

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

L-functions of $S_3(\Gamma_2(2, 4, 8))$

Takeo Okazaki¹

Department of Mathematics, Faculty of Science, Nara Woman University, Kitauoyahigashi-machi, Nara 630-8506, Japan

ARTICLE INFO

Article history: Received 27 April 2010 Revised 29 January 2011 Accepted 25 June 2011 Available online 27 August 2011 Communicated by D. Zagier

MSC: 11F27 11F55 11F70 14K25 *Keywords:* Theta function Theta correspondence Siegel threefold variety and modular form

ABSTRACT

van Geemen and van Straten [B. van Geemen, D. van Straten, The cuspform of weight 3 on $\Gamma_2(2, 4, 8)$, Math. Comp. 61 (1993) 849–872] showed that the space of Siegel modular cusp forms of degree 2 of weight 3 with respect to the so-called Igusa group $\Gamma_2(2, 4, 8)$ is generated by 6-tuple products of Igusa theta constants, and each of them are Hecke eigenforms. They conjectured that some of these products generate Saito–Kurokawa representations, weak endoscopic lifts, or D-critical representations. In this paper, we prove these conjectures. Additionally, we obtain holomorphic Hermitian modular eigenforms of GU(2, 2) of weight 4 from these representations.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Hermitian modular form

Let $\mathfrak{H}_2 = \{Z = {}^tZ \in M_2(\mathbb{C}) \mid \mathfrak{I}(Z) > 0\}$ be the Siegel upper half space of degree 2. Let

$$\theta_m(Z) = \sum_{x \in \mathbb{Z}^2} \exp\left(2\pi i \left(\frac{1}{2} \left(x + \frac{m'}{2}\right) Z^t \left(x + \frac{m'}{2}\right) + \left(x + \frac{m'}{2}\right)^t \left(\frac{m''}{2}\right)\right)\right)$$

be the Igusa theta constant with $m = (m', m'') \in \mathbb{Q}^2 \times \mathbb{Q}^2$. For a congruence subgroup Γ of Sp₄(\mathbb{Z}) (\subset SL₄(\mathbb{Z})), let S_{Γ} denote the Siegel modular 3-fold and $S_3(\Gamma)$ denote the space of Siegel modular cusp forms of weight 3 with respect to Γ . van Geemen and van Straten showed that $S_3(\Gamma_2(2, 4, 8))$

E-mail address: okazaki@cc.nara-wu.ac.jp.

¹ This work was supported partially by Grant-in-Aid for JSPS Fellows.

⁰⁰²²⁻³¹⁴X/\$ – see front matter $\,$ © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2011.06.015

is spanned by certain 6-tuple products $\prod_{j=1}^{6} \theta_{m_j}(n_j Z)$ with $m_j \in \{0, 1\}^4, n_j \in \{1, 2\}$ using the theta embedding of $S_{\Gamma(2,4,8)}$ into \mathbb{P}^{13} (cf. [6]), where $\Gamma_2(2,4,8) = \Gamma(2,4,8)$ is defined by

$$\left\{I_4 + 4\begin{bmatrix} A & B\\ C & D\end{bmatrix} \in \operatorname{Sp}_4(\mathbb{Z}) \mid A, B, C, D \in \operatorname{M}_2(\mathbb{Z}), \operatorname{diag}(B) \equiv \operatorname{diag}(C) \equiv 0, \operatorname{tr}(A) \equiv 0 \pmod{2}\right\}.$$
(1.1)

Through Igusa's transformation formula, $\text{Sp}_4(\mathbb{Z})$ acts on these 6-tuple products. They showed that $S_3(\Gamma(2, 4, 8))$ is decomposed into eleven irreducible $\text{Sp}_4(\mathbb{Z})$ -modules, and each module is generated by acting $\text{Sp}_4(\mathbb{Z})$ a 6-tuple product of Igusa theta constants. Further, they showed that these 6-tuple products is associated to irreducible cuspidal automorphic representations of $\text{PGSp}_4(\mathbb{A})$ (cf. Proposition 2.2). Computing some eigenvalues of Evdokimov's Hecke operators on

$$\begin{split} g_1(Z) &:= \theta_{(0,0,0,0)}(2Z)\theta_{(1,0,0,0)}(Z)\theta_{(0,1,0,0)}(Z)\theta_{(0,0,1,0)}(Z)\theta_{(0,0,1,0)}(Z)\theta_{(0,0,0,1)}(Z), \\ g_4(Z) &:= \theta_{(0,0,0,0)}(2Z)\theta_{(1,0,0,0)}(2Z)\theta_{(0,1,0,0)}(2Z)\theta_{(0,0,1,0)}(Z)\theta_{(0,0,0,1)}(Z)\theta_{(0,0,1,1)}(Z), \end{split}$$

they gave:

Conjecture. (See van Geemen and van Straten [7].) Let Π_{g_i} be the irreducible cuspidal automorphic representation of $PGSp_4(\mathbb{A})$ associated to g_i . Then the spinor L-functions (of degree 4) are

$$L(s, \Pi_{g_1}; \operatorname{spin}) = L(s, \lambda), \qquad L(s, \Pi_{g_4}; \operatorname{spin}) = L\left(s - \frac{1}{2}, \left(\frac{-2}{*}\right)\right) L\left(s + \frac{1}{2}, \left(\frac{-2}{*}\right)\right) L(s, \rho_1),$$

up to the Euler factors at 2. Here λ is a größencharacter of the bi-quadratic CM-field $\mathbb{Q}(i, \sqrt{2})$ of conductor 2, ρ_1 is an irreducible cuspidal automorphic representation of $PGL_2(\mathbb{A})$ of lowest weight 4 of level 8, and $(\frac{*}{*})$ is the Legendre symbol.

In this paper, we prove

Theorem A. The conjecture is true.

More precisely, their conjecture referred to Andrianov–Evdokimov's *L*-functions $L(s, g_i; AE)$. However, $L(s, g_i; AE)$ is essentially equal to the (partial) spinor *L*-functions of Π_{g_i} (cf. Proposition 2.1). Anyway, Theorem A means that Π_{g_1} is a D-critical representation in the sense of Weissauer [31], and Π_{g_4} is the $(\frac{-2}{*})$ -twist of a Saito–Kurokawa representation associated to $\rho_1 \otimes (\frac{-2}{*})$. Let $Gr_3^W H^3(S_{\Gamma_{g_i}}, \mathbb{C})$ be the graded quotient of degree 3 of a mixed Hodge structure on $H^3(S_{\Gamma_{g_i}}, \mathbb{C})$. Theorem A also means that g_i corresponds to a generator of the 1-dimensional space $H^{3,0}(Gr_3^W H^3(S_{\Gamma_{g_i}}, \mathbb{C}))$ associated to a quotient $S_{\Gamma_{g_i}}$ of $S_{\Gamma(2,4,8)}$ (cf. Proposition 2.3). We are interested in the quotients $S_{\Gamma_{f_i}}, S_{\Gamma_{g_i}}$ of $S_{\Gamma(2,4,8)}$, for various reasons. Let $S'_{\Gamma_{f_5}}$ be a resolution of the Satake compactification of $S_{\Gamma_{f_5}}$. van Geemen and Nygaard [6] calculated the Hodge numbers $h^{3,0}$ and $h^{2,1}$ of $S'_{\Gamma_{f_5}}$ are both equal to one and showed that the *L*-function of the third etale cohomology of $S'_{\Gamma_{f_5}}$ is equal to $L(s - \frac{3}{2}, \mu)L(s - \frac{3}{2}, \mu^3)$, up to the Euler factors at 2, where μ is the unitary größencharacter related to the CM-elliptic curve $E/\mathbb{Q}: y^2 = x^3 - x$. Because f_5 corresponds to the generator of $H^{3,0}(Gr_3^W H^3(S_{\Gamma_{f_5}}, \mathbb{C}))$, it was conjectured in [7,6] and verified in [17] that $L(s, \Pi_{f_5}; spin) = L(s, \mu)L(s, \mu^3)$, up to the Euler factors at 2. Thus, Π_{f_5} is a weak endoscopic lift of $(\pi(\mu), \pi(\mu^3))$ in the sense of [31] and we have

$$L(s, H^3_{\mathrm{et}}(S'_{\Gamma_{f_5}}, \mathbb{Q}_2)) = L\left(s - \frac{3}{2}, \Pi_{f_5}; \mathrm{spin}\right),$$

up to the Euler factors at 2, where $\pi(\mu)$ indicates the irreducible cuspidal automorphic representation of PGL₂(A) associated to μ . From the above Hodge numbers and these *L*-functions, it is natural to guess that a weak endoscopic lift of $(\pi(\mu), \pi(\mu^3))$ contributes to $H^{2,1}(\text{Gr}_3^W H^3(S_{\Gamma_{f_3}}, \mathbb{C}))$. In Section 3.3, we will give the desired weak endoscopic lift.

We have verified in [17] their conjectures on $L(s, \Pi_{f_i}; \text{spin})$ for $1 \le i \le 6$, and we will verify in another work in preparation their conjectures for Π_{f_7} and Π_{g_3} . Here f_i, g_j with $1 \le i \le 7, 1 \le j \le 4$ are certain 6-tuple products of Igusa theta constants. Combining all these works, we will complete the proof for the conjectures given in [7].

By the way, our result means that there are irreducible automorphic representations of GSO(6) related to these representations of GSp(4) with the θ -correspondence. We find holomorphic Hermitian modular forms of GU(2,2) of weight 4 from the Siegel modular forms of weight 3 by the following theorem.

Theorem B. Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. Let $B_{/\mathbb{Q}}$ be a definite quaternion algebra such that $B \otimes K \simeq M_2(K)$. Put $V = K + B_{/\mathbb{Q}}$. Suppose that a Siegel modular eigen-cusp form F of degree 2 of weight 3 is given by a θ -lift from PGSO_V. Then, there is a holomorphic Hermitian modular form \tilde{F} of PGU_{2,2}(K) of weight 4 with

$$L(s, \tilde{F}; \wedge_t^2) = \zeta(s)L\left(s, F, \left(\frac{-d}{*}\right); r_5\right), \tag{1.2}$$

outside of finitely many bad places. If *F* satisfies the generalized Ramanujan conjecture at almost all good places, then \tilde{F} is a cusp form. Here $L(s, F, (\frac{-d}{*}); r_5)$ is the $(\frac{-d}{*})$ -twist of the *L*-function of degree five, and $L(s, \tilde{F}; \wedge_t^2)$ is the *L*-function of \tilde{F} with respect to the twisted exterior square map from the *L*-group L GU_{2,2}(\mathbb{C}) to GL₆(\mathbb{C}) introduced by Kim and Krishnamurthy [11].

Notice that a holomorphic Hermitian cusp form of GU(2,2) of weight 4 is canonically identified with a holomorphic differential 4-form on a modular 4-fold. A globally generic weak endoscopic lift of $PGSp_4(\mathbb{A})$ is sent to a noncuspidal representation of $PGL_4(\mathbb{A})$ through the generic transfer lift to $GL_4(\mathbb{A})$ (cf. [2]). However, a holomorphic weak endoscopic lift as in Theorem B is sent to a cuspidal automorphic holomorphic representation.

The paper is organized as follows. After reviewing a result of van Geemen and van Straten [7], and summarizing our main tools θ -lifts, and Whittaker functions in Section 1, we prove Theorem A in Section 2. We prove Theorem B in Section 3.

Notation. For a reductive algebraic group *G* defined over a number field *F*, let $\mathcal{A}(G(\mathbb{A}))$ denote the space of automorphic forms on $G(\mathbb{A})$. At a place *v* of *F*, let $Irr(G(F_v))$ denote the set of equivalence classes of irreducible admissible representations of $G(F_v)$. If σ is an element of $Irr(G(F_v))$ or irreducible automorphic representation, then ω_{σ} denotes the central character of σ . For an irreducible automorphic representation $\pi = \bigotimes_v \pi_v$ of $G(\mathbb{A})$, let S_{π} denote the finite set of places for which π_v is ramified, and let $L_S(s, \pi; r) = \prod_{v \notin S} L(s, \pi_v; r)$ the partial Langlands *L*-function outside of $S(\supset S_{\pi})$ with respect to a finite dimensional representation *r* of the *L*-group of $G(k_v)$. For a commutative ring *R*, we denote

$$\operatorname{GSp}_{2n}(R) = \left\{ g \in \operatorname{GL}_{2n}(R) \mid {}^{t}g\eta_{n}g = \nu(g)\eta_{n} \right\}$$

where $\eta_n = \begin{bmatrix} -l_n \\ l_n \end{bmatrix}$ and $\nu(g) \in R^{\times}$ is the similitude norm of g. We will denote by $Z(R)(\simeq R^{\times})$ the center of $\operatorname{GSp}_{2n}(R)$. For a quasi-character χ and a representation τ of $\operatorname{GSp}_{2n}(R)$, let $\chi \tau$ denote the representation sending g to $\chi(\nu(g))\tau(g)$.

2. Preliminaries

2.1. Review of van Geemen and van Straten's result

van Geemen and van Straten computed some local factors of Evdokimov's *L*-functions of the 6tuple products f_i , g_j of Igusa theta constants. To begin with, we will compare Evdokimov's *L*-function of a Siegel modular cusp form of degree 2 with the spinor *L*-function of a unitary irreducible cuspidal automorphic representation of $GSp_4(\mathbb{A})$. We will relate Siegel modular forms to automorphic forms, in order to regard Evdokimov's Hecke operator for Siegel modular forms as an operator for automorphic forms. For $Z \in \mathfrak{H}_2$ and $g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in Sp_4(\mathbb{R})$, let $j(g, Z) = \det(CZ + D)$ and $g \cdot Z = (AZ + B)(CZ + D)^{-1}$. For a function f on \mathfrak{H}_2 , an element $g \in Sp_4(\mathbb{R})$, and a positive integer κ , we define

$$f|_{\kappa}g(Z) = j(g, Z)^{-\kappa}f(g \cdot Z).$$

Let $\mathbb{K}_{\infty} = \{g \in Sp_4(\mathbb{R}) \mid g \cdot i_2 = i_2\} \simeq U_2(\mathbb{C})$ where $i_2 = iI_2$. For a congruence subgroup $\Gamma \subset Sp_4(\mathbb{Z})$, let

$$\Gamma_{\mathbb{A}} = \mathbb{K}_{\infty} \otimes_{p < \infty} \Gamma_p, \qquad \Gamma_{\mathbb{A},0} = \bigotimes_{p < \infty} \Gamma_p,$$

where Γ_p is the *p*-adic completion of Γ . For a Siegel modular form *f* of degree 2 of weight κ with respect to a congruence subgroup $\Gamma \subset \operatorname{Sp}_4(\mathbb{Z})$, we put $f^{\sharp}(g) = f(g \cdot i_2) j(g, i_2)^{-\kappa}$ with $g \in \operatorname{Sp}_4(\mathbb{R})$. Through the isomorphism: $\Gamma \setminus \mathfrak{H}_2 \simeq \Gamma \setminus \operatorname{Sp}_4(\mathbb{R}) / \mathbb{K}_{\infty} \simeq \operatorname{Sp}_4(\mathbb{Q}) \setminus \operatorname{Sp}_4(\mathbb{A}) / \Gamma_{\mathbb{A}}$, we extend f^{\sharp} to an automorphic form on $\operatorname{Sp}_4(\mathbb{A})$, which is also denoted by f^{\sharp} . Let $\widetilde{\Gamma}_p$ be the compact subgroup of $\operatorname{GSp}_4(\mathbb{Z}_p)$ generated by elements of Γ_p and $\begin{bmatrix} I^2 \\ zI_2 \end{bmatrix}$ with $z \in \mathbb{Z}_p^{\times}$. Let $\widetilde{\Gamma}_{\mathbb{A}} = (Z(\mathbb{R})\mathbb{K}_{\infty}) \otimes_{p<\infty} \widetilde{\Gamma}_p$. Because $\operatorname{Sp}_4(\mathbb{Q}) \setminus \operatorname{Sp}_4(\mathbb{A}) / \widetilde{\Gamma}_{\mathbb{A}}$, we can write an element $g \in \operatorname{GSp}_4(\mathbb{A})$ as $\gamma tg_1 \begin{bmatrix} I^2 \\ zI_2 \end{bmatrix}$ with $g_1 \in \operatorname{Sp}_4(\mathbb{A})$, $\gamma \in \operatorname{GSp}_4(\mathbb{Q})$, $t \in Z(\mathbb{R})$, $z \in \bigotimes_p \mathbb{Z}_p^{\times}$. We put

$$\tilde{f}(g) = f^{\sharp}(g_1). \tag{2.1}$$

Then, \tilde{f} is an automorphic form on $GSp_4(\mathbb{A})$. Let χ_{Γ} be a congruence character of $\Gamma/\Gamma(N)$. Let

$$S_{\kappa}(\chi_{\Gamma}) = \left\{ f \in S_{\kappa}(\Gamma(N)) \mid f|_{\kappa} \gamma = \chi_{\Gamma}(\gamma) f(\gamma \in \Gamma) \right\}.$$

