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Abstract The Fourier Jacobi expansions of paramodular forms are characterized from
among all sequences of Jacobi forms by two conditions on the Fourier coefficients of the
Jacobi forms: a growth condition and a set of linear relations. Examples, both theoretical
and computational, indicate that the growth condition may be superfluous.
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1 Introduction

For theoretical purposes it would be nice to characterize the Fourier Jacobi expansions of
Siegel paramodular forms of degree two from among all formal power series with Jacobi
forms as coefficients. For computational purposes it would be nice if the characterization
were in terms of linear relations among the Fourier coefficients of the various Jacobi forms.
We achieve this goal only in a few cases.

The linear relations we study arise from a symmetry possessed by the Fourier Jacobi
expansions of paramodular forms. Let Jk,m denote the complex vector space of Jacobi forms
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of weight k and index m. Let Γ be a group commensurable with Sp2(Z) and denote by
Mk(Γ ) the complex vector space of Siegel modular forms of weight k automorphic with
respect to Γ . One commensurable family is given by the paramodular groups K(N):

K(N) =

⎛
⎜⎜⎝

∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N

∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

⎞
⎟⎟⎠ ∩ Sp2(Q), where ∗ ∈ Z.

Each paramodular form f ∈ Mk(K(N)) has a Fourier Jacobi expansion f
( τ z

z ω

) =∑
m≥0:N |m φm(τ, z) e(mω) where

( τ z

z ω

)
is in the Siegel upper half space and φm ∈ Jk,m.

These Jacobi forms φm are not independent and possess a symmetry that is best expressed
by using a normalizer μN of the paramodular group K(N) satisfying μ2

N = −I4 and given

by μN = (−F ′
N

0
0 FN

)
, where the Fricke involution FN = 1√

N

( 0 1
−N 0

)
is the usual normalizer of

Γ0(N) = {(
a b

c d

) ∈ SL2(Z) : N |c}.
For ε = ±1, let Mk(K(N))ε = {f ∈ Mk(K(N)) : f |kμN = εf } be the plus and mi-

nus eigenspaces of μN . Let the Fourier Jacobi expansion map, FJ : Mk(K(N))ε →∏
m∈Z:m≥0,N |m Jk,m, be defined by FJ(f ) = ∑

m:N |m φmξm and write, for (τ, z) ∈ H1 × C,

φm(τ, z) =
∑

n,r∈Z: 4mn≥r2, n≥0

c(n, r;φm) e(nτ + rz).

These coefficients possess the symmetry

c(n, r;φm) = εc(m/N,−r;φnN). (1)

We mention that f ∈Mk(K(N))ε is a cusp form if and only if FJ(f )∈∏
m∈Z;m≥0,N |mJ

cusp
k,m .

This nontrivial assertion follows from the representation of the one-dimensional cusps by
matrices of the shape

(
A 0
0 D

)
. In fact, the one-dimensional cusps correspond to divisors t of

N via D∗ = A = (
1 t

0 1

)
, see Reefschläger [19] or compare [17].

In Theorem 2.2 we show that certain convergent series of Jacobi forms satisfying the
symmetry (1) are in fact the Fourier Jacobi expansion of some Siegel paramodular form.
However, the real question motivating this article is: Are formal series of Jacobi forms sat-
isfying the symmetry (1) the Fourier Jacobi expansions of Siegel paramodular forms? Work
of H. Aoki [1] essentially answers this question affirmatively for N = 1 and we prove this
for N ∈ {2,3,4} as well by following his method. Let us give a more definite formulation.

Definition 1.1 Let X semi
2 (N) = {( a b

b c

) ≥ 0 : a,2b, c ∈ Z and N |c} for N ∈ N. For k ∈ Z,
let Φ = ∑

m:N |m φmξm ∈ ∏
m≥0:N |m Jk,m be a formal power series whose coefficients are Ja-

cobi forms. For ε ∈ {−1,1}, we say that Φ satisfies the Involution(ε) condition if

∀
(

n r/2
r/2 m

)
∈ X semi

2 (N), c(n, r;φm) = ε c

(
m

N
,−r;φnN

)
.

We say that Φ satisfies the growth condition if

∀ρ > 1, ∃A > 0 : ∀
(

n r/2
r/2 m

)
∈ X semi

2 (N),
∣∣c(n, r;φm)

∣∣ ≤ Aρn+m.

Set Mk(N)ε = {Φ ∈ ∏
m≥0:N |m Jk,m : Φ satisfies Involution(ε)}.
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We would like to know when the map FJ : Mk(K(N))ε → Mk(N)ε is surjective. In The-
orem 2.2 we show that this map surjects onto the subspace of Mk(N)ε that satisfies the
growth condition, thereby giving at least one theoretical characterization of the Fourier Ja-
cobi expansions of Siegel paramodular forms. Details aside, this amounts to the fact that
the paramodular groups are generated by the Jacobi group and an involution. By following
Aoki’s method however, we do prove the surjectivity of FJ onto Mk(N)ε for N ≤ 4.

Following a suggestion of the referee, a formal Fourier Jacobi expansion should always
mean an element of Mk(N)ε , a formal series of Jacobi forms that satisfies the Involution(ε)

condition. By this terminology, a formal Fourier Jacobi expansion automatically satisfies
the symmetry condition inherent in the Fourier Jacobi expansion of a paramodular μN -
eigenform. In these terms, the following theorem proves that certain formal Fourier Jacobi
expansions are in fact convergent Fourier Jacobi expansions of paramodular forms.

Theorem 1.2 Let N ∈ {1,2,3,4} and ε ∈ {−1,1}. For all weights k ∈ Z, the Fourier Jacobi
expansion map FJ from paramodular forms to formal series of Jacobi forms that satisfy the
Involution(ε) condition, FJ : Mk(K(N))ε → Mk(N)ε , is an isomorphism.

