549910272 6619200 —371112000
(4, 3,4), 1 —1953803520 19256000 1196382400
(4, 3,4), 2 —1626229440 125698320 —124038853200
(4, 3,4), 3 1428370560 305362240 —428832439200
(4, 3,4), 4 1673474880 345011520 —443326489200
(4, 3,4),5 872919936 0 0

(4, 3,4),6 1673474880 —345011520 443326489200
(4, 3,4), 7 1428370560 —305362240 428832439200
(4, 3,4), 8 —1626229440 —125698320 124038853200
(4, 3,4),9 —1953803520 —19256000 —1196382400
(4, 3, 4), 10 —549910272 —6619200 371112000
(4, 4, 4), 0 — 356713984 0 0

(4,4, 4),1 —1783569920 5865472 —15539372032
(4, 4, 4), 2 —2918568960 26394624 —69927174144
(4, 4, 4), 3 —972856320 46923776 —124314976256
(4,4, 4), 4 3404997120 41058304 —108775604224
(4,4, 4), 5 6128994816 0 0

(4,4, 4),6 3404997120 —41058304 108775604224
(4,4, 4),7 —972856320 —46923776 124314976256
(4, 4, 4), 8 —2918568960 —26394624 69927174144
(4, 4,4),9 —1783569920 —5865472 15539372032
(4, 4, 4), 10 —356713984 0 0
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