We identify χ_{Γ} with a character $\chi_{\Gamma} = \mathbf{1}_{\infty} \otimes_{p} \chi_{\Gamma_{p}}$ on $\Gamma_{\mathbb{A}}$. For an integer N, let $\Gamma^{\sharp}(N)_{p}$ be the subgroup generated by elements of $\Gamma(N)_{p}$ and $\begin{bmatrix} zI_{2} \\ z^{-1}I_{2} \end{bmatrix}$ with $z \in \mathbb{Z}_{p}^{\times}$. Define $\Gamma^{\sharp}(N) = \operatorname{Sp}_{4}(\mathbb{Q}) \cap \bigotimes_{p} \Gamma^{\sharp}(N)_{p}$. For a character $\chi_{\Gamma^{\sharp}(N)}$ on $\Gamma^{\sharp}(N)/\Gamma(N)$, we define $\tilde{\chi}_{\Gamma(N)_{p}}(u) = \chi_{\Gamma(N)_{p}}(u \begin{bmatrix} 1 \\ \nu(u)^{-1}I_{2} \end{bmatrix})$ and $\chi_{\tilde{\Gamma}(N)} = \mathbf{1}_{\infty} \otimes_{p} \tilde{\chi}_{\Gamma(N)_{p}}$. Let

$$\mathcal{A}_{\kappa}(\chi_{\tilde{\Gamma}(N)}) = \left\{ f \in \mathcal{A}(\mathsf{GSp}_4(\mathbb{A})) \mid \varrho(u)f = j(u_{\infty}, i_2)^{-\kappa} \otimes_p \tilde{\chi}_{\Gamma_p}(u_p)f \text{ for } u \in \tilde{\Gamma}(N)_{\mathbb{A}} \right\}.$$
(2.2)

Note that the central character of each $f \in \mathcal{A}_{\kappa}(\chi_{\tilde{\Gamma}(N)})$ is unitary. If $f \in S_{\kappa}(\chi_{\Gamma^{\sharp}(N)})$, then $\tilde{f} \in \mathcal{A}_{\kappa}(\chi_{\tilde{\Gamma}(N)})$. Now, we can regard Evdokimov's Hecke operators (cf. (2.13) of [5]) for Siegel modular forms as the following operator T'_{p^n} for $\mathcal{A}_{\kappa}(\chi_{\tilde{\Gamma}(N)})$ with $p \nmid N$:

$$T'_{p^n}\tilde{f}(g) = p^{n(\kappa-3)}\sum_j \tilde{f}\left(i_{\infty}(h_j)g\right) = p^{n(\kappa-3)}\sum_j \tilde{f}\left(gi_{\infty}(h_j)h_j^{-1}\right)$$

where $g \in \text{Sp}_4(\mathbb{R})$, i_{ν} denotes the embedding $\text{GSp}_4(\mathbb{Q})$ to $\text{GSp}_4(\mathbb{Q}_{\nu})$, and $h_j \in \text{GSp}_4(\mathbb{Q}) \cap M_4(\mathbb{Z})$ is taken so that

$$h_j \equiv \begin{bmatrix} I_2 & \\ & p^n I_2 \end{bmatrix} \pmod{N}, \qquad \Gamma(N) \begin{bmatrix} I_2 & \\ & p^n I_2 \end{bmatrix} \Gamma(N) = \bigsqcup_j \Gamma(N) h_j. \tag{2.3}$$

Suppose that $f \in S_{\kappa}(\chi_{\Gamma^{\sharp}(N)})$ is a common eigenform and that \tilde{f} lies in a (unitary) irreducible cuspidal automorphic representation π . Let λ'_{p^n} denote the eigenvalue of T'_{p^n} on f. The *p*-factor of Evdokimov's *L*-function of f is

$$\left(1 - \lambda'_p p^{-s} + \left(\lambda'_p^2 - \lambda'_{p^2} - \omega_{\pi_p}(p)^{-1} p^{2\kappa-4}\right) p^{-2s} - \omega_{\pi_p}(p)^{-1} \lambda'_p p^{2\kappa-3-3s} + \omega_{\pi_p}(p)^{-2} p^{4\kappa-6-4s} \right)^{-1}.$$

$$(2.4)$$

Let λ_{p^n} be the eigenvalue of the Hecke operator

$$T_{p^n}\tilde{f}(g) = \sum_j \tilde{f}\left(gi_p(h_j)\right) = \sum_j \omega_{\pi_p}\left(p^n\right)\tilde{f}\left(gi_p(h_j)^{-1}\right).$$
(2.5)

The spinor *L*-function of unramified π_p is

$$\left(1-p^{-3/2}\lambda_p p^{-s}+p^{-3}\left(\lambda_p^2-\lambda_{p^2}-p^2\omega_{\pi_p}(p)\right)p^{-2s}-p^{-3/2}\omega_{\pi_p}(p)\lambda_p p^{-3s}+\omega_{\pi_p}(p)^2 p^{-4s}\right)^{-1}.$$

In order to compare these *L*-functions, we recall generalized Whittaker function. Let *F* be a Siegel modular cusp form, and \tilde{F} be the automorphic form on $GSp_4(\mathbb{A})$ related to *F* as above. Let $\mathfrak{S}_2(\mathbb{Q}) = \{T = {}^tT \in M_2(\mathbb{Q})\}$. For a $T \in \mathfrak{S}_2(\mathbb{Q})$, the Fourier coefficient \tilde{F}_T with respect to ψ of \tilde{F} is

$$\tilde{F}_T(g) = \int_{\mathfrak{S}_2(\mathbb{Q})\backslash\mathfrak{S}_2(\mathbb{A})} \psi \left(\operatorname{Trace}(Ts) \right)^{-1} \tilde{F} \left(\begin{bmatrix} I_2 & s \\ & I_2 \end{bmatrix} g \right) \mathrm{d}s,$$

and that of F is $\tilde{F}_T(1)$. Because F is a cusp form, some $\tilde{F}_T(1)$ is not zero for some T with det $T \neq 0$. For a character μ of SO_T(\mathbb{Q})\SO_T(\mathbb{A}), the generalized Whittaker function \tilde{F}_T^{μ} is defined by

$$\tilde{F}_{T}^{\mu}(g) = \int_{\operatorname{SO}_{T}(\mathbb{Q}) \setminus \operatorname{SO}_{T}(\mathbb{A})} \mu(z)^{-1} \tilde{F}_{T}\left(\begin{bmatrix} z & \\ & t_{Z}^{-1}\end{bmatrix}g\right) dz$$

and factors as $\bigotimes_{\nu} \tilde{F}^{\mu}_{T,\nu}$ (cf. [19]). Because $\tilde{F}_T = \sum_{\mu} \tilde{F}^{\mu}_T$, some $\tilde{F}^{\mu}_T(1)$ is not zero.

Proposition 2.1. Suppose that a Siegel modular form $f \in S_{\kappa}(\Gamma(N))$ of degree 2 is a common eigenfunction with respect to Evdokimov's Hecke operators. Suppose that \tilde{f} lies in a (unitary) irreducible cuspidal automorphic representation π . Then, for $p \nmid N$,

$$L(s, f; AE)_p = L\left(s - \kappa + \frac{3}{2}, \omega_{\pi,p}^{-1}\pi_p; \operatorname{spin}\right).$$

Proof. It suffices to show that

$$\lambda'_{p^n} = p^{n(\kappa-3)} \omega_{\pi,p}(p)^{-n} \lambda_{p^n}$$
(2.6)

for n = 1, 2. To do it, we will observe the actions of the operators on $\tilde{f}_T^{\mu} = \bigotimes_v \tilde{f}_{T,v}^{\mu}$ with $T \in \mathfrak{S}_2(\mathbb{Z})$ such that $\tilde{f}_T^{\mu}(1) \neq 0$. Then $\tilde{f}_{T,p}^{\mu}(1) \neq 0$. Abbreviate $\tilde{f}_{T,p}^{\mu}$ as B_p . In the case n = 1, as a complete system $\{h_j\}$ in (2.3), we can take the following types:

$$\begin{bmatrix} 1 & * & * \\ & 1 & * & * \\ & & p \\ & & & p \end{bmatrix}, \begin{bmatrix} p & & & \\ & p & & \\ & & 1 & \\ & & & 1 \end{bmatrix}, \begin{bmatrix} 1 & * & * & * \\ & p & * & * \\ & p & & \\ & & & * & 1 \end{bmatrix}, \begin{bmatrix} p & & * & * \\ & 1 & * & * \\ & & 1 & & \\ & & & p \end{bmatrix}$$

where * indicate elements of \mathbb{Z} . But one can show $B_p(h_j^{-1}) = 0$, if h_j is not of the first type. Indeed, for example, using the property

$$B_{p}\left(\begin{bmatrix}pI_{2} & & \\ & I_{2}\end{bmatrix}^{-1}\right) = B_{p}\left(\begin{bmatrix}pI_{2} & & \\ & I_{2}\end{bmatrix}^{-1}n(s)\right)$$
$$= B_{p}\left(n\left(p^{-1}s\right)\begin{bmatrix}pI_{2} & & \\ & I_{2}\end{bmatrix}^{-1}\right)$$
$$= \psi_{p}\left(\frac{\operatorname{Trace}(Ts)}{p}\right)B_{p}\left(\begin{bmatrix}pI_{2} & & \\ & I_{2}\end{bmatrix}^{-1}\right)$$

for $s \in S_2(\mathbb{Z}_p)$, one can show that $B_p(\begin{bmatrix} p_{l_2} \\ l_2 \end{bmatrix}^{-1}) = 0$. Here $n(s) = \begin{bmatrix} l_2 & s \\ l_2 \end{bmatrix}$, and note that B_p is right $GSp_4(\mathbb{Z}_p)$ -invariant. Then, (2.6) is derived from (2.1). The argument for the case n = 2 is similar to that for the case n = 1 and omitted. \Box

Next, we recall the result of Sections 6, 7 of van Geemen and van Straten [7]. Let

$$\Gamma'(2) = \left\{ \begin{bmatrix} A & B \\ 2C' & D \end{bmatrix} \in \Gamma(2) \left(\subset \operatorname{Sp}_4(\mathbb{Z}) \right) \mid \operatorname{diag}(C') \equiv 0 \pmod{2} \right\},$$

$$\Gamma(4, 8) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma(4) \left(\subset \operatorname{Sp}_4(\mathbb{Z}) \right) \mid \operatorname{diag}(B) \equiv \operatorname{diag}(C) \equiv 0 \pmod{8} \right\}.$$

Let f_i, g_j with $1 \le i \le 7$, $1 \le j \le 4$ be the 6-tuple products of Igusa theta constants in the table on p. 864 of [7]. We will abbreviate $f_i|_3\gamma, g_j|_3\gamma'$ for some $\gamma, \gamma' \in \text{Sp}_4(\mathbb{Z})$ as f'_i, g'_j . Through Igusa's transformation formula, from $F = f'_i$ (resp. g'_j), we obtain a congruence character χ_F of $\Gamma(2)$ (resp. $\Gamma'(2)$). In Theorem 6.4 of [7], they showed that $S_3(\chi_F)$ is 1-dimensional and

$$S_{3}(\Gamma(4)) = \sum_{f_{1}'} S_{3}(\chi_{f_{1}'}),$$

$$S_{3}(\Gamma(4,8)) = S_{3}(\Gamma(4)) + \sum_{i=2}^{7} \sum_{f_{i}'} S_{3}(\chi_{f_{i}'}),$$

$$S_{3}(\Gamma(2,4,8)) = S_{3}(\Gamma(4,8)) + \sum_{j=1}^{4} \sum_{g_{j}'} S_{3}(\chi_{g_{j}'})$$

Proposition 2.2. (See van Geemen and van Straten [7].) Let \tilde{f}_i, \tilde{g}_j be the automorphic forms related to f_i, g_j as above. Then each \tilde{f}_i (resp. \tilde{g}_j) lies in an irreducible cuspidal automorphic representation of PGSp₄(A).

Proof. Let $f = f_i$. Write $\tilde{f} = \sum_l h_l \in \sum_l \pi_l$ where π_l 's are irreducible cuspidal automorphic representations. From (2.1), it follows that $\varrho(\begin{bmatrix} I_2 \\ zI_2 \end{bmatrix})\tilde{f} = \tilde{f}$ for any $z \in \mathbb{Z}^{\times}_{\mathbb{A},0}$. Thus,

$$\operatorname{vol}(\mathbb{Z}_{\mathbb{A},0}^{\times})^{-1} \int_{\mathbb{Z}_{\mathbb{A},0}^{\times}} \sum_{l} \varrho\left(\begin{bmatrix} I_2 & \\ & zI_2 \end{bmatrix} \right) h_l \, \mathrm{d}z = \sum_{l} h_l.$$

Hence, we can assume that

$$\varrho\left(\begin{bmatrix}I_2\\&zI_2\end{bmatrix}\right)h_l = h_l, \quad z \in \mathbb{Z}_{\mathbb{A},0}^{\times}.$$
(2.7)

With the similar argument, we can assume that

$$\varrho(u_0)h_l = \chi_f(u_0)h_l, \quad u_0 \in \Gamma(2)_{\mathbb{A},0},$$
(2.8)

$$\varrho(u_{\infty})h_{l} = \det(-Bi_{2} + A)^{-3}h_{l}, \quad u_{\infty} = \begin{bmatrix} A & B \\ -B & A \end{bmatrix} \in \mathbb{K}_{\infty}.$$
(2.9)

Using Proposition 6.2 of [7], we find that $\chi_{f,p}([\sum_{z^{-1}l_2}^{z^{-1}l_2}]) = 1$ for any $z \in \mathbb{Z}_p^{\times}$. It follows that the central character of \tilde{f} is trivial. Hence ω_{π_l} is also trivial. Consulting Eq. (2) of p. 505 of Oda and Schwermer [16], we find that $\pi_{l,\infty}|_{\text{Sp}_4}$ is the holomorphic discrete series representation with Blattner parameter (3, 3). Define the function h_l^{\flat} on $Z \in \mathfrak{H}_2$ by $h_l^{\flat}(Z) = h_l(g_{\infty})j(g_{\infty}, i_2)^3$, where $g_{\infty} \in \text{Sp}_4(\mathbb{R})$ is taken so that $g_{\infty} \cdot i_2 = Z$. Then, $h_l^{\flat} \in S_3(\chi_f)$. Because $S_3(\chi_f)$ is 1-dimensional, $h_l^{\flat} \in \mathbb{C}f$. One can show that $h_l \in \mathbb{C}\tilde{f}$, noting (2.7), (2.8), (2.9) and $\omega_{\pi_l} = 1$. This completes the proof for f_i . The proof for \tilde{g}_j is similar. \Box

We will denote by Π_{f_i} (resp. Π_{g_j}) the irreducible cuspidal automorphic representation of PGSp₄(A) containing \tilde{f}_i (resp. \tilde{g}_i).