As a corollary we obtain new results for the generating functions of the plus and minus
eigenspaces. For any prime p, dimSk(K(p)) is known in [11] for k > 4, in [13] for k = 3,
4, and for p < 349 and k = 2 in [16]. We can easily show that the generalized Siegel Φ

operator, the projection from Mk(K(N)) to the boundary of the Satake compactification,
is always surjective for any k for squarefree N . Indeed, this is due to Satake [20] when
k > 4, and, again for squarefree N , the image is zero dimensional for k = 2 and at most
one dimensional for k = 4 due to the known cusp configuration in [12] for prime level and
in [17] for general N ; furthermore, the lift of the Jacobi Eisenstein series of J4,N surjects
to the image of Φ when k = 4. So the generating function for dimMk(K(p)) can be easily
given for any p as long as we know dimS2(K(p)). In fact, the full generating functions are
known for N = 2 by T. Ibukiyama and F. Onodera [14], the plus and minus eigenspaces
being given there also, and for N = 3 by T. Dern [4]. Our proofs use their results. The
generating function

∑
dimMk(K(4))tk is given here for the first time by relying on the

definitive results of Igusa [15] for subgroups of Γ2 that contain the principal subgroup Γ2(2).
These results, new for N = 4, are:

∑
k∈Z

dimMk

(
K(2)

)+
tk = 1 + t10 + t23 + t33

(1 − t4)(1 − t6)(1 − t8)(1 − t12)
,

∑
k∈Z

dimMk

(
K(2)

)−
tk = t11 + t12 + t21 + t22

(1 − t4)(1 − t6)(1 − t8)(1 − t12)
,

∑
k∈Z

dimMk

(
K(3)

)+
tk = 1 + t8 + t10 + t21 + t23 + t31

(1 − t4)(1 − t6)2(1 − t12)
,

∑
k∈Z

dimMk

(
K(3)

)−
tk = t9 + t11 + t12 + t19 + t20 + t22

(1 − t4)(1 − t6)2(1 − t12)
,

∑
k∈Z

dimMk

(
K(4)

)+
tk = 1 + t6 + t8 + t10 + t19 + t21 + t23 + t29

(1 − t4)2(1 − t6)(1 − t12)
,

∑
k∈Z

dimMk

(
K(4)

)−
tk = t7 + t9 + t11 + t12 + t17 + t18 + t20 + t22

(1 − t4)2(1 − t6)(1 − t12)
.
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The question of the surjectivity of FJ : Mk(K(N))ε → Mk(N)ε is not idle and has ap-
plications to the computation of paramodular forms. To illustrate this, in Sect. 4 we use the
symmetry condition to compute S4(K(31))±. These computations at least make it plausible
that the growth condition is superfluous. Here one may also find a lemma showing that, for
prime p, initial Fourier Jacobi expansions

πpJ ◦ FJ : Sk

(
K(p)

)ε →
J∏

j=1

J
cusp
k,pj inject for J ≥ � k

10

(
p2 + 1

p + 1

)
�.

2 A characterization of Fourier Jacobi expansions

For a ring R, let Spn(R) = {σ ∈ GL2n(R) : σ ′Jσ = J } define the symplectic group over R,
where J = ( 0 In

−In 0

)
and σ ′ is the transpose of σ . The paramodular group K(N), defined in

the Introduction, is generated by the translations
(

I S

0 I

)
with S = (

α β

β γ/N

)
for α, β , γ ∈ Z,

and the element J (N), see [3], Theorem 9,

J (N) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1/N

−1 0 0 0
0 −N 0 0

⎞
⎟⎟⎠ .

Let Hn denote the Siegel upper half space. For k ∈ Z, the paramodular forms of
weight k, denoted by Mk(K(N)), are the C-vector space of holomorphic f : H2 → C

with the property that f |kσ = f for all σ ∈ K(N). The subspace of cusp forms is
given by Sk(K(N)) = {f ∈ Mk(K(N)) : ∀σ ∈ Sp2(Z),Φ(f |kσ ) = 0}. Here the slash ac-
tion,

(
f |k

(
A B

C D

))
(Ω) = det(CΩ + D)−k f ((AΩ + B)(CΩ + D)−1) and the Φ operator,

(Φf )(τ ) = limλ→+∞ f
(

iλ 0
0 τ

)
, are the usual ones, see [6]. Since μ2

N acts trivially on modular
forms, we may decompose paramodular forms into plus and minus forms: Mk(K(N)) =
Mk(K(N))+ ⊕ Mk(K(N))− where Mk(K(N))ε = {f ∈ Mk(K(N)) : f |μ = εf } for ε ∈
{−1,1}.

Every paramodular form f ∈ Mk(K(N)) has a Fourier expansion

f (Ω) =
∑

T ∈X semi
2 (N)

a(T ;f ) e
(〈Ω,T 〉)

supported on X semi
2 (N) = {( a b

b c

) ≥ 0 : a,2b, c ∈ Z and N |c}; here e(z) = e2πiz and 〈A,B〉 =
tr(AB). Setting T [σ ] = σ ′T σ , we additionally have a(T [σ ];f ) = det(σ )ka(T ;f ) for all
σ ∈ Γ̂ 0(N) = {(

a b

c d

) ∈ GL2(Z) : N |b}. Note that the action of Γ̂ 0(N) stabilizes X semi
2 (N).

If we write Ω = ( τ z

z ω

) ∈ H2 and collect the Fourier expansion of f in powers of ξ = e(ω),
then we obtain the Fourier Jacobi expansion of f : f

( τ z

z ω

) = ∑
m≥0:N |m φm(τ, z) ξm where

the

φm(τ, z) =
∑

n,r∈Z:
(

n r/2
r/2 m

)
≥0, n≥0

a

((
n r/2

r/2 m

)
;f

)
e(nτ)e(rz) (2)
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are Jacobi forms of weight k and index m. This Fourier Jacobi expansion is term by term
invariant under the group,

Γ∞(Z) =

⎛
⎜⎜⎝

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎟⎠ ∩ Sp2(Z),

and this is one motivation for the definition of Jacobi forms.

Definition 2.1 Let k,m ∈ Z≥0. The C-vector space Jk,m of Jacobi forms of weight k and
index m is the set of holomorphic φ : H1 × C → C satisfying:

(1) ∀σ ∈ Γ∞(Z), φ̃|kσ = φ̃, where φ̃ : H2 → C is defined by φ̃
( τ z

z ω

) = φ(τ, z)e(mω).
(2) Setting q = e(τ ) and ζ = e(z), the Fourier series of φ has the form: φ(τ, z) =∑

n,r∈Z:n≥0, 4mn≥r2 c(n, r;φ)qnζ r .

