L-functions of $S_{3}\left(\Gamma_{2}(2,4,8)\right)$

Takeo Okazaki ${ }^{1}$

Department of Mathematics, Faculty of Science, Nara Woman University, Kitauoyahigashi-machi, Nara 630-8506, Japan

A R T I CLE I N F O

Article history:

Received 27 April 2010
Revised 29 January 2011
Accepted 25 June 2011
Available online 27 August 2011
Communicated by D. Zagier

MSC:

11F27
11 F55
11 F70
14K25
Keywords:
Theta function
Theta correspondence
Siegel threefold variety and modular form
Hermitian modular form

Abstract

van Geemen and van Straten [B. van Geemen, D. van Straten, The cuspform of weight 3 on $\Gamma_{2}(2,4,8)$, Math. Comp. 61 (1993) 849872] showed that the space of Siegel modular cusp forms of degree 2 of weight 3 with respect to the so-called Igusa group $\Gamma_{2}(2,4,8)$ is generated by 6 -tuple products of Igusa theta constants, and each of them are Hecke eigenforms. They conjectured that some of these products generate Saito-Kurokawa representations, weak endoscopic lifts, or D-critical representations. In this paper, we prove these conjectures. Additionally, we obtain holomorphic Hermitian modular eigenforms of $\mathrm{GU}(2,2)$ of weight 4 from these representations.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathfrak{H}_{2}=\left\{Z={ }^{t} Z \in \mathrm{M}_{2}(\mathbb{C}) \mid \Im(Z)>0\right\}$ be the Siegel upper half space of degree 2. Let

$$
\theta_{m}(Z)=\sum_{x \in \mathbb{Z}^{2}} \exp \left(2 \pi \mathrm{i}\left(\frac{1}{2}\left(x+\frac{m^{\prime}}{2}\right) Z^{t}\left(x+\frac{m^{\prime}}{2}\right)+\left(x+\frac{m^{\prime}}{2}\right) t\left(\frac{m^{\prime \prime}}{2}\right)\right)\right)
$$

be the Igusa theta constant with $m=\left(m^{\prime}, m^{\prime \prime}\right) \in \mathbb{Q}^{2} \times \mathbb{Q}^{2}$. For a congruence subgroup Γ of $\mathrm{Sp}_{4}(\mathbb{Z})$ $\left(\subset \operatorname{SL}_{4}(\mathbb{Z})\right)$, let S_{Γ} denote the Siegel modular 3 -fold and $S_{3}(\Gamma)$ denote the space of Siegel modular cusp forms of weight 3 with respect to Γ. van Geemen and van Straten showed that $S_{3}\left(\Gamma_{2}(2,4,8)\right)$

[^0]is spanned by certain 6 -tuple products $\prod_{j=1}^{6} \theta_{m_{j}}\left(n_{j} Z\right)$ with $m_{j} \in\{0,1\}^{4}, n_{j} \in\{1,2\}$ using the theta embedding of $S_{\Gamma(2,4,8)}$ into \mathbb{P}^{13} (cf. [6]), where $\Gamma_{2}(2,4,8)=\Gamma(2,4,8)$ is defined by

$\left\{\left.I_{4}+4\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}_{4}(\mathbb{Z}) \right\rvert\, A, B, C, D \in \mathrm{M}_{2}(\mathbb{Z}), \operatorname{diag}(B) \equiv \operatorname{diag}(C) \equiv 0, \operatorname{tr}(A) \equiv 0(\bmod 2)\right\}$.
Through Igusa's transformation formula, $\mathrm{Sp}_{4}(\mathbb{Z})$ acts on these 6 -tuple products. They showed that $S_{3}(\Gamma(2,4,8))$ is decomposed into eleven irreducible $\mathrm{Sp}_{4}(\mathbb{Z})$-modules, and each module is generated by acting $\mathrm{Sp}_{4}(\mathbb{Z})$ a 6 -tuple product of Igusa theta constants. Further, they showed that these 6 -tuple products is associated to irreducible cuspidal automorphic representations of $\mathrm{PGSp}_{4}(\mathbb{A})$ (cf. Proposition 2.2). Computing some eigenvalues of Evdokimov's Hecke operators on

