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PARAMODULAR CUSP FORMS

CRIS POOR AND DAVID S. YUEN

Abstract. We classify Siegel modular cusp forms of weight two for the para-
modular group K(p) for primes p < 600. We find evidence that rational
weight two Hecke eigenforms beyond the Gritsenko lifts correspond to certain
abelian surfaces defined over Q of conductor p. The arithmetic classification is
in the companion article by A. Brumer and K. Kramer, Paramodular abelian
varieties of odd conductor. The Paramodular Conjecture, supported by these
computations and consistent with the Langlands philosophy and the work of
H. Yoshida, Siegel’s modular forms and the arithmetic of quadratic forms, is
a partial extension to degree two of the Shimura-Taniyama Conjecture. These
nonlift Hecke eigenforms share Euler factors with the corresponding abelian
variety A and satisfy congruences modulo � with Gritsenko lifts, whenever A
has rational �-torsion.

1. Introduction

In 1980, H. Yoshida conjectured that for every abelian surface defined over Q,
there exists a discrete group Γ ⊆ Sp2(Q) and a degree two Siegel modular form
of weight two for Γ with the same L-function. He supported this conjecture by
constructing lifts and giving specific examples. A broader context for this conjecture
may be found in the recent article [37] of H. Yoshida.

Systematic computational evidence for nonlifts required specification of the dis-
crete group of the putative Siegel modular form. The Paramodular Conjecture
posits the paramodular group K(N) as the group corresponding to certain abelian
surfaces defined over Q of conductor N . Accordingly, this article studies spaces of
Siegel paramodular cusp forms. We believe that the examples given here are the
first nonlifts of weight two found. Although we have verified the equality of some
Euler factors in our examples with those of abelian surfaces, we have not proven
the equality of any L-functions. For a natural number N , the paramodular group
K(N) is defined by:

K(N) = Sp2(Q) ∩

⎛
⎜⎜⎝

∗ ∗ ∗/N ∗
N∗ ∗ ∗ ∗
N∗ N∗ ∗ N∗
N∗ ∗ ∗ ∗

⎞
⎟⎟⎠ , for ∗ ∈ Z.

Let Sk
2 (K(N)) denote the C-vector space of Siegel modular cusp forms of weight k

and degree two with respect to the group K(N). A statement of the Paramodular
Conjecture for general conductor N , a degree two version of the Shimura-Taniyama
Conjecture, may be found in the companion article [5] by A. Brumer and K. Kramer.
Here, however, we focus on the simplest case when the conductor is prime.
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1.1. Paramodular Conjecture for abelian surfaces defined over Q stated
only for prime conductor. Let p be a prime. There is a bijection between
lines of Hecke eigenforms f ∈ S2

2 (K(p)) that have rational eigenvalues and are not
Gritsenko lifts and isogeny classes of abelian surfaces A defined over Q of conductor
p. In this correspondence, we have

L (A, s,Hasse-Weil) = L (f, s, spin) .

In [5], the authors classify many odd numbers N according to whether or not an
abelian surface of conductor N could exist; many examples of abelian surfaces are
given as well. The first prime is p = 277 and the known surfaces of that conductor
are all isogenous to the Jacobian A277 of the curve y

2+y = x5+5x4+8x3+6x2+2x.
Our results cover primes p < 600 and are consistent with the Conjecture 1.1. In
particular, there are no rational nonlift Hecke eigenforms where the Paramodular
Conjecture indicates that there should be none.

1.2. Theorem. For primes p < 600 and not in the set {277, 349, 353, 389, 461,
523, 587}, S2

2 (K(p)) is spanned by Gritsenko lifts.

Each of the primes in the exceptional set of Theorem 1.2, has a known [5] abelian
surface defined over Q with that prime conductor. For 587 there are actually two
known isogeny classes. We prove the existence of a nonlift modular form for p = 277.

1.3. Theorem. The subspace of Gritsenko lifts in S2
2 (K(277)) has dimension 10

whereas S2
2 (K(277)) has dimension 11. There is a rational Hecke eigenform f

that is not a Gritsenko lift. The Euler factors of L(f, s, spin) for q = 2, 3, 5 and
the linear coefficients of the Euler factors for q = 7, 11, 13, agree with those of
L(A277, s,Hasse-Weil).

The abelian surface A277 has rational 15-torsion. We have the following congru-
ence on the modular side.

1.4.Theorem. Let f be as in Theorem 1.3 and be chosen so that f ∈S2
2 (K(277)) (Z)

has Fourier coefficients of unit content. Let the first Fourier Jacobi coefficient of f
be φ ∈ J2,277 and let R = Grit(φ) ∈ S2

2 (K(277)) (Z). We have f ≡ R mod 15.

The above theorems answer, in the case of the paramodular group, the challenge
posed in [4, pg. 16] to show that the first nonlift of weight two for prime level occurs
at 277. Further examples, all currently conjectural, of weight two paramodular
nonlifts and their Hecke eigenvalues and congruences may be found in Section 7;
see Table 5 in particular. Please see our website [29] for thousands of Fourier
coefficients and further details.

Computing Euler factors of the Hasse-Weil L-series of an abelian surface defined
over Q is tractable because it reduces to counting points over finite fields. By
contrast, directly computing Euler factors of the spin L-series of a Siegel modular
eigenform requires too many Fourier coefficients to get very far. If the Paramodular
Conjecture holds, then the L-series of the weight two nonlift f for K(277) is the
first genuine example of an L-series of a Siegel modular form that has ever been
seen, in the sense that it is both computationally tractable and not of GL2-type.

Computations in weight k = 2 pose a special challenge since no dimension
formula is known. T. Ibukiyama used trace formula techniques [16] to give
dimSk

2 (K(p)) for k ≥ 5 and any prime p. He has recently proven dimension
formulae for k = 3 and 4; see [19]. The ring structure of M2 (K(p)), the graded
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ring of Siegel modular forms for K(p), has been studied for p = 2, 3 and 5 in [17], [8]
and [22], respectively. T. Ibukiyama has also proven [18] that S2

2 (K(p)) = {0} for
primes p ≤ 23. These were hitherto the only systematic computations concerning
paramodular cusp forms of weight two.

For paramodular forms of weight two, the standard constructions of Siegel modu-
lar forms leave something to be desired. There are no paramodular Eisenstein series
of weight two. The useful construction of tracing theta series from Mk

2 (Γ0(p)) to
Mk

2 (K(p)) always vanishes in weight two. See Theorem 3.5 for the proof of this
fact. The Gritsenko lift, Grit : Jcusp

2,p → S2
2(K(p)), which constructs paramodular

forms for K(p) from Jacobi forms of index p, is a nontrivial construction; however,
the subspace of lifts in weight two is precisely the uninteresting space in the context
of arithmetic geometry. In order to construct nonlifts of weight two, we introduce
a method of integral closure in degree two.

Given two linearly independent Gritsenko lifts g1, g2 ∈ S2
2(K(N)), define the

space H(g1, g2) = {(H1, H2) ∈ S4
2(K(N)) × S4

2(K(N)) : H1g2 = H2g1}. The
map ıg1,g2 : S2

2(K(N)) → H(g1, g2) given by ıg1,g2(f) = (g1f, g2f) injects. If
dimH(g1, g2) ≤ dim Jcusp

2,N for some choice of g1, g2, then S2
2(K(N)) consists entirely

of lifts. Suppose, on the other hand, that all choices of g1, g2 yield dimH(g1, g2) >
dim Jcusp

2,N . For (H1, H2) ∈ H(g1, g2) but not in ıg1,g2 Grit(Jcusp
2,N ), we might hope

that the meromorphic f = H1/g1 = H2/g2 is actually holomorphic. In this case we
use the initial Fourier expansion of f to search for an F ∈ S4

2(K(N)) with f2 = F ,
or H2

1 = g21F . The validity of a weight 8 identity H2
1 = g21F is proof that H1/g1 is

in the integral closure of M2(K(N)) and is holomorphic.
Thus, to rule out nonlifts of weight two, one spans S4

2(K(p)), while to construct
nonlifts one must span S8

2(K(p)) as well. For primes p < 600, S4
2(K(p)) was

spanned by tracing theta series, by multiplying weight two Gritsenko lifts and by
smearing with Hecke operators. The ring structure of M2(K(p)) plays a crucial role
in spanning S4

2(K(p)) because products of lifts do not in general span a Hecke stable
subspace. This same multiplication of Fourier series, however, is computationally
expensive. It was difficult to span S4

2(K(479)) of dimension 440, for example,
because the number of Gritsenko lifts in S2

2(K(479)) is relatively small, just 8.
Filling S4

2(K(479))+, which turned out to have dimension 341, required smearing
products of Gritsenko lifts by Hecke operators nine times. This required computing
1.9 million Fourier coefficients for each of the 8 weight two Gritsenko lifts. The
Fourier coefficients of the Gritsenko lifts were computed using the method of theta
blocks due to V. Gritsenko, N. Skoruppa and D. Zagier [13]; see Section 4. Finding
99 linearly independent elements in S4

2(K(479))− was achieved by theta tracing.
We hope this article will serve as a primer on computations with Siegel modular

forms in degree two. Jacobi forms and Gritsenko lifts are computed on a large
scale using theta blocks. Finite sets of Fourier coefficients are given that a priori
determine both vanishing and congruence, including the troublesome primes two
and three. Spaces of cusp forms are spanned, when the dimension is known, by theta
tracing, multiplying lifts and smearing with Hecke operators. For small weights,
when the dimension is not known, we introduce a method of integral closure in
degree two. All potential nonlifts of weight two are found for prime paramodular
levels less than 600. The results of this article are used in recent works by Dewar
and Richter [9], Choi, Choie and O. Richter [7], Ryan and Tornaŕıa [30], and Ash,
Gunnells and McConnell [2], [3]. Some additional evidence for the Paramodular
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Conjecture was given in [30], where Ryan and Tornaŕıa developed a version of the
Böcherer Conjecture for paramodular groups, proved it for Gritsenko lifts, and used
the Paramodular Conjecture and the Fourier coefficients from our website [29] to
numerically check their version on the rational nonlifts.

Finite sets of Fourier coefficients that determine vanishing and congruence in
Sk
2 (K(p)) for any k ∈ Z+ are given in Section 5. In particular, a generalization

of Sturm’s Theorem [33] to n = 2 may be of independent interest. For f ∈ Mk
n ,

denote the Fourier coefficients by a(T ; f). The Fourier coefficients of a level one
elliptic modular form f ∈ Mk

1 are in the Z-module spanned by the first k/12:
∀n, a(n; f) ∈ Z〈a(j; f) : j ≤ k/12〉. In Theorem 5.15 we prove that for level
one Siegel forms f ∈ Mk

2 , all the Fourier coefficients a(T ; f) are in the Z-module
spanned by those whose index T has dyadic trace less than or equal to k/6:

∀f ∈ Mk
2 , ∀T, a(T ; f) ∈ Z〈a(S; f) : w(S) ≤ k/6〉.

A more natural proof by D. Choi, Y. Choie and T. Kikuta of another congruence
criterion that works for primes p > 3 may be found in [6]. Section 8 contains
examples of nonlifts of higher weight, in particular, weight 3 cusp forms whose
construction was requested by A. Ash, P. Gunnells and M. McConnell [2]. We plan
a sequel that studies Sk

2 (K(N)) for composite N and makes more use of Fourier-
Jacobi expansions.

2. Notation

For a commutative ring R, let Mm×n(R) denote the R-module of m-by-n ma-
trices with coefficients in R. For x ∈ Mm×n(R), let x′ ∈ Mn×m(R) denote the
transpose. Let Vn(R) = {x ∈ Mn×n(R) : x′ = x} be the symmetric n-by-n matrices
over R; Vn(R) is a euclidean vector space under the inner product 〈x, y〉 = tr(xy).
For R ⊆ R, an element x ∈ Vn(R) is called positive definite, written x > 0, when
v′xv > 0 for all v ∈ Rn \{0}; we denote the set of these by Pn(R). When x ∈ Vn(R)
and v′xv ≥ 0 for all v ∈ Rn, we write x ∈ Psemi

n (R). The half-integral matrices are
X semi

n = {T ∈ Psemi
n (Q) : ∀ v ∈ Zn, v′Tv ∈ Z} and Xn = X semi

n ∩ Pn(Q).
Let GLn(R) = {x ∈ Mn×n(R) : det(x) is a unit in R} be the general linear

group and SLn(R) = {x ∈ GLn(R) : det(x) = 1} the special linear group. For
x ∈ GLn(R) let x∗ denote the inverse transpose. Let In ∈ GLn(R) be the identity

matrix and set Jn =
(

0 In
−In 0

)
∈ SL2n(R). The symplectic group is defined by

Spn(R) = {x ∈ GL2n(R) : x′Jnx = Jn}. For T, u ∈ GLn(R), we define T [u] = u′Tu
and denote the GLn(Z) equivalence class of T by [T ] =

⋃
u T [u] for u ∈ GLn(Z).

We write Γn = Spn(Z) and for R ⊆ R define the group of positive R-similitudes
by GSp+n (R) = {x ∈ M2n×2n(R) : ∃ν ∈ R+ : g′Jng = νJn}. Each γ ∈ GSp+n (R)
has a unique ν = ν(γ) = det(γ)1/n. For S ∈ Vn(R), let t(S) = ( I S

0 I ) define a

homomorphism t : Vn(R) → Spn(R). For U ∈ GLn(R), let u(U) =
(
U 0
0 U∗

)
define a

homomorphism u : GLn(R) → Spn(R). We let Γ0(N) = {(A B
C D ) ∈ Spn(Z) : C ≡ 0

mod N}, GΔ+
n (R) = {(A B

0 D ) ∈ GSp+n (R)} and Δn(R) = {(A B
0 D ) ∈ Spn(R)}. The

group Γ0(N) is normalized by the Fricke involution FN = 1√
N

(
0 In

−N 0

)
.

Define the Siegel upper half-space Hn = {Ω ∈ Vn(C) : ImΩ ∈ Pn(R)}. The
group GSp+n (R) acts on Hn as γ〈Ω〉 = (AΩ + B)(CΩ + D)−1 for γ = (A B

C D ).
For any function f : Hn → C and any k ∈ Z, we follow Andrianov and, letting
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Table 1. Dimensions for weight 4 paramodular cusp forms.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

dimS4
2 (K(p)) 0 0 0 1 1 2 2 3 3 4 6 8 7 9 8 10 11 16 17

〈n〉 = n(n+ 1)/2, define the group action for γ ∈ GSp+n (R) by

(f |kγ)(Ω) = ν(γ)kn−〈n〉 det(CΩ+D)−kf(γ〈Ω〉).

Let Γ be a group commensurable with Γn. The complex vector space of Siegel
modular forms of degree n and weight k automorphic with respect to Γ is denoted
by Mk

n(Γ) and is defined as the set of holomorphic f : Hn → C such that f |kγ = f
for all γ ∈ Γ and such that for all Y0 ∈ Pn(R) and for all γ ∈ Γn, f |γ is bounded
on {Ω ∈ Hn : ImΩ > Y0}. For f ∈ Mk

n(Γ) the Siegel Φ-map is defined by
(Φf)(Ω) = limλ→+∞ f(

(
iλ 0
0 Ω

)
) and the space of cusp forms is defined by Sk

n(Γ) =

{f ∈ Mk
n(Γ) : ∀γ ∈ Γn,Φ(f |γ) = 0}. The graded ring of Siegel modular forms is

Mn(Γ) =
⊕

k M
k
n(Γ) and the graded ideal of cusp forms is Sn(Γ) =

⊕
k S

k
n(Γ).

Let e(z) = e2πiz. By the Koecher principle, f ∈ Sk
n(Γ) has a Fourier expansion

f(Ω) =
∑

a(T ; f)e (〈T,Ω〉) , also written FSn(f) =
∑

a(T ; f)qT ,

where the summation is over T ∈ Pn(Q). The a(T ; f) satisfy

a(T [U ]; f) = det(U)ka(T ; f)

for all U ∈ GLn(Q) such that u(U) ∈ Γ. We let supp(f) = {T ∈ Pn(Q) : a(T ; f) �=
0}. The set supp(f) is contained in the lattice dual to {S ∈ Vn(Q) : t(S) ∈ Γ}. The
integrality properties of supp(f) are sometimes important. For f ∈ Sk

n (Γ0(N)),
we have supp(f) ⊆ Xn and a(T [U ]; f) = det(U)ka(T ; f) for all U ∈ GLn(Z). Let
NX2 = {

(
a b
b c

)
∈ X2 : N |a} and NX semi

2 = {
(
a b
b c

)
∈ X semi

2 : N |a}. For f ∈
Sk
2 (K(N)), we have supp(f) ⊆ NX2 and a(T [U ]; f) = det(U)ka(T ; f) for all U ∈

Γ̂0(N), where Γ̂0(N) = 〈Γ0(N),
(
1 0
0 −1

)
〉. The paramodular groups satisfy Sp2(Q) =

K(p)Δ2(Q) so that there is essentially only one Fourier expansion to consider. For
primes p, we have Sp2(Q) = Γ0(p)Δ2(Q) ∪ Γ0(p)E1Δ2(Q) ∪ Γ0(p)J2Δ2(Q) with
E1 = I2 � J1, so that there are 3 basic Fourier expansions to consider for Γ0(p).