The vector space of Jacobi cusp forms J
cusp
k,m is defined by replacing 4mn ≥ r2 by

4mn > r2 in item 2. If we identify a sequence (φm) ∈ ∏
m∈Z:m≥0,N |m Jk,m with the formal

power series
∑

m:N |m φmξm, then developing the Fourier Jacobi expansion of a paramod-
ular form as in (2) defines a map FJ : Mk(K(N)) → ∏

m≥0:N |m Jk,m. Now we can state a
characterization.

Theorem 2.2 Let k ∈ Z≥0, N ∈ N and ε ∈ {−1,1}. Let Φ = ∑
m:N |m φmξm ∈ ∏

m≥0:N |m Jk,m

be a formal power series whose coefficients are Jacobi forms. There is an f ∈ Mk(K(N))ε

such that Φ = FJ(f ) if and only if Φ satisfies the Involution(ε) condition and the growth
condition of Definition 1.1.

Proof We first assume that Φ = FJ(f ) for f ∈ Mk(K(N))ε and write each T ∈ X semi
2 (N)

as T = (
n r/2

r/2 m

)
. For any ρ > 1, take λ > 0 with ρ = e2πλ. By the Koecher principle there

is an A > 0 such that |f (Ω)| ≤ A on {Ω = x + iY ∈ H2 : Y > λ
2 I2}. For Ω = X + iλI2 we

have the growth condition:

∣∣c(n, r;φm)
∣∣ = ∣∣a(T ;f )

∣∣ =
∣∣∣∣
∫

X∈[0,1]3
f (Ω)e

(−〈Ω,T 〉)dX

∣∣∣∣

≤
∫

X∈[0,1]3
∣∣f (Ω)

∣∣e2π〈λI2,T 〉dX ≤ Aρ tr(T ) = Aρm+n.

For the Involution(ε) condition, we need to know the action of the involution μN on the
Fourier expansion of f :

(f |μN)(Ω) = det(Fn)
−k

∑
a(T ;f )e

(〈
F ′

NΩFN,T
〉)

=
∑

a
(
FNT F ′

N ;f )
e
(〈Ω,T 〉).

Now FNT F ′
N = 1√

N

( 0 1
−N 0

)(
n r/2

r/2 m

)(
0 −N

1 0

)
1√
N

= (
m/N −r/2
−r/2 Nn

)
, so that we have the

Involution(ε) condition:
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c(n, r;φm) = a

((
n r/2

r/2 m

)
;f

)
= ε a

((
n r/2

r/2 m

)
;f |μN

)

= ε a

((
m/N −r/2
−r/2 Nn

)
;f

)
= ε c

(
m

N
,−r;φNn

)
.

Now assume that Φ = ∑
φmξm satisfies the growth and Involution(ε) conditions. For

any T = (
n r/2

r/2 m

) ∈ X semi
2 (N), define a(T ) by a(T ) = c(n, r;φm). On the set {Ω = x + iY ∈

H2 : Y ≥ λI2} the series
∑

T ∈X semi
2 (N) a(T )e(〈Ω,T 〉) is majorized by a convergent series of

constants. To see this, choose ρ with 1 < ρ < e2πλ so that by the growth condition there is
an A > 0 with |a(T )| = |c(n, r;φm)| ≤ Aρn+m and so

∑∣∣a(T )
∣∣e−2π〈Y,T 〉 ≤

∑
Aρm+ne−2π〈Y,T 〉 ≤ A

∑
T

(
ρ

e2πλ

)m+n

≤ A

∞∑
n=0

∞∑
m=0

(2n + 2m + 1)

(
ρ

e2πλ

)m+n

.

Since the convergence is uniform on compact sets, we may define a holomorphic function
f : H2 → C via f (Ω) = ∑

T ∈X semi
2 (N) a(T )e(〈Ω,T 〉).

The absolute convergence of this series shows that f
( τ z

z ω

)
is equal to the rearrangement∑

m∈Z≥0:N |m φm(τ, z)e(mω), or f = ∑
m∈Z≥0:N |m φ̃m. The invariance of f under the action of

the group Γ∞(Z) now follows from the invariance of the φ̃m. In particular, we have f |E1 =
f for

E1 =

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Γ∞(Z).

Furthermore, the Involution(ε) condition gives us

a
(
FNT F ′

N

) = c

(
m

N
,−r;φnN

)
= εc(n, r;φm) = εa(T ),

so that

(f |kμN)(Ω) = det(Fn)
−k

∑

T ∈X semi
2 (N)

a(T )e
(〈F ′

NΩFN,T 〉)

=
∑

T

a
(
FNT F ′

N

)
e
(〈Ω,T 〉) =

∑
T

εa(T )e
(〈Ω,T 〉) = εf (Ω).

Following Gritsenko [8], we have f |E1μN = f |μN = εf and therefore that f |(E1μN)2 = f .
The group K(N) is generated by translations and the element (E1μN)2 = −J (N) so that
f ∈ Mk(K(N))ε . �
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3 Aoki’s method for N = 2,3 and 4

Does Theorem 2.2 remain true without the growth condition? A method of H. Aoki [1]
shows that it does for N = 1. We successfully use Aoki’s method to show the same for
N ≤ 4.

Definition 3.1 Let j, k,m ∈ Z, N ∈ N and ε ∈ {−1,1}. Set

M
(j)

k (N)ε =
{
Φ =

∑
m∈Z:m≥Nj :N |m

φmξm ∈ Mk(N)ε

}
,

ordφ = min
{
n ∈ Z≥0 : ∃r ∈ Z : c(n, r;φ) �= 0

}
, for φ ∈ Jk,m,

Jk,m(j) = {φ ∈ Jk,m : ordφ ≥ j}.

Here, as in Aoki [1, 2], precise dimensions in specific cases follow from inequalities that
are in general too generous. Most dramatically, the final terms in the following Estimate
diverge for N > 5 and large weights.

Lemma 3.2 (Estimate) Let N ∈ N, ε ∈ {−1,1}, k ∈ Z and set δ = 0 if (−1)kε = 1 and δ = 1
if (−1)kε = −1. We have the inequalities

dimMk

(
K(N)

)ε ≤ dim Mk(N)ε

≤
∞∑

j=0

dim
(
M

(j)

k (N)ε/M
(j+1)

k (N)ε
)

≤
∞∑

j=0

dimJk,Nj (j + δ)

≤
{∑∞

j=0

∑Nj

i=0 dimMk+2i−12(j+δ), k even,
∑∞

j=1

∑Nj−1
i=1 dimMk−1+2i−12(j+δ), k odd.