Noting that $\Gamma'(2)$, $\Gamma(2, 4, 8)$ are normal subgroups of $\Gamma(2)$ and $\Gamma(2)/\Gamma'(2) \simeq (\mathbb{Z}/2\mathbb{Z})^2$, one can extend χ_{g_j} in 4 ways, $\chi_{g_j,l}$ with $1 \leq l \leq 4$. Then $S_3(\chi_{g_j}) = \sum_l S_3(\chi_{g_j,l})$. However, because $\dim_{\mathbb{C}} S_3(\chi_{g_j}) = 1$, $\dim_{\mathbb{C}} S_3(\chi_{g_j,l}) = 1$ for an l and $\dim_{\mathbb{C}} S_3(\chi_{g_j,l}) = 0$ for other l. We define the character $\tilde{\chi}_{g_i}$ on $\Gamma(2)$ by $\dim_{\mathbb{C}} S_3(\tilde{\chi}_{g_j}) = 1$.

Proposition 2.3. For $\Gamma = \ker(\chi_{f_i}), \ker(\tilde{\chi}_{g_i}), H^{3,0}(\mathrm{Gr}_3^W H^3(S_{\Gamma}, \mathbb{C}))$ is 1-dimensional.

Proof. We give the proof for $\Gamma = \ker(\chi_{g_j})$. The proof for $\Gamma = \ker(\chi_{f_i})$ is similar and omitted. To prove $H^{3,0}(\operatorname{Gr}_3^W H^3(S_{\ker(\chi_g)}, \mathbb{C})) \ (\simeq S_3(\ker(\chi_g)))$ is 1-dimensional, it suffices to show that $\ker(\chi_g) \not\subset \ker(\chi_{f'_i})$ for any f'_i and $\ker(\chi_g) \not\subset \ker(\chi_{g'_i})$ for any $g'_l \neq g$. Using the tables in Proposition 6.2 of [7], we find that χ_{f_1} is $\{\pm 1\}$ -valued, and that χ_{f_i} for $i \neq 1$ and $\chi_{g'_i}$ are $\{\pm 1, \pm i\}$ -valued. Thus

$$\Gamma(2)/\ker(\chi_{f_1'}) \simeq \mathbb{Z}/2\mathbb{Z}, \qquad \Gamma'(2)/\ker(\chi_{g_1'}) \simeq \Gamma'(2)/\ker(\chi_{f_1'}|_{\Gamma'(2)}) \simeq \mathbb{Z}/4\mathbb{Z} \quad (i \neq 1).$$

Because the commutator subgroup of $\Gamma(2)$ is $\Gamma(4, 8)$, and $g \notin S_3(\Gamma(4, 8))$, it is impossible to extend χ_g to a character on $\Gamma(2)$. Hence, $\chi_{f_i}|_{\Gamma'(2)} \neq \chi_g, \overline{\chi}_g$ and $\ker(\chi_g) \not\subset \ker(\chi_{f'_i}|_{\Gamma'(2)})$ for $i \neq 1$. As described in the proof of Proposition 7.5 in [7], and $\chi_{g'_i} \neq \chi_g, \overline{\chi}_g$. Hence $\ker(\chi_g) \not\subset \ker(\chi_{g'_i})$ for $g'_i \neq g$. Finally, assume that $\ker(\chi_g) \subset \ker(\chi_{f'_1})$ for some f'_1 . Then, $\chi^2_g = \chi_{f_1}$, and hence $\ker(\chi^2_g) \supset \Gamma(4)$. But, this conflicts to the table of Proposition 6.2(b) in [7]. Hence $\ker(\chi_g) \not\subset \ker(\chi_{f'_1})$. This completes the proof. \Box

2.2. θ -lifts

In this section, we summarize the θ -correspondence for GSO(4) and GSp(4). Let $X_{/\mathbb{Q}}$ be a 2*m*-dimensional space defined over \mathbb{Q} with a nondegenerate quadratic form (,). For $x = (x_i)$, $y = (y_i) \in X^n$, we denote $((x_i, y_j))$ also by (x, y). Let d_X be the discriminant of X. Let $\chi_X(*) = \{*, (-1)^m d_X\}_v$ where $\{*, *\}_v$ denotes the Hilbert symbol. We fix the standard additive character ψ on $\mathbb{Q}\setminus\mathbb{A}$. Let $S(X(\mathbb{Q}_v)^n)$ be the space of Schwartz–Bruhat functions of $X(\mathbb{Q}_v)^n$. The Weil representation r_v^n of $\operatorname{Sp}_{2n}(\mathbb{Q}_v) \times \operatorname{O}_X(\mathbb{Q}_v)$ with respect to ψ_v is the unitary representation on $S(X(\mathbb{Q}_v)^n)$ given by

$$r_{\nu}^{n}(1,h)\varphi_{\nu}(x) = \varphi_{\nu}(h^{-1}x), \qquad (2.10)$$

$$r_{\nu}^{n}\left(\begin{bmatrix}a & 0\\ 0 & ta^{-1}\end{bmatrix}, 1\right)\varphi_{\nu}(x) = \chi_{X}(\det a)|\det a|^{m}\varphi_{\nu}(xa),$$
(2.11)

$$r_{\nu}^{n}\left(\begin{bmatrix}I_{n} & b\\ 0 & I_{n}\end{bmatrix}, 1\right)\varphi_{\nu}(x) = \psi_{\nu}\left(\frac{\operatorname{Trace}(b(x, x))}{2}\right)\varphi_{\nu}(x),$$
(2.12)

$$r_{\nu}^{n}\left(\begin{bmatrix}0 & -I_{n}\\I_{n} & 0\end{bmatrix}, 1\right)\varphi_{\nu}(x) = \gamma \varphi_{\nu}^{\vee}(x).$$
(2.13)

The Weil constant γ is a fourth root of unity depending on the anisotropic kernel of X, n and ψ . The Fourier transformation φ^{\vee} of φ is defined by

$$\varphi^{\vee}(x) = \int_{X(\mathbb{Q}_{\nu})^n} \psi_{\nu} (\operatorname{Trace}(x, y)) \varphi(y) \, \mathrm{d}y$$

where dy is the self-dual Haar measure. As in [21], we extend r_v^n to the group $\{(g,h) \in GSp_n(\mathbb{Q}_v) \times GO_X(\mathbb{Q}_v) \mid v(g) = v(h)\}$, where v(h) denotes the similitude norm of h. Let $r^n = \bigotimes_v r_v^n$. For $\varphi = \bigotimes_v \varphi_v \in S(X(\mathbb{A})^n)$, we put

$$\theta_n(\varphi)(g,h) = \sum_{x \in X(\mathbb{Q})^n} r(g,h)\varphi(x).$$

This series converges absolutely. Let dh be a right Haar measure on $SO_X(\mathbb{Q}) \setminus SO_X(\mathbb{A})$. Let σ be an irreducible cuspidal automorphic representation of $GSO_X(\mathbb{A})$. Take an $f \in \sigma$. We define the θ -lift of f to $GSp_n(\mathbb{A})$ with respect to φ by

$$\theta_n(\varphi, f)(g) = \int_{\operatorname{SO}_X(\mathbb{Q}) \setminus \operatorname{SO}_X(\mathbb{A})} \theta_n(\varphi)(g, h) f(hh_0) \, \mathrm{d}h,$$
(2.14)

where h_0 is chosen so that $\nu(g) = \nu(h_0)$, and the value of $\theta_n(\varphi, f)(g)$ is independent of the choice of h_0 . This integral converges absolutely and is an automorphic forms on $\text{GSp}_{2n}(\mathbb{A})$. We will denote by $\Theta_n(\sigma)$ the subspace of $\mathcal{A}(\text{GSp}_4(\mathbb{A}))$ spanned by $\theta_n(\varphi, f)$ with $\varphi \in \mathcal{S}(X(\mathbb{A})^n)$ and $f \in \sigma$. We call $\Theta_n(\sigma)$ the global θ -lift of σ to GSp(2n). In the case of m = 2, these θ -lifts are weak endoscopic lifts or D-critical representations under some situations as follows. For our later use and the sake of simplicity, we assume the central character of σ is trivial.

1) In the case that d_X is a square of a rational number, $X_{/\mathbb{Q}}$ is isometric to a quaternion algebra $B_{/\mathbb{Q}}$ defined over \mathbb{Q} . Define $\rho(h_1, h_2)x = h_1^{-1}xh_2$ for $x \in B(R), h_i \in B(R)^{\times}$, where R denote $\mathbb{Q}, \mathbb{Q}_{\nu}$ or \mathbb{A} . Then ρ gives isomorphisms

T. Okazaki / Journal of Number Theory 132 (2012) 54-78

$$i_{\rho}: \begin{cases} \mathsf{B}(R)^{\times} \times \mathsf{B}(R)^{\times} / \Delta(R^{\times}) \simeq \mathsf{GSO}_X(R), \\ \{(h_1, h_2) \in \mathsf{B}(R)^{\times} \times \mathsf{B}(R)^{\times} \mid N_{\mathsf{B}/\mathsf{R}}(h_1) = N_{\mathsf{B}/\mathsf{R}}(h_2)\} / \Delta(R^{\times}) \simeq \mathsf{SO}_X(R), \end{cases}$$
(2.15)

where $\Delta(\mathbb{R}^{\times})$ denotes the diagonal embedding into $\mathbb{B}(\mathbb{R})^{\times} \times \mathbb{B}(\mathbb{R})^{\times}$. We identify a $\sigma_{v} \in \operatorname{Irr}(\operatorname{PGSO}_{X}(\mathbb{Q}_{v}))$ with a pair $(\sigma_{1,v}, \sigma_{2,v})$ of $\operatorname{Irr}(\operatorname{PB}(\mathbb{Q}_{v})^{\times})$ through i_{ρ} . Then, σ is identified with $\sigma_{1} \boxtimes \sigma_{2}$ for a pair (σ_{1}, σ_{2}) of irreducible automorphic representations of $\operatorname{PGSO}_{\mathbb{B}}(\mathbb{A})$. Then, $\Pi = \Theta_{2}(\sigma_{1} \boxtimes \sigma_{2})$ is irreducible and factors as $\bigotimes_{v} \theta_{2}(\sigma_{1v} \boxtimes \sigma_{2v})$. For an irreducible cuspidal automorphic representation τ of $\mathbb{B}(\mathbb{A})^{\times}$, we will let τ^{JL} denote the Jacquet–Langlands transfer to $\operatorname{GL}_{2}(\mathbb{A})$. Let S_{σ} be the set of places v for which $\sigma_{1,v}^{JL} \boxtimes \sigma_{2,v}^{JL}$ is ramified. Then, $S_{\Pi} = S_{\sigma}$, and

$$L_{S_{\sigma}}(s, \Pi; \operatorname{spin}) = L_{S_{\sigma}}(s, \sigma_1) L_{S(\sigma)}(s, \sigma_2), \qquad L_{S_{\sigma}}(s, \Pi; r_5) = \zeta_{S_{\sigma}}(s) L_{S_{\sigma}}(s, \sigma_1 \times \sigma_2),$$

where r_5 indicates the 5-dimensional representation of $GSp_4(\mathbb{C})$ as in Section 2 of [26]. If both of σ_1 and σ_2 are cuspidal and $\sigma_1 \neq \sigma_2$, then Π is cuspidal, and thus Π is a weak endoscopic lift of $(\sigma_1^{JL}, \sigma_2^{JL})$. If $B_{/\mathbb{Q}}$ is a definite quaternion algebra, then Π is the so-called Yoshida lift of $\sigma = (\sigma_1, \sigma_2)$, and Π_{∞} is holomorphic. Otherwise, Π is not holomorphic. In particular, if $B_{/\mathbb{Q}} \simeq M_2(\mathbb{Q})$, then Π is globally generic, i.e., every $F \in \Pi$ has a nontrivial global Whittaker function. Let $c_1, c_2 \in \mathbb{Q}^{\times}$. A global Whittaker function of an automorphic form F on $GSp_4(\mathbb{A})$ with respect to ψ_{c_1,c_2} is defined by

$$W_{F,\psi_{c_1,c_2}}(g) = \int_{(\mathbb{Q}\setminus\mathbb{A})^4} \psi(-c_1t + c_2s_4)F\left(\begin{bmatrix}1 & t & & \\ & 1 & & \\ & & -t & 1\end{bmatrix}\begin{bmatrix}1 & s_1 & s_2 \\ & 1 & s_2 & s_4 \\ & & 1 \\ & & & -t & 1\end{bmatrix}g\right) dt \, ds_1 \, ds_2 \, ds_4,$$
(2.16)

and factors as $\bigotimes_{v} W_{F,\psi_{c_1,c_2,v}}$. We call $W_{F,\psi_{1,1}}$ the standard Whittaker function and abbreviate as $W_{F,\psi}$. Let $B = M_2(\mathbb{Q})$. Let

$$e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \alpha = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in M_2(\mathbb{Q}).$$

The pointwise stabilizer subgroup $Z_{(e,\alpha)}(R) \subset SO_B(R)$ of e, α is isomorphic to

$$\left\{ \left(\begin{bmatrix} 1 & s \\ & 1 \end{bmatrix}, \begin{bmatrix} 1 & s \\ & 1 \end{bmatrix} \right) \middle| s \in R \right\}$$

via i_{ρ} . Let $\beta_{1,\psi} = \bigotimes_{\nu} \beta_{1,\nu}, \beta_{2,\psi} = \bigotimes_{\nu} \beta_{2,\nu}$ be the Whittaker functions of f_1, f_2 with respect to ψ . Then, the *v*-component of the global standard Whittaker function of $F = \theta_2(\varphi, f_1 \boxtimes f_2)$ on $\text{Sp}_4(\mathbb{Q}_{\nu})$ is

$$W_{F,\psi_{\nu}}(g) = \int_{Z_{(e_{1},\alpha)}(\mathbb{Q}_{\nu})\backslash SO_{X}(\mathbb{Q}_{\nu})} r_{\nu}^{2}(g, i_{\rho}(h_{1}, h_{2}))\varphi_{\nu}(e_{1}, \alpha)\overline{\beta}_{1,\nu}(h_{1})\beta_{2,\nu}(h_{2}) dh_{1} dh_{2}.$$
(2.17)

2) In the case that d_X is not a square of a rational number, $X_{\mathbb{Q}}$ is isometric to

$$X_{\mathrm{B},d_X} = X_{\mathrm{B}} := \left\{ b \in \mathrm{B}_{/\mathbb{Q}} \otimes \mathbb{Q}(\sqrt{d_X}) \mid b^{\iota c} = -b \right\}$$
(2.18)

for a quaternion algebra $B_{/\mathbb{Q}}$, where ι denotes the main involution of B, and c is the generator of $Gal(\mathbb{Q}(\sqrt{d_X})/\mathbb{Q})$. Put $L = \mathbb{Q}(\sqrt{d_X})$. Let R be $\mathbb{Q}, \mathbb{Q}_{\mathbb{A}}$ or \mathbb{Q}_{ν} . But assume that $L_{\nu} \not\simeq \mathbb{Q}_{\nu}^2$. For $x \in X$, $t \in R^{\times}$, $h \in B(RL)^{\times}$, define $\rho'(t, h)x = t^{-1}h^{\iota c}xh$. Then, ρ' gives isomorphisms