Here, the pseudo-direct sum of two-by-two matrices,
(
a b
c d

)
�
(

α β
γ δ

)
, means the four-

by-four matrix

(
a 0 b 0
0 α 0 β
c 0 d 0
0 γ 0 δ

)
. For square matrices A and B, we write A⊕B = (A 0

0 B ).

3. Paramodular forms

For weights k ≥ 5, the dimensions dimSk
2 (K(p)) have been given in [16];

T. Ibukiyama [19] has recently proven the dimensions for weights k = 3 and 4.
There are many ways to construct modular forms. The difficulty is knowing when
to stop and thus these dimension formulae are powerful.

3.1. Theorem (T. Ibukiyama). Let p ≥ 5 be a prime number:

dimS4
2 (K(p)) =

p2

576
+
p

8
−143

576
+

(
p

96
− 1

8

)(
−1

p

)
+
1

8

(
2

p

)
+

1

12

(
3

p

)
+

p

36

(
−3

p

)
.
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Since weight one paramodular forms are trivial, compare Satz 1 in [32], only the
dimensions for weight two cusp forms remain unknown for prime level.

For a group G, let G1 and G2 be subgroups that satisfy the following finite-
ness condition: ∀g ∈ G, |G1\G1gG2| < +∞. Let L(G1, G) be the C-vector space
with a basis given by the left cosets

⋃
g∈G{G1g}. The subgroup G2 has a right

action L(G1, G) × G2 → L(G1, G) given on basis elements by (G1g, g2) �→ G1gg2
and extended linearly. Denote the fixed subspace of G2 by H(G1, G,G2) = {x ∈
L(G1, G) : ∀g2 ∈ G2, xg2 = x}, this is the space of Hecke operators for the triple
(G1, G,G2). For a disjoint union G1gG2 =

⋃
i G1gi, set [G1gG2] =

∑
i G1gi ∈

H(G1, G,G2); then H(G1, G,G2) is generated by these double cosets. We may
check that the multiplication of Hecke operators H(G1, G,G2) ×H(G2, G,G3) →
H(G1, G,G3) given by (

∑
i G1gi,

∑
j G2hj) �→

∑
i,j G1gihj is well-defined. For

G = GSp+n (Q) and subgroups Gi commensurable with Spn(Z), the necessary finite-
ness condition is satisfied. We have an action of the Hecke operators on Siegel mod-
ular forms Mk

n(G1) ×H(G1, G,G2) → Mk
n(G2) given by mapping (f,

∑
i G1gi) �→∑

i f |kgi. Hecke operators send cusp forms to cusp forms because of the factor-

ization GSp+n (Q) = Spn(Z)GΔ+
n (Q). For G1 = G2, we have the Hecke algebra

H(G1, G) = H(G1, G,G1) acting on Mk
n(G1). If w ∈ G normalizes G1, then the

single coset G1w = [G1wG1] is a useful Hecke operator that is often just abbreviated
by w. We use B(N) to denote the Iwahori subgroup of K(N),

B(N) = Sp2(Z) ∩

⎛
⎜⎜⎝

∗ ∗ ∗ ∗
N∗ ∗ ∗ ∗
N∗ N∗ ∗ N∗
N∗ N∗ ∗ ∗

⎞
⎟⎟⎠ , for ∗ ∈ Z.

For a description of the Hecke operators for the group B(p), we refer to [15] and list
the results here for the reader’s convenience. The Hecke operator Tm is defined by

the double coset {γ ∈ GSp+n (Z) : ν(γ) = m}. For f ∈ Mk
2 (B(p)) and

(
a b/2

b/2 c

)
∈

X2 we have:

a
((

a b/2
b/2 c

)
f |Tqδ

)
=

∑
α,β,γ∈Z:α+β+γ=δ;

α,β,γ≥0∑
u∈R(qβ):au≡0mod qβ+γ ;

bu≡cu≡0mod qγ

a
(
qα

(
auq

−β−γ buq
−γ/2

buq
−γ/2 cuq

β−γ

)
; f

)
,

where
(

au bu/2
bu/2 cu

)
= u′

(
a b/2

b/2 c

)
u and R(qβ) ⊆ Γ0(p) is any lift of P(Z/qβZ)

under the map ( u1 v1
u2 v2 ) �→ (u1, u2). The operator Tq, for (q, p) = 1, is then given by

a (T ; f |Tq) =

a (qT ; f)+q2k−3 a
(

1
qT ; f

)
+qk−2

∑
j mod q

a
(

1
qT

[
1 0
jp q

]
; f

)
+qk−2 a

(
1
qT

[
q 0
0 1

]
; f

)
.

The same formulas apply to f ∈ Mk
2 (K(p)) because the number of single cosets in

the double coset is the same. For an eigenform f , with eigenvalues f |T (qδ) = λqδf ,
we use the spin Euler factor Qq(f ;x) given for a q prime to the level by (this is the
palindrome of the factor in [15]):

Qq(f, x) = 1− λqx+ (λ2
q − λq2 − q2k−4)x2 − λq q

2k−3x3 + q4k−6x4.
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Following the work of Andrianov [1], the spin L-function is given, for Re(s) � 0,
by

L(f, s, spin) =
∏

primes q

Qq(f, q
−s)−1.

Theta series give us modular forms on Γ0(p) and we can use the Hecke operator
Tr, given below, to obtain modular forms on K(p). In weight two these theta series
trace to zero but for weights k > 2 we can use this method to construct paramodular
forms. For even weights, this is the only method we have that constructs paramod-
ular forms in the minus space. The plus and minus spaces of Sk

2 (K(p)) are defined
as follows. Define elements μ and μ̃ as below. We note that μ normalizes K(p);
since μ2 = −I4 the space Sk

2 (K(p)) decomposes into μ-eigenspaces with eigenvalues
±1 and we set Sk

2 (K(p))± = {f ∈ Sk
2 (K(p)) : f |μ = ±f}.

μ =
1
√
p

⎛
⎜⎜⎝

0 1 0 0
−p 0 0 0
0 0 0 p
0 0 −1 0

⎞
⎟⎟⎠ ; μ̃ =

⎛
⎜⎜⎝

0 1 0 0
−p 0 0 0
0 0 0 1
0 0 − 1

p 0

⎞
⎟⎟⎠ .

Note that Γ0(N) is not a subgroup of K(N); we let Γ′
0(N) = K(N) ∩ Sp2(Z).

3.2. Theorem. Let the following double cosets define Hecke operators:

[B(p)Γ′
0(p)] : M

k
2 (B(p)) → Mk

2 (Γ′
0(p)) and

[Γ′
0(p)K(p)] : Mk

2 (Γ′
0(p)) → Mk

2 (K(p)) .

We define Tr : Mk
2 (Γ0(p))→Mk

2 (K(p)) by Tr= |Mk
2 (Γ0(p)) [B(p)Γ′

0(p)] [Γ
′
0(p)K(p)].

For all f ∈ Mk
2 (Γ0(p)), the Hecke operator Tr satisfies

f |Tr =
∑

β mod p

f |t
(

β
p 0

0 0

)
+ (f |E1) |μ̃+

∑
α,β mod p

(f |E1) |t
(

β
p 0

0 α

)

+
∑

α mod p

(f |Fp) |μ t ( 0 0
0 α ) .

Furthermore, we have Fp Tr=Trμ as Hecke operators in H
(
Γ0(p),GSp+n (Q),K(p)

)
.

Proof. From [15] we have Γ′
0(p) = B(p) ∪B(p)s2B(p) where

s2 =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ .

A calculation shows that

s−1
2 B(p)s2 ∩B(p) = Sp2(Z) ∩

⎛
⎜⎜⎝

∗ ∗ ∗ ∗
p∗ ∗ ∗ p∗
p∗ p∗ ∗ p∗
p∗ p∗ ∗ ∗

⎞
⎟⎟⎠ , for ∗ ∈ Z.

Thus we have

B(p) =
⋃

α mod p

(
s−1
2 B(p)s2 ∩B(p)

)
t ( 0 0

0 α ) and hence

B(p)s2B(p) =
⋃

α mod p

B(p)s2 t ( 0 0
0 α ) .
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Thus [B(p)Γ′
0(p)] = B(p) +

∑
α mod p B(p)s2 t ( 0 0

0 α ) as a Hecke operator. For the

coset Γ′
0(p)\K(p), it follows close upon the definitions that

K(p) = Γ′
0(p)J(p)∪

⋃
β mod p

Γ′
0(p)t

(
β
p 0

0 0

)
with the notation J(p) =

(
0 0 1

p 0

0 0 0 1
−p 0 0 0
0 −1 0 0

)
,

and hence that [Γ′
0(p)K(p)] = Γ′

0(p)J(p) +
∑

β mod p Γ
′
0(p)t

(
β
p 0

0 0

)
as a Hecke op-

erator. By the definition of multiplication of Hecke operators we have

Tr = Γ0(p)

⎛
⎝I +

∑
α mod p

s2 t ( 0 0
0 α )

⎞
⎠

⎛
⎝J(p) +

∑
β mod p

t
(

β
p 0

0 0

)⎞⎠

= Γ0(p)

⎛
⎝J(p) +

∑
β mod p

t
(

β
p 0

0 0

)
+

∑
α mod p

s2 t ( 0 0
0 α )J(p)

+
∑

α,β mod p

s2 t
(

β
p 0

0 α

)⎞⎠ .

Γ0(p) has three cusps, which we represent by I, E1 = s−1
2 and Fp. After determining

the cusp, we select a simple upper triangular element for the Γ0(p)-coset. We have

J(p) = u
(
0 −1
1 0

)
Fpμ ∈ Γ0(p)Fpμ.

For α �≡ 0 mod p, there is a τ ∈ Z such that ατ + 1 ≡ 0 mod p and we have

s2 t ( 0 0
0 α )J(p) ∈ Γ0(p)Fpμ t ( 0 0

0 τ ) for ατ + 1 ≡ 0 mod p.

For α ≡ 0 mod p, we have s2J(p) ∈ Γ0(p)E1μ̃ . If we note s2 ∈ Γ0(p)E1, then the
formula given for Tr follows.

Now we show Fp Tr = Trμ. Using the identity μ t
(

β
p 0

0 0

)
α = t

(
α
p 0

0 β

)
μ we can

see that the I4 and Fp cusps swap:

Fp

⎛
⎝Γ0(p)

∑
β mod p

t
(

β
p 0

0 0

)⎞⎠ = Γ0(p)Fpμ
∑

β mod p

μt
(

β
p 0

0 0

)

=

⎛
⎝Γ0(p)Fpμ

∑
β mod p

t
(
0 0
0 β

)⎞⎠μ.

To see that the E1 cusp is stabilized, note that FpE1 = −u ( 0 1
1 0 )E1μ ∈ Γ0(p)E1μ

and therefore we have Fp Γ0(p)E1t
(

β
p 0

0 α

)
=Γ0(p)E1μt

(
β
p 0

0 α

)
= Γ0(p)E1t

(
α
p 0

0 β

)
μ.

Furthermore, we have Fp Γ0(p)E1μ̃ = Γ0(p)E1μμ̃ = Γ0(p)E1μ̃ μ. �

In order to use the formula for Tr in Theorem 3.2 to provide Fourier expansions
of paramodular forms, we must be able to expand a theta series at each of the
three cusps: I4, E1 and J2. General formulas from Andrianov [1, Prop 3.14] may
be simplified to give the following results.

3.3. Theorem. Let k, q ∈ N. Let Q be a 2k-by-2k even quadratic form with qQ−1

even. Let N(Q) = {h ∈ Z2k/qZ2k : Qh = 0 mod q} be the Z/qZ-nullspace of Q.
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Define ϑQ[T ] : Hg → C for T ∈ Z2k×g/qZ2k×g by

ϑQ[T ](Ω) =
∑

N∈Z2k×g

e

(
1

2
〈Q[N + 1

qT ],Ω〉
)
.

For g = 2, we have the following expansions at the other two cusps,

ϑQ|E1 = ik det(Q)−1/2
∑

h∈N(Q)

ϑQ[0, h],

ϑQ|Fq = (−1)k det(Q)−1qk ϑqQ∗
.

Alternatively, we may use

ϑQ|J2 = det(Q)−1
∑

a,b∈N(Q)

ϑQ[a, b].

For small weights, in order to find the linear combinations of the ϑQ|Tr that
are cusp forms, it suffices to cancel the constant term. To explain this we need the
following lemma.

3.4. Lemma. The Witt map W : M2 (K(N)) → M1| (N 0
0 1 )⊗M1, given by

(Wf)(τ1, τ2) = f
(
τ1 0
0 τ2

)
,

is a weight preserving homomorphism of graded rings.

Proof. This follows from the fact that
(
(N 0

0 1 )
−1

SL2(Z) (N 0
0 1 )

)
� SL2(Z) ⊆ K(N).

�
Note that for f ∈ Mk

2 (K(N)), the vanishing of Wf immediately implies the
vanishing of Φf . Furthermore, for k < 12, the nontrivial Mk

1 are spanned by a
single Eisenstein series and so Wf vanishes precisely when the Fourier expansion
of f has a constant term of zero. We will use this fact to construct paramodular
cusp forms of weight four.

The trace Tr fromM2 (Γ0(p)) toM2 (K(p)) cannot be used on theta series to con-
struct weight two forms. Indeed, Tr is identically zero on theta series in M2

2 (Γ0(p)).

3.5. Theorem. Let p be an odd prime. Let Q be a 4-by-4 even quadratic form of
level p and square determinant. In degree two we have ϑQ|Tr = 0.

Since M2
2 (K(2)) = {0}, the above theorem also holds for p = 2; see [17]. The

remainder of this section is devoted to proving Theorem 3.5 and its consequences.

3.6. Lemma. Let p be an odd prime. Let Q be a 4-by-4 even quadratic form of
level p and square determinant. Then det(Q) = p2, the Hasse invariant of Q is
(−1,−1) and Q is equivalent over Q to Diag(1, u, p, u p), where the resdiue class of
u in Fp is a nonsquare unit. Furthermore, Q has the property

(3.7) ∀b ∈ Z4, b′Qb ≡ 0 mod p2 ⇐⇒ b ≡ 0 mod p.

Proof. This is elementary, compare page 152 of [24]. �
The notion of twinning is used in the proof of Theorem 3.5. Recall the Fricke

involution in degree one: Fp = 1√
p

(
0 1
−p 0

)
.

3.8. Definition. For T =
(
a b
b c

)
∈ P2(Q), define Twin(T ) = F ′

pTFp =
(

pc −b
−b a

p

)
∈

P2(Q).
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Notice that twinning stabilizes pX2 and respects the Γ0(p)-equivalence class of
T . Twins do have the same determinant but the GL2(Z)-equivalence classes may
differ. For example, T = ( 10 5

5 4 ) ∈ 5X2 has Twin(T ) = ( 20 5
5 2 ) ∈ 5X2 but T =

( 10 5
5 4 ) ∈ [( 4 1

1 4 )] whereas Twin(T ) = ( 20 5
5 2 ) ∈ [( 2 1

1 8 )]. The following elements twin
and rescale the Fourier coefficients of a Siegel modular form:

μ =
1
√
p

⎛
⎜⎜⎝

0 1 0 0
−p 0 0 0
0 0 0 p
0 0 −1 0

⎞
⎟⎟⎠ ; μ̃ =

⎛
⎜⎜⎝

0 1 0 0
−p 0 0 0
0 0 0 1
0 0 − 1

p 0

⎞
⎟⎟⎠ ; κ =

⎛
⎜⎜⎝

0 1
p 0 0

−1 0 0 0
0 0 0 p
0 0 −1 0

⎞
⎟⎟⎠ .