(For k odd, N = j = 1 gives an empty second sum.)

Proof The first inequality follows since FJ : Mk(K(N))ε → Mk(N)ε is injective, the second
by the filtration M

(j)

k (N)ε ⊇ M
(j+1)

k (N)ε . For the third, consider the exact sequence

0 ↪→ M
(j+1)

k (N)ε ↪→ M
(j)

k (N)ε → Jk,Nj ,

where the final map sends Φ = ∑∞
i=j φiNqiN to φjN . The Involution(ε) condition shows

that the image of the last map is inside Jk,Nj (j + δ). This is the obvious but important point.
If Φ ∈ M

(j)

k (N)ε then for all � < j we have φN� = 0, so that c(�, r;φNj ) = εc(j,−r;φN�) =
0 and φNj ∈ Jk,Nj (j). Furthermore, if (−1)kε = −1 then c(j, r;φNj ) = εc(j,−r;φNj ) =
(−1)kεc(j, r;φNj ) = −c(j, r;φNj ), so c(j, r;φNj ) = 0 and φNj ∈ Jk,Nj (j + 1). Thus we
may uniformly write φNj ∈ Jk,Nj (j + δ).
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The last inequality follows from Lemma 3 on page 583 in Aoki [1], a consequence of the
theory of differential operators in [5]:

dimJk,m(j) ≤

⎧⎪⎪⎨
⎪⎪⎩

∑m

i=0 dimMk+2i−12j , if k even,
∑m−1

i=1 dimMk−1+2i−12j , if k odd,m ≥ 2,

0, if k odd, m ≤ 1. �

Lemma 3.3 For N ∈ {1,2,3,4,5} and ε ∈ {−1,1}, let:

EN,δ =
∑
k even

( ∞∑
j=0

Nj∑
i=0

dimMk+2i−12(j+δ)

)
tk,

DN,δ =
∑
k odd

( ∞∑
j=1

Nj−1∑
i=1

dimMk+2i−12(j+δ)

)
tk.

We have E1,0 = ((1 − t4)(1 − t6)(1 − t10)(1 − t12))−1, D1,1 = E1,1 = 0 and D1,0 = t35E1,0.
For 2 ≤ N ≤ 5 we have

EN,δ = t12δ 1 + t10 + t8 + · · · + t14−2N

(1 − t4)(1 − t6)(1 − t12)(1 − t12−2N)
,

DN,δ = t12δ t25−2N + t11 + t9 + · · · + t15−2N

(1 − t4)(1 − t6)(1 − t12)(1 − t12−2N)
.

Proof Since dimMν = 0 for ν < 0, we may make the computation slightly easier by
summing over all k ∈ Z and using, for all a ∈ Z, the identity

∑
k∈Z

dimMk−at
k = ta/

((1 − t4)(1 − t6)).

EN,δ =
∑
k even

∞∑
j=0

Nj∑
i=0

dimMk+2i−12(j+δ)t
k,

=
∞∑

j=0

Nj∑
i=0

(∑
k even

dimMk+2i−12(j+δ)t
k+2i−12(j+δ)

)
t12(j+δ)−2i

= 1

(1 − t4)(1 − t6)

∞∑
j=0

Nj∑
i=0

t12(j+δ)−2i

= t12δ

(1 − t4)(1 − t6)

∞∑
i=0

∞∑
j=�i/N�

t12j−2i

= t12δ

(1 − t4)(1 − t6)(1 − t12)

∞∑
i=0

∞∑
j=�i/N�

(
t12j−2i − t12(j+1)−2i

)

= t12δ

(1 − t4)(1 − t6)(1 − t12)

∞∑
i=0

t12�i/N�−2i .
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We finish by substituting i = N� + ν and evaluating

∞∑
i=0

t12�i/N�−2i =
N−1∑
ν=0

∞∑
�=0

t12� N�+ν
N

�−2(N�+ν)

=
∞∑

�=0

t12�−2N� +
N−1∑
ν=1

∞∑
�=0

t12(�+1)−2N�−2ν

=
∞∑

�=0

t (12−2N)�

(
1 +

N−1∑
ν=1

t12−2ν

)

= 1 + t10 + t8 + · · · + t14−2N

1 − t12−2N
.

The proof for DN,δ is quite similar.

DN,δ =
∑
k odd

∞∑
j=1

Nj−1∑
i=1

dimMk−1+2i−12(j+δ)t
k,

=
∞∑

j=1

Nj−1∑
i=1

(∑
k odd

dimMk−1+2i−12(j+δ)t
k−1+2i−12(j+δ)

)
t12(j+δ)−2i+1

= 1

(1 − t4)(1 − t6)

∞∑
j=1

Nj−1∑
i=1

t12(j+δ)−2i+1

= t12δ

(1 − t4)(1 − t6)

∞∑
i=1

∞∑
j=�(i+1)/N�

t12j−2i+1

= t12δ

(1 − t4)(1 − t6)(1 − t12)

∞∑
i=1

∞∑
j=�(i+1)/N�

(
t12j−2i+1 − t12(j+1)−2i+1

)

= t12δ

(1 − t4)(1 − t6)(1 − t12)

∞∑
i=1

t12�(i+1)/N�−2i+1.

We finish by substituting i = N� + ν and evaluating

∞∑
i=1

t12�(i+1)/N�−2i+1 =
N∑

ν=1

∞∑
�=0

t12� N�+ν+1
N

�−2(N�+ν)+1

=
N−1∑
ν=1

∞∑
�=0

t12(�+1)−2N�−2ν+1 +
∞∑

�=0

t12(�+2)−2(N�+N)+1

=
∞∑

�=0

t (12−2N)�

(
N−1∑
ν=1

t13−2ν + t25−2N

)

= t11 + t9 + · · · + t15−2N + t25−2N

1 − t12−2N
.