62

$$i_{\rho'}: \begin{cases} \{(t,b) \in R^{\times} \times B(LR)^{\times} \} / \{ (N_{LR/R}(s), s) \mid s \in LR^{\times} \} \simeq GSO_X(R), \\ \{(t,b) \mid t^2 = N_{LR/R} \circ N_{B(LR)/L}(b) \} / \{ (N_{LR/R}(s), s) \mid s \in LR^{\times} \} \simeq SO_X(R). \end{cases}$$
(2.19)

We identify a $\sigma_{v} \in \operatorname{Irr}(\operatorname{PGSO}_{X}(\mathbb{Q}_{v}))$ with one of $\operatorname{Irr}(\operatorname{PB}(L_{v})^{\times})$ through i'_{ρ} . If $L_{v} \simeq \mathbb{Q}_{v}^{2}$, then $\operatorname{GL}_{2}(L_{w_{1}}) \times \operatorname{GL}_{2}(L_{w_{2}}) \simeq \operatorname{GL}_{2}(\mathbb{Q}_{v})^{2}$, and σ_{v} is identified with a pair of elements of $\operatorname{Irr}(\operatorname{PB}(\mathbb{Q}_{v}))$. Let σ be an irreducible cuspidal automorphic representation of $\operatorname{PB}(L_{\mathbb{A}})$, which is identified with an irreducible representation of $\operatorname{PGSO}_{X}(\mathbb{A})$. Contrary to the previous case, $\Theta_{2}(\sigma)$ is not irreducible in some cases. Anyway, every irreducible constituent τ of $\Theta_{2}(\sigma)$ factors as $\bigotimes_{v} \tau_{v}$, and

$$L_{S_{\tau}}(s,\tau; \operatorname{spin}) = L_{S_{\tau}}(s,\sigma), \qquad L_{S_{\tau}}(s,\tau;r_5) = L_{S_{\tau}}(s,\chi_L)L_{S_{\tau}}(s,\tau,\chi_L;\operatorname{Asai}),$$

where χ_L is the quadratic character associated to the extension L/\mathbb{Q} , and the last *L*-function is the χ_L -twist of Asai's *L*-function (see [1] for the definition). Suppose that $d_X > 0$ and each $\sigma_{\infty_l}^{|L|}$ is a holomorphic discrete series representation with lowest weight 2 or more. Employing the main result of Blasius [3], we find that σ^{JL} is tempered. Thus, in this case, every constituent of $\Theta_2(\sigma)$ is a D-critical representation in the sense of [31]. If $B_{/\mathbb{Q}}$ is a definite quaternion algebra, then each irreducible constituent of $\Theta_2(\sigma)$ is holomorphic. If $B_{/\mathbb{Q}} \simeq M_2(\mathbb{Q})$, then an irreducible constituent of $\Theta_2(\sigma)$ is globally generic. Let $B_{/\mathbb{Q}} = M_2(\mathbb{Q})$. Define $\psi_L(z) = \bigotimes_{\nu} \psi_{\nu}(\operatorname{Trace}_{L_w/\mathbb{Q}_{\nu}}(z))$, where *w* denotes a place of *L* lying over *v*. Let $e, \alpha \in X_{M_2,d_L}(\mathbb{Q})$ be the same as above. Then the pointwise stabilizer subgroup $Z_{(e,\alpha)}(\mathbb{A}) \subset SO_{X_B}(\mathbb{A})$ is isomorphic to

$$\left\{ \left(1, \begin{bmatrix} 1 & s \\ & 1 \end{bmatrix}\right) \middle| s \in \sqrt{d_X} \mathbb{A} \right\}$$
(2.20)

via $i_{\rho'}$. Let $f \in \sigma$, $\varphi = \bigotimes_{v} \varphi_{v} \in S(X(\mathbb{A})^{2})$, and $F = \theta_{2}(\varphi, f)$. Let $\beta_{\psi} = \bigotimes_{w} \beta_{w}$ be the global Whittaker function of f associated to ψ_{L} . If $L_{v} = L_{w_{1}} \times L_{w_{2}} \simeq \mathbb{Q}_{v}^{2}$, then $W_{F,\psi_{v}}$ is similar to (2.17). If L_{v}/\mathbb{Q}_{v} does not split, then

$$W_{F,\psi_{\nu}}(g) = \int_{Z_{(e,\alpha)}(\mathbb{Q}_{\nu})\setminus SO_{X_{\mathsf{M}_{2}}(\mathbb{Q})}(\mathbb{Q}_{\nu})} r_{\nu}^{2}(g, i_{\rho'}(t, b))\varphi_{\nu}(e, \alpha)\beta_{w}(b) \,\mathrm{d}t \,\mathrm{d}b.$$
(2.21)

The next lemma is needed to prove Theorem A.

Lemma 2.4. Let *L* be a quadratic field. Let σ be an irreducible cuspidal automorphic representation of $PGL_2(L_{\mathbb{A}})$. If σ is not a base change lift of an irreducible cuspidal automorphic representation of $GL_2(\mathbb{A})$, then every irreducible constituent of $\Theta_2(\sigma)$ is not a weak endoscopic lift.

Proof. Let τ be a constituent of $\Theta_2(\sigma)$. On the authority of Shahidi [25], Asai's *L*-function of σ does not vanish at s = 1. Hence $L_{S_{\tau}}(s, \tau, \chi_L; r_5)$, the χ_L -twist of $L_{S_{\tau}}(s, \tau; r_5)$, has at least a simple pole at s = 1. Assume that τ is a weak endoscopic lift. Then, $L_{S_{\tau}}(s, \tau, \chi_L; r_5)$ is equal to $L_{S_{\tau}}(s, \chi_L)L_{S_{\tau}}(s, \sigma_1 \times \chi_L \sigma_2)$ for a cuspidal pair (σ_1, σ_2) , and hence,

$$\operatorname{ord}_{s=1} L_{S_{\tau}}(s, \tau, \chi_L; r_5) = \begin{cases} -1 & \text{if } \sigma_1 = \chi_L \sigma_2, \\ 0 & \text{otherwise.} \end{cases}$$

Hence the assertion. \Box

2.3. Degenerate Whittaker functions

Let *R* be a commutative ring. For $1 \leq r \leq 2$, let $P_r(R) = N_r(R)M_r(R) \subset GSp_4(R)$ with

$$N_{P_r}(R) = \left\{ \begin{bmatrix} 1_r & v & {}^t w \\ & 1_{2-r} & w \\ & & 1_r \\ & & & 1_{2-r} \end{bmatrix} \begin{bmatrix} 1_r & u & & \\ & 1_{2-r} & & \\ & & & 1_r \\ & & & -{}^t u & 1_{2-r} \end{bmatrix} \middle| v = {}^t v \in M_r(R), \ u, w \in M_{r,2-r}(R) \right\},$$

$$M_{P_r}(R) = \left\{ \begin{bmatrix} z & & & \\ & a & & \\ & & \det(g)^t z^{-1} & \\ & c & & d \end{bmatrix} \middle| g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GSp}_{4-2r}(R), \ z \in \operatorname{GL}_r(R) \right\}$$
$$\simeq \operatorname{GL}_r(R) \times \operatorname{GSp}_{4-2r}(R),$$

where we understand $GSp_0 = GL_1$, $GSp_2 = GL_2$. We write $P_1 = Q$ (resp. $P_2 = P$) and call it Klingen (resp. Siegel) parabolic subgroup. Let e_Q , e_P denote the natural embedding of $GL_2 \times GL_1$ into M_{P_r} . If *E* is a noncuspidal automorphic form on $GSp_4(\mathbb{A})$, then, for $\bullet = P$ or Q,

$$\Phi_{\bullet}(E)(g,z) := \operatorname{vol}(N_{\bullet}(\mathbb{Q}) \setminus N_{\bullet}(\mathbb{A}))^{-1} \int_{N_{\bullet}(\mathbb{Q}) \setminus N_{\bullet}(\mathbb{A})} E(ne_{\bullet}(g,z)) \, \mathrm{d}n$$
(2.22)

is a nontrivial automorphic form on $GL_2(\mathbb{A}) \times GL_1(\mathbb{A})$. Let $a \in \mathbb{Q}^{\times}$. We define $\psi_{(a)}(*) = \psi(a*)$. If a function $W^{\bullet}_{\psi_{(a)}}$ on $GSp_4(\mathbb{A})$ (resp. $GSp_4(\mathbb{Q}_{\nu})$) satisfies

$$W_{\psi_{(a)}}^{\bullet} \left(\begin{bmatrix} 1 & u & & \\ & 1 & & \\ & & 1 & \\ & & -u & 1 \end{bmatrix} \begin{bmatrix} 1 & * & * \\ & 1 & * & z \\ & & 1 & \\ & & & 1 \end{bmatrix} g \right) = W_{\psi_{(a)}}^{\bullet}(g) \times \begin{cases} \psi(au) & (\bullet = P), \\ \psi(az) & (\bullet = Q), \end{cases}$$
(2.23)

then we say $W^{ullet}_{\psi_{(a)}}$ is a ullet-degenerate global (resp. local) Whittaker function.

3. Automorphic forms on $GSp_4(\mathbb{A})$

Let Π_{f_i} , Π_{g_j} be the irreducible cuspidal automorphic representations associated to f_i , g_j (cf. Proposition 2.2). The idea of our proof of Theorem A is as follows. We will show that a D-critical representation associated to the Hilbert modular form $\pi(\lambda)$ of $\mathbb{Q}(\sqrt{2})$, and the $(\frac{-2}{*})$ -twist of a Saito–Kurokawa representation associated to ρ_1 has a $\Gamma(2, 4, 8)_2$ -fixed vector. Because the 2-component of this D-critical representation, and that of this $(\frac{-2}{*})$ -twist of the Saito–Kurokawa representation are given by local θ -lifts from GSO(4), we will do it by constructing local Whittaker functions, or local degenerate Whittaker functions defined in 2.3 of these local θ -lifts. If it is done, then each of these representation has an automorphic form related to a Siegel modular form belonging to $S_3(\Gamma(2, 4, 8))$. From the eigenvalues of Π_{f_i} , Π_{g_j} computed in [7], one concludes Π_{g_1} is this D-critical representation and Π_{g_4} is this $(\frac{-2}{*})$ -twist of the Saito–Kurokawa representation. In this way, the conjecture is verified.

3.1. D-critical representation, proof for $L(s, \Pi_{g_1}; spin)$

Let *L* be a quadratic field with the ring of integers \mathfrak{o} . Let δ_L be the discriminant of *L*. For an integral ideal \mathfrak{m} of a Dedekind ring *R*, let

$$\tilde{\Gamma}_{0}^{(n)}(\mathfrak{m}) = \left\{ g = \begin{bmatrix} A_g & B_g \\ C_g & D_g \end{bmatrix} \in \mathrm{GSp}_{2n}(R) \mid C_g \in \mathrm{M}_n(\mathfrak{m}) \right\},\$$
$$\Gamma_{0}^{(n)}(\mathfrak{m}) = \tilde{\Gamma}_{0}^{(n)}(\mathfrak{m}) \cap \mathrm{Sp}_{2n}(R).$$

First, we show the following proposition.

Proposition 3.1. Let p be a prime which does not split in L/\mathbb{Q} , and \mathfrak{p} denote the unique prime ideal of L lying over p. Let π be an irreducible cuspidal automorphic representation of $PGL_2(L_A)$ of level \mathfrak{n} . Then, there is an automorphic form $F \in \Theta_2(\pi)$ such that

$$\varrho(g)F = \chi_{L,p} \left(\det(A_g) \right) F, \quad g \in \Gamma_0^{(2)} \left(p^N \mathbb{Z}_p \right), \tag{3.1}$$

where χ_L is the quadratic character of \mathbb{A}^{\times} associated to the extension L/\mathbb{Q} , and

$$N = \begin{cases} \frac{\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})}{2} + \operatorname{ord}_{\mathfrak{p}}(\delta_L) & \text{if } p \text{ is ramified and } \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \text{ is even,} \\ \frac{\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})+1}{2} + \operatorname{ord}_{\mathfrak{p}}(\delta_L) & \text{if } p \text{ is ramified and } \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \text{ is odd,} \\ \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) & \text{otherwise.} \end{cases}$$

Proof. For a $\varphi = \bigotimes_{\nu} \varphi_{\nu} \in S(X_{M_2}(\mathbb{A})^2)$ and an $f \in \pi$, each component $W_{F,\psi_{\nu}}$ of the global standard Whittaker function of $F = \theta_2(\varphi, f)$ is given by (2.17) or (2.21). Therefore, it suffices to construct a nontrivial W_{F,ψ_p} which is right $\Gamma_0(p^N \mathbb{Z}_p)$ -semi invariant as in (3.1). We will give a proof for the first case with $L = \mathbb{Q}(\sqrt{2})$ and p = 2. The other cases are easier and omitted. For an ideal $\mathfrak{m} \subset \delta_L \mathfrak{o}_p$ of \mathfrak{o}_p , let

$$\tilde{\Gamma}_0'(\mathfrak{m}) = \begin{bmatrix} \mathfrak{o}_\mathfrak{p} & \delta_L^{-1} \mathfrak{o}_\mathfrak{p} \\ \mathfrak{m} & \mathfrak{o}_\mathfrak{p} \end{bmatrix} \cap \operatorname{GL}_2(L_\mathfrak{p})$$

In the case $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) = 0$, the proof is easy and omitted. Suppose that $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ is a positive (even) integer. Then, $\pi_{\mathfrak{p}}$ is a ramified principal series representation or a supercuspidal representation. The conductor of the additive character $\psi_{L_{\mathfrak{p}}} = \psi_{\mathfrak{p}} \circ \operatorname{Trace}_{L_{\mathfrak{p}}/\mathbb{Q}_{\mathfrak{p}}}$ is \mathfrak{p}^{-3} . Using the local newform theory for GL(2), we find that $\pi_{\mathfrak{p}}$ has a right $\tilde{\Gamma}'_{0}(\delta_{L}\mathfrak{n})$ -invariant local Whittaker function $\beta_{\mathfrak{p}}$ associated to $\psi_{L_{\mathfrak{p}}}$ such that

$$\beta_{\mathfrak{p}}\left(\begin{bmatrix}1 & z\\ & 1\end{bmatrix}\begin{bmatrix}t\\ & 1\end{bmatrix}\right) = \begin{cases} \psi_{L_{\mathfrak{p}}}(z) & \text{if } t \in \mathfrak{o}_{\mathfrak{p}}^{\times}, \\ 0 & \text{otherwise,} \end{cases}$$
(3.2)

$$\varrho \left(\begin{bmatrix} & -1 \\ p^N & \end{bmatrix} \right) \beta_{\mathfrak{p}} = \pm \beta_{\mathfrak{p}}.$$
(3.3)

For an integral ideal \mathfrak{m} of a Dedekind ring R, let $R_0(\mathfrak{m}) = \{ \begin{bmatrix} * & * \\ c & * \end{bmatrix} \in M_2(R) \mid c \in \mathfrak{m} \}$ be the so-called Eichler order of $M_2(R)$ of level \mathfrak{m} . We set

$$\phi(x_1, x_2) = \operatorname{ch}(x_1; R_0(p^N) \cap X_{\mathsf{M}_2(\mathbb{Q}_p)}) \operatorname{ch}(x_2; R_0(p^N) \cap X_{\mathsf{M}_2(\mathbb{Q}_p)})$$

where ch indicates the characteristic function. Put $\mathbb{K}_p = i_{\rho'}(\mathbb{Q}_p^{\times} \times \tilde{\Gamma}_0^{(1)}(p^N)) \cap SO_X(\mathbb{Q}_p)$. If $g \in \Gamma_0^{(2)}(p^N)$ and $h \in \mathbb{K}_p$, then

$$r_{p}^{2}(g,h)\phi = \chi_{L,p}(\det A_{g})r_{p}^{2}(1,h)\phi.$$
(3.4)