3.9. Lemma. Let f ∈ Mk
2 (Γ) have Fourier coefficients a(T ; f):

a (T ; f |μ) = a (Twin(T ); f) , supp(f |μ) = Twin (supp(f)) ,

a (T ; f |μ̃) = pka

(
1

p
Twin(T ); f

)
, supp(f |μ̃) = pTwin (supp(f)) ,

a (T ; f |κ) = p−ka (pTwin(T ); f) , supp(f |κ) = 1

p
Twin (supp(f)) .

If f has μ-eigenvalue ±1, then a (Twin(T ); f) = ±a (T ; f), so that the μ-
eigenspace is determined by the twins. It is useful to define a type of projection to
pX2.

3.10. Definition. Define π : M2(Γ(p)) → O(H2) by: If

f(Ω) =
∑

T∈ 1
pX semi

2

a(T )e (〈Ω, T 〉) ,

then (πf)(Ω) =
∑

T∈pX semi
2

a(T )e (〈Ω, T 〉).
For f ∈ M2(Γ0(p)), the four terms in f |Tr,∑

β mod p

f |t
(

β
p 0

0 0

)
+ (f |E1) |μ̃+

∑
α,βmod p

(f |E1) |t
(

β
p 0

0 α

)
+

∑
αmod p

(f |Fp) |μ t ( 0 0
0 α ) ,

have the following images under π:

π

⎛
⎝ ∑

β mod p

f |t
(

β
p 0

0 0

)⎞⎠ = p π(f), π (f |E1μ̃) = f |E1μ̃,

π

⎛
⎝ ∑

α,β mod p

(f |E1) |t
(

β
p 0

0 α

)⎞⎠ = p2π(f |E1),

π

⎛
⎝ ∑

α mod p

(f |Fp) |μ t ( 0 0
0 α )

⎞
⎠ = p π(f |Fpμ).

We will see that, when applied to weight two theta series, the sum of the first and
third terms, and the the sum of the second and fourth terms, cancel separately.

3.11. Lemma. Let p be an odd prime. Let Q be a 4-by-4 even quadratic form
of level p and square determinant. For b ∈ N(Q), π

(
ϑQ[0, b]

)
= 0 unless b ≡ 0

mod p. We have

π
(
ϑQ|E1

)
= −1

p
π
(
ϑQ

)
and

∑
βmod p

ϑQ|t
(

β
p 0

0 0

)
+

∑
α,β mod p

(
ϑQ|E1

)
|t
(

β
p 0

0 α

)
= 0.
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Proof. We have ϑQ[0, b](Ω) =
∑

c,d∈Z2 e
(

1
2 〈
( c
d+b/p

)′
Q
( c
d+b/p

)
,Ω〉

)
. We may

write this as ϑQ[0, b](Ω) =
∑

c,d∈Z2 e
(
1
2 〈T,Ω〉

)
for

T =

(
c′Qc c′Qd+ 1

pb
′Qc

c′Qd+ 1
pb

′Qc d′Qd+ 2
pb

′Qd+ 1
p2 b

′Qb

)
.

If b ∈ N(Q) and T ∈ pX2, then b′Qb ∈ p2Z and so by property (3.7) we have
b ≡ 0 mod p.

For the second part, notice ϑQ|E1 = − 1
p

∑
b∈N(Q) ϑ

Q[0, b] by Theorem 3.3 so

that we have π
(
ϑQ|E1

)
= − 1

pπ
(
ϑQ

)
. To prove the third part, notice that∑

β mod p

ϑQ|t
(

β
p 0

0 0

)
+

∑
α,β mod p

(
ϑQ|E1

)
|t
(

β
p 0

0 α

)

is already supported on pX2. Therefore, it is equal to its projection, which is

p π
(
ϑQ

)
+ p2π

(
ϑQ|E1

)
= p π

(
ϑQ

)
+ p2

(
− 1

pπ
(
ϑQ

))
= 0. �

3.12. Lemma. Let p be an odd prime. Let Q be a 4-by-4 even quadratic form
of level p and square determinant. For a, b ∈ N(Q), π

(
ϑQ[a, b]|μ̃

)
= 0 unless

a ≡ 0 mod p. We have

π
(
ϑQ|Fpμ

)
= −1

p
π
(
ϑQ|E1μ̃

)
and

(
ϑQ|E1

)
|μ̃+

∑
α mod p

(
ϑQ|Fp

)
|μ t ( 0 0

0 α ) = 0.

Proof. We have ϑQ[a, b](Ω) =
∑

c,d∈Z2 e

(
1
2 〈
(

c+a/p
d+b/p

)′
Q
(

c+a/p
d+b/p

)
,Ω〉

)
. We may

write this as ϑQ[a, b](Ω) =
∑

c,d∈Z2 e
(
1
2 〈T,Ω〉

)
for

T =

(
c′Qc+ 2

pa
′Qc+ 1

p2 a
′Qa ∗

∗ ∗

)
.

We have π
(
ϑQ[a, b]|μ̃

)
= 0 unless supp(ϑQ[a, b]|μ̃) ∩ pX2 is nonempty. How-

ever, since supp(ϑQ[a, b]|μ̃) = pTwin(supp(ϑQ[a, b])), this is equivalent to T ∈
supp(ϑQ[a, b]) ∩ 1

p (
pX2). From a ∈ N(Q) and T ∈ 1

p (
pX2) we derive

a′Qa ≡ 0 mod p2. By property (3.7) we have a ≡ 0 mod p.
For the second part, note that ϑQ|Fpμ = ϑQ|J2μ̃ = 1

p2

∑
a,b∈N(Q) ϑ

Q[a, b]|μ̃ by

Theorem 3.3. We have

π
(
ϑQ|Fpμ

)
=

1

p2
π

⎛
⎝ ∑

a,b∈N(Q)

ϑQ[a, b]|μ̃

⎞
⎠ =

1

p2
π

⎛
⎝ ∑

b∈N(Q)

ϑQ[0, b]|μ̃

⎞
⎠

by the first part. Recognizing the formula for ϑQ|E1 from Theorem 3.3, we may
conclude that π

(
ϑQ|Fpμ

)
= 1

p2 π
(
−pϑQ|E1|μ̃

)
= − 1

pπ
(
ϑQ|E1μ̃

)
.

To prove the third part, notice that
(
ϑQ|E1

)
|μ̃ +

∑
α mod p

(
ϑQ|Fp

)
|μ t ( 0 0

0 α )
is already supported on pX2. Therefore, it is equal to its projection, which is

π
(
ϑQ|E1μ̃

)
+ p π

(
ϑQ|Fpμ

)
= π

(
ϑQ|E1μ̃

)
+ p

(
− 1

pπ
(
ϑQ|E1μ̃

))
= 0. �

Proof of Theorem 3.5. We add the final conclusions from Lemmas 3.11 and 3.12.
�

Here is a consequence of Theorem 3.5 that is useful for proving the integrality
of modular forms constructed by theta tracing.
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3.13. Theorem. Let p be an odd prime. Let A,B ∈ P4(Z) be even with determinant
p2 and pA−1, pB−1 both even. The Fourier coefficients of Tr(ϑA⊕B) are multiples
of 4.

Proof. Let Q = A ⊕ B, an 8 × 8 matrix. First, by the formulas in Theorems 3.2,
3.3 and Lemma 3.9, the constant term of Tr(ϑQ) is p+p4/p2+p2/p2+p = (p+1)2

which is a multiple of 4. We now show that a(T ; Tr(ϑQ)) ≡ 0 mod 4 for the
nonzero T ∈ pX2. By Theorem 3.5, we have that Tr(ϑA) = 0 = Tr(ϑB). For
f = ϑQ − ϑA − ϑB and g = Tr(f), it suffices to prove that a(T ; g) ≡ 0 mod 4. We
have

a(T ; g) = a(T ; Tr(f)) = p a(T ; f) + a(T ; f |E1μ̃) + p2 a(T ; f |E1) + p a(T ; f |Fpμ).

We will show that the Fourier coefficients of each of the four terms above are,
individually, multiples of 4. When using the slash operator, it must be remembered
that f ∈ M2

2 (K(p))⊕M4
2 (K(p)) is a sum of forms of different weights. Considering

the first term, we wish to show that

p a(T ;ϑQ)− p a(T ;ϑA)− p a(T ;ϑB) ≡ 0 mod 4.

We have

a(T ;ϑQ) = #{w ∈ Z8×2 : w′Qw = 2T}
= #{(u, v) : u, v ∈ Z4×2, u′Au+ v′Bv = 2T},

a(T ;ϑA) = #{u ∈ Z4×2 : u′Au = 2T},
a(T ;ϑB) = #{v ∈ Z4×2 : v′Bv = 2T}.

Then, using that T is nonzero,

a(T ;ϑQ)−a(T ;ϑA)−a(T ;ϑB)

= #{(u, v) : u, v ∈ Z4×2, u �= 0, v �= 0, u′Au+ v′Bv = 2T}.
This set can be partitioned into subsets of 4 elements each of the form {±u,±v}
because the u, v are nonzero. This proves that the above number is a multiple of
4. Now consider the second term. We wish to show that

a(T ;ϑQ|E1μ̃)− a(T ;ϑA|E1μ̃)− a(T ;ϑB|E1μ̃) ≡ 0 mod 4.

Denoting S = 1
pTwin(T ), the left-hand side is

p4 a(S;ϑQ|E1)− p2 a(S;ϑA|E1)− p2 a(S;ϑB|E1).

Applying Theorem 3.3 for slashing with E1, this becomes

p4

p2
a(S;

∑
β∈N(Q)

ϑQ[0, β]) +
p2

p
a(S;

∑
h∈N(A)

ϑA[0, h]) +
p2

p
a(S;

∑
	∈N(B)

ϑB[0, �]).

Consider β = (h	 ) ∈ N(Q) = N(A⊕B). We break the above sum into four parts:∑
{p2 a(S;ϑQ[0, (h	 )]) : (

h
	 ) ∈ N(Q), h �= 0, � �= 0}(a)

+
∑

{p2 a(S;ϑQ[0, (h0 )]) + p a(S;ϑA[0, h]) : h ∈ N(A), h �= 0}(b)

+
∑

{p2 a(S;ϑQ[0, ( 0	 )]) + p a(S;ϑB[0, �]) : � ∈ N(B), � �= 0}(c)

+p2 a(S;ϑQ[0, ( 00 )]) + p a(S;ϑA[0, 0]) + p a(S;ϑB[0, 0]).(d)
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We show parts (a) to (d) individually are 0 modulo 4. Part (a) is

p2#{(u, v, h, �) : u, v ∈ Z4, (h	 ) ∈ N(Q), h �= 0, � �= 0,

(u+ h/p)′A(u+ h/p) + (v + �/p)′B(v + �/p) = 2S}.
We can partition these (u, v, h, �) into subsets of the form

{(u, v, h, �), (u,−v, h,−�), (−u, v,−h, �), (−u,−v,−h,−�)}.
Because p is odd, we have h �≡ −h mod p and � �≡ −� mod p for nonzero h, �.
Thus these subsets always have 4 distinct elements and this proves that Part (a) is

a multiple of 4. To analyze Part (b), note that (h0 ) ∈ N(Q) if and only if h ∈ N(A),
so that∑

{a(S;ϑQ[0, (h0 )]) : h ∈ N(A), h �= 0}

= #{(u, v, h) : u, v∈Z4, h∈N(A), h �= 0, (u+ h/p)′A(u+ h/p) + v′Bv=2S}.
We can put these (u, v, h) into equivalence classes of the form

{(u, v, h), (u,−v, h), (−u, v,−h), (−u,−v,−h)}.
These classes will have four elements unless v = 0. So modulo 4, we can ignore all
but the case where v = 0, and thus modulo 4, Part (b) is equivalent to∑

p2 #{(u, h) : u ∈ Z4, (u+ h/p)′A(u+ h/p) = 2S}

+
∑

{p a(S;ϑA[0, h]) : h ∈ N(A), h �= 0}

But this is equal to∑
{(p2 + p)#{(u, h) : u ∈ Z4, (u+ h/p)′A(u+ h/p) = 2S} : h ∈ N(A), h �= 0}.

Because we can pair ±(u, h), #{(u, h) : u ∈ Z4, (u + h/p)′A(u+ h/p) = 2S} is an
even number; since p2 + p is also even, the above is a multiple of 4. Thus Part (b)
is a multiple of 4. Similarly, Part (c) is a multiple of 4. Finally, Part (d) can be
rewritten as

p2
(
a(S;ϑQ[0, ( 00 )])− a(S;ϑA[0, 0])− a(S;ϑB[0, 0])

)
+(p2 + p) a(S;ϑA[0, 0]) + (p2 + p) a(S;ϑB[0, 0]).

Here, the first line is a multiple of 4 by the exact argument as for the first term.
The second line is a multiple of 4 because a(S;ϑA[0, 0]) and a(S;ϑB[0, 0]) are even
because S is nonzero. This proves the second term is 0 modulo 4. The third term
is

p2 a(T ;ϑQ|E1)− p2 a(T ;ϑA|E1)− p2 a(T ;ϑB|E1),

and the same argument used for the second term will show that this is also 0 modulo
4. The fourth term can be rewritten as

p a(T ;ϑpQ∗ |μ)− p a(T ;ϑpA∗ |μ)− p a(T ;ϑpB∗ |μ).
Noting that pQ∗ = (pA∗)⊕ (pB∗), this is

p a(S;ϑ(pA∗)⊕(pB∗))− p a(S;ϑpA∗
)− p a(S;ϑpB∗

).

for S = Twin(T ). The same argument used for the first term shows that this is
a multiple of 4. Having shown all four terms are 0 modulo 4, we conclude that
a(T ; g) ≡ 0 mod 4. �
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In the following theorem, Sk
2 (K(N))(Z) and Jcusp

k,N (Z) indicate Z-modules of mod-
ular forms whose Fourier coefficients are integral. See Section 4 for Jacobi forms
and Section 5, just before Theorem 5.9, for a discussion of the general notation
Mk

n(Γ)(R).

3.14. Theorem. Let g ∈ Sk
2 (K(N))(Z) for k ≥ 2. Let Tq be the Hecke operator for

a fixed prime q. Then the following congruence holds:

Tq(g
q) ≡ g mod q.

Furthermore, if φ ∈ Jcusp
qk,N is the first Fourier-Jacobi coefficient of Tq(g

q) and ψ ∈
Jcusp
k,N (Z) that of g, then Grit(ψ) ≡ Grit(φ) mod q.

Proof. Take any T ∈ NX2. Then we have

a(qT ; gq) =
∑

si∈NX2: s1+···+sq=qT

a(s1; g) · · · a(sq; g).

Since q is prime, unless s1 = · · · = sq, then there are a multiple of q nontrivial
ways to permute the s1, . . . , sq. Thus we have a(qT ; gq) ≡ a(T ; g)q mod q. From
Fermat’s congruence xq ≡ x mod q for any integer x, we have a(qT ; gq) ≡ a(T ; g)
mod q. Next, in the formula for any cusp form given in this section

a(T ;Tq(f)) = a(qT ; f) + terms with coefficients that are positive powers of q,

as long as f has weight at least 3. Here, the weight of gq is at least 4, so we can
conclude a(T ;Tq(g

q)) ≡ a(qT ; gq) mod q. Thus a(T ;Tq(g
q)) ≡ a(T ; g) mod q for

all T ∈ NX2. Hence we have the first assertion Tq(g
q) ≡ g mod q.

Letting φ ∈ Jcusp
qk,N be the first Fourier-Jacobi coefficient of Tq(g

q), then φ is
congruent modulo q to the first Fourier-Jacobi coefficient of g; that is, φ ≡ ψ

mod q. Now, if T =
(

mN r/2
r/2 n

)
∈ NX2, then

a(T ; Grit(φ)) =
∑

δ|(n,r,m)

δqk−1c(
mn

δ2
,
r

δ
;φ),

a(T ; Grit(ψ)) =
∑

δ|(n,r,m)

δk−1c(
mn

δ2
,
r

δ
;ψ).

Since δqk ≡ δk mod q and since c(mn
δ2 , r

δ ;φ) ≡ c(mn
δ2 , r

δ ;ψ) mod q, we may con-
clude a(T ; Grit(φ)) ≡ a(T ; Grit(ψ)) mod q; that is, Grit(φ) ≡ Grit(ψ) mod q. �

4. Jacobi forms

The Gritsenko lift constructs paramodular forms from Jacobi forms and so we
need to compute spaces of Jacobi forms. The basic reference for Jacobi forms is
the book of Eichler and Zagier [10]. The weight 2 Jacobi forms in this article were
originally computed from weight 3/2 modular forms on Γ0(4p). A more appealing
technique, however, is the method of theta blocks, which seems to work very well
for low weight. We thank N.-P. Skoruppa for explaining to us his joint work with
V. Gritsenko and D. Zagier on theta blocks [13].