$$
\begin{aligned}
& g_{1}(Z):=\theta_{(0,0,0,0)}(2 Z) \theta_{(1,0,0,0)}(Z) \theta_{(0,1,0,0)}(Z) \theta_{(0,0,1,0)}(Z) \theta_{(0,0,1,0)}(Z) \theta_{(0,0,0,1)}(Z), \\
& g_{4}(Z):=\theta_{(0,0,0,0)}(2 Z) \theta_{(1,0,0,0)}(2 Z) \theta_{(0,1,0,0)}(2 Z) \theta_{(0,0,1,0)}(Z) \theta_{(0,0,0,1)}(Z) \theta_{(0,0,1,1)}(Z),
\end{aligned}
$$

they gave:
Conjecture. (See van Geemen and van Straten [7].) Let $\Pi_{g_{i}}$ be the irreducible cuspidal automorphic representation of $\mathrm{PGSp}_{4}(\mathbb{A})$ associated to g_{i}. Then the spinor L-functions (of degree 4) are

$$
L\left(s, \Pi_{g_{1}} ; \operatorname{spin}\right)=L(s, \lambda), \quad L\left(s, \Pi_{g_{4}} ; \text { spin }\right)=L\left(s-\frac{1}{2},\left(\frac{-2}{*}\right)\right) L\left(s+\frac{1}{2},\left(\frac{-2}{*}\right)\right) L\left(s, \rho_{1}\right),
$$

up to the Euler factors at 2. Here λ is a größencharacter of the bi-quadratic CM-field $\mathbb{Q}(i, \sqrt{2})$ of conductor 2, ρ_{1} is an irreducible cuspidal automorphic representation of $\operatorname{PGL}_{2}(\mathbb{A})$ of lowest weight 4 of level 8 , and $\left(\frac{*}{*}\right)$ is the Legendre symbol.

In this paper, we prove
Theorem A. The conjecture is true.
More precisely, their conjecture referred to Andrianov-Evdokimov's L-functions $L\left(s, g_{i} ;\right.$ AE $)$. However, $L\left(s, g_{i} ; \mathrm{AE}\right.$) is essentially equal to the (partial) spinor L-functions of $\Pi_{g_{i}}$ (cf. Proposition 2.1). Anyway, Theorem A means that $\Pi_{g_{1}}$ is a D-critical representation in the sense of Weissauer [31], and $\Pi_{g_{4}}$ is the $\left(\frac{-2}{*}\right)$-twist of a Saito-Kurokawa representation associated to $\rho_{1} \otimes\left(\frac{-2}{*}\right)$. Let $\mathrm{Gr}_{3}^{W} H^{3}\left(S_{\Gamma_{g_{i}}}, \mathbb{C}\right)$ be the graded quotient of degree 3 of a mixed Hodge structure on $H^{3}\left(S_{\Gamma_{g_{i}}}, \mathbb{C}\right)$. Theorem A also means that g_{i} corresponds to a generator of the 1-dimensional space $H^{3,0}\left(\mathrm{Gr}_{3}^{W} H^{3}\left(S_{\Gamma_{g_{i}}}, \mathbb{C}\right)\right)$ associated to a quotient $S_{\Gamma_{g_{i}}}$ of $S_{\Gamma(2,4,8)}$ (cf. Proposition 2.3). We are interested in the quotients $S_{\Gamma_{f_{i}}}, S_{\bar{g}_{i}}$ of $S_{\Gamma(2,4,8)}$, for various reasons. Let $S_{\Gamma_{5}}^{\prime}$ be a resolution of the Satake compactification of $S_{\Gamma_{f_{5}}}$. van Geemen and Nygaard [6] calculated the Hodge numbers $h^{3,0}$ and $h^{2,1}$ of $S_{\Gamma_{f_{5}}}^{\prime}$ are both equal to one and showed that the L-function of the third etale cohomology of $S_{\Gamma_{f_{5}}}^{\prime}$ is equal to $L\left(s-\frac{3}{2}, \mu\right) L\left(s-\frac{3}{2}, \mu^{3}\right)$, up to the Euler factors at 2 , where μ is the unitary größencharacter related to the CM-elliptic curve $E_{/ \mathbb{Q}}: y^{2}=x^{3}-x$. Because f_{5} corresponds to the generator of $H^{3,0}\left(\operatorname{Gr}_{3}^{W} H^{3}\left(S_{\Gamma_{f_{5}}}, \mathbb{C}\right)\right)$, it was conjectured in [7,6] and verified in [17] that $L\left(s, \Pi_{f_{5}} ;\right.$ spin $)=L(s, \mu) L\left(s, \mu^{3}\right)$, up to the Euler factors at 2. Thus, $\Pi_{f_{5}}$ is a weak endoscopic lift of $\left(\pi(\mu), \pi\left(\mu^{3}\right)\right)$ in the sense of [31] and we have