From (2.21),

$$W_{F,\psi_p}(g) = \operatorname{vol}(\mathbb{K}_p) \int_{Z_{(e,\alpha)}(\mathbb{Q}_p) \setminus \operatorname{SO}_{X_{\mathbf{M}_2}}(\mathbb{Q}_p) / \mathbb{K}_p} r_p^2(g,h) \phi(e,\alpha) \beta_p(\bar{h}) \, \mathrm{d}\bar{h},$$
(3.5)

where \overline{h} indicates the projection of $h \in GL_2(L_p)$ to $SO_X(\mathbb{Q}_p)$ (see (2.20) for the definition of $Z_{(e,\alpha)}$). Then, we are going to see $W_{F,\psi_p}(1) \neq 0$. Using the Iwasawa decomposition of $GL_2(L_p)$, we can take the following complete system of representatives for $Z_{(e,\alpha)}(\mathbb{Q}_p) \setminus SO_X(\mathbb{Q}_p) / \mathbb{K}_p$:

$$\begin{pmatrix} 2^m, \begin{bmatrix} 1 & s \\ & 1 \end{bmatrix} \begin{bmatrix} 2^m & \\ & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ l & 1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} 2^{m+\frac{N}{2}}, \begin{bmatrix} 1 & s \\ & 1 \end{bmatrix} \begin{bmatrix} 2^m & \\ & 1 \end{bmatrix} \begin{bmatrix} 2^N & -1 \\ 2^N & \end{bmatrix} \end{pmatrix}$$

where $s \in \mathbb{Q}_2$, $m \in \mathbb{Z}$ and $l \in \mathfrak{o}_p$ modulo 2^N . We will observe the contributions of these types to the integral (3.5). We will denote $\rho'(t, h)(e, \alpha) = (\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix})$. For the former types, we calculate

$$\rho'(t,h)(e,\alpha) = \left(\begin{bmatrix} 2^{-m}l & 2^{-m} \\ -2^{-m}ll^c & -2^{-m}l^c \end{bmatrix}, \begin{bmatrix} 1+2^{-m+1}ls & 2^{-m+1}s \\ -(l+l^c)-2^{-m+1}ll^cs & -1-2^{-m+1}l^cs \end{bmatrix} \right)$$

where *c* is the generator of $\text{Gal}(L/\mathbb{Q})$. Suppose $\rho'(t,h)(e,\alpha) \in \text{supp}(\phi)$. Observing b_1 , we find $m \leq 0$. If m < 0, then

$$\rho'\left(t, \begin{bmatrix} 1 & \frac{1}{4} \\ & 1 \end{bmatrix} h\right)(e, \alpha) \in \operatorname{supp}(\phi).$$

Because $\beta_2(\begin{bmatrix} 1 & \frac{1}{4} \\ 1 \end{bmatrix} h) = -\beta_2(h)$, we can ignore the contribution if m < 0. Therefore, we can assume m = 0. Then, observing c_1 , we find $l \in \mathfrak{p}^N$. Observing b_2 , we find $s \in 2^{-1}\mathbb{Z}_2$. We see that, if m = 0, $l \in \mathfrak{p}^N$ and $s \in 2^{-1}\mathbb{Z}_2$, then $\rho'(t,h)(e,\alpha) \in \operatorname{supp}(\phi)$. Now, recall that $\beta_{\mathfrak{p}}$ is a local new vector, which is right $\Gamma'_0(\delta_L \mathfrak{n})$ -invariant. Hence, if $c \in \mathfrak{p}^{-1}\delta_L \mathfrak{n} \setminus \delta_L \mathfrak{n}$, then

$$\varrho\left(\begin{bmatrix}1\\c&1\end{bmatrix}\right)\beta_2 = -\beta_2.$$

Using this property, we conclude that the sum of the contributions of the former types are none. For the latter types, we calculate

$$\rho'(t,h)(e,\alpha) = \left(\begin{bmatrix} 0 & 0 \\ 2^{N-m} & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ -2^{N+1-m}s & 1 \end{bmatrix} \right).$$

Suppose $\rho'(t, h)(e, \alpha) \in \text{supp}(\phi)$. Using (3.2) and (3.3), we can assume m = 0. Observing c_2 , we find that $s \in 2^{-1}\mathbb{Z}_2$. Then, using (3.2) again, we see that the total contribution of the latter types is non-trivial. This completes the proof. \Box

Let $\zeta_8 = \frac{(1+i)}{\sqrt{2}}$. Let $L = \mathbb{Q}(\sqrt{2})$ (resp. $K = \mathbb{Q}(\zeta_8)$) with the ring of integers \mathfrak{o} (resp. \mathfrak{D}). Let \mathfrak{p} (resp. \mathfrak{P}) be the unique (ramified) prime ideal of \mathfrak{o} (resp. \mathfrak{D}) lying over the prime ideal 2 of \mathbb{Q} . Next, we observe the irreducible cuspidal automorphic representation $\pi(\lambda)$ of $GL_2(L_{\mathbb{A}})$ obtained from the größencharacter λ of $K_{\mathbb{A}}^{\times}$ on p. 870 of [7]. The definition of λ is as follows. For the two archimedean places ∞_1, ∞_2 of $K, \lambda_{\infty_1}(z) = |z|^3/z^3, \lambda_{\infty_2}(z) = |z|/z, z \in \mathbb{C}^{\times}$. Thus, the lowest weights of the archimedean components of $\pi(\lambda)$ are 4, 2, respectively. The conductor of λ is $\mathfrak{P}^4 = (2)$, and

$$(\mathfrak{O}/\mathfrak{P}^4)^{\times} = \langle \zeta_8 \pmod{2} \rangle \oplus \langle (1+\sqrt{2}) \pmod{2} \rangle \simeq \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$$

Then, $\lambda_{\mathfrak{P}}$ is defined by

$$\lambda_{\mathfrak{P}}(\zeta_8 \pmod{2}) = 1, \qquad \lambda_{\mathfrak{P}}((1+\sqrt{2}) \pmod{2}) = -1.$$

We define the quasi-character μ on $L_{\mathfrak{p}}^{\times}$ with conductor \mathfrak{p}^3 by

$$\mu\left((1+\sqrt{2}) \pmod{\mathfrak{p}^3}\right) = \mathbf{i}$$

where $(\mathfrak{o}/\mathfrak{p}^3)^{\times} = \langle (1 + \sqrt{2}) \pmod{\mathfrak{p}^3} \rangle \simeq \mathbb{Z}/4\mathbb{Z}$. Then, it holds $\lambda_{\mathfrak{P}} = \mu \circ N_{K/L}$. Let $\chi_{K/L}$ be the quadratic character of $L^{\times}_{\mathbb{A}}$ associated to the extension K/L. The central character of $\pi(\lambda)$ is $\lambda|_{L^{\times}_{\mathbb{A}}}\chi_{K/L}$. Because both of $\lambda_{\infty_i}\chi_{K/L,\infty_i}$ and $\lambda_{\mathfrak{P}}\chi_{K/L,\mathfrak{p}} = \mu \circ N_{K/L,\mathfrak{p}}\chi_{K/L,\mathfrak{p}}$ are trivial, so is the central character of $\pi(\lambda)$. Employing Theorem 4.6(iii) of [9], we find that $\pi(\lambda)_{\mathfrak{p}}$ is the principal series representation

$$\pi(\mu, \mu \chi_{K/L, \mathfrak{p}}) = \pi(\mu, \overline{\mu}) \tag{3.6}$$

of level \mathfrak{p}^6 .

Finally, we prove the conjecture. One can construct an automorphic form $F \in \Theta_2(\pi(\lambda))$ satisfying $\varrho(u)F = F$ for $u \in \text{Sp}_4(\mathbb{Z}_p)$ at $p \neq 2$, and (3.1) at 2. The local standard Whittaker function $W_{F,\psi,2}$ is right $\Gamma_0^{(2)}(2^6)_2$ -semi invariant and $W_{F,\psi,2}(1) \neq 0$. Let $g_0 = \text{diag}(2^5, 2^3, 2^{-2}, 1) \in \text{GSp}_4(\mathbb{Q})$, and $F'(g) = F(g_0g_0^{-1}) = F(gg_0^{-1})$. Let

$$\Gamma' := g_0^{-1} \Gamma_0^{(2)} (2^6 \mathbb{Z}_2) g_0 = \begin{bmatrix} \mathbb{Z}_2 & 2^2 \mathbb{Z}_2 & 2^6 \mathbb{Z}_2 & 2^5 \mathbb{Z}_2 \\ 2^{-2} \mathbb{Z}_2 & \mathbb{Z}_2 & 2^5 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 \\ \mathbb{Z}_2 & 2 \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & 2^{-2} \mathbb{Z}_2 \\ 2 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 & 2^2 \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix} \cap \operatorname{Sp}_4(\mathbb{Q}_2)$$

Then, F' is right Γ' -semi invariant, and so is $W_{F',\psi_{4,8}}$. Note that $\Gamma(2,4,8)_2 \cap \Gamma_0^{(2)}(8\mathbb{Z}_2) \subset \Gamma'$. Because

$$\varrho\left(\begin{bmatrix}1 & s_1 & s_2\\ & 1 & s_2\\ & & 1 & \\ & & & 1\end{bmatrix}\right)W_{F',\psi_{4,8},2}(1) = W_{F',\psi_{4,8},2}(1) \neq 0$$

for $s_1, s_2 \in \mathbb{Q}_2$,

$$\int_{\Gamma(2,4,8)_2} \varrho(u) W_{F',\psi_{4,8}}(1) \, \mathrm{d}u \neq 0.$$
(3.7)

Hence, there is an irreducible globally generic constituent of $\Theta_2(\pi(\lambda))$, which has a right $\Gamma(2, 4, 8)_2 \times \prod_{p \neq 2} \operatorname{Sp}_4(\mathbb{Z}_p)$ -invariant vector. We denote this representation by Π^{gen} .

Theorem 3.2. The irreducible cuspidal automorphic representation Π_{g_1} is a D-critical representation associated to $\pi(\lambda)$. The conjecture is true.

Proof. First, employing the result of local θ -correspondence for Sp₄(\mathbb{R}) and O_{2,2}(\mathbb{R}) due to Przebinda [20], we find that $\Pi_{\infty}^{\text{gen}}|_{\text{Sn}_4}$ is the large discrete series representation with Blattner parameter (3, -1), a cohomological weight. Next, we claim that Π^{gen} is not a weak endoscopic lift, nor a CAP representation. Recall that the lowest weights of the archimedean components of $\pi(\lambda)$ are (4, 2). Hence, $\pi(\lambda)$ is not a base change lift. From Lemma 2.4, Π^{gen} is not a weak endoscopic lift. On the authority of Piatetski-Shapiro [18], and Soudry [26], every partial spinor L-function of a CAP representation is, up to finitely many Euler factors, in the form of $L(s-\frac{1}{2},\chi)L(s+\frac{1}{2},\chi)L(s-\frac{1}{2},\chi')L(s+\frac{1}{2},\chi')$, $L(s - \frac{1}{2}, \mu)L(s + \frac{1}{2}, \mu)$, or $L(s - \frac{1}{2}, \chi)L(s + \frac{1}{2}, \chi)L(s, \sigma_1)$. Here χ, χ' are some quadratic character of \mathbb{A}^{\times} , μ is a quasi-character of $L^{\times}_{\mathbb{A}}$ for a quadratic field L, and σ_1 is an irreducible cuspidal automorphic representation of GL₂(A). But, $L(s, \pi(\lambda)) = L(s, \lambda)$ satisfies the Ramanujan conjecture. Hence the claim. Finally, according to Theorem III and Proposition 1.5 of Weissauer [31], there is an irreducible cuspidal automorphic representation Π^{hol} such that

- $\Pi_{\infty}^{\text{hol}}|_{\text{Sp}_4}$ is the holomorphic discrete series representation with Blattner parameter (3, 3). $\Pi_{\nu}^{\text{hol}} \simeq \Pi_{\nu}^{\text{gen}}$ at $\nu \neq \infty$.

Thus, Π^{hol} contributes to $H^{3,0}(\text{Gr}_3^W(S_{\Gamma(2,4,8)},\mathbb{C})) \simeq S_3(\Gamma(2,4,8))$, i.e., Π^{hol} is one of the 11 irreducible representations $\Pi_{f_1}, \ldots, \Pi_{g_4}$. Observing some *L*-factors of them calculated in [7], one can conclude that $\Pi^{\text{hol}} = \Pi_{g_1}$. This completes the proof. \Box

Remark 1. Using the definition of μ , one can show that $\pi(\lambda)$ is invariant but not distinguished in the sense of Roberts [22]. Employing Theorem 8.5 of [22], we find that the set of D-critical representations associated to $\pi(\lambda)$ consists of four irreducible representations $\Pi^{\text{gen}} = \Pi_1, \Pi_2, \Pi_3, \Pi_4$. They are all given by a θ -lift from GSO(4). Further, $\Pi_{2,\infty} \simeq \Pi_{3,\infty}$ (resp. $\Pi_{1,\infty} \simeq \Pi_{4,\infty}$) is the holomorphic (resp. large) discrete series representation with Blattner parameter (3, 3) (resp. (3, -1)), and $\Pi_{1,p} \simeq \Pi_{2,p}, \Pi_{3,p} \simeq \Pi_{4,p}$ at every nonarchimedean place. Noting this fact, one can show the above theorem.

3.2. Saito–Kurokawa representation, proof for $L(s, \Pi_{g_4}; spin)$

First, we will recall some known results on Saito-Kurokawa representation. For a square free integer *a*, let $\chi^{(a)}$ denote the quadratic character of \mathbb{A}^{\times} associated to the extension $\mathbb{Q}(\sqrt{a})/\mathbb{Q}$. For an irreducible cuspidal automorphic representation τ of $\operatorname{GSp}_{2n}(\mathbb{A})$, we will abbreviate $\chi^{(a)}\tau$ as $\tau^{(a)}$. Let $B_{\mathbb{Q}}$ be a quaternion algebra. Let σ be an irreducible cuspidal automorphic representation of $PB(\mathbb{A})^{\times}$. Suppose that σ_{∞}^{JL} is the holomorphic discrete series representation of lowest weight 4. Let $\mathbf{1}_{B(\mathbb{A})^{\times}} = \mathbf{1}$ denote the trivial representation of $B(\mathbb{A})$. For a $\{\pm 1\}$ -valued character χ of $\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}$, we denote by $\chi \sigma$ the representation of PB(A)[×] sending $h \in B(A)^{×}$ to $\chi(N_{B/\mathbb{Q}}(h))\sigma(h)$. We will abbreviate $\chi \mathbf{1}_{B(A)^{×}}$ as χ . If $B_{/\mathbb{Q}}$ is not split, then $\Theta_2(\chi \boxtimes \sigma)$ is cuspidal. It is easy to show that $\Theta_2(\chi \boxtimes \sigma)$ is not vanishing, if and only if $L(\frac{1}{2}, \chi \sigma) \neq 0$, by using a result of Waldspurger [29]. On the other hand, if $B_{/\mathbb{Q}}$ is split, then $\Theta_2(\chi \boxtimes \sigma)$ is non-vanishing and noncuspidal. Indeed, one can construct an $f \in \Theta_2(\chi \boxtimes \sigma)$ so that the *P*-degenerate Whittaker function $W_{f,\psi}^p$ is nontrivial as is explained below (hence, $\Phi_P(f)$ defined in (2.22) is nontrivial). We will recall the result of Cogdell and Piatetski-Shapiro [4] and Schmidt [24]. Let π be an irreducible cuspidal automorphic representation of PGL₂(A). The global cuspidal Saito-Kurokawa packet $SK_0(\pi)$ is defined as the set of irreducible cuspidal automorphic representations of $PGSp_4(\mathbb{A})$ whose spinor L-functions are equal to $\zeta(s-\frac{1}{2})\zeta(s+\frac{1}{2})L(s,\pi)$, up to finitely many Euler factors. Let D_v be the unique division quaternion algebra over \mathbb{Q}_{v}^{-} . When π_{v} is square-integrable, let π'_{v} denote the Jacquet–Langlands transfer to D_{v}^{\times} . The local Saito–Kurokawa packet is the following set:

$$SK(\pi_{\nu}) = \begin{cases} \{\theta_2(\mathbf{1}_{\nu} \boxtimes \pi_{\nu}), \theta_2(\mathbf{1}_{\nu} \boxtimes \pi'_{\nu})\}, & \text{if } \pi_{\nu} \text{ is square-integrable} \\ \{\theta_2(\mathbf{1}_{\nu} \boxtimes \pi_{\nu})\}, & \text{otherwise.} \end{cases}$$

At a nonarchimedean place v = p, as is explained on pp. 230–233 of [24], $\theta_2(\mathbf{1}_p \boxtimes \pi_p)$ is the local Saito–Kurokawa representation that is the unique irreducible quotient of the Siegel parabolically induced representation $|*|^{1/2}\pi_p \rtimes |*|^{-1/2}$ (cf. [24,23]). For a $\{\pm 1\}$ -valued character χ_p , $\theta_2(\chi_p \boxtimes \pi_p)$ is the χ_p -twist of the local Saito–Kurokawa representation $\theta_2(\mathbf{1}_p \boxtimes \chi_p \pi_p)$.