The following subgroup Γ∞(Z) of Sp2(Z) stabilizes the Fourier-Jacobi expansion
of a level one Siegel modular form term by term and this gives some motivation for
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Table 2. Dimensions for Jacobi cusp forms of weight 2 and index p.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

dim Jcusp
2,p 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 2

the definition of Jacobi forms:

Γ∞(Z) = Sp2(Z) ∩

⎛
⎜⎜⎝
∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎟⎠ , for ∗ ∈ Z.

To admit half-integral weights in the following definition, we require that μ(γ,Ω) =
χ(γ) det(CΩ +D)k be a factor of automorphy on Γ∞(Z)×H2, compare [12]. We
write q = e(τ ) and ζ = e(z).

4.1. Definition. A level one Jacobi form of weight k ∈ 1
2Z, index m ∈ Q and

multiplier χ : Γ∞(Z) → C, denoted φ ∈ Jk,m(χ), is a holomorphic map φ : H1 ×
C → C given by (τ, z) �→ φ(τ, z) such that, if φ̃ : H2 → C is defined by φ̃(Ω) =
φ(τ, z)e(mω) for Ω = ( τ z

z ω ) ∈ H2, then we have

1) ∀γ ∈ Γ∞(Z), φ̃|kγ = χ(γ)φ̃, and
2) φ(τ, z) =

∑
n≥0,r∈Z c(n, r)q

nζr, where c(n, r) = 0 unless 4mn− r2 ≥ 0.

If c(n, r) = 0 unless 4mn − r2 > 0, then φ is called a cusp form and we write
φ ∈ Jcusp

k,m (χ). In [10], pp. 121, 131-132 we can find dimension formulae for Jacobi

forms. We thank N. Skoruppa for rewriting these for us. Let �x� = max{n ∈ Z :
n ≤ x}.

4.2. Theorem. For k ∈ Z≥0, let {{k}} = dimSk
1 . For m ∈ N, let σ0(m) be

the number of positive divisors of m. Let δ(k,m) be zero unless k = 2 and let
δ(2,m) = 1

2σ0(m)− 1 for nonsquare m and δ(2,m) = 1
2σ0(m)− 1

2 for square m.

For even k ≥ 2, dim Jcusp
k,m = δ(k,m) +

m∑
j=0

(
{{k + 2j}} −

⌊
j2

4m

⌋)
.

For odd k ≥ 3, dim Jcusp
k,m =

m−1∑
j=1

(
{{k + 2j − 1}} −

⌊
j2

4m

⌋)
.

The Fourier expansions of theta blocks can be computed from the Dedekind eta
function η(τ ) = q

1
24

∏
n∈N(1− qn) and the odd Jacobi theta function:

ϑ(τ, z) =
∑
n∈Z

(−1)nq
(2n+1)2

8 ζ
2n+1

2 = q
1
8

(
ζ

1
2 − ζ−

1
2

)∑
n∈N

(−1)n+1 q(
n
2)

∑
j∈Z:|j|≤n−1

ζj .

A modular form may be viewed as a Jacobi form of index zero. For example,
η ∈ J 1

2 ,0
(ε) with the multiplier ε : SL2(Z) → C defined as in [21, p. 45]. Since

η24 = Δ ∈ S12
1 we know that ε24 = 1. Let H(Z) = {u ( 1 0

λ 1 ) t
(
0 μ
μ κ

)
∈ Γ∞(Z) :

λ, μ, κ ∈ Z} be the integral Heisenberg group. Define the character vH : H(Z) → C

by vH
(
u ( 1 0

λ 1 ) t
(
0 μ
μ κ

))
= (−1)λ+μ+κ. Embed i∞ : SL2(Z) → Γ∞(Z) via i∞(σ) =

σ � I2. The isomorphism Γ∞(Z)\{±I4} ∼= i∞ (SL2(Z)) � H(Z) allows us to view
εa vbH as a map εa vbH : Γ∞(Z) → C trivial on ±I4 for any integers a, b ∈ Z and we
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use this shorthand. For the theta function we have:

ϑ ∈ J 1
2 ,

1
2
(ε3vH).

For ϑd defined by ϑd(τ, z) = ϑ(τ, dz) we have ϑd ∈ J 1
2 ,

d2

2

(ε3vdH); see [12].

4.3. Theorem (Gritsenko, Skoruppa, Zagier). Let � ∈ N and t ∈ Z. Let n =

(n1, . . . , n	) ∈ Z	 and d = (d1, . . . , d	) ∈ N	. Let n =
∑	

i=1 ni for brevity. Define a
meromorphic function THBK(t,n,d) : H1 × C → C by

THBK(t,n,d)(τ, z) = η(τ )t
	∏

i=1

ϑ(τ, diz)
ni .

We have THBK(t,n,d) ∈ Jcusp
k,m if and only if

(1) 2k = t+ n,

(2) 2m =
∑	

i=1 nid
2
i ,

(3) t+ 3n ≡ 0 mod 24,
(4) ∀d ∈ N,

∑
i:d|di

ni ≥ 0,

(5) The function k
12 +

∑	
i=1 niB̄2(dix) has a positive minimum on [0, 1]. Here

B2(x) =
1
2x

2 − 1
2x+ 1

12 and B̄2(x) = B2(x− [[x]]) is the periodic extension
of its restriction to [0, 1].

We will only avail ourselves of the simplest cases. For k = 2, we always take
t = −6 and all ni = 1 so that n = 10. With this in mind, let

THBK2(d1, d2, . . . , d10)(τ, z) = η(τ )−6
10∏
i=1

ϑ(τ, diz).

For k = 4, a case used only incidentally, we always take t = 0 and all ni = 1 so
that n = 8. With this in mind, let

THBK4(d1, d2, . . . , d8)(τ, z) =
8∏

i=1

ϑ(τ, diz).

In the articles of Gritsenko (see [11]) his lift is proved for the group Γ[N ] = UK(N)U
where U = u ( 0 1

1 0 ). We restate his results for cusp forms on the paramodular group
K(N).

4.4. Theorem (Gritsenko). Let φ ∈ Jcusp
k,N and let φ(τ, z) =

∑
n>0,r∈Z c(n, r)q

nζr

be the Fourier expansion. There is a form Grit(φ) ∈ Sk
2 (K(N)) given by

Grit(φ)

(
τ z
z ω

)
=

∑
n,r,m

⎛
⎝ ∑

δ|(n,r,m)

δk−1c
(mn

δ2
,
r

δ

)⎞⎠ qmNζre(nω).

For k even, Grit(φ) is in the μ-plus space; for k odd, Grit(φ) is in the μ-minus
space.

Thus, the Fourier coefficients of Grit(φ) are:

a

(
mN r/2
r/2 n

)
=

∑
δ|(n,r,m)

δk−1c
(mn

δ2
,
r

δ

)
.

Additionally, V. Gritsenko and K. Hulek [12] have developed a lift for Jacobi forms
with certain characters. The case of a quadratic character will sometimes be useful
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here. For odd, squarefree N ∈ N, consider a representation of N as the sum of four
squares: N = a2 + b2 + c2 + d2, for a, b, c, d ∈ N. We have ϑaϑbϑcϑd ∈ Jcusp

2, 12N
(ε12).

The following theorem shows how to lift such forms to K(N).

4.5. Theorem (Gritsenko and Hulek). Let N ∈ N. There is a character χ
(N)
2 :

K(N)→{±1}. Let φ∈Jcusp

k, 12N
(ε12) and let φ(τ, z)=

∑
n,r∈ 1

2+Z:2Nn>r2,n>0 c(n, r)q
nζr

be the Fourier expansion. There is a form Grit(φ) ∈ Sk
2

(
K(N), χ

(N)
2

)
given by

Grit(φ)

(
τ z
z ω

)
=

∑
n,r,m odd ∈N

⎛
⎝ ∑

δ|(n,r,m)

δk−1c
(mn

2δ2
,
r

2δ

)⎞⎠ q
mN
2 ζ

r
2 e(

n

2
ω).

The point is that for i ∈ {1, 2} and φi ∈ Jcusp

ki,
1
2N

(ε12), we have a paramodular

form with trivial character Grit(φ1)Grit(φ2) ∈ Sk1+k2
2 (K(N)).

5. Vanishing theorems and congruences

Computations often require a priori sets of Fourier coefficients that determine
linear dependence among Siegel modular forms. We discuss such sets in degree two
and prove that some also determine congruences among Fourier coefficients. The
forms that index Fourier coefficients are a partially ordered set with no natural
linear order. Indeed, the intrinsic measure of the vanishing order of a Fourier series
is the closure in Psemi

n (R) of the convex ray hull of its support. For computational
purposes, however, ordering the support with a convex function φ is a versatile
expedient. We review the results of [26] and [27].

5.1. Definition. A function φ : Psemi
n (R) → R≥0 is called type one if

(1) For all s ∈ Pn(R), φ(s) > 0,
(2) for all λ ∈ R≥0 and s ∈ Psemi

n (R), φ(λs) = λφ(s),
(3) for all s1, s2 ∈ Psemi

n (R), φ(s1 + s2) ≥ φ(s1) + φ(s2).

Type one functions are continuous on Pn(R) and respect the partial order on
Psemi
n (R). Basic examples are: For s ∈ Psemi

n (R), define

(1) m(s) = infu∈Zn\{0} u
′su, the minimum function,

(2) t̃r(s) = infu∈GLn(Z) tr(u
′su), the reduced trace,

(3) δ(s) = det(s)1/n, the reduced determinant,

(4) w(s) = infu∈Pn(R)
〈u,s〉
m(u) , the dyadic trace.

For n = 2, the dyadic trace of a Minkowski reduced s =
(
a b
b c

)
∈ P2(R) is given by

w(s) = a+ c− |b|; see [25]. For n = 2, Minkowski reduced means 2|b| ≤ a ≤ c.

5.2. Vanishing Theorem. Let φ be type one. For all n ∈ Z+ there exists a
cn(φ) ∈ R>0 such that: For any subgroup Γ ⊆ Γn with finite index I and coset

decomposition Γn =
⋃I

i=1 ΓMi, we have

(5.3) ∀ k ∈ Z+, ∀ f ∈ Sk
n(Γ),

1

I

I∑
i=1

inf φ (supp(f |Mi)) > cn(φ) k =⇒ f ≡ 0.

For n = 2, we may take cn(φ) = inf φ
(
[ 1
30 (

3 1
1 3 )]

)
.

Proof. This is Theorem 2.5 from [28], except for the last comment, which is Corol-
lary 5.8 from [26]. �
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We obtain our Vanishing Theorem for automorphic forms on K(p) by viewing
them as automorphic with respect to Γ′

0(p) = K(p) ∩ Γ2. To use Theorem 5.2

we need coset representatives Γ2 =
⋃(1+p)(1+p2)

i=1 Γ′
0(p)Yi; these may be found in

[14, p. 71].

5.4. Theorem (Hashimoto, Ibukiyama). As a complete set of 1 + p + p2 + p3

representatives of the coset space Sp2(Z)/Γ
′
0(p) we may take

X1(a, b, c) =

⎛
⎜⎜⎝
1 0 0 0
a 1 0 0
b c 1 −a
c 0 0 1

⎞
⎟⎟⎠ ; X2(a, b) =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
a 0 0 1
b a 1 0

⎞
⎟⎟⎠ ;

X3(a) =

⎛
⎜⎜⎝
0 −a −1 0
0 1 0 0
1 0 0 0
a 0 0 1

⎞
⎟⎟⎠ ; X4 =

⎛
⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

where a, b, c run over the integers modulo p.

It is helpful to abbreviate

κ = u

(
0 1

p

−1 0

)
=

⎛
⎜⎜⎝

0 1
p 0 0

−1 0 0 0
0 0 0 p
0 0 −1 0

⎞
⎟⎟⎠ .

5.5.Corollary. A complete set of 1+p+p2+p3 coset representatives Y for Γ′
0(p)Y ∈

Γ′
0(p)\ Sp2(Z) and a representative from Δ2(Q) for K(p)Y and a representative, I4

or κ, for K(p)YΔ2(Z) is given by

X−1
4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠ ∈ K(p)

⎛
⎜⎜⎝
0 1

p 0 0

1 0 0 0
0 0 0 p
0 0 1 0

⎞
⎟⎟⎠ ⊆ K(p)κΔ2(Z);

X3(a)
−1 =

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
−1 −a 0 0
0 0 −a 1

⎞
⎟⎟⎠ ∈ K(p)

⎛
⎜⎜⎝
− 1

p −a
p 0 0

0 −1 0 0
0 0 −p 0
0 0 a −1

⎞
⎟⎟⎠ ⊆ K(p)κΔ2(Z),

where a runs over the integers modulo p;

X2(a, b)
−1=

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
−a −b 0 1
0 −a 1 0

⎞
⎟⎟⎠∈K(p)

⎛
⎜⎜⎝
−b̂a − 1

p 0 b̂
p

−1 0 0 0
0 0 0 −p

0 0 −1 −b̂a

⎞
⎟⎟⎠⊆ K(p)κΔ2(Z),

where a, b, b̂ run over the integers modulo p with bb̂ ≡ 1 mod p;

X2(a, 0)
−1 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
−a 0 0 1
0 −a 1 0

⎞
⎟⎟⎠ ∈ K(p)

⎛
⎜⎜⎝
− 1

p â 0 â
p

0 1 −â 0
0 0 −p 0
0 0 −âp 1

⎞
⎟⎟⎠ ⊆ K(p)κΔ2(Z),
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where a, â run over the integers modulo p with aâ ≡ 1 mod p;

X2(0, 0)
−1 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ∈ Δ2(Z);

X1(a, b, c)
−1=

⎛
⎜⎜⎝

1 0 0 0
−a 1 0 0
−b −c 1 a
−c 0 0 1

⎞
⎟⎟⎠∈K(p)

⎛
⎜⎜⎜⎝
− 1

p − b̂c
p

b̂
p

b̂a
p

0 1 −ab̂ 0
0 0 −p 0

0 0 −b̂c 1

⎞
⎟⎟⎟⎠⊆K(p)κΔ2(Z),

where a, b, b̂, c run over the integers modulo p with bb̂ ≡ 1 mod p;

X1(a, 0, c)
−1=

⎛
⎜⎜⎝

1 0 0 0
−a 1 0 0
0 −c 1 a
−c 0 0 1

⎞
⎟⎟⎠∈K(p)

⎛
⎜⎜⎝
0 − 1

p
ĉ
p

ĉa
p

1 0 0 −ĉ
0 0 0 −p
0 0 1 0

⎞
⎟⎟⎠⊆K(p)κΔ2(Z),

where a, c, ĉ run over the integers modulo p with cĉ ≡ 1 mod p;

X1(a, 0, 0)
−1 =

⎛
⎜⎜⎝

1 0 0 0
−a 1 0 0
0 0 1 a
0 0 0 1

⎞
⎟⎟⎠ ∈ Δ2(Z),

where a runs over the integers modulo p.

Proof. First, it is the Y = X−1
i from Theorem 5.4 that give left coset represen-

tatives. Finally, one can check these assertions directly by taking inverses and
multiplying. In the case of X2(a, b)

−1, for example, the following element is in
K(p):⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
−a −b 0 1
0 −a 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−b̂a − 1

p 0 b̂
p

−1 0 0 0
0 0 0 −p

0 0 −1 −b̂a

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎝
−p ab̂ − b̂

p 0

0 −1 0 0

bp a(1− bb̂) bb̂−1
p 0

ap −a2b̂ 0 −1

⎞
⎟⎟⎟⎠ .

Furthermore, the following element is in Δ2(Z):⎛
⎜⎜⎝

0 1
p 0 0

−1 0 0 0
0 0 0 p
0 0 −1 0

⎞
⎟⎟⎠

−1 ⎛
⎜⎜⎝
−b̂a − 1

p 0 b̂
p

−1 0 0 0
0 0 0 −p

0 0 −1 −b̂a

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0

−ab̂ −1 0 b̂

0 0 1 −ab̂
0 0 0 −1

⎞
⎟⎟⎠ .