The proof for the case N = 1 is similar and is given in Aoki [1]. �
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Corollary 3.4 For N ∈ {2,3,4} and ε ∈ {−1,1} or for N = 1 and ε = 1, all the inequalities
in the Estimate of Lemma 3.2 are equalities.

∀k ∈ Z, FJ : Mk(K(N))ε → Mk(N)ε is an isomorphism.

∀k even, dimJk,Nj (j + δ) =
Nj∑
i=0

dimMk+2i−12(j+δ),

∀k odd, dimJk,Nj (j + δ) =
Nj−1∑
i=1

dimMk−1+2i−12(j+δ),

∞∑
k=0

dimMk(K(N))+tk = EN,0 + DN,1

= 1 + t10 + t8 + · · · + t14−2N + t12(t11 + t9 + · · · + t15−2N + t25−2N)

(1 − t4)(1 − t6)(1 − t12)(1 − t12−2N)
,

∞∑
k=0

dimMk(K(N))−tk = EN,1 + DN,0

= t12(1 + t10 + t8 + · · · + t14−2N) + t11 + t9 + · · · + t15−2N + t25−2N

(1 − t4)(1 − t6)(1 − t12)(1 − t12−2N)
.

Proof Rewriting the inequalities of Lemma 3.2 as dimMk(K(N))+ ≤ coeff(EN,0 +
DN,1, t

k) and as dimMk(K(N))− ≤ coeff(EN,1 + DN,0, t
k), we have dimMk(K(N)) =

dimMk(K(N))+ + dimMk(K(N))− ≤ coeff(EN,0 + DN,1 + EN,1 + DN,0, t
k).

If we can show equality here, we have dimMk(K(N))+ = coeff(EN,0 + DN,1, t
k) and

dimMk(K(N))− = coeff(EN,1 + DN,0, t
k) and the proof is complete. However, the gen-

erating functions
∑

k∈Z
dimMk(K(N))tk are known for N = 2,3 and 4 and one checks

equality with EN,0 + EN,1 + DN,0 + DN,1. �

4 The generating function of K(4)

For any natural number t , the paramodular group K(t2) is conjugate, by an element of
Sp2(Q), to the following group Γ̃ (t), which is a subgroup of Γ2 containing the principal
subgroup Γ2(t);

Γ̃ (t) =

⎛
⎜⎜⎝

∗ t∗ ∗ t∗
t∗ ∗ t∗ ∗
∗ t∗ ∗ t∗
t∗ ∗ t∗ ∗

⎞
⎟⎟⎠ ∩ Sp2(Z), where ∗ ∈ Z.

The proof is that diag(1, t,1, t−1)K(t2)diag(1, t−1,1, t) = Γ̃ (t). In Igusa [15], we
may find the generating function for the character Xk of the representation of Sp2(F2) �
Γ2/Γ2(2) acting on Mk(Γ2(2)). Since Γ̃ (2) contains the principal subgroup Γ2(2), Igusa’s
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Table 1 S6 cycles
S3 × S3 M ∈ S6 g(M; t)

(1) × (1) 1 (1) 1 (1+t5)(1−t8)

(1−t2)5

(12) × (1) 3

(1) × (12) 3 (12) 6 (1−t5)(1−t8)

(1−t2)2(1+t2)3

(12) × (12) 9 (12) (34) 9 (1+t5)(1−t8)

(1−t2)3(1+t2)2

(123) × (1) 2

(1) × (123) 2 (123) 4 (1+t5)(1−t8)

(1−t2)(1+t2+t4)2

(123) × (12) 6

(12) × (123) 6 (12) (345) 12 (1−t5)(1−t8)

(1+t2)(1−t2+t4)(1+t2+t4)

(123) × (123) 4 (123) (456) 4 (1+t5)(1−t8)

(1+t2)3(1+t2+t4)

result allows us to calculate the generating function for Γ̃ (2) by the formula

∞∑
k=0

dimMk

(
Γ̃ (2)

)
tk = 1

|G|
∑
M∈G

∞∑
k=0

Xk(M)tk,

where G = Γ̃ (2)/Γ2(2) is a finite group. Now Sp2(F2) is isomorphic to the symmetric group
S6 via the permutation of the six odd theta characteristics and the group G � SL2(F2) ×
SL2(F2) corresponds to a choice of S3 × S3 ⊆ S6 by the action of SL2(F2) on the three
even theta characteristics. We separate the elements M ∈ G into conjugacy classes, which
may be given by cycle types inside S6, and give Igusa’s computation (page 401, [15]) of
g(M; t) = ∑∞

k=0 Xk(M)tk for these conjugacy classes. Table 1 lists the cycle types in both
S3 × S3 and S6 and gives the number of elements that have that cycle type.

This gives

∞∑
k=0

dimMk

(
K(4)

)
tk

=
∞∑

k=0

dimMk

(
Γ̃ (2)

)
tk

= 1

36

{
g
(
(1); t) + 6g

(
(12); t) + 9g

(
(12)(34); t)

+ 4g
(
(123); t) + 12g

(
(12)(345); t) + 4g

(
(123)(456); t)}

= (1 + t12)(1 + t6 + t7 + t8 + t9 + t10 + t11 + t17)

(1 − t4)2(1 − t6)(1 − t12)
.

We mention a good cross check now that we know dimMk(K(4)). We can show that
dimJ

cusp
k,4j (j) = max{dimJk,4j (j) − 1,0} by comparing the Taylor expansion and the theta

expansion of Jacobi forms as in Eichler-Zagier [5]. By this, we can also give upper bounds
for dimSk(K(4)). These upper bounds coincide with the true dimension of Sk(K(4)) com-
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puted from the known dimension of Mk(K(4)) and the dimension of the image of general-
ized Φ-operator on the boundary.