Next, we will observe the global cuspidal Saito–Kurokawa packet of ρ_1 , and that of $\rho_1^{(-2)}$. For a moment, let

$$B_{\mathbb{Q}} = \mathbb{Q} + \mathbb{Q}I + \mathbb{Q}J + \mathbb{Q}IJ, \qquad I^2 = J^2 = -1, \qquad IJ = -JI.$$
 (3.8)

This quaternion algebra splits outside of $\{\infty, 2\}$. As is seen in Section 4 of [17], ρ_1 has the Jacquet–Langlands transfer to PB(A)[×]. Denote it by ρ'_1 . In [17], the Siegel modular form F_1 is constructed by the Yoshida lift of $(1, \rho'_1)$. This implies

$$L\left(\frac{1}{2},\rho_1\right) \neq 0, \qquad \varepsilon\left(\frac{1}{2},\rho_1\right) = \varepsilon\left(\frac{1}{2},\rho_{1,2},\psi_2\right) = 1.$$

The 2-component $\rho'_{1,2}$ is the finite dimensional representation of $B_2^{\times} \simeq D_2^{\times}$ described as follows. We fix the maximal order $\mathcal{R} = \mathbb{Z}_2 + \mathbb{Z}_2 I + \mathbb{Z}_2 J + \mathbb{Z}(\frac{1+I+J+IJ}{2}) \subset B_2$. Let $\varpi \in B_2$ be an uniformizer. Let $\mathcal{R}(2) = \mathbb{Z}_2 + \varpi^2 \mathcal{R}$. As a complete system of representatives U of $\mathcal{R}^{\times}/\mathcal{R}(2)^{\times}$, we can take $\{1, I, J, \frac{1\pm I\pm J\pm IJ}{2}\}$. Let $W = \mathbb{C}I + \mathbb{C}J + \mathbb{C}IJ$. Then, we obtain a finite dimensional representation τ_2 of B_2^{\times} from the automorphism of W defined by $u^{-1}wu$. Because $B_A^{\times} = B_{\mathbb{Q}}^{\times}\mathcal{R}(2)_A^{\times}$, from this representation, one can obtain an automorphic representation τ of PB_A^{\times} . One can construct a right $\Gamma_0^{(1)}(8)$ -invariant vector in $\Theta_1(\tau \boxtimes \tau)$ (see also Proposition 3.8). This means $\rho'_1 = \tau$, because the space of elliptic cusp form of weight 4 of level 8 is 1-dimensional. Hence τ_2 is irreducible and equivalent to $\rho'_{1,2}$.

Lemma 3.3. The root number of $\rho_1^{(-2)}$ is -1.

Proof. Because $\rho_{1,p}^{(-2)}$ is unramified for $p \neq 2$ and $\rho_{1,\infty}$ is the holomorphic discrete series representation of lowest weight 4, it suffices to show that $\varepsilon(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_2) = -1$. We will see the ε -factor of the base change lift $\rho_{1,p}^{BC}$ to $GL_2(\mathbb{Q}(\sqrt{-2})_p)$ with $\mathfrak{p} = \sqrt{-2}$. Let $L = \mathbb{Q}(\sqrt{-2})$. Let $\psi_L = \psi \circ \operatorname{Trace}_{L/\mathbb{Q}}$. We identify $L \simeq \mathbb{Q}(I + J) \subset B_{/\mathbb{Q}}$ for the above $B_{/\mathbb{Q}}$. Then $\mathcal{R}(2) \cap L_p$ is the maximal order of L_p . Thus, every character (constituent) of the restriction $\rho_{1,2}'|_{L_p^{\times}}$ is unramified. Because $(I + J)^{-1}(I + J)(I + J) = I + J \in W$, the trivial character of L_p^{\times} appears in this restriction. Applying Lemma 14 of [10], we have

$$\begin{aligned} -1 &= -\omega_{\rho_{1},2}(-1) \\ &= \varepsilon \left(\frac{1}{2}, \rho_{1,\mathfrak{p}}^{\mathrm{BC}}, \psi_{L,\mathfrak{p}}\right) \\ &= \varepsilon \left(\frac{1}{2}, \rho_{1,2}, \psi_{2}\right) \varepsilon \left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right) \\ &= \varepsilon \left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right). \quad \Box \end{aligned}$$

From Lemma 3.3, it follows that $L(s, \rho_1^{(-2)}) = -L(1 - s, \rho_1^{(-2)})$, and hence

$$L\left(\frac{1}{2},\rho_{1}^{(-2)}\right) = 0, \qquad \varepsilon\left(\frac{1}{2},\rho_{1}^{(-2)}\right) = \varepsilon\left(\frac{1}{2},\rho_{1,2}^{(-2)},\psi_{2}\right) = -1.$$

Employing the main lifting theorem of [24], and Theorem 3.1 of [4], we conclude

$$SK_{0}(\rho_{1}) = \left\{ \left(\bigotimes_{\nu=\infty,2} \theta_{2}(\mathbf{1} \boxtimes \rho_{1,2}') \right) \otimes \left(\bigotimes_{\nu\neq\infty,2} \theta_{2}(\mathbf{1} \boxtimes \rho_{1,\nu}) \right) \right\},$$

$$SK_{0}(\rho_{1}^{(-2)}) = \left\{ \theta_{2}(\mathbf{1} \boxtimes \rho_{1,2}'^{(-2)}) \otimes \left(\bigotimes_{\nu\neq2} \theta_{2}(\mathbf{1} \boxtimes \rho_{1,\nu}^{(-2)}) \right), \ \theta_{2}(\mathbf{1} \boxtimes \rho_{1,\infty}'^{(-2)}) \otimes \left(\bigotimes_{\nu\neq\infty} \theta_{2}(\mathbf{1} \boxtimes \rho_{1,\nu}^{(-2)}) \right) \right\}.$$

Note that $\theta_2(\mathbf{1} \boxtimes \rho_{1,\infty}^{(-2)})|_{\mathrm{Sp}(4)}$ is the holomorphic discrete series representation with Blattner parameter (3, 3). Therefore, we guess that the latter constituent of $\mathrm{SK}_0(\rho_1^{(-2)})$ is $\chi^{(-2)}\Pi_{g_4}$. We want to show that $\theta_2(\chi_p^{(-2)} \boxtimes \rho_{1,p})$ has a right $\Gamma(2, 4, 8)_p$ -invariant vector for every p. The local θ -lift $\theta_2(\chi_v^{(-2)} \boxtimes \rho_{1,v}) = \chi_v^{(-2)}\theta_2(\mathbf{1} \boxtimes \rho_{1,v}^{(-2)})$ does not have a local Whittaker function. But it has a local P-degenerate Whittaker function $W_{\psi_v}^p$ as follows. Let $e' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Let $Z_{(e,e')} \subset \mathrm{SO}_X$ be the pointwise stabilizer subgroup of e, e', which is isomorphic to

$$\left\{ \left(\begin{bmatrix} 1 & s \\ & 1 \end{bmatrix}, \begin{bmatrix} 1 & \\ & 1 \end{bmatrix} \right) \mid s \in \mathbb{Q}_{\nu} \right\}$$

via i_{ρ} . Then, $W^{P}_{\psi_{\nu}}(g)$ of $\theta_{2}(\chi^{(-2)}_{\nu} \boxtimes \rho_{1,\nu})$ is

$$\int_{Z_{(e,e')}(\mathbb{Q}_{\nu})\setminus SO_{M_{2}}(\mathbb{Q}_{\nu})} r_{\nu}^{2} (g, i_{\rho}(h_{1}, h_{2})) \varphi_{\nu}(e, e') \chi_{\nu}^{(-2)} (\det(h_{1})) \beta_{\nu}(h_{2}) dh_{1} dh_{2}$$
(3.9)

where β_{ν} is a Whittaker function of $\rho_{1,\nu}$ with respect to ψ_{ν} . It is easy to construct a right $\operatorname{Sp}_4(\mathbb{Z}_p)$ invariant $W_{\psi_p}^P$ for a nonarchimedean place $p \neq 2$. We will construct a right $\Gamma(2, 4, 8)_2$ -invariant P-degenerate Whittaker function of $\theta(\chi_2^{(-2)} \boxtimes \rho_{1,2})$. From $\rho_{1,2}$, we take the right $\Gamma_0^{(1)}(8\mathbb{Z}_p)$ -invariant local Whittaker function β_2 with respect to ψ_2 such that $\beta_2(1) = 1$. We define

$$\phi'(x_1, x_2) = \chi_2^{(-2)}(b_1) \operatorname{ch}(x_2; M_2(\mathbb{Z}_2)) \times \begin{cases} 1 & \text{if } \operatorname{ord}_2(a_1) \ge 0, \ \operatorname{ord}_2(b_1) = 0, \ \operatorname{ord}_2(c_1), \operatorname{ord}_2(d_1) \ge 3, \\ 0 & \text{otherwise,} \end{cases}$$

where we write $x_1 = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \in M_2(\mathbb{Q}_2)$. Let

$$\Gamma'' = \begin{bmatrix} 1+2^3 \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 \\ 2^3 \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 \\ 2^6 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 & 1+2^3 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 \\ 2^3 \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix} \cap \text{Sp}_4(\mathbb{Z}_2).$$

Then, ϕ' is right Γ'' -invariant. One can calculate (3.9) is not zero at g = 1, directly. Let $g'_0 = \text{diag}(2^4, 2^3, 2^{-1}, 1)$. Then

T. Okazaki / Journal of Number Theory 132 (2012) 54-78

$$g_0^{\prime-1}\Gamma''g_0^{\prime} = \begin{bmatrix} 1+2^3\mathbb{Z}_2 & 2\mathbb{Z}_2 & 2^5\mathbb{Z}_2 & 2^4\mathbb{Z}_2 \\ 2^2\mathbb{Z}_2 & \mathbb{Z}_2 & 2^4\mathbb{Z}_2 & 2^3\mathbb{Z}_2 \\ 2\mathbb{Z}_2 & 2^{-1}\mathbb{Z}_2 & 1+2^3\mathbb{Z}_2 & 2^2\mathbb{Z}_2 \\ 2^{-1}\mathbb{Z}_2 & 2^{-3}\mathbb{Z}_2 & 2\mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix} \cap \operatorname{Sp}_4(\mathbb{Q}_2).$$

There is a right $g_0'^{-1}\Gamma''g_0'$ -invariant $W_{\psi_{(1/2),2}}^P \in \theta_2(\chi_2^{(-2)} \boxtimes \rho_{1,2})$ such that $W_{\psi_{(1/2),2}}^P(1) \neq 0$. Then, an integral similar to (3.7) gives a nontrivial right $\Gamma(2, 4, 8)_2$ -invariant local *P*-degenerate Whittaker function of $\theta_2(\chi_2^{(-2)} \boxtimes \rho_{1,2})$. Consequently,

Theorem 3.4. The irreducible cuspidal automorphic representation Π_{g_4} is the $\chi^{(-2)}$ -twist of the irreducible (holomorphic) constituent of SK₀(ρ_1). The conjecture is true.

Finally, we give a remark. Observing the eigenvalues of g_4 in the table of Section 8 of [7], we find that Π_{g_4} does not satisfy the generalized Ramanujan conjecture. Indeed

$$|\alpha_{p1}| = |\alpha_{p2}| = p^{\frac{3}{2}}, \qquad |\alpha_{p3}| = p, \qquad |\alpha_{p4}| = p^2$$

for p = 3, 5, 7, 11, 13, 17, 19, if we write the Hecke polynomial of $\Pi_{g_4, p}$ as $\prod_{i=1}^4 (X - \alpha_{pi})$. Then, one can see that Π_{g_4} is a twist of a Saito–Kurokawa representation with the following proposition.

Proposition 3.5. For a Siegel modular 3-fold S_{Γ} , if an irreducible cuspidal automorphic representation Π contributes to $H^{3,0}(Gr_3^W(S_{\Gamma}, \mathbb{C}))$ and does not satisfy the Ramanujan conjecture, then Π is a twist of a Saito–Kurokawa representation.

Proof. As stated by Theorem I of Weissauer [31], there is a $GL_4(\overline{\mathbb{Q}}_2)$ -valued Galois representation ρ_{Π} of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ such that

$$L_{S_{\Pi}}\left(s-\frac{3}{2},\Pi;\operatorname{spin}\right)=L_{S_{\Pi}}(s,\rho_{\Pi}).$$

Assume that Π is not a CAP representation. Then ρ_{Π} is pure of weight 3, the eigenvalues of ρ_{Π} (Frob_{*p*}) has absolute value $p^{3/2}$, and hence Π does not satisfy the Ramanujan conjecture. This is a contradiction. Hence Π is a CAP representation, i.e., an irreducible cuspidal automorphic representation associated to a parabolically induced representation. As stated by Theorem A of Soudry [26], every CAP representation associated to a Borel or Klingen parabolically induced representation is a constituent of a global θ -lift of an irreducible automorphic representation σ_T of $GO_T(\mathbb{A})$ for a quadratic field T. It is not hard to see the local θ -lift to $Sp_4(\mathbb{R})$ of $\sigma_{T,\infty}$ is not a holomorphic discrete series representation with Blattner parameter (3, 3). Hence Π is a CAP representation associated to a Siegel parabolically induced representation. On the authority of Piatetski-Shapiro [18], such a representation is a twist of a Saito–Kurokawa representation.

3.3. Weak endoscopic lift

Let f_5 be the 6-tuple product of Igusa theta constants defined in [7], and χ_{f_5} be the character of $\Gamma(2)$ obtained from f_5 through the Igusa transformation formula (cf. Lemmas 5.2, 5.3 in [7]). Let Π_{f_5} be the irreducible cuspidal automorphic representation of $GSp_4(\mathbb{A})$ associated to f_5 in Proposition 2.2. Our aim is to prove

Theorem 3.6. An irreducible cuspidal automorphic representation which is weakly equivalent to Π_{f_5} contributes to $H^{2,1}(\operatorname{Gr}_3^W(S_{\operatorname{ker}(\chi_{f_5})}, \mathbb{C}))$.