�

With these coset representatives, we may use Theorem 5.2 to prove:

5.6. Theorem. Let f ∈ Sk
2 (K(p)). Let φ be a type one GL2(Z)-class function.

Unless f ≡ 0, we have

inf φ (supp(f)) + p inf φ (supp(f |μ)) ≤ φ
(

1
30 (

3 1
1 3 )

)
k(1 + p2).
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5.7. Corollary. For nontrivial f ∈ Sk
2 (K(p)) we have

min δ (supp(f)) ≤
√
2

15
k
1 + p2

1 + p
.

If f is additionally a μ-eigenform then we have

minw (supp(f)) ≤ k

6

1 + p2

1 + p
,

min t̃r (supp(f)) ≤ k

5

1 + p2

1 + p
,

minm (supp(f)) ≤ k

10

1 + p2

1 + p
.

Proof of Theorem 5.6 and Corollary 5.7. Let Γ2 =
⋃I

i=1 Γ
′
0(p)Yi with I = (1 +

p)(1 + p2). For nontrivial f , Theorem 5.2 gives

(5.8)
1

I

I∑
i=1

inf φ (supp(f |Yi)) ≤ c2(φ) k.

For each i we have Yi ∈ K(p)κεi
( ui ∗

0 u∗
i

)
with ui ∈ GL2(Z), with εi = 0 in 1 + p

cases and with εi = 1 in p2 + p3 cases by Corollary 5.5. Since φ is a class function
and supp (f |Yi) = u′

iκ
′εi supp(f)κεiui, we have φ (supp (f |Yi)) = φ (supp (f |κεi)).

When εi = 0 this is φ (supp (f)) and when εi = 1 this is

φ (supp (f |κ)) = φ

(
1

p
supp (f |μ)

)

by Lemma 3.9. In view of these two cases, condition (5.8) becomes

1

I

(
(1 + p) inf φ (supp(f)) + (p2 + p3) inf φ

(
1

p
supp (f |μ)

))
≤ c2(φ) k,

which is equivalent to the conclusion of Theorem 5.6.
In the corollary, we have replaced inf by min since the infimum of φ (supp (f |Yi))

is attained whenever φ has finite shells or takes values in a lattice. If f is a μ-
eigenform then supp(f |μ) = supp(f) and the conclusions for w, m and t̃r follow
upon evaluating w (1/30 ( 3 1

1 3 )) = 1/6, t̃r (1/30 ( 3 1
1 3 )) = 1/5 and m (1/30 ( 3 1

1 3 )) =
1/10. In general, twinning does not change the determinant, so δ (supp(f |μ)) =

δ (supp(f)) and we note that δ (1/30 ( 3 1
1 3 )) =

√
2/15. �

The goal of this section is to give similar sets of Fourier coefficients that determine
congruences. The essential difficulty is at the primes two and three. Results of this
type depend upon the work of J. I. Igusa [20]. Let R be a ring. For A ⊆ C, let

Mk
n (Γ) (A) = {f ∈ Mk

n (Γ) : ∀T ∈ Psemi
n (Q), a(T ; f) ∈ A},

with a similar meaning for cusp forms Sk
n (Γ) (A) and Jacobi forms Jk,m(A). We see

that Mk
n (Γ) (A) is an R-module, or Mn (Γ) (A) a ring, whenever A is. Further, for

a prime �, let Mk
n (Γ) (F	) denote the reduction modulo � of the coefficients of the

Fourier series from Mk
n (Γ) (Z). Let R	 : M

k
n (Γ) (Z) → Mk

n (Γ) (F	) be the natural
reduction map.

Using Igusa’s work we can prove the following:
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5.9. Theorem. Let K ⊆ C be a number field, O its ring of integers and p a prime
ideal in O. Let f ∈ Sk

2 (K(p)) (O) be a μ-eigenform with a(T ; f) ∈ p for all T ∈ pX2

satisfying w(T ) ≤ k
6
p2+1
p+1 . Then we have a(T ; f) ∈ p for all T ∈ pX2.

The proof we will give is valid only for primes p because we rely on the coset
decomposition of Corollary 5.5. The proof of Theorem 5.9 is at the end of this
section. These results partially generalize Sturm’s Theorem [33] on elliptic modular
forms for Γ0(N), which we state for level one in the next theorem. For a ring
R⊆C and a set S ⊆ C, let R〈S〉 denote the R-module generated by finite R-linear
combinations of elements from S. Recall the notation {{k}} = dimSk

1 .

5.10. Theorem. If f ∈ Mk
1 (C), then f ∈ Mk

1 (Z〈a(j; f) : j ≤ {{k}}〉).

Theorem 5.9 is proven by reduction to a congruence criterion for integral forms of
level one which is of independent interest. For g = 2, we will show in Theorem 5.15
that

(5.11) If f ∈ Mk
2 (C), then f ∈ Mk

2

(
Z〈a(T ; f) : w(T ) ≤ k

6
〉
)
.

For k �= 2, each Mk
1 (Z) has a basis {hi}, where each hi(τ ) has a Fourier expansion

qi+0(qi+1) for 0 ≤ i ≤ dimSk
1 . The following theorem is an immediate consequence.

For an R-module V , we let Sym(V ⊗ V ) be the kernel of the map V ⊗ V → V ∧ V .

5.12. Theorem. If f ∈ Sym (M1 ⊗M1)
k (C), then we have

f ∈ Sym (M1 ⊗M1)
k (Z〈a(i, j; f) : i, j ≤ {{k}}〉) .

For a ringR ⊆ C, this shows that Sym (M1 ⊗M1)
k (R)=Sym

(
Mk

1 (R)⊗Mk
1 (R)

)
.

Interest in the intermediate ring Sym (M1 ⊗M1)
k (R) stems from the Witt map

[35]

W : Mk
2 (R) → Sym (M1 ⊗M1)

k (R)

(Ω �→ f(Ω)) �→
(
(τ1, τ2) �→ f

(
τ1 0
0 τ2

))
for which the Fourier coefficients obey

a(i, j;W (f)) =
∑
b

a

((
i b
b j

)
; f

)
.

The following exact sequence is often the basis of computing in the ring M2(C).

0 → Mk−10
2 (C)

·X10−−−→ Mk
2 (C)

W−→Sym (M1 ⊗M1)
k (C) → 0.

Igusa showed that the following sequence is exact [20, Lemma 7, p. 163].

0 → Mk−10
2 (Z)

·X10−−−→ Mk
2 (Z)

W−→Sym (M1 ⊗M1)
k
(Z),

but that the Witt map from Mk
2 (Z) to Sym (M1 ⊗M1)

k
(Z) does not surject when

twelve divides k. The following lemma has greater applicability if we note that
Mk

2 (R) = Mk
2 (Z)⊗Z R for Z-modules R; cf. [20, p. 150].

5.13. Theorem ([20], Lemma 13, p. 171)). We have

W
(
Mk

2 (Z)
)
= Sym (M1 ⊗M1)

k (Z)

if and only if k �≡ 0 mod 12.
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We need a lemma that records the reach of each Fourier expansion. Some famil-
iarity with the geometry of numbers, as in [26], is required for the proof of the next
lemma. In particular, for A ∈ P2(R), let �(A) = R≥0〈xx′;x ∈ Z2 : x′Ax = m(A)〉
be the cone in Psemi

2 (R) generated by the outer products of the minimal vectors
of A. Also, for X ⊆ Psemi

2 (R), Semihull(X) denotes the closure in Psemi
2 (R) of the

convex ray hull of X. Finally, we need to mention the technique of restriction to
modular curves [27] in the simplest case. For s ∈ Pn(Z), define φs : H1 → Hn by
τ �→ sτ and note that, for any � ∈ N with �s−1 ∈ Pn(Z), the pullback is a ring
homomorphism φ∗

s : Mn → M1 (Γ0(�)) that multiplies weights by n. If f ∈ Mk
n has

a Fourier series FSn(f) =
∑

T a(T )qT , then FS1 (φ
∗
sf) =

∑
j

(∑
T :〈s,T 〉=j a(T )

)
qj .

5.14. Lemma. Let R ⊆ C be a Z-module. Let b> 0. Let f ∈ Mk
2 (C) and f ′ ∈

Mk−10
2 (C) with f = X10f

′. Then we have(
∀T ∈ X semi

2 : w(T ) < b, a(T ; f) ∈ R
)

=⇒ ∀T ∈ X semi
2 : w(T ) < b− 3

2
, a(T ; f ′) ∈ R.

Proof. Let suppR(f
′) = {T ∈ X semi

2 : a(T ; f ′) �∈ R}. Our goal is to prove the
inequality minw (suppR(f

′)) ≥ b − 3/2. Letting K = Semihull(suppR(f
′)), it is

equivalent to show that minw (K) ≥ b − 3/2. Suppose, by way of contradiction,
that T ∈ suppR(f

′) is a vertex of K with minimal dyadic trace w(T ) < b−3/2. By
changing representatives within the GL2(Z)-equivalence class of T , we may assume

T ∈ �(A) for A =
(

1 −1/2
−1/2 1

)
.

In the dual K� = {y ∈ Psemi
2 (R) : ∀x ∈ K, 〈x, y〉 ≥ 1}, the vertex T corresponds

to the convex two-dimensional face F = {y ∈ K� : 〈T, y〉 = 1}. The point Y =

A/w(T ) is in this face and also in the interior of the cone �(Â) for Â =
(

1 1/2
1/2 1

)
.

Let N be a neighborhood of Y with N ⊆ �(Â). For any H ∈ N ∩ F ◦, we have

both (1) {x ∈ K : 〈x,H〉 = 1} = {T} because H ∈ F ◦ and (2) {x ∈ [Â] :

〈x,H〉 = w(H)} = {Â} because H ∈ �(Â)◦. Consider the continuous function

〈Â+ T, ·〉/m(·) evaluated at Y :

〈Â+ T, Y 〉
m(Y )

=
〈Â+ T,A〉

m(A)
=

〈Â, A〉
m(A)

+
〈T,A〉
m(A)

=
3

2
+ w(T ) <

3

2
+

(
b− 3

2

)
= b.

As Y is an accumulation point of N ∩ F ◦, there is H ∈ N ∩ F ◦ with 〈Â+ T,H〉/
m(H) < b.

The leading term of φ∗
HX10 is a(Â;X10)q

〈Â,H〉 = q〈Â,H〉 by (2). The leading

term of φ∗
Hf ′ modulo R[[q]] is a(T ; f ′)q〈T,H〉 by (1). Thus φ∗

Hf = (φ∗
HX10) (φ

∗
Hf ′)

has a leading term modulo R[[q]] given by a(T ; f ′)q〈Â+T,H〉 and hence∑
X∈supp(f):〈X,H〉=〈Â+T,H〉

a(X; f) ≡ a(T ; f ′) modulo R.

For X ∈ supp(f) with 〈X,H〉 = 〈Â+ T,H〉 we have

w(X) ≤ 〈X,H〉
m(H)

=
〈Â+ T,H〉

m(H)
< b,

so that a(X; f) ∈ R by hypothesis and we obtain a(T ; f ′) ∈ R and the contradiction
T �∈ suppR(f

′). �
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Table 3. Functions from the proof of Theorem 5.15.

1 k mod 12 0 10 8 6 4 2

2 ν(k) 0 1 2 3 4 5

3 k̂ k + 4 k k k k k

4 k′ k − 6 k − 10 k − 10 k − 10 k − 10 k − 10

5 ν(k′) 3 0 1 2 3 4

6 12{{k}} k k − 10 k − 8 k − 6 k − 4 k − 14

7 k − ν(k) k k − 1 k − 2 k − 3 k − 4 k − 5

8 k′ − ν(k′) k − 9 k − 10 k − 11 k − 12 k − 13 k − 14

5.15. Theorem. Let f ∈ Mk
2 (C), then f ∈ Mk

2

(
Z〈a(T ; f) : w(T ) ≤ k

6 〉
)
. Fur-

thermore, f ∈ Mk
2

(
Z〈a(T ; f) : w(T ) ≤ k−ν(k)

6 〉
)

for ν(k) = 0, 1, 2, 3, 4, 5 for k ≡
0, 10, 8, 6, 4, 2 mod 12, respectively.

Proof. It suffices to prove the second assertion and we do this by induction on k.

Let A = Z〈a(T ; f) : w(T ) ≤ (k − ν(k))/6〉. Let f ∈ Mk
2 (C) and consider f̂ = f for

k �≡ 0 mod 12 and f̂ = E4f for k ≡ 0 mod 12. Thus, in all cases, the weight k̂ of

f̂ is not divisible by 12. The Witt image W (f̂) ∈ Sym (M1 ⊗M1)
k̂
(C) has Fourier

coefficients

a(i, j;W (f̂)) =
∑
b

a

((
i b
b j

)
; f̂

)
.

By Theorem 5.12, we have

W (f̂) ∈ Sym (M1 ⊗M1)
k̂
(
Z〈a(i, j;W (f̂)) : i, j ≤ {{k̂}}〉

)
.

For i, j ≤ {{k̂}}, we have w
(
i b
b j

)
≤ tr

(
i b
b j

)
= i+j ≤ 2{{k̂}}, so that a(i, j;W (f̂)) ∈

A and W (f̂) ∈ Sym (M1 ⊗M1)
k̂ (A) if 2{{k̂}} ≤ (k−ν(k))/6. This inequality holds

in all six cases; see Table 3. By Lemma 5.13, there is an F ∈ M k̂
2 (A) such that

W (F ) = W (f̂). Therefore, F − f̂ = X10f
′ for some f ′ ∈ Mk′

2 (C) with k′ = k̂− 10.

For all T with w(T ) ≤ (k−ν(k))/6 we have a(T ;F−f̂) ∈ A. Since (k−ν(k))/6 ∈ 1
2Z

and since w
(
X semi

2

)
⊆ 1

2Z, the strict inequality w(T ) < (k−ν(k))/6+1/2 is equiv-
alent to the inequality w(T ) ≤ (k− ν(k))/6. By Lemma 5.14, we have a(T ; f ′) ∈ A
for all T with w(T ) < (k− ν(k))/6− 1, or equivalently, w(T ) ≤ (k− ν(k))/6− 3/2.

By the induction hypothesis we have

f ′ ∈ Mk′

2 (Z〈a(T ; f ′) : w(T ) ≤ (k′ − ν(k′))/6〉) .
Thus we have f ′ ∈ Mk′

2 (A) since (k′ − ν(k′))/6 ≤ (k− ν(k))/6− 3/2, an inequality

that holds with equality in all six cases. Since X10 ∈ S10
2 (Z), we have F − f̂ =

X10f
′ ∈ Sk̂

2 (A) and we also have f̂ ∈ M k̂
2 (A). This is either f ∈ Mk

2 (A) or

E4f ∈ Mk+4
2 (A), from which f ∈ Mk

2 (A) follows. It remains to check the base
case of the induction. It suffices to note that for k < 10, nontrivial Mk

2 (C) are
spanned by one Eisenstein series. �

Table 3 is an aid to checking the proof of Theorem 5.15.
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Theorem 5.15 is a module criterion for integral forms of level one. To prove
a congruence criterion for K(p), we use the explicit coset representatives from
Corollary 5.5.

Proof of Theorem 5.9. Write the Fourier expansion of f as FS(f) =
∑

T a(T )qT .
For each coset Γ′

0(p)Y ∈ Γ′
0(p)\Γ2 as in Corollary 5.5, we consider the Fourier

expansion of f |Y . There are I = 1 + p + p2 + p3 of these cosets. These Y break
down into p + 1 cases of one type where K(p)YΔ2(Z) = K(p)Δ2(Z) and p2 + p3

cases of another type where K(p)YΔ2(Z) = K(p)κΔ2(Z). For the first type we
have

Y = δ =

(
U XU∗

0 U∗

)
∈ Δ2(Z)

for U ∈ GL2(Z) and X ∈ M sym
2×2 (Z), so that for fY = det(U)kf we have the Fourier

expansion

FS(fY ) =
∑

T∈pX2

a(T )qT [U ].

For the second type we have Y = κδ. Using κ = μ 1√
p

(
I 0
0 pI

)
along with our

assumption f |μ = ±f and letting fY = ± det(U)kpkf and ζp = e( 1p ), we have the

Fourier expansion

FS(fY ) =
∑

T∈pX2

a(T )ζ〈X,T 〉
p q

1
pT [U ].

Each of these Fourier expansions has coefficients in O[ζp] and furthermore in p[ζp]

for T such that w(T ) ≤ k
6
p2+1
p+1 . We consider the product of these series:

F =

⎛
⎝ ∏

Γ′
0(p)Y ∈Γ′

0(p)\Γ2

fY

⎞
⎠ ∈ MkI

2 (O[ζp]) .