5 An example: π12 ◦ FJ : S4(K(31)) → ∏12
j=1 J

cusp
4,31j

Although the linear relations from the Involution(ε) condition are practical to implement on
a computer, the growth condition is not. It is natural to wonder about the effect of omitting
the growth condition and we work out one example with this in mind. In light of Theo-
rem 2.2, when we compute formal power series over Jacobi forms satisfying the involu-
tion condition, either there will only be Fourier Jacobi expansions of paramodular forms or
there will also be solutions with rapidly growing coefficients. We consider the subspaces
S4(K(31))− and

S = {
f ∈ S4

(
K(31)

)+ : ordξ FJ(f ) ≥ 62
}

for the following reasons: The dimensions dimJ
cusp
k,m are known for k ≥ 2, see [5, 21], and so

we only need to generate sufficiently many linearly independent elements of J
cusp
k,m to com-

pute inside this space. Especially in weight four, see [9], theta blocks are a convenient way to
construct Jacobi forms. For d ∈ N

8 with d · d = 2N , we have T (d)(τ, z) = ∏8
i=1 ϑ(τ, diz) ∈

J4,N ; here ϑ(τ, z) = ∑
n∈Z

(−1)nq
(2n+1)2

8 ζ
2n+1

2 . It is easy to see that T (d) is a cusp form if d

has both even and odd entries. We select K(p) for prime level p because T. Ibukiyama [11,
13] has given dimSk(K(p)) for k ≥ 3; this information allows us to measure our computa-
tions against a known dimension. For weight 4, we have

dimS4

(
K(p)

)

= p2

576
+ p

8
− 143

576
+

(
p

96
− 1

8

)(−1

p

)
+ 1

8

(
2

p

)
+ 1

12

(
3

p

)
+ p

36

(−3

p

)

dimJ
cusp
4,m =

m∑
j=1

({{4 + 2j}} − �
(
j 2/4m

)
�
)
,

where we let �x� = max{m ∈ Z : m ≤ x} be the greatest integer function and where {{k}} =
dimSk(SL2(Z)).

V. Gritsenko has a lifting Grit : J
cusp
k,N → Sk(K(N))ε for ε = (−1)k with the property

that the Fourier Jacobi expansion of Grit(φ) has leading term φ ξN , see [7]. In selecting a
generic example, we avoid these lifts because their Fourier coefficients satisfy special linear
relations. The first prime p for which the map Grit : J

cusp
4,p → S4(K(p)) does not surject is

p = 31; here Grit(J cusp
4,31 ) is five dimensional and S4(K(31)) six. By subtracting off the Gri-

tsenko lift of the leading Fourier Jacobi coefficient we have S4(K(31))+ = Grit(J cusp
4,31 ) ⊕ S .

We will compute 12 coefficients of the Fourier Jacobi expansions from S4(K(31)) in accor-

dance with the following Lemma, noting here that k
10

p2+1
p+1 = 4

10
312+1
31+1 = 12.025.

Lemma 5.1 Let p be a prime, J,M,k ∈ N and ε ∈ {−1,1}. Let πM : ∏∞
j=1 Jk,pj →∏�M/p�

j=1 Jk,pj be projection. The map πpJ ◦ FJ : Sk(K(p))ε → ∏J

j=1 J
cusp
k,pj injects for J ≥

� k
10 (

p2+1
p+1 )�.
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Proof For T ∈ X2(p) = {(
a b

b c

)
> 0 : a,2b, c ∈ Z and p|c}, define the Minimum function m

via m(T ) = minx T [x] over x ∈ Z
2 \ {0}. It is known that the T ∈ X2(p) with m(T ) ≤

k
10

p2+1
p+1 are a determining set of Fourier coefficients for Sk(K(p))ε , see [16]. Consider f ∈

Sk(K(p))ε such that

∀T = (
n r/2

r/2 m

) ∈ X2(p) : m

p
≤ k

10

p2 + 1

p + 1
, a(T ;f ) = 0. (3)

We need to show that such f vanish. Take any T ∈ X2(p) satisfying m(T ) ≤ k
10

p2+1
p+1 . By

reduction we have T = (
a b

b c

)[(
α β

γ δ

)]
for some

(
α β

γ δ

) ∈ GL2(Z) and 0 ≤ 2b ≤ c ≤ a; in this

case c = m(T ). If p|β then
(

α β

γ δ

) ∈ Γ̂ 0(p) and a(T ) = ±a
((

a b

b c

)) = 0 by (3) since c
p

≤ c ≤
k
10

p2+1
p+1 . If β is prime to p, let r ∈ Z solve βr ≡ δ mod p; then σ = (

α β

γ δ

)−1( 0 1
1 r

) ∈ Γ̂ 0(p)

and we have T [σ ] = (
a b

b c

)[(
0 1
1 r

)] = ( c b+rc

b+rc cr2+2br+a

) ∈ X2(p) so that p|(cr2 + 2br + a).
In this case

a(T ) = det(σ )ka
(
T [σ ]) = ε det(σ )ka

((
cr2+2br+a

p
−(cr + b)

−(cr + b) pc

))
= 0

by (3) because pc

p
= c ≤ k

10
p2+1
p+1 . Since a(T ) = 0 for all T with m(T ) ≤ k

10
p2+1
p+1 ,

we have f = 0. �

For p = 31 and k = 4, the following Proposition computes the first J = 12 Jacobi form
coefficients of any formal power series that satisfies the Involution(ε) condition and finds
that they are all initial Fourier-Jacobi expansions of paramodular cusp forms. This makes it
at least plausible that the involution condition alone characterizes the Fourier Jacobi expan-
sions from S4(K(31))ε from among all formal power series over Jacobi forms. And that is
the point of this computation—to show that the growth condition may be superfluous.

Proposition 5.2 Let k,p,J ∈ N with p prime. Define the subspaces

A(J ) =
{

Φ =
J∑

j=1

φjp ξ jp ∈
J∏

j=1

J
cusp
k,jp : Φ satisfies Involution(−)

}
and

B(J ) =
{

Φ =
J∑

j=2

φjp ξ jp ∈
J∏

j=1

J
cusp
k,jp : Φ satisfies Involution(+)

}
.