First, we recall that Π_{f_5} is a weak endoscopic lift of the pair $(\pi(\mu), \pi(\mu^3))$ of the following CMelliptic cusp forms. Let $E_{/\mathbb{Q}}$ be the CM-elliptic curve defined by the equation $y^2 = x^3 - x$. Let μ be the größencharacter of $\mathbb{Q}(i)^{\times}_{\mathbb{A}}$ such that $L(s - \frac{1}{2}, \mu) = L(s, E_{/\mathbb{Q}})$. At $v = \infty$, $\mu_{\infty}(z) = |z|/z, z \in \mathbb{C}^{\times}$. Thus, the lowest weights of the holomorphic discrete series representations $\pi(\mu)_{\infty}, \pi(\mu^3)_{\infty}$ are 2, 4, respectively. Let $\mathfrak{o} = \mathbb{Z}[i]$. Let $\mathfrak{p} \subset \mathfrak{o}$ be the prime ideal lying over 2. The conductor of μ is \mathfrak{p}^3 , and thus $\pi(\mu)_p, \pi(\mu^3)_p$ are unramified at $p \neq 2$. The group $(\mathfrak{o}/\mathfrak{p}^3)^{\times}$ is the cyclic group of order 4 generated by i (mod \mathfrak{p}^3), and $\mu_\mathfrak{p}$ is defined by $\mu_\mathfrak{p}(\mathfrak{i} \pmod{\mathfrak{p}^3}) = \mathfrak{i}$.

Lemma 3.7. The 2-components $\pi(\mu)_2$, $\pi(\mu^3)_2$ are equivalent and supercuspidal.

Proof. From the definition, μ_p is $\{\pm 1, \pm i\}$ -valued on \mathfrak{o}_p^{\times} . Thus $\mu_p = \overline{\mu}_p^3$ on \mathfrak{o}_p^{\times} . Noting that the central character of $\pi(\mu)$ is trivial, we have

$$\pi(\mu)_2 = \pi(\overline{\mu}^3)_2 = \overline{\pi(\mu^3)_2} = \pi(\mu^3)_2.$$

There is no quasi-character ξ of \mathbb{Q}_2^{\times} such that $\xi \circ N_{\mathbb{Q}(i)_p/\mathbb{Q}_2} = \mu$. Employing Lemma 4.6 of [9], we find that $\pi(\mu)_2$ is supercuspidal. This completes the proof. \Box

Employing this lemma and the Jacquet–Langlands theory, we find that both of $\pi(\mu), \pi(\mu^3)$ have the Jacquet–Langlands transfers $\pi(\mu)', \pi(\mu^3)'$ to PB(\mathbb{A})× for the definite quaternion algebra $B_{/\mathbb{Q}}$ defined in (3.8). In [17], we really construct a Siegel modular form lying in Π_{f_5} by the Yoshida lift $\Theta_2(\pi(\mu)' \boxtimes \pi(\mu^3)')$. Thus, $\Pi_{f_5} = \Theta_2(\pi(\mu)' \boxtimes \pi(\mu^3)')$. Further, employing Theorem 8.5 of [22], we find that the set of all weak endoscopic lifts of $(\pi(\mu), \pi(\mu^3))$ is

$$\left\{ \Theta_2 \left(\pi(\mu) \boxtimes \pi(\mu^3) \right), \Theta_2 \left(\pi(\mu)' \boxtimes \pi(\mu^3)' \right) \right\}.$$

Therefore, we guess that the irreducible cuspidal automorphic representation of $GSp_4(\mathbb{A})$ as in Theorem 3.6 is $\Theta_2(\pi(\mu) \boxtimes \pi(\mu^3))$, which is globally generic.

Next, in order to show the theorem, we will observe the local θ -lift $\theta_2(\pi(\mu)_2 \boxtimes \pi(\mu^3)_2) = \theta_2(\pi(\mu)_2 \boxtimes \pi(\mu)_2)$, which is the 2-component of $\Theta_2(\pi(\mu) \boxtimes \pi(\mu))$. For the sake of generality, let $B_{/\mathbb{Q}}$ be a general quaternion algebra and consider $\Theta_2(\sigma \boxtimes \sigma)$ for an irreducible cuspidal automorphic representation σ of PB(\mathbb{A})[×].

Proposition 3.8. Let σ be an irreducible cuspidal automorphic representation of PB(A). Let Φ_Q be the operator defined in Section 2.3. Then, $\Phi_Q (\Theta_2(\sigma \boxtimes \sigma))|_{GL(2)} = \sigma^{JL}$.

Proof. For a $\varphi \in \mathcal{S}(M_2(\mathbb{A})^2)$, put $\varphi_0(x) = \varphi(0, x) \in \mathcal{S}(M_2(\mathbb{A}))$. Take an $f \in \sigma$, and put $F = \theta_2(\varphi, f \boxtimes f)$. We calculate $\Phi_Q(F)|_{GL(2)} = \theta_1(\varphi_0, f \boxtimes f)$. We abbreviate $W_{F,\psi}^Q(e_Q(g, 1))$ as $W^1(g)$ for $g \in SL_2(\mathbb{A})$. Then

$$W^{1}(1) = \int_{Z_{1}(\mathbb{A})\setminus SO_{B}(\mathbb{A})} r^{1}(g, i_{\rho}(h_{1}, h_{2}))\varphi_{0}(1) \left(\int_{Z_{1}(\mathbb{Q})\setminus Z_{1}(\mathbb{A})} \overline{f}(bh_{1})f(bh_{2}) db\right) dh_{1} dh_{2}, \quad (3.10)$$

where Z_1 denotes the stabilizer subgroup of $1 \in B(\mathbb{Q})$, which is isomorphic to $\{(b, b) \mid b \in B(\mathbb{A})^{\times}\}$ via i_{ρ} . Obviously, the integral in the parenthesis is nontrivial, and so is $W^1(1)$. Thus $\theta_1(\varphi_0, f \boxtimes f)$ is nontrivial. Because $\theta_1(\varphi_0, f \boxtimes f)$ is right $GL_2(\mathbb{Z}_p)$ -invariant for almost all p, it is easy to see that $\Phi_Q(F)|_{GL_2(\mathbb{Q}_p)} \in \sigma_p^{JL}$. Noting the strong multiplicity theorem for GL(2), we find $\Phi_Q(F)|_{GL(2)} \in \sigma^{JL}$. Hence the assertion. \Box

Remark 2. This proof implies that $\Phi_0(\Theta_2(\sigma_1 \boxtimes \sigma_2)) = 0$ if $\sigma_1 \neq \sigma_2$.

Remark 3. If π_p is a supercuspidal representation, then $\theta_2(\pi_p \boxtimes \pi_p)$ (resp. $\theta_2(\pi'_p \boxtimes \pi'_p)$) is the constituent $\tau(S, \pi_p)$ (resp. $\tau(T, \pi_p)$) of the parabolically induced representation $1 \rtimes \pi_p$ (see [23] for the meanings of these symbols).

From this proof, there are a pair of $\phi_1 \in S(\mathbb{B}(\mathbb{A}))$ and $f_0 \in \sigma$ such that $\theta_1(\phi_1, f_0 \boxtimes f_0)$ is a newform of σ^{JL} . In particular, if we set a $\varphi \in S(\mathbb{B}(\mathbb{A})^2)$ so that $\varphi_0 = \phi_1$, then $\theta_2(\varphi, f \boxtimes f)$ is nontrivial. For example, set $\varphi(x_1, x_2) = \phi_1(x_2)\varphi'_{\infty}(x_1) \otimes_p \operatorname{ch}(x_1; \mathcal{R}_p)$, where \mathcal{R} is a maximal order of $\mathbb{B}(\mathbb{Q})$ and φ'_{∞} is an arbitrary Schwartz–Bruhat function on \mathbb{B}_{∞} such that $\varphi'_{\infty}(0) \neq 0$. Then, $\theta_2(\varphi, f_0 \boxtimes f_0)$ is right $\operatorname{Kl}_p(\operatorname{ord}_p(N))$ -invariant if \mathbb{B}_p is split, and $\operatorname{Kl}'_p(\operatorname{ord}_p(N))$ -invariant otherwise, where N is the level of σ^{JL} , and

$$\begin{split} \mathrm{Kl}_{p}(n) &:= \begin{bmatrix} \mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \end{bmatrix} \cap \mathrm{GSp}_{4}(\mathbb{Z}_{p}), \\ \mathrm{Kl}'_{p}(n) &:= \begin{bmatrix} \mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \mathbb{Z}_{p} \end{bmatrix} \cap \mathrm{GSp}_{4}(\mathbb{Z}_{p}) \end{split}$$

for an integer *n*. van Geemen and van Straten [7] conjectured that, up to the Euler factors at 2,

$$L(s, \Pi_{f_i}; \operatorname{spin}) = L(s, \chi_i \pi(\mu)) L(s, \chi_i \pi(\mu^3))$$

for $4 \leq i \leq 6$, where $\chi_4 = \chi^{(-2)}$, $\chi_5 = 1$, $\chi_6 = \chi^{(2)}$.

Corollary 3.9. The above conjecture is true.

Proof. It is possible to show the level of $\pi(\mu)$ (resp. $\chi^{(\pm 2)}\pi(\mu)$) is 2⁵ (resp. 2⁶) (cf. Proposition 4.8 of [17]). From the above argument, the local θ -lift $\theta_2(\pi(\mu)'_2 \boxtimes \pi(\mu)'_2)$ (resp. $\theta_2(\chi^{(\pm 2)}\pi(\mu)'_2 \boxtimes \chi^{(\pm 2)}\pi(\mu)'_2)$) has a local right $Kl'_2(5)$ (resp. $Kl'_2(6)$)-invariant Q-degenerate Whittaker function. Now, noting that

$$\mathsf{Kl}_2'(6) \simeq \begin{bmatrix} \mathbb{Z}_2 & 2^7 \mathbb{Z}_2 & 2^5 \mathbb{Z}_2 & 2^4 \mathbb{Z}_2 \\ 2^{-1} \mathbb{Z}_2 & \mathbb{Z}_2 & 2^4 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 \\ 2^{-4} \mathbb{Z}_2 & 2^2 \mathbb{Z}_2 & \mathbb{Z}_2 & 2^{-1} \mathbb{Z}_2 \\ 2^2 \mathbb{Z}_2 & 2^3 \mathbb{Z}_2 & 2^7 \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix} \cap \mathsf{GSp}_4(\mathbb{Q}_2),$$

one can show that the local θ -lift has a right $\Gamma(4, 8)_2$ -invariant vector and verify the conjecture in the same manner as in 3.1. \Box

Finally, we will prove the theorem. Put

$$f_5'(Z) := \frac{\theta_{(1,0,0,0)}(Z)\theta_{(1,1,0,0)}(Z)}{\theta_{(1,0,0,1)}(Z)\theta_{(0,0,0,0)}(Z)}$$

From f'_5 , a character of $\Gamma(2)$ is obtained through the Igusa transformation formula. Using Proposition 6.2 of [7], we check that this character coincide with χ_{f_5} . For our computation, we put

$$f_5''(Z) = f_5'|_0\eta_2(Z) = c \frac{\theta_{(0,0,1,0)}(Z)\theta_{(0,0,1,1)}(Z)}{\theta_{(0,1,1,0)}(Z)\theta_{(0,0,0,0)}(Z)}$$

with $c \neq 0$. Let $\chi_{f_5''}$ be the character of $\Gamma(2)$ obtained from f_5'' . Then $\ker(\chi_{f_5}) \simeq \ker(\chi_{f_5''})$. We can regard f_5'' as the θ -kernel $\theta_2(\phi'')(g, 1)$ with $\phi'' = \bigotimes_v \phi_v'' \in \mathcal{S}(M_2(\mathbb{A})^2)$. In particular, $\phi_2''(x_1, x_2)$ is in the form $\phi_1''(x_1) \times \phi_0''(x_2)$ such that

- $\phi_1''(0) \neq 0$.
- $\phi_0''(\varrho(h_1, h_2)x_2) = \phi_0''(x_2)$ if $h_1, h_2 \in \tilde{\Gamma}_0^{(1)}(32)_{\mathbb{A}}$.

For a positive integer κ and a congruence subgroup $\Gamma_1 \subset GL_2(\mathbb{Q})$, let $S_{\kappa}^{(1)}(\Gamma_1)$ denote the space of elliptic cusp forms of weight κ with respect to Γ_1 . Identifying this space with a subspace of automorphic forms on $GL_2(\mathbb{A})$, we define the subspace

$$S_{\kappa}^{(1)}(\Gamma_1)^{\otimes 2, \operatorname{dis}} = \left\{ (f_1, f_2) \in S_{\kappa}^{(1)}(\Gamma_1)^{\otimes 2} \mid \int_{Z(\mathbb{A})\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A})} \overline{f}_1(g) f_2(g) \, \mathrm{d}g \neq 0 \right\}$$

of automorphic forms on $GL_2(\mathbb{A})^{\otimes 2}$. Composing Remark 2 and the proof of Theorem 2 of Oda [15], we can obtain the following lemma.

Lemma 3.10. Let κ be a positive integer. Let Γ_1 be a congruence subgroup of $GL_2(\mathbb{Q})$. Suppose that a $\varphi \in \bigotimes_{p < \infty} S(M_2(\mathbb{Q}_p))$ satisfies that $\varphi(\varrho(h_1, h_2)x) = \varphi(x)$ for any $h_1, h_2 \in \Gamma_{1,\mathbb{A}}$. Then, there is a $\varphi_{\infty} \in S(M_2(\mathbb{R}))$ such that $\theta_1(\varphi_{\infty} \times \varphi, f) \neq 0$ for a certain $f \in S_{\kappa}^{(1)}(\Gamma_1)^{\otimes 2, \text{dis}}$.

Applying this lemma to the above $\bigotimes_{p<\infty} \phi_{0,p}''$, we find that there is ϕ''' such that $\phi_p''' = \phi_p''$ for all $p < \infty$ and $\theta_1(\phi''', f)$ is not trivial for a certain $f \in S_2^{(1)}(\Gamma_0^{(1)}(32))^{\otimes 2, \text{dis}}$. However, $S_2^1(\Gamma_0^{(1)}(32))$ is 1-dimensional, generated by a newform f^{new} of $\pi(\mu)$. Thus

$$\theta_1(\phi^{\prime\prime\prime}, f^{\text{new}} \boxtimes f^{\text{new}}) \neq 0.$$

From the above argument, $\Theta_2(\pi(\mu) \boxtimes \pi(\mu))$ has a right ker $(\chi_{f_5''})_{\mathbb{A}}$ -invariant vector. Thus $\Theta_2(\pi(\mu) \boxtimes \pi(\mu^3))$ also has a right ker $(\chi_{f_5''})_{\mathbb{A}}$ -invariant vector, and Theorem 3.6 follows immediately.