From the product for F we see that suppp[ζp](F ) ⊆
∑

Y suppp[ζp](fY ) and so

min w
(
suppp[ζp](F )

)
≥ min w

(∑
Y

suppp[ζp](fY )

)

≥ min

(∑
Y

w
(
suppp[ζp](fY )

))

≥
∑
Y

min w
(
suppp[ζp](fY )

)
> (p+ 1)

k

6

p2 + 1

p+ 1
+

1

p
(p2 + p3)

k

6

p2 + 1

p+ 1
=

k

6
.

By Theorem (5.11), we have F ∈ SkI
2 (p[ζp]).

Now we will show that FS(f) =
∑

T a(T )qT has a(T ) ∈ p. We proceed by
contradiction; if not, there is a T0 ∈ pX2 with a(T0) �∈ p. Pick a prime ideal L
containing pOK(ζp) in OK(ζp). Denote by

RL : M2

(
OK(ζp)

)
→ M2

(
OK(ζp)/L

)
the reduction of Fourier coefficients modulo L. Then RL(F ) = 0 but we can show

each RL(fY ) is nonzero at qT0 or at q
1
pT0[U ]: for if a(T0)ζ

j
p ∈ L for some j ∈ Z and

a(T0) ∈ O, then a(T0) ∈ L ∩ O = p. We now have a contradiction using the fact
that power series over the domain OK(ζp)/L cannot be zero divisors. �
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We conclude this section by presenting vanishing and congruence conditions for
Jacobi forms. We thank O. Richter for suggesting this.

5.16. Corollary. Let p ∈ N be prime or one. Let φ ∈ Jcusp
k,p have the Fourier

expansion

φ(τ, z) =
∑

n∈N,r∈Z: 4np>r2

c(n, r)qnζr =
∑

D∈N,r∈Z:−D≡r2 mod 4p

c(D)q
D+r2

4p ζr.

The form φ is trivial if and only if c(D) = 0 whenever D ≤ 8
225

(
k 1+p2

1+p

)2

.

Let K be a number field, O its integers and p a prime ideal in O. Let φ ∈ Jcusp
k,p

have all c(D) ∈ O. We have all c(D) ∈ p if and only if c(D) ∈ p whenever

D ≤ 1
27

(
k 1+p2

1+p

)2

.

Proof. By Theorem 2.2 of [10, p. 23], for index p prime or 1, the Fourier coefficients
c(n, r) depend only upon 4np−r2 so that we may write c(n, r) = c(4np−r2). First
examine the vanishing condition. The Fourier coefficients of Grit(φ) ∈ Sk

2 (K(p))
are

a

(
mp r/2
r/2 n

)
=

∑
δ|(n,r,m)

δk−1c
(mn

δ2
,
r

δ

)
=

∑
δ

δk−1c

(
4nm− r2

δ

)
;

compare Theorem 4.4. From c(D) = 0 whenever D ≤ 8
225

(
k 1+p2

1+p

)2

, we see that

a(T ) = 0 whenever 4 det(T ) ≤ 8
225

(
k 1+p2

1+p

)2

. Equivalently, a(T ) = 0 for δ(T ) ≤
√
2

15 k
1+p2

1+p , which proves the vanishing of Grit(φ) by Corollary 5.7. Hence φ also

vanishes.
Now examine the congruence condition for Grit(φ) ∈ Sk

2 (K(p))ε(O) for ε =

(−1)k. If a (T ; Grit(φ)) ∈ p for T =
(

mp r/2
r/2 n

)
∈ pX2 satisfying w(T ) ≤ k

6
1+p2

1+p ,

then by Theorem 5.9 we have a (T ; Grit(φ)) ∈ p for all T . It would follow that

c(D) = c(n, r;φ) = a
((

p r/2
r/2 n

)
; Grit(φ)

)
∈ p for all D. So suppose T satisfies

w(T ) ≤ k
6
1+p2

1+p ; we will show that a (T ; Grit(φ)) ∈ p. From w(T ) ≥ 2
μ2
δ(T ), we see

δ(T ) ≤ 1√
3
w(T ) ≤ k

6
√
3

1+p2

1+p ; thus D = 4mnp − r2 = 4det(T ) ≤ 1
27

(
k 1+p2

1+p

)2

and

c(D) ∈ p. Therefore, by the above formula for the Fourier coefficients of Grit(φ),
we have a (T ; Grit(φ)) ∈ p. �

6. Integral closure

The constructions considered so far generate a large subring R ⊆ M2(K(p)).
Let R be the Hecke stable subring generated by Gritsenko lifts and traces of theta
series. For weights k ≥ 3, the dimension formulae of Ibukiyama reveal when R
contains Sk

2 (K(p)); indeed, we usually have containment in our examples for k ≥ 4.
We may use the following lemmas to construct nonlifts in S2

2(K(p)) by studying
the integral closure of S2(K(p)). This technique, in the case of elliptic modular
forms, was used by J. Tate [34] to construct “nonbanal” examples of weight one
cusp forms for which the Artin Conjecture could be tested. The present article, in
much the same spirit, aims at nonbanal examples of weight two paramodular cusp
forms for which the Paramodular Conjecture can be tested.
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Recall that Xn = {T ∈ Pn(Q) : ∀ v ∈ Zn, v′Tv ∈ Z} and NX2 = {
(
a b
b c

)
∈ X2 :

N |a}.
6.1. Definition. Set HN (2) = {H ∈ S4

2(K(N)) : supp(H) ⊆ NX2 +
NX2}. Also,

define HN (2)± = {H ∈ S4
2(K(N))± : supp(H) ⊆ NX2 +

NX2}.
The next lemma is useful when S2

2(K(N)) has linearly independent Gritsenko
lifts.

6.2. Lemma. Let g1, g2 ∈ S2
2(K(N)) be nontrivial. Define a linear map

ıg1,g2 : S2
2(K(N)) → {(H1, H2) ∈ HN (2)×HN (2) : H1 g2 = H2 g1}

f �→ (fg1, fg2).

The map ıg1,g2 is injective.

Proof. It suffices to point out that the image of ıg1,g2 is contained in HN (2) ×
HN (2). �
6.3. Corollary. Let g1, g2 ∈ S2

2(K(N)) be nontrivial. For primes �, we have the in-
equality dimC S2

2(K(N)) ≤ dimF�
{(H1, H2) ∈ HN (2)(F	)×HN (2)(F	) : H1 R	(g2) =

H2 R	(g1)}.
This corollary finds an upper bound on dimS2

2(K(N)) from a basis of
S4
2(K(N))(Z) modulo �. When this upper bound equals dim Jcusp

2,N then S2
2(K(N))

is spanned by lifts. It is also useful to have versions of Lemma 6.2 that treat the
plus and minus spaces separately. We define a set, FN , of indices that are Γ̂0(N)-
equivalent to those that appear in the first Fourier-Jacobi coefficient of forms from
S2(K(N)).

6.4. Definition. Set FN = {T ∈ NX2 : ∃
(
N b
b c

)
∈ NX2, ∃U ∈ Γ̂0(N) : T [U ] =(

N b
b c

)
} for N ∈ N. Set NX ′

2 = NX2 \ FN . Define H′
N (2) = {H ∈ HN (2) :

supp(H) ⊆ NX2 +
NX ′

2}. Define H′′
N (2) = {H ∈ HN (2) : supp(H) ⊆ NX ′

2 +
NX ′

2}.
Set H′

N (2)± = H′
N (2) ∩ S4

2(K(N))± and H′′
N (2)± = H′′

N (2) ∩ S4
2(K(N))±.

6.5. Corollary. Let N ∈ N. Let g1, g2 ∈ S2
2(K(N))+ be nontrivial. We have the in-

equalities dimC S2
2(K(N))− ≤ dim{(H1, H2) ∈ HN (2)−×HN (2)− : H1 g2 = H2 g1}

and dimC

(
S2
2(K(N))+/Grit(Jcusp

2,N )
)

≤ dim{(H1, H2) ∈ H′
N (2)+ × H′

N (2)+ :

H1 g2 = H2 g1}.
Proof. When g1 and g2 are plus forms, the restriction of ıg1,g2 to S2

2(K(N))− has
an image in HN (2)− × HN (2)−. The injectivity of ıg1,g2 then proves the first
inequality. For the second inequality, we note that each f ∈ S2

2(K(N))+ has a

unique represenative f̂ ∈ f + Grit(Jcusp
2,N ) whose first Fourier Jacobi coefficient

vanishes. Thus, we have supp(f̂) ⊆ NX ′
2. The map ı̂g1,g2 defined on S2

2(K(N))+ by

ı̂g1,g2(f) = (g1f̂ , g2f̂) has kernel Grit(Jcusp
2,N ) and an image inH′

N (2)+×H′
N (2)+. �

This next lemma is useful when S2
2(K(N)) has a nontrivial Gritsenko lift.

6.6. Lemma. Let g ∈ S2
2(K(N)) be nontrivial. Define a (nonlinear) map

jg : S2
2(K(N)) → {(F,H) ∈ HN (2)×HN (2) : H2 = Fg2}

f �→ (f2, fg).

The map jg is bijective.
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Proof. The map jg is clearly injective. On the other hand, suppose we have F ,
H ∈ HN (2) ⊆ S4

2(K(N)) with H2 = Fg2. The function f = H/g is a weight 2
meromorphic form whose square, f2 = H2/g2 = F , is holomorphic. Hence f is
holomorphic and jg(f) = (f2, fg) = (F,H). �

Our strategy to construct nonlifts is to use Lemma 6.2 to find a meromorphic
function f with distinct representations f = H1/g1 = H2/g2. One then gains
a pretty good idea of whether or not f is holomorphic by applying the formulae
for the action of the Hecke operators on Fourier coefficients to the initial Fourier
expansion of f . To prove f is holomorphic we use Lemma 6.6. This requires
demonstrating the vanishing of H2 − Fg2 ∈ S8

2(K(p))+. One way to verify these
identities in weight 8 is to span S8

2(K(p))+ but this is not always computationally
feasible. Another path to proving holomorphicity would be to study the divisors
of g1 and g2; note, however, that K(p)\K(p)(H1 ⊕ H1) will always be a common
divisor of any weight two paramodular cusp forms.

For small levels, when the dimension of the Gritsenko lifts is less than 2, nonlifts
were eliminated by the Restriction Technique; compare [27]. In order to avoid
a lengthy description of the Restriction Technique here, we provide the following
lemmas. The first was used for levels 37, 43 and 53.

6.7. Lemma. If dim Jcusp
2,N ≥ 1 and dimS4

2(K(N)) = 1 + dim Jcusp
4,N , then H′′

N (2) =

{0}. Also, if dimHN (2) ≤ 1 ≤ dim Jcusp
2,N , then H′′

N (2) = {0}.
Proof. Let f = Grit(φ) ∈ S2(K(N))+ for a nontrivial φ ∈ Jcusp

2,N . Since the first

Fourier-Jacobi coefficient of f2 is zero, we have Grit(Jcusp
4,N ) � Cf2 +Grit(Jcusp

4,N ) ⊆
S4
2(K(N))+. Applying the hypothesis dimS4

2(K(N)) = 1 + dim Jcusp
4,N , we have

S4
2(K(N)) = S4

2(K(N))+ = Cf2 + Grit(Jcusp
4,N ). From this we can show H′′

N (2) =

{0}.
Any H ∈ H′′

N (2) ⊆ S4
2(K(N)) can be expressed as H = αf2 + Grit(ψ) for

some α ∈ C and ψ ∈ Jcusp
4,N . The first Fourier-Jacobi coefficient of H is ψ and

so ψ = 0 and H = αf2. The Fourier-Jacobi expansion of H begins H ( τ z
z ω ) =

αφ(w, z)2e (2Nω) + . . . and because φ is nontrivial, supp(φ2e(·)2N ) contains a

definite index T =
(

2N r/2
r/2 m

)
with r ∈ Z and m ∈ N. However, no element of

this form is in NX ′
2 + NX ′

2, so that H ∈ H′′
N (2) implies that α = 0 and H = 0.

This proves the first assertion. The final assertion follows from the same argument
because any H ∈ H′′

N (2) can be written H = αf2 for f as above. �
Items (4) and (5) of the next lemma are the most commonly used on the web-

site [29] to prove that, for most primes p < 600, S2
2(K(p)) consist entirely of lifts.

6.8. Lemma. Let N ∈ N.

(1) If S4
2(K(N)) = Grit(Jcusp

4,N ), then HN (2) = {0}.
(2) If HN (2)+ = {0}, then S2

2(K(N)) = {0}.
(3) If H′′

N (2) = {0}, then S2
2(K(N)) = Grit(Jcusp

2,N ).

(4) If H′′
N (2)+ = {0}, then S2

2(K(N))+ = Grit(Jcusp
2,N ).

(5) If dimHN (2)− < dim Jcusp
2,N , then S2

2(K(N))− = {0}.
(6) If dimH′′

N (2) ≤ 2, then Grit(Jcusp
2,N ) has codimension at most 1 in

S2
2(K(N)).

(7) If dimH′′
N (2)+ ≤ 2, then Grit(Jcusp

2,N ) has codimension at most 1 in

S2
2(K(N))+.
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Table 4. Dimensions of the μ-plus and μ-minus subspaces in S4
2 (K(p))

p 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163

dimS4
2 (K(p))+ 18 23 32 27 32 27 38 33 44 38 45 51 51 59 65 65

dimS4
2 (K(p))− 1 0 0 1 1 2 0 1 2 3 2 2 3 2 3 4

p 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241

dimS4
2 (K(p))+ 55 62 65 83 73 92 78 91 100 106 91 121 106 105 133

dimS4
2 (K(p))− 8 8 6 3 7 4 10 6 7 12 18 7 13 15 7

p 251 257 263 269 271 277 281 283 293 307 311 313 317 331

dimS4
2 (K(p))+ 113 124 120 134 149 161 149 155 149 177 163 200 174 211

dimS4
2 (K(p))− 18 18 23 20 17 17 18 24 31 30 32 21 34 26

p 337 347 349 353 359 367 373 379 383 389 397 401 409 419

dimS4
2 (K(p))+ 227 192 239 212 210 241 263 264 226 256 289 274 318 272

dimS4
2 (K(p))− 25 47 29 42 45 45 39 39 62 48 49 48 39 69

p 421 431 433 439 443 449 457 461 463 467 479 487 491 499

dimS4
2 (K(p))+ 333 287 343 333 297 333 378 335 362 321 341 393 363 422

dimS4
2 (K(p))− 43 73 53 64 82 65 59 83 76 98 99 88 98 81

p 503 509 521 523 541 547 557 563 569 571 577 587 593 599

dimS4
2 (K(p))+ 363 400 426 437 506 478 460 443 502 530 558 480 518 519

dimS4
2 (K(p))− 120 104 101 112 90 119 138 156 121 117 114 169 156 156

Proof. For (1) it is enough to show that HN (2)∩Grit(Jcusp
4,N ) = {0}. For f ∈ HN (2)

the first Fourier-Jacobi coefficient is 0, hence f ∈ Grit(Jcusp
4,N ) further implies that

f = Grit(0) = 0. For (2), if S2
2(K(N)) �= {0}, then there is a nontrivial f in

S2
2(K(N))+ or S2

2(K(N))−. In either case, f2 ∈ HN (2)+ is nontrivial as well.
For (3), suppose that f ∈ S2

2(K(N)) is not a Gritsenko lift. Let φ ∈ Jcusp
2,N be

the first Fourier-Jacobi coefficient of f . Then f̂ = f − Grit(φ) has a trivial first

Fourier-Jacobi coefficient but is itself nontrivial. From supp(f̂) ⊆ NX ′
2 we see that

f̂2 ∈ H′′
N (2) and H′′

N (2) �= {0}. Item (4) follows from the same argument. For
(5): when f ∈ S2

2(K(N))− is nontrivial then f Grit(Jcusp
2,N ) ⊆ HN (2)− so that

dim Jcusp
2,N ≤ dimHN (2)−. For (6), if f, g ∈ S2

2(K(N)) are linearly independent

modulo Gritsenko lifts, then f̂2, f̂ ĝ, ĝ2 ∈ H′′
N (2) are linearly independent, not-

ing that any quadratic has linear factors over C. Item (7) follows from the same
argument. �

7. Examples of weight two

We explain how the theorems stated in the Introduction were proven. We first
construct initial Fourier expansions of cusp forms in S4

2 (K(p)) by multiplying Grit-
senko lifts from S2

2 (K(p)), by applying Hecke operators and by tracing theta series
from S4

2 (Γ0(p)). The dimension formula of Ibukiyama in Theorem 3.1 tells us if and
when we have spanned S4

2 (K(p)). In this manner we were able to span S4
2 (K(p))

for p < 600. A nontrivial minus form of weight four first appears for p = 83.
For example, dimS4

2 (K(229)) = 128 and products of the 7 weight two Gritsenko
lifts give 28 linearly independent cusp forms of weight 4. Applying the Hecke
operators T2, T3, T

2
2 and T5, we span spaces of dimension 56, 84, 112 and at least

121, respectively. When the action of the Hecke operators seemed to stabilize, we
used Theorems 3.2 and 3.3 to compute initial Fourier expansions of Tr (ϑPϑQ) ∈
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M4
2 (K(229)) for P,Q ∈ A where

A = {
(

10 1 −3 −1
1 12 0 3
−3 0 24 10
−1 3 10 24

)
,

(
10 1 2 −1
1 12 1 4
2 1 12 2
−1 4 2 40

)
,

(
12 2 −1 −1
2 14 5 6
−1 5 16 8
−1 6 8 28

)
,

(
12 3 5 −1
3 18 8 0
5 8 18 3
−1 0 3 20

)
}.