For k = 4 and p = 31, the subspace A(12) is trivial and the subspace B(12) is one dimen-
sional and is spanned by Φ0 = ψ62ξ

62 + ψ93ξ
93 + · · · + ψ12·31ξ

12·31 with initial expansions

ψ62 = q2
(−ζ 22 + 7ζ 21 − 15ζ 20 − 3ζ 19 + 50ζ 18 − 37ζ 17 − 47ζ 16

+ 19ζ 15 + 74ζ 14 + 49ζ 13 − 163ζ 12 − 13ζ 11+67ζ 10+28ζ 9 + 108ζ 8

− 84ζ 7 − 106ζ 6 − 74ζ 5 + 114ζ 4 + 162ζ 3 − 84ζ 2 − 54ζ + 6 − 54/ζ

− 84/ζ 2 + 162/ζ 3 + 114/ζ 4 − 74/ζ 5 − 106/ζ 6 − 84/ζ 7 + 108/ζ 8

+ 28/ζ 9 + 67/ζ 10 − 13/ζ 11 − 163/ζ 12 + 49/ζ 13 + 74/ζ 14 + 19/ζ 15
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− 47/ζ 16 − 37/ζ 17 + 50/ζ 18 − 3/ζ 19 − 15/ζ 20 + 7/ζ 21 − 1/ζ 22
)

+ q3
(
ζ 27 − 5ζ 26 + 5ζ 25 + 11ζ 24 − 19ζ 23 − 2ζ 22 − 5ζ 21 + 21ζ 20 + 39ζ 19

− 47ζ 18 − 5ζ 17 − 64ζ 16 + 19ζ 15 + 133ζ 14 − 25ζ 13 + 17ζ 12 − 131ζ 11

− 52ζ 10 + 71ζ 9 − 3ζ 8 + 159ζ 7 − 37ζ 6 − 49ζ 5−38ζ 4−86ζ 3 + 10ζ 2

+ 26ζ + 112 + 26/ζ + 10/ζ 2 − 86/ζ 3 − 38/ζ 4 − 49/ζ 5 − 37/ζ 6

+ 159/ζ 7 − 3/ζ 8 + 71/ζ 9 − 52/ζ 10 − 131/ζ 11 + 17/ζ 12 − 25/ζ 13

+ 133/ζ 14 + 19/ζ 15 − 64/ζ 16 − 5/ζ 17 − 47/ζ 18 + 39/ζ 19 + 21/ζ 20

− 5/ζ 21 − 2/ζ 22 − 19/ζ 23+11/ζ 24+5/ζ 25−5/ζ 26+1/ζ 27
) + O

(
q4

);
ψ93 = q2

(
coeff

(
ψ62, q

3
)) + O

(
q3

)
.

Proof It is convenient to denote J
cusp
k,m (ν) = {φ ∈ J

cusp
k,m : ordφ ≥ ν}. Let Φ = 0 · ξ 31 +

φ62ξ
62 + φ93ξ

93 + · · · + φ31νξ
31ν ∈ B(ν). The space J

cusp
4,62 is spanned by the 9 theta

blocks T (d) for d = [1,1,1,1,2,4,6,8], [1,1,1,2,2,2,3,10], [1,1,1,2,2,4,4,9], [1,1,

1,2,3,6,6,6], [1,1,2,2,2,2,5,9], [1,1,2,4,4,5,5,6], [1,2,2,2,2,3,7,7], [1,3,4,4,

4,4,5,5], [2,2,2,2,3,3,3,9]. The Involution(+) condition tells us that for all
(

n r/2
r/2 m

) ∈
X2(31) we have c(n, r;φm) = c( m

31 ,−r;φ31n). Setting n = 1 and m = 62 in condi-
tion Involution(+), we have

c(1, r;φ62) = c(2,−r;φ31) = c(2,−r;0) = 0,

so that the q1-coefficients of φ62 vanish. The subspace J
cusp
4,62 (2) is spanned by one el-

ement, ψ62, which is the following linear combination of the above nine theta blocks:
ψ62 = (−3,−5,−1,−2,−1,0,1,0,1) · (T (d1), . . . , T (d9)). The initial expansion of ψ62

is as given above. Thus φ62 is some multiple of ψ62, say φ62 = αψ62 for α ∈ C, and the
subspace B(2) is at most one dimensional.

The space J
cusp
4,93 is spanned by the 16 theta blocks T (c) for c = [1,1,1,1,1,1,6,12],

[1,1,1,1,1,6,8,9], [1,1,1,1,2,3,5,12], [1,1,1,1,2,4,9,9], [1,1,1,1,4,6,7,9], [1,1,

1,3,5,6,7,8], [1,1,2,2,2,6,6,10], [1,1,2,3,3,3,3,12], [1,1,2,3,3,4,5,11], [1,1,

2,6,6,6,6,6], [1,2,3,3,3,3,8,9], [1,3,4,4,6,6,6,6], [2,2,2,2,2,2,9,9], [2,2,2,

2,2,3,6,11], [2,3,3,3,3,3,4,11], [3,4,5,5,5,5,5,6]. For n = 1 and m = 93 the
Involution(+) conditions are c(1, r;φ93) = c(3,−r;φ31) = 0 so that φ93 ∈ J

cusp
4,93 (2). The

subspace J
cusp
4,93 (3) is trivial and the subspace J

cusp
4,93 (2) is spanned by the following four linear

combinations of theta blocks:

Q1 = (−1,−1,−6,−6,−4,−1,0,−1,2,0,1,0,0,0,0,0) · (T (c1), . . . , T (c16)
)
,

Q2 = (−2,−1,−9,−6,−3,0,−1,−1,3,0,0,0,1,0,0,0) · (T (c1), . . . , T (c16)
)
,

Q3 = (−1,−1,−4,−2,0,0,1,1,−2,0,0,0,0,1,0,0) · (T (c1), . . . , T (c16)
)
,

Q4 = (1,0,1,3,2,−1,0,−1,−5,0,0,0,0,0,1,0) · (T (c1), . . . , T (c16)
)
.

Some Fourier coefficients for these Qi are in Table 2. We use the Involution(+) condition
for n = 2 and m = 93 to find the q2-coefficients of φ93.

c(2, r;φ93) = c(3,−r;φ62) = αc(3,−r;ψ62). (4)
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Table 2 Fourier coefficients of
the basis Qi for J

cusp
4,93 (2) r c(2, r;Q1) c(2, r;Q2) c(2, r;Q3) c(2, r;Q4)

0 114 300 6 −226

1 −38 −145 −69 12

2 14 −47 89 −24

3 −60 −1 41 146

4 −34 84 −72 72

5 40 −69 −53 9

6 65 −27 41 −28

7 15 209 74 −174

8 −42 −113 0 45

9 −49 −137 −103 −22

10 −65 −72 −49 117

11 137 303 190 −6

12 −33 −93 −55 16

13 61 −44 −42 −36

14 −79 −10 −72 −54

15 −42 0 67 23

16 67 30 101 −3

17 −40 −99 −122 45

18 73 149 19 −26

19 −57 −55 −3 18

20 3 −23 31 −24

21 7 −6 −5 −2

22 −7 9 −28 9

23 19 30 24 0

24 −18 −35 −8 7

25 7 14 1 −12

26 −1 −2 0 6

27 0 0 0 −1

The coefficients c(3,−r;ψ62) are known and displayed in the statement of the Proposition.
The unique element φ93 ∈ J

cusp
4,93 (2) satisfying equation (4) is αψ93 where ψ93 = −Q1 − Q4.