4. Hermitian modular forms

Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. For a Hermitian space W over K, let $U_W(K)$ denote the unitary group acting on W and $GU_W(K)$ the similitude one. In particular, we write

$$\mathrm{GU}_{n,n}(K) = \left\{ g \in \mathrm{GL}_{2n}(K) \mid g\eta_n^{\ t} \overline{g} = \nu(g)\eta_n, \ \nu(g) \in \mathbb{Q}^{\times} \right\}$$

and the 2*n*-dimensional split Hermitian space as $W_{n,n}$. Let $B_{/\mathbb{Q}}$ be a definite quaternion algebra such that $B_{\mathbb{Q}} \otimes K \simeq M_2(K)$. We set the 6-dimensional positive quadratic space $V = K + B_{\mathbb{Q}}$. Then, $PGSO_V(\mathbb{Q}) \simeq PGU_{W_B}(K)$ for a certain 4-dimensional Hermitian space W_B (cf. Section 11 of [12]). Let $r_{U_{W_{n,n}\otimes W_B}}$ be the global Weil representation of $U_{W_{n,n}\otimes W_B}(K_{\mathbb{A}})$ associated to the trivial character of \mathbb{A}^{\times} and the additive character $\psi_K = \psi \circ \operatorname{Trace}_{K/\mathbb{Q}}$ (cf. [8,30]). We get the Weil representation $r_{U,n}$ of $\{(g,h) \in GU_{n,n} \times GU_{W_B} | v(g) = v(h)\}$ by restricting $r_{U_{W_n,n}\otimes W_B}$. For a $\varphi \in \mathcal{S}(W_B(K_{\mathbb{A}})^n)$, we define

$$\Theta_{U,n}(\varphi)(g,h) = \sum_{y \in W_{\mathcal{B}}(K)^n} r_{U,n}(g,h)\varphi(y).$$

ŧ

For an automorphic form f on $GU_4(K_A)$, define

$$\theta_{U,n}(\varphi,f)(g) = \int_{\mathsf{U}_{\mathsf{W}_{\mathsf{B}}}(K) \setminus \mathsf{U}_{\mathsf{W}_{\mathsf{B}}}(K_{\mathbb{A}})} \theta_{U,n}(\varphi)(g,hh_{1}) f(hh') \, \mathrm{d}h,$$

where h' is chosen so that v(g) = v(h') and dh is a right Haar measure on $U_{W_B}(K) \setminus U_{W_B}(K_{\mathbb{A}})$. Because W_B is positive definite, this integral converges absolutely, and $\theta_{n,n}(\varphi, f)$ is an automorphic form on $GU_{n,n}(K_{\mathbb{A}})$. For an irreducible cuspidal automorphic representation σ of $GU_4(K_{\mathbb{A}})$, let $\Theta_{U,n}(\sigma)$ denote the space spanned by $\theta_{U,n}(\varphi, f)$ with $f \in \sigma$ and $\varphi \in \mathcal{S}(W_B(K_{\mathbb{A}})^n)$. In the case n = 2, imitating the method in Section 4 of [27], it is possible to show that

$$\Theta_{U,2}(\sigma)_w \simeq \sigma_w,$$

if σ_w , K_w/\mathbb{Q}_v and B_v are all unramified, where w is a place of K lying over a place v of \mathbb{Q} . We will identify irreducible cuspidal automorphic representations of $PGSO_V(\mathbb{A})$ and those of $PGU_{W_B}(K_{\mathbb{A}})$ via the isomorphism. Then, consider global θ -lifts of σ to $GSp_4(\mathbb{A})$. Let σ' be an irreducible constituent of $\sigma|_{SO_V}$. Assume $\Theta_2(\sigma) \neq 0$. Let Π' be an irreducible constituent of $\Theta_2(\sigma)$. Using [14], we calculate

$$L_{S_{\sigma'}}(s,\sigma') = \zeta_{S_{\sigma'}}(s)L_{S_{\sigma'}}\left(s,\Pi',\left(\frac{-d}{*}\right);r_5\right),\tag{4.1}$$

where $L_{S_{\sigma'}}(s, \sigma')$ is the standard Langlands *L*-function of σ' (of degree 6) and $L_{S_{\sigma'}}(s, \Pi', \chi_K; r_5)$ is the $(\frac{-d}{*})$ -twist of $L_{S_{\sigma'}}(s, \Pi'; r_5)$ (note $S_{\sigma'} = S_{\Pi'}$). Assume $\Theta_{U,2}(\sigma) \neq 0$. Let τ' be an irreducible constituent of $\Theta_{U,2}(\sigma)$. Using the description of *L*-functions of unramified $\tau'_w \in Irr(GU_2(K_w))$ in Section 3 of [11], we calculate

$$L_{S_{\sigma'}}(s,\tau';\wedge_t^2) = L_{S_{\sigma'}}(s,\sigma').$$

Now (1.2) is shown. We will show the existence of \tilde{F} of Theorem B.

Proposition 4.1. Let K, $B_{/\mathbb{Q}}$, V and W_B be as above. Let σ be an irreducible automorphic representation of $PGSO_V(\mathbb{A}) \simeq PGU_{W_R}(\mathbb{A})$. If $\Theta_2(\sigma)$ is cuspidal and nontrivial, then $\Theta_{U,2}(\sigma) \neq 0$.

Proof. Since $\Theta_2(\sigma) \neq 0$, there is an automorphic form $f \in \operatorname{Ind}_{GSO_V}^{GO_V} \sigma$ and $\phi \in \mathcal{S}(V(\mathbb{A})^2)$ such that

$$F(g) := \int_{O_V(\mathbb{Q})\setminus O_V(\mathbb{A})} \theta_2(\phi)(g, hh_0) f(hh_0) \, \mathrm{d}h$$

is nontrivial, where $h_0 \in GO_V(\mathbb{A})$ is chosen so that $\nu(g) = \nu(h_0)$. Since *V* is positive definite, *F* is a cusp form on $GSp_4(\mathbb{A})$ is related to a (holomorphic) Siegel modular form. Since *F* is a cusp form, $F_T(1) \neq 0$ for a positive $T = {}^tT$. Take $x_1, x_2 \in V$ so that $(x_1, x_2) = T$. Let $Z_{(x_1, x_2)}(\mathbb{Q}) \subset O_V(\mathbb{Q})$ be the pointwise stabilizer subgroup of (x_1, x_2) . Then,

$$F_T(1) = \int_{Z_{(x_1,x_2)}(\mathbb{Q})\setminus \mathsf{O}_V(\mathbb{A})} r^2(1,h)\phi(x_1,x_2)f(h)\,\mathrm{d}h$$

Hence,

$$\int_{Z_{(x_1,x_2)}(\mathbb{Q})\setminus Z_{(x_1,x_2)}(\mathbb{A})} f(zh) \, \mathrm{d} z \neq 0.$$

Because $Z_{(x_1,x_2)}(\mathbb{Q}) \simeq O_4(\mathbb{Q})$, there is a subgroup $U_x(K) (\simeq U_2(K))$ of $Z_{(x_1,x_2)}(\mathbb{Q})$ such that

$$\int_{\mathsf{U}_x(K)\setminus\mathsf{U}_x(K_\mathbb{A})} f(zh)\,\mathrm{d} z\neq 0.$$

Now then, we will consider $\Theta_{U,2}(\sigma)$. Let $\langle *, * \rangle$ denote the Hermite form of W_B . Notice that U_x stabilizes a pair $(y_1, y_2) \in W_B(K)^2$. Put $Y = \begin{bmatrix} \langle y_1, y_1 \rangle \langle y_1, y_2 \rangle \\ \langle y_2, y_1 \rangle \langle y_2, y_2 \rangle \end{bmatrix}$, which is positive definite. Then, for a $\varphi \in \mathcal{S}(W_B(K_A)^2)$, the Fourier coefficient of $\theta_{U,2}(\varphi, f)(g)$ at Y is

$$\int_{U_{x}(K)\setminus U_{W_{B}}(K_{\mathbb{A}})} r_{U,2}(g,h)\varphi(y_{1},y_{2})f(h) dh$$

= vol $\left(U_{x}(K)\setminus U_{x}(K_{\mathbb{A}})\right)^{-1} \int_{U_{x}(K_{\mathbb{A}})\setminus U_{W_{B}}(K_{\mathbb{A}})} r_{U,2}(g,h)\varphi(y_{1},y_{2})\left(\int_{U_{x}(K)\setminus U_{x}(K_{\mathbb{A}})} f(zh) dz\right) d\dot{h},$

where $d\dot{h}$ indicates the Haar measure of $U_x(K) \setminus U_x(K_{\mathbb{A}})$ associated to dh. Since the integral in the parenthesis is nontrivial, it is possible to choose φ so that this value does not vanish at g = 1 (cf. concluding remarks in [28]). Hence the assertion. \Box

Finally, we will show the last assertion of the theorem, observing the *L*-function $L_{S_{\tau}}(s, \tau; \wedge_t^2)$ for an irreducible, noncuspidal, automorphic representation τ of $GU_{2,2}(K_{\mathbb{A}})$. Let $K^1 = \{z \in K^{\times} | N_{K/\mathbb{Q}}(z) = 1\}$. Let $P_1(K) = N_1(K)M_1(K)$ with

$$N_{1}(K) = \left\{ \begin{bmatrix} 1 & v & w \\ 1 & \overline{w} & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & u & \\ & 1 & \\ & & -u & 1 \end{bmatrix} \middle| v \in \mathbb{Q}, \ u, w \in K \right\},$$
$$M_{1}(K) = \left\{ \begin{bmatrix} tz & & & \\ & z^{c}\alpha & & z^{c}\beta \\ & & t^{-1}zv(g_{1}) & \\ & & z^{c}\gamma & & z^{c}\delta \end{bmatrix} \middle| g_{1} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in \mathrm{GU}_{1,1}(K), \ z \in K^{1}, \ t \in \mathbb{Q}^{\times} \right\}.$$

The modular character δ_{P_1} of $P_1(K_{\mathbb{A}})$ is given by $\delta_{P_1}(nm) = |\nu(g)|^{-4}|t|^6$. We embed $\operatorname{GU}_{1,1}(K) \times K^1 \times \mathbb{Q}^{\times}$ into $M_1(K)$, naturally. For a triple of irreducible automorphic representations π, μ, ξ of $\operatorname{GU}_{1,1}(K_{\mathbb{A}}) \times K_{\mathbb{A}}^1 \times \mathbb{A}^{\times}$, let $\pi \otimes \mu \otimes \xi$ denote the representation of $P_1(K_{\mathbb{A}})$ sending $nm = n(g_1, z, t)$ to $\pi(g_1)\mu(z)\xi(t)$. Hermitian modular forms of $\operatorname{SU}_{2,2}(K)$ are related to automorphic forms on $\operatorname{GU}_{2,2}(K_{\mathbb{A}})$ with a manner similar to that in Section 2.1. We will identify them. A Hermitian modular form is noncuspidal, if and only if

$$\Phi_U(F)(g,t,z;h) := \operatorname{vol}(N_1(k) \setminus N_1(\mathbb{A}))^{-1} \int_{N_1(K) \setminus N_1(K_{\mathbb{A}})} F(n(g_1,t,z)h) \, \mathrm{d}n$$

76

is not a zero function of (g_1, t, z) at some $h \in \text{GU}_{2,2}(K_{\mathbb{A}})$, where Φ_U is equal to the Siegel operator in [13], essentially. Hence, if a noncuspidal τ is generated by a Hermitian modular form, then τ is a constituent of an induced representation from $\pi \otimes \mu \otimes \xi$. In this case, there is an automorphic form $f \in \tau$, such that

$$\Phi_U(f)(nmh) = |\nu(g_1)|^{-2} |t|^3 \pi(g_1) \mu(z)\xi(t) \Phi_U(f)(h).$$

Further, if the central character of π_1 is trivial, with regarding π_1 as an irreducible automorphic representation of $PGL_2(\mathbb{A}) \simeq SO_{2,1}(\mathbb{A}) \simeq PGU_{1,1}(K_{\mathbb{A}}))$, we write

$$L_{S_{\tau}}(s,\tau;\wedge_{t}^{2}) = L_{S_{\tau}}\left(s - \frac{1}{2},\sigma_{1}\right)L_{S_{\tau}}\left(s - \frac{1}{2},\sigma_{1},\xi\right)L_{S_{\tau}}(s,\mu).$$
(4.2)

Now, apply the above argument to our case. Since every automorphic form of $\Theta_{U,2}(\sigma)$ is related to a Hermitian modular form of weight 4, the weight of ξ is 4 - 3 = 1, if $\Theta_{U,2}(\sigma)$ is noncuspidal. Since the central character of σ is trivial, so is that of $\Theta_{U,1}(\sigma)$. Then, obviously, (4.2) does not satisfy the Ramanujan conjecture. The last assertion of the theorem follows, immediately. This completes the proof.

Acknowledgments

I express my thanks to Professor R. Salvati Manni for suggesting to solve the conjectures, and to Professor T. Ibukiyama and Professor T. Yamauchi for their kind advice and encouragement.

References

- [1] T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields, Nagoya Math. J. 71 (1978) 149-167.
- [2] M. Asgari, F. Shahidi, Generic transfer from GSp(4) to GL(4), Compos. Math. 142 (2006) 541-550.
- [3] D. Blasius, Hilbert modular forms and Ramanujan conjecture, arXiv:math/0511007 [math.NT], 2008.
- [4] J. Cogdell, I. Piatetski-Shapiro, Base change for the Saito-Kurokawa representations of PGSp(4), J. Number Theory 30 (1988) 298–320.
- [5] S.A. Evdokimov, Euler products for congruence subgroups of the Siegel group of genus 2, Math. USSR Sb. 28 (4) (1976) 431–458.
- [6] B. van Geemen, N.O. Nygaard, On the geometry and arithmetic of some Siegel modular threefolds, J. Number Theory 53 (1995) 45-87.
- [7] B. van Geemen, D. van Straten, The cuspform of weight 3 on $\Gamma_2(2, 4, 8)$, Math. Comp. 61 (1993) 849–872.
- [8] S. Gelbert, J. Rogawski, L-functions and Fourier–Jacobi coefficients for the unitary groups U(3), Invent. Math. 105 (1991) 445–472.
- [9] H. Jacquet, R.P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math., vol. 114, Springer, 1970.
- [10] M. Harris, D. Soudry, R. Taylor, *l*-adic representations associated to modular forms over imaginary quadratic fields, Invent. Math. 112 (1993) 377–411.
- [11] H. Kim, M. Krishnamurthy, Twisted exterior square lift from GU(2, 2)E/F to GL₆/F, J. Ramanujan Math. Soc. 23 (4) (2008) 381–412.
- [12] Max A. Knus, Quadratic Forms, Clifford Algebras and Spinors, Lect. Notes Semin. Mat. vol. 1, Campinas, 1988.
- [13] A. Krieg, Modular Forms on Half-Spaces of Quaternions, Lecture Notes in Math., vol. 1143, Springer, 1985.
- [14] S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986) 229-255.
- [15] T. Oda, On modular forms associated with indefinite quadratic forms of signature (2, n-2), Math. Ann. 231 (1977) 97–144.
- [16] T. Oda, J. Schwermer, Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two, Math. Ann. 286 (1-3) (1990) 481-509.
- [17] T. Okazaki, *L*-functions of $S_3(\Gamma(4, 8))$, J. Number Theory 125 (2007) 117–132.
- [18] I.I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983) 309-338.
- [19] I.I. Piatetski-Shapiro, L-functions for GSp₄, Pacific J. Math. 181 (1997) 259–275.
- [20] T. Przebinda, The oscillator duality correspondence for the pair O(2, 2), $Sp(2, \mathbb{R})$, Mem. Amer. Math. Soc. 79 (403) (1989).
- [21] B. Roberts, The nonarchimedean theta correspondence for GSp(2) and GO(4), Trans. Amer. Math. Soc. 351 (2) (1999) 781– 811.
- [22] B. Roberts, Global L-packets for GSp(2) and theta lifts, Doc. Math. 6 (2001) 247-314.
- [23] B. Roberts, R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Math., vol. 1918, Springer, 2007.
- [24] R. Schmidt, The Saito-Kurokawa lift and functoriality, Amer. J. Math. (2005) 209-240.
- [25] F. Shahidi, On certain L-function, Amer. J. Math. 103 (1981) 297-355.

- [26] D. Soudry, The CAP representation of GSp(4, A), J. Reine Angew. Math. 383 (1988) 87–108.
- [27] H. Yoshida, Siegel's modular forms and the arithmetics of quadratic forms, Invent. Math. 60 (1980) 193-248.
- [28] H. Yoshida, On Siegel modular forms obtained by theta series, J. Reine Angew. Math. 352 (1984) 184-219.
- [29] J.L. Waldspurger, Correspondence de Shimura et quaternions, Forum Math. 3 (1991) 219-307.
- [30] T. Watanabe, Theta lifting of cusp forms on the unitary group U(d, d), Duke Math. J. 67 (1) (1992) 159–187.
- [31] R. Weissauer, Four dimensional Galois representations, Astérisque 302 (2005) 67-150.