Any linear combination of these that cancels the constant term in the Fourier expan-
sion gives an element of S4

2 (K(229)) as explained after Lemma 3.4. The addition of
these linear combinations of theta traces increased the dimension of the constructed
subspace to at least 128 and hence spanned S4

2 (K(229)). The involution μ twins the
indices of the Fourier coefficients so that the dimensions of the plus and minus sub-
spaces are easily computed to be 121 and 7. Notice that the theta traces were only
necessary to fill the minus space. For the case p = 229 just described, the seven
theta blocks THBK2(Σi) are: [2, 2, 3, 4, 5, 7, 7, 9, 10, 11], [2, 2, 3, 3, 5, 5, 7, 8, 10, 13],
[2, 2, 2, 3, 4, 5, 6, 8, 10, 14], [1, 3, 4, 4, 5, 6, 7, 8, 11, 11], [1, 3, 3, 4, 6, 6, 7, 9, 10, 11],
[1, 3, 3, 4, 5, 7, 8, 8, 10, 11], [1, 3, 3, 4, 4, 5, 7, 8, 10, 13]. See [29] for full comments on
these computations.

Proof of Theorem 1.2. This is an application of Lemmas 6.2, 6.6, 6.7, 6.8 and
Corollaries 6.3, and 6.5. Using initial Fourier expansions of a basis for S4

2 (K(p))
we compute initial Fourier expansions of linear combinations whose span con-
tains Hp(2), Hp(2)

± and H′′
p(2)

±. If dimH′′
p(2)

+ = 0 then S2
2(K(p))+ has no

nonlifts by Lemma 6.8, item (4). If dimHp(2)
− < dim J2,p then S2

2(K(p))− is
trivial by Lemma 6.8, item (5). Otherwise, for various pairs of Gritsenko lifts
g1, g2 ∈ S2

2 (K(p)), we compute upper bounds for dim{(H1, H2) ∈ Hp(2)×Hp(2) :
H1g2 = H2g1} by linear algebra. If any of these dimensions equal dim J2,p, then
the injectivity of ıg1,g2 from Lemma 6.2 tells us that S2

2 (K(p)) = Grit (J2,p). These
computations may also be performed modulo a prime �, we usually take � = 19, and
we use Corollary 6.3 to get the same conclusion: S2

2 (K(p)) = Grit (J2,p). When
this last technique was used, the two Gritsenko lifts g1 and g2 that worked were
recorded at [29].

Let us give an illustration of this last technique in the case of p = 229. We have
dim J2,229 = 7, dimH229(2) ≤ 31 and for g1 = THBK2(2, 2, 3, 4, 5, 7, 7, 9, 10, 11)
and g2 = THBK2(2, 2, 3, 3, 5, 5, 7, 8, 10, 13) we have dimF19

{(H1, H2) ∈ (H229(2)×
H229(2)) (F19) : H1R229(g2) = H2R229(g1)} ≤ 7. Therefore we have S2

2 (K(229)) =
Grit (J2,229). We note that this process requires choosing 31 linearly independent
elements from S4

2(Z) whose C-span contains H229(2) and whose reductions modulo
19 remain linearly independent over F19. For other primes, we simply note which
case of Lemma 6.8 applies. �

Although the primes p for which the Gritsenko lifts span S2
2 (K(p)) produce no

new paramodular cusp forms—they do give important evidence for the Paramodular
Conjecture 1.1 because these p should also be, and so far are, primes for which
there is no abelian surface defined over Q of conductor p. The more interesting
primes p are those where dimGrit (J2,p) < dimS2

2 (K(p)) since, in order to test the
Paramodular Conjecture, we must construct nonlift paramodular Hecke eigenforms.
The first example is p = 277.

7.1. Theorem. We have dimS2
2(K(277)) = 11 whereas the dimension of Grit-

senko lifts in S2
2(K(277)) is dim J2,277 = 10. Let Gi = Grit (THBK2(Σi)) for

1 ≤ i ≤ 10 be the lifts of the 10 theta blocks given by Σi ∈ {[2, 4, 4, 4, 5, 6, 8, 9, 10, 14],
[2, 3, 4, 5, 5, 7, 7, 9, 10, 14], [2, 3, 4, 4, 5, 7, 8, 9, 11, 13], [2, 3, 3, 5, 6, 6, 8, 9, 11, 13],
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[2, 3, 3, 5, 5, 8, 8, 8, 11, 13], [2, 3, 3, 5, 5, 7, 8, 10, 10, 13], [2, 3, 3, 4, 5, 6, 7, 9, 10, 15],
[2, 2, 4, 5, 6, 7, 7, 9, 11, 13], [2, 2, 4, 4, 6, 7, 8, 10, 11, 12], [2, 2, 3, 5, 6, 7, 9, 9, 11, 12]}. Let
Q =− 14G2

1 − 20G8G2 + 11G9G2 + 6G2
2 − 30G7G10 + 15G9G10 + 15G10G1

−30G10G2 − 30G10G3 + 5G4G5 + 6G4G6 + 17G4G7 − 3G4G8 − 5G4G9

−5G5G6 + 20G5G7 − 5G5G8 − 10G5G9 − 3G2
6 + 13G6G7 + 3G6G8 − 10G6G9

−22G2
7 +G7G8+15G7G9 + 6G2

8 − 4G8G9 − 2G2
9 + 20G1G2 − 28G3G2+23G4G2

+7G6G2−31G7G2 + 15G5G2 + 45G1G3 − 10G1G5 − 2G1G4 − 13G1G6−7G1G8

+39G1G7 − 16G1G9 − 34G2
3 + 8G3G4 + 20G3G5 + 22G3G6 + 10G3G8

+21G3G9 − 56G3G7 − 3G2
4,

L =−G4 +G6 + 2G7 +G8 −G9 + 2G3 − 3G2 −G1.

Let f = Q/L define a meromorphic paramodular form of weight 2. The form f is
holomorphic and S2

2(K(277))(Q) = SpanQ (f,G1, . . . , G10). The form f is a Hecke
eigenform with spin Euler factors

Q2(f, x) = 1 + 2x+ 4x2 + 4x3 + 4x4,

Q3(f, x) = 1 + x+ x2 + 3x3 + 9x4,

Q5(f, x) = 1 + x− 2x2 + 5x3 + 25x4.

Additionally, let

Q̂ =−55G2
5 − 13G8G2 − 148G7G8 + 17G4G9 + 123G4G8 + 160G4G7−12G4G6

+73G4G5 − 163G10G3 − 148G10G2 + 211G10G1 − 62G9G10 − 94G7G10

+145G9G2 − 18G7G+ 58G6G9−138G6G8 − 10G6G7 + 52G5G9 − 109G5G8

−73G5G6 − 4G6G2 + 154G4G2 − 156G3G2+17G1G2 − 5G8G9 + 333G3G5

+37G3G4 + 26G1G9 + 235G1G7 − 71G1G8 + 49G1G6−34G1G4 − 151G1G5

+396G1G3 − 2G5G2 − 19G7G2 − 245G3G7 − 58G3G9 + 83G3G8 + 113G3G6

−54G2
7 − 63G2

8 + 12G2
9 − 24G2

4 − 404G2
3 + 89G5G7 − 196G2

1

+8G2
2 − 24G2

6 + 5G10G5 + 63G10G6 + 9G8G10 − 3G4G10,

L̂ =G10 + 15G1 + 6G2 − 5G3 + 5G4 − 6G5 − 5G6 − 13G7 + 7G8 − 8G9.

We have the following identity in S8
2(K(277)):

(7.2) Q2 + L̂QL+ Q̂L2 = 0.

Proof. For the pair of Gritsenko lifts

v1 = L = −G4 +G6 + 2G7 +G8 −G9 + 2G3 − 3G2 −G1,

v2 = G1 − 3G2 +G3 − 2G4 + 2G6 +G7 + 2G8 − 2G9,

we computed dim{(H1, H2) ∈ H277(2)×H277(2) : H1v2 = H2v1} ≤ 11. Therefore
we have dimS2

2(K(277)) ≤ 11 by Lemma 6.2. There is a pair (Q,H2) ∈ H277(2)×
H277(2) that is not an image of ıv1,v2 (Grit (J2,277)), that appears to satisfy Qv2 =
H2v1 and that produces an initial Fourier expansion for f = Q/v1 that is consistent
with being a Hecke eigenform. To prove that f is holomorphic, it suffices to prove
the identity (7.2). For if we have Q2 + L̂QL+ Q̂L2 = 0, then we have

f2 + L̂f + Q̂ = 0, for f =
Q

L
,
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so that f is in the integral closure of M2(K(277)) and hence is holomorphic. An

application of the Siegel φ map to f2 + L̂f + Q̂ = 0 shows that (φf)2 = 0 so that f
is a cusp form. From Q,L ∈ S2(K(277))(Z) we see that f ∈ S2

2(K(277))(Q). The
Fourier expansion of f is computed by the long division of L into Q. The action
of the Hecke operators on S2

2(K(277))(Q) and the Euler factors of f are computed
from these Fourier coefficients.

The identity (7.2) was proven by spanning S8
2(K(277)). The space S8

2(K(277))
was spanned in the same manner as S4

2(K(277)) but at greater expense. Products of
the 56 weight four Gritsenko lifts gave at least 1496 linearly independent elements,
at which point the Hecke operators T2 and T3 were applied, resulting in at least
1760 linearly independent elements in S8

2(K(277))+. Theta traces Tr (ϑPϑQ) ∈
M4

2 (K(277)) for P,Q ∈ A were computed and multiplied by S4
2(K(277))+ where

A = {
(

16 5 5 −5
5 16 7 1
5 7 18 3
−5 1 3 26

)
,

( 14 1 −7 −6
1 20 3 −6
−7 3 20 5
−6 −6 5 22

)
,

(
12 3 1 −5
3 14 6 −2
1 6 20 1
−5 −2 1 30

)
,

(
14 4 1 4
4 14 6 5
1 6 18 2
4 5 2 30

)
,

( 14 1 −5 3
1 14 0 −1
−5 0 16 6
3 −1 6 32

)
,

(
16 5 5 −3
5 16 7 −8
5 7 18 0
−3 −8 0 28

)
}.

Symmetrization of these with respect to μ gave an additional 57 cusp forms, so
that dimS8

2(K(277))+ ≥ 1817. Products from S4
2(K(277))+ S4

2(K(277))− gave at
least 595 linearly independent weight 8 minus forms. Finally, the Hecke opera-
tor T2 was applied to the minus forms computed in this manner, for an estimate
dimS8

2(K(277))− ≥ 712. These steps gave a subspace that spanned at least 2529
dimensions over F19. This is the correct dimension by Ibukiyama’s formula. There-
fore, the dimension of the plus space in S8

2(K(277)) is 1817 and the dimension of
the minus space is 712. This gave a determining set of 2529 Fourier coefficients for
S8
2(K(277)). The identity (7.2) was then checked to vanish on this determining set

of 2529 Fourier coefficients. �

In connection with Theorem 7.1 we mention that the hyperelliptic curve C of
genus 2 defined by y2 + y = x5 + 5x4 + 8x3 + 6x2 + 2x has a Jacobi variety Jac(C)
defined over Q with conductor 277. We refer to the companion article [5] for these
arithmetic results. The Euler factors of the Hasse-Weil L-function of Jac(C) are
identical to those of the spin L-function of f for the primes q = 2, 3 and 5. We
know further equalities of eigenvalues but not nearly enough to prove that these
L-functions are equal. The abelian surface Jac(C) has rational 15-torsion. This is
of a piece with the congruence in the following theorem. We thank A. Brumer for
suggesting the formula for Q/L below.

7.3. Theorem. Let f be as in Theorem 7.1. We have f ∈ S2
2 (K(277)) (Z). The

first Fourier Jacobi coefficient of f is

φ =− 5THBK2(Σ5) + 3THBK2(Σ4)− 3THBK2(Σ6) + 4THBK2(Σ7)

+ 6THBK2(Σ8) + 2THBK2(Σ9)− 2THBK2(Σ3)− 2THBK2(Σ2)

− THBK2(Σ1) ∈ J2,277.

Let R = Grit(φ) = −5G5 + 3G4 − 3G6 + 4G7 + 6G8 + 2G9 − 2G3 − 2G2 − G1 ∈
S2
2 (K(277)) (Z). We have

∀T ∈ 277X2, a(T ; f) ≡ a(T ;R) mod 15.
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Proof. By a result of Shimura [31], we have Nf ∈ S2
2 (K(277)) (Z) for some positive

integer N . We choose N to be minimal with this property and show that N = 1.
If not, suppose a prime � divides N . From f = Q/L, we have L(Nf) = NQ.
In S2

2 (K(277)) (F	) we have R	(L)R	(Nf) = 0 because Q has integral Fourier
coefficients. The Fourier expansion of L has unit content:

L(Ω) = e
(
〈Ω, 1

2 (
98·277 233
233 2 )〉

)
+ e

(
〈Ω, 12 ( 26·277 120

120 2 )〉
)
+2 e

(
〈Ω, 12 ( 326·277 601

601 4 )〉
)
+. . .

where the “+ . . . ” indicates Γ̂0(277)-equivalent terms and terms of higher dyadic
trace. Therefore R	(L) is nontrivial and cannot be a zero divisor. This shows that
R	(Nf) = 0 and that N

	 f is integral, contradicting the minimality of N . The
congruence now follows formally from the quotient f = Q/L. To see this note that

Q

L
= R+ 15

J

L

holds identically in the G1, . . . , G10, considered as ten variables, if we set

J = −G7G8 +G4G7 − 2G10G3 − 2G10G2 +G10G1 +G9G10 − 2G7G10 +G9G2

+G7G9 −G6G9 +G6G7 −G5G9 + 2G4G2 − 2G3G2 +G1G2 + 2G3G5 −G1G9

+ 3G1G7 −G1G6 −G1G5 + 3G1G3 −G7G2 − 4G3G7 +G3G9 + 2G3G6 − 2G2
7

− 2G2
3 + 2G5G7 −G2

1.

Therefore we have R	(L)R	(f − R) = 0 for � = 3 and 5. The conclusion follows
since R	(L) is not a zero divisor. �

Let Γ0(p)
∗ be the modular group generated by Γ0(p) and the Fricke involution

Fp. In Grit (J2,p) ∼= S2
1 (Γ0(p)

∗), the 10 eigenforms break into a nine-dimensional
piece and a rational eigenform: 2G1 + G2 − 2G3 + G5 − 2G7 − G9. This rational
eigenform is visibly congruent to R modulo 3. Suitable multiples of the other
eigenforms are each congruent to R modulo a prime above 5. We have given the
computations for the case p = 277 in some detail. We now tabulate the results for
the other exceptional primes given in Theorem 1.2.