This shows that the subspace B(3) is at most one dimensional. Continuing in this way on a
computer, we showed that J

cusp
4,31j (j) = {0} for j = 3, . . . ,12 and hence that dimB(12) ≤ 1.

We discuss the minus space. The space J
cusp
4,31 is spanned by 5 theta blocks T (b) for b =

[1, 1, 1, 1, 1, 2, 2, 7], [1, 1, 1, 1, 1, 4, 4, 5], [1, 1, 1, 1, 2, 2, 5, 5], [1, 1, 2, 2, 2, 4, 4, 4], [2, 2, 3,
3, 3, 3, 3, 3]. For even weights, the Involution(−) conditions are quite restrictive. We have
c(j, r;φ31j ) = −c(j,−r;φ31j ), so that the qj -coefficients of φ31j must vanish. However,
the q1-coefficients of the five theta blocks T (bi) are already linearly independent, so A(1)

is trivial. Now that we know that the first Jacobi coefficient vanishes, by the same reasoning
as for the plus space, the only possible element of A(2) is a multiple of ψ62; however the
extra condition that the q2-coefficients of φ62 vanish shows that A(2) is trivial. The triviality
of A(12) now follows from J

cusp
4,31j (j) = {0} for j = 3, . . . ,12.
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By Theorem 2.2 we have a map π12·31 ◦ FJ : S4(K(31))− → A(12) and, by Lemma 5.1,
this map is injective; hence S4(K(31))− is trivial. From Ibukiyama’s result, dimS4(K(31)) =
6, we may conclude that dimS4(K(31))+ = 6 and dim S = 1. Therefore Φ0 ∈ π12·31 FJ(S) ⊆
B(12) and dimB(12) = 1. �

From another point of view, the merit of the preceding computations consists in providing
upper bounds for the dimension of spaces of paramodular cusp forms. In this particular case,
relying on Ibukiyama’s dimension formula for the existence of forms, we have shown the
following Corollary.

Corollary 5.3 dimS4(K(31))+ = 6 and dimS4(K(31))− = 0.

6 Final remarks

We conclude by comparing the Involution condition with the following weaker inequality;
for general N , we cannot even show that the right hand side is finite:

dimSk

(
K(N)

)(−1)k ≤
∞∑

j=1

dimJ
cusp
k,Nj (j). (5)

For the case N = 31 and k = 4 we have demonstrated the equality dimS4(K(31))+ =∑20
j=1 dimJ

cusp
4,31j (j) or 6 = 5 + 1 + 0 + 0 + · · · + 0. However tempting it may be to re-

place the 20 by ∞, we cannot be sure about that equality because we have only com-
puted dimJ

cusp
4,31j (j) = 0 for 3 ≤ j ≤ 20. We can, however, be certain about inequalities;

for example with N = 29 and k = 4, we can show the inequality dimS4(K(29))+ <∑∞
j=1 dimJ

cusp
4,29j (j) or 5 < 5 + 1 + 0 + · · · . The space J

cusp
4,58 (2) is one dimensional, spanned

by Ψ say, but there is no element in J
cusp
4,87 (2) whose q2-terms equal the q3-terms of Ψ . Hence

there does exists a Φ = Ψ ξ 2 satisfying the Involution(+) conditions to second order that is
not the initial Fourier Jacobi expansion of any paramodular cusp form from S4(K(29))+. All
the Φ that satisfy the Involution(+) condition to third order, however, are the initial Fourier
Jacobi expansions of paramodular cusp forms from S4(K(29))+. Hence, again in this ex-
ample, the Involution condition continues to compute the space S4(K(29))+ correctly even
when the inequality (5) is strict.

One case where the convergence of the series
∑∞

j=1 dimJ
cusp
k,Nj (j) is known for all

weights k is N = 5. Here the sum need only be taken to j = �k/2� because ordφ ≤
(k + 2m)/12 for φ ∈ Jk,m. A more refined estimate of Gritsenko and Hulek [9] shows that
j ≤ �(3k −6)/8� suffices when N = 5. Since N = 5 is also the first level where the inequal-
ity (5) can be strict, it is of some interest to ponder this data. Table 3 gives the values of
dimJ

cusp
k,5j (j) for 1 ≤ k ≤ 15 and for j ≤ �(3k − 6)/8�. These were computed by using theta

blocks to span the spaces of Jacobi forms. For weights k ≤ 15, the dimensions of Sk(K(5))±

in Table 3 may be found in a manner similar to that used to prove Corollary 5.3. One sees in
Table 3 that the inequality (5) is already strict for weight k = 12 and hence that the method
that was used for 1 ≤ N ≤ 4 to prove the surjectivity of FJ : Mk(K(N))ε → Mk(N)ε for all
weights will not work for N = 5.
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Table 3 Values of dimJ
cusp
k,5j

(j)

k j

1 2 3 4 5
∑∞

j=1 dimJ
cusp
k,5j

(j) dimSk(K(5))(−1)k

1 0 0

2 0 0

3 0 0

4 0 0

5 1 1 1

6 1 1 1

7 1 1 1

8 2 0 2 2

9 2 0 2 2

10 3 1 0 4 4

11 3 1 0 4 4

12 4 2 1 7 6

13 3 2 1 0 6 5

14 5 3 2 0 10 8

15 4 3 2 0 9 8

We mention two references that were added in revision. For the introduction to theta
blocks see [10]. For results relevant to this article, see [18].

Acknowledgements We thank Nils Skoruppa for his explanations to us about theta blocks. We thank Ar-
mand Brumer for suggesting that Fourier Jacobi expansions be used to compute spaces of paramodular cusp
forms.
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