Table 5 lists data for every prime p < 600 that possibly could have a Hecke eigen-
form in S2

2 (K(p)) not in the image of the Gritsenko lift from J2,p. The existence of
a nonlift has been proven in the first case but remains conjectural in others. The ε
and the O columns indicate that there is a nonlift f ∈ S2

2 (K(p))ε (O). It is defined
by f = Q/L for some Q ∈ S4

2 (K(p)) and L ∈ S2
2 (K(p)). There is an identity in

S8
2 (K(p))

+
, Q2 + LQL̂ + L2Q̂ = 0 for some Q̂ ∈ S4

2 (K(p)) and L̂ ∈ S2
2 (K(p)),

that would certify the holomorphicity of f . We give Q, Q̂, L and L̂ at [29] for
each case. The verification of the weight 8 identity is expensive and has only been
completed for p = 277. If the dimensions dimS8

2(K(p))+ were only known, then it
is very likely that the Fourier coefficients for elements in this space already posted
at [29] would suffice to show the existence of the nonlifts in all cases. So there
is at most one nonlift in each S2

2 (K(p))
ε
and if a nonlift does not exist then the

dimension of S2
2 (K(p))

ε
would need to be reduced by one. A future publication

with V. Gritsenko will show that there is a Borcherds product in S2
2 (K(587))− and

so the existence of a second nonlift will be rigorously verified. Table 5 gives some
Hecke eigenvalues of these nonlifts and Euler factors of the weight two form f for
q prime to the level p may be computed as

Qq(f, x) = 1− λqx+ (λ2
q − λq2 − 1)x2 − q λqx

3 + q2x4.
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Table 5. Hecke eigenforms in S2
2 (K(p))ε (O) but not in Grit (J2,p).

p dim J2,p dimS2
2 (K(p)) O ε � λ2 λ3 λ4 λ5 λ7 λ9 λ11

277 10 11 Z + {3, 5} −2 −1 −1 −1 1 −1 −2

349 11 12 Z + {13} −2 −1 1 −1 −2 1 1

353 11 12 Z + {11} −1 −2 −3 1 0 −1 2

389 11 12 Z + {2, 5} −1 −2 −2 1 −3 1 4

461 12 13 Z + {7} 0 −3 −3 1 0 2 2

523 17 18 Z + {2, 5} −1 0 −2 -4 2 −1 2

587 18 20 Z + {11} −1 0 −3 0 −2 −2
587 18 20 Z − {} −3 -4 3 −2 0 6 −1

For the identifications of these Euler factors with those of known rational abelian
varieties see the companion article [5]. Additionally, each entry displays primes �
for which we conjecture the congruence f ≡ Grit(φ) mod �, where φ is the first
Fourier-Jacobi coefficient of f ; the congruences have been proven contingent upon
the existence of the nonlift f . We cannot compute enough Fourier coefficients to
verify these congruences with Theorem 5.9 but congruences can be detected by the
form of Q and L, as in the proof of Theorem 7.3. By examining minors of rational
bases, we have also been able to prove is that these are the only possible such
congruences; see [29].

Finally, we remark that for p = 277, there is a 4-dimensional space of weight 2
Gritsenko lifts whose product with the nonlift f lands in the span of the products
of the weight 2 Gritsenko lifts. For p = 353, the analogous space is 3 dimen-
sional. These curious subspaces of weight two Gritsenko lifts are instrinsic, as are

the corresponding subspaces in J2,p and in Kohnen’s plus space S
3/2
1 (Γ0(4p))

+; see
[10]. There is no corresponding space in S2

1 (Γ0(p)) because the Shimura correspon-
dence is noncanonical. We do, however, have an intrinsic subspace of S2

1 (Γ0(p))⊗
S2
1 (Γ0(p)) constructed by composing the Witt map with the Saito-Kurokawa lift. It

would be interesting to give an alternative characterization of these spaces directly
in terms of elliptic modular forms. We state the following Theorem as representative
of the unproven cases in Table 5.

7.4. Theorem. We have dimS2
2(K(353)) ≤ 12 whereas the dimension of Gritsenko

lifts in S2
2(K(353)) is dim J2,353 = 11. Let Gi = Grit (THBK2(Σi)) for 1 ≤ i ≤

11 be the lifts of the 11 theta blocks given by Σi ∈ {[3, 4, 4, 4, 6, 7, 8, 10, 12, 16],
[3, 3, 4, 4, 5, 7, 7, 10, 12, 17], [2, 3, 5, 5, 6, 7, 9, 10, 11, 16], [2, 3, 5, 5, 6, 7, 8, 10, 13, 15],
[2, 3, 5, 5, 5, 7, 10, 10, 12, 15], [2, 3, 4, 6, 6, 7, 9, 9, 13, 15], [2, 3, 4, 6, 6, 7, 8, 10, 14, 14],
[2, 3, 4, 5, 6, 7, 9, 11, 13, 14], [2, 3, 4, 5, 5, 7, 8, 9, 12, 17], [2, 3, 4, 4, 6, 8, 10, 11, 12, 14],
[2, 3, 3, 5, 6, 9, 9, 11, 12, 14]}. Let

Q =−G10G11 − 2G11G2 +G10G3 + 4G11G3 + 2G2G3 − 4G2
3 − 5G11G4 + 5G3G4

+G11G5 −G3G5 + 6G11G6 − 6G3G6 − 11G1G7 + 11G10G7 − 9G11G7 + 9G3G7

+11G4G7 − 11G6G7 + 11G2
7 + 11G1G8 − 11G10G8 + 9G11G8 − 9G3G8

−11G4G8 + 11G6G8 − 22G7G8 + 11G2
8 − 2G11G9 + 2G3G9,

L =−G11 +G3.

Let f = Q/L define a meromorphic form of weight 2. Let {[1, 8, 12, 12], [2, 3,
4, 18], [2, 3, 12, 14], [2, 6, 12, 13], [3, 10, 10, 12], [4, 7, 12, 12], [5, 6, 6, 16], [8,
8, 9, 12]} be labeled {Ξ1, . . . ,Ξ8}. For Ξi = [a, b, c, d] and Ξj = [α, β, γ, δ], define
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W (i, j) = Grit(ϑaϑbϑcϑd)Grit(ϑαϑβϑγϑδ)−Grit (THBK4(a, b, c, d, α, β, γ, δ)). Set

Q̂ =22G2
1 − 165G1G10 + 133G2

10 + 385G1G11 − 646G10G11 + 407G2
11 + 224G10G2

−214G11G2 + 125G2
2 − 286G1G3 + 330G10G3 − 562G11G3 + 121G2G3 + 127G2

3

−165G1G4+230G10G4−491G11G4+119G2G4+330G3G4+113G2
4−220G1G5

+231G10G5 − 25G11G5 − 22G2G5 + 113G3G5 + 110G4G5 − 100G2
5 + 121G1G6

−177G10G6 + 103G11G6 − 123G2G6 − 165G3G6 − 60G4G6 + 110G5G6 − 30G2
6

−572G1G7+594G10G7−479G11G7+99G2G7+457G3G7+330G4G7−103G5G7

−66G6G7 + 205G2
7 + 473G1G8 − 495G10G8 + 644G11G8 − 220G2G8 − 501G3G8

−352G4G8 − 18G5G8 + 66G6G8 − 432G7G8 + 227G2
8 + 242G1G9 − 214G10G9

+213G11G9−377G2G9−198G3G9+132G5G9+64G6G9−242G7G9+185G8G9

+224G2
9 + 264W (1, 2) + 528W (2, 3)− 143W (2, 4)− 178W (3, 4) + 264W (1, 5)

+528W (2, 5)+528W (3, 5)−143W (4, 5)−242W (2, 6)−242W (3, 6)−242W (5, 6)

−143W (1, 7) + 35W (3, 7)− 35W (4, 7)− 143W (1, 8)− 264W (3, 8) + 143W (4, 8)

−143W (7, 8),

L̂ =9G10 − 3G11 − 4G2 +G4 +G6 + 7G9.

The following equation in S8
2(K(353)) holds on all Fourier coefficients for T ∈ 277X2

satisfying det(2T ) ≤ 5000. If we indeed have

(7.5) Q2 + L̂QL+ Q̂L2 = 0,

then the form f is holomorphic and S2
2(K(353))(Q) = SpanQ (f,G1, . . . , G11). Fur-

thermore, the form f is a Hecke eigenform with spin Euler factors

Q2(f, x) = 1 + x+ 3x2 + 2x3 + 4x4,

Q3(f, x) = 1 + 2x+ 4x2 + 6x3 + 9x4.

8. Examples for weights k > 2

For weights greater than two, the constructions of paramodular cusp forms in
this article become easier because the dimension formulae of Ibukiyama apply.
Existence of a nonlift follows whenever we have dimSk

2 (K(p)) > dim Jcusp
k,p . Fur-

thermore, nonlifts of higher weight occur at lower prime levels and identities and
congruences may sometimes be proven directly from Corollary 5.7 and Theorem 5.9.
As these nonlifts are the first examples likely to arise in related work, we give some
examples here. Already, there has been interest in the weight three case. A. Ash,
P. Gunnells and M. McConnell in [2] studied H5 (Γ0(p),C) and found cusp forms
and computed Euler 2 and 3 factors at levels p = 61, 73 and 79. They predicted
the existence of corresponding Siegel modular cusp forms for Γ′

0(p) and requested
a construction. The paramodular cusp forms in S3

2(K(p)) constructed here have
macthing Euler factors at 2 and 3; we additionally computed the Euler 5-factor. We
thank A. Brumer for bringing this topic to our attention. Recall our normalization
for the q-Euler factor of a Hecke eigenform f ∈ Sk

2 (K(p)):

Qq(f, x) = 1− λqx+ (λ2
q − λq2 − q2k−4)x2 − λq q

2k−3x3 + q4k−6x4.
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These Euler factors possess the symmetry x4q4k−6Qq

(
q3−2k/x

)
= Qq(x). The first

three examples use theta blocks of weight 3:

THBK3(d1, d2, . . . , d9)(τ, z) = η(τ )−3
9∏

i=1

ϑ(τ, diz).

1. Example. We have dimS3
2 (K(61)) = 7 and dim Jcusp

3,61 = 6. There is a nonlift

Hecke eigenform f ∈ S3
2 (K(61))− (Z) with Euler factors:

Q2(f, x) = 1 + 7x+ 24x2 + 56x3 + 64x4,

Q3(f, x) = 1 + 3x+ 3x2 + 81x3 + 729x4,

Q5(f, x) = 1− 3x+ 85x2 − 375x3 + 15625x4.

For � = 43, f is congruent to an element of Grit
(
Jcusp
3,61

)
(Z) modulo � and this is

the only such congruence. We may define the nonlift f via

f = −9B[1]− 2B[2] + 22B[3] + 9B[4]− 10B[5] + 19B[6]− 43B[1]B[6]/B[2],

where, for 1 ≤ i ≤ 6, the B[i] = Grit (THBK3(Ξi)) are Gritsenko lifts of the theta
blocks given by Ξi = [2, 2, 2, 3, 3, 3, 3, 5, 7], [2, 2, 2, 2, 3, 4, 4, 4, 7], [2, 2, 2, 2, 3,
3, 4, 6, 6], [1, 2, 3, 3, 3, 3, 4, 4, 7], [1, 2, 3, 3, 3, 3, 3, 6, 6], [1, 2, 2, 2, 4, 4, 4, 5, 6].
The integrality of f may be checked, using Theorem 5.9, by computing the a(T ; f)

to be integers for T ∈ 61X2 with w(T ) ≤ 3
6
612+1
61+1 < 30.02; there are 1477 such

Γ̂0(61)-classes. Alternatively, we may note, as in the proof of Theorem 7.3, that
the Fourier expansion of B[2] has unit content because a( 12 (

244 22
22 2 ) ;B[2]) = −1.

2. Example. We have dimS3
2 (K(73)) = 9 and dim Jcusp

3,73 = 8. There is a nonlift

Hecke eigenform f ∈ S3
2 (K(73))− (Z) with Euler factors:

Q2(f, x) = 1 + 6x+ 22x2 + 48x3 + 64x4,

Q3(f, x) = 1 + 2x+ 3x2 + 54x3 + 729x4,

Q5(f, x) = 1 + 130x2 + 15625x4.

For � ∈ {3, 13}, f is congruent to an element of Grit
(
Jcusp
3,73

)
(Z) modulo � and this

is the only such congruence. We may define the nonlift

f = 9B[1] + 19B[2] + 2B[3]− 13B[4] + 34B[5]− 15B[6]− 12B[7]

− 10B[8]− 39B[2]B[6]/B[4],

where the B[i] = Grit (THBK3(Ξi)) are the Gritsenko lifts of the theta blocks given,
for 1≤ i≤8, by Ξi=[2, 3, 3, 3, 3, 4, 4, 5, 7], [2, 3, 3, 3, 3, 3, 5, 6, 6], [2, 2, 3, 4, 4, 4, 4, 4, 7],
[2, 2, 3, 3, 4, 4, 4, 6, 6], [2, 2, 3, 3, 3, 5, 5, 5, 6], [2, 2, 2, 4, 4, 4, 5, 5, 6], [2, 2, 2, 2, 3, 4, 4, 5, 8],
[2, 2, 2, 2, 2, 4, 5, 6, 7]. From the Fourier coefficient a( 12 (

146 17
17 2 ) ;B[4]) = 1, we see

that the Fourier expansion of B[4] has unit content, so that f is integral.

3. Example. We have dimS3
2 (K(79)) = 8 and dim Jcusp

3,79 = 7. There is a nonlift

Hecke eigenform f ∈ S3
2 (K(79))

−
(Z) with Euler factors:

Q2(f, x) = 1 + 5x+ 14x2 + 40x3 + 64x4,

Q3(f, x) = 1 + 5x+ 42x2 + 135x3 + 729x4,

Q5(f, x) = 1− 3x+ 80x2 − 375x3 + 15625x4.
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For � = 2, f is congruent to an element of Grit
(
Jcusp
3,79

)
(Z) modulo �5 and this is

the only such congruence. We may define the nonlift f via

f = (−32B[1]2 + 32B[2]2 + 32B[1]B[3]− 64B[2]B[3] + 32B[3]2

+ 26B[1]B[4]− 38B[2]B[4] + 19B[3]B[4] + 3B[4]2 + 32B[1]B[5]

− 17B[4]B[5]− 32B[2]B[6] + 32B[3]B[6] + 27B[4]B[6] + 64B[1]B[7]

+ 64B[2]B[7]− 96B[3]B[7]− 68B[4]B[7]− 32B[5]B[7]− 32B[6]B[7])/B[4],

where the B[i] = Grit (THBK3(Ξi)) are the Gritsenko lifts of the theta blocks given,
for 1≤ i ≤ 7, by Ξi = [2, 2, 3, 3, 3, 3, 5, 5, 8], [2, 2, 2, 3, 4, 4, 4, 5, 8], [2, 2, 2, 2, 4, 4, 5, 6, 7],
[2, 2, 2, 2, 2, 4, 4, 5, 9], [1, 3, 3, 3, 3, 4, 4, 5, 8], [1, 2, 3, 4, 4, 4, 4, 4, 8], [1, 2, 3, 3, 3, 4, 5, 6, 7].
From the Fourier coefficient a( 12 (

1106 47
47 2 ) ;B[4]) = −1, we see that the Fourier ex-

pansion of B[4] has unit content and so f is integral.

4. Example. We have dimS4
2 (K(83))− = 1. This is the lowest prime level

for which a weight four minus form occurs. There is a nonlift Hecke eigenform
f ∈ S4

2 (K(83))
−
(Z) with Euler factors:

Q2(f, x) = 1 + 17x+ 132x2 + 544x3 + 1024x4,

Q3(f, x) = 1 + 23x+ 270x2 + 5589x3 + 59049x4.

We may define the nonlift f via

f =
1

48

(
Tr

(
ϑ2
Q

)
− Tr

(
ϑ2
Q

)
|μ
)
for Q =

(
4 1 1 0
1 6 2 −2
1 2 8 3
0 −2 3 44

)
.

To prove the integrality of f , we use forms of determinant 832 and level 83, see [23]:

B =

(
4 1 0 1
1 6 3 1
0 3 16 4
1 1 4 22

)
;C =

( 2 0 −1 0
0 2 0 −1
−1 0 42 0
0 −1 0 42

)
;D =

( 2 1 −1 0
1 12 3 −2
−1 3 16 3
0 −2 3 22

)
.

For convenience, consider the index matrix T0 = 1
2 (

5478 148
148 4 ) in 83X2 of smallest

determinant. For a cusp form in S4
2 (K(83)), we shall call its coefficient at T0 its

leading coefficient. By Theorem 3.13, the form 1
4 (Tr (ϑQϑB)− Tr (ϑQϑB) |μ) is in-

tegral; it has leading coefficient 51. Also by Theorem 3.13, the form 1
4 (Tr (ϑCϑD)−

Tr (ϑCϑD) |μ) is integral; it has leading coefficient 16 ·23. Some integer linear com-
bination of the above two integral forms has leading coefficient 1 because 51 and
16 · 23 are relatively prime. Since the leading coefficient of f is 1 and the space
S4
2 (K(83))

−
is one-dimensional, f is itself integral.
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