$$
L\left(s, H_{\mathrm{et}}^{3}\left(S_{\Gamma_{f_{5}}}^{\prime}, \mathbb{Q}_{2}\right)\right)=L\left(s-\frac{3}{2}, \Pi_{f_{5}} ; \text { spin }\right),
$$

up to the Euler factors at 2 , where $\pi(\mu)$ indicates the irreducible cuspidal automorphic representation of $\mathrm{PGL}_{2}(\mathbb{A})$ associated to μ. From the above Hodge numbers and these L-functions, it is natural to guess that a weak endoscopic lift of $\left(\pi(\mu), \pi\left(\mu^{3}\right)\right)$ contributes to $H^{2,1}\left(\operatorname{Gr}_{3}^{W} H^{3}\left(S_{\Gamma_{5}}, \mathbb{C}\right)\right)$. In Section 3.3, we will give the desired weak endoscopic lift.

We have verified in [17] their conjectures on $L\left(s, \Pi_{f_{i}}\right.$; spin) for $1 \leqslant i \leqslant 6$, and we will verify in another work in preparation their conjectures for $\Pi_{f_{7}}$ and $\Pi_{g_{3}}$. Here f_{i}, g_{j} with $1 \leqslant i \leqslant 7,1 \leqslant j \leqslant 4$ are certain 6 -tuple products of Igusa theta constants. Combining all these works, we will complete the proof for the conjectures given in [7].

By the way, our result means that there are irreducible automorphic representations of GSO(6) related to these representations of $\operatorname{GSp}(4)$ with the θ-correspondence. We find holomorphic Hermitian modular forms of $\mathrm{GU}(2,2)$ of weight 4 from the Siegel modular forms of weight 3 by the following theorem.

Theorem \mathbf{B}. Let $K=\mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. Let $\mathrm{B}_{\mathbb{Q}}$ be a definite quaternion algebra such that $\mathrm{B} \otimes K \simeq \mathrm{M}_{2}(K)$. Put $V=K+\mathrm{B}_{\mathbb{Q}}$. Suppose that a Siegel modular eigen-cusp form F of degree 2 of weight 3 is given by a θ-lift from PGSO_{V}. Then, there is a holomorphic Hermitian modular form \tilde{F} of $\mathrm{PGU}_{2,2}(K)$ of weight 4 with

$$
\begin{equation*}
L\left(s, \tilde{F} ; \wedge_{t}^{2}\right)=\zeta(s) L\left(s, F,\left(\frac{-d}{*}\right) ; r_{5}\right) \tag{1.2}
\end{equation*}
$$

outside of finitely many bad places. If F satisfies the generalized Ramanujan conjecture at almost all good places, then \tilde{F} is a cusp form. Here $L\left(s, F,\left(\frac{-d}{*}\right) ; r_{5}\right)$ is the $\left(\frac{-d}{*}\right)$-twist of the L-function of degree five, and $L\left(s, \tilde{F} ; \wedge_{t}^{2}\right)$ is the L-function of \tilde{F} with respect to the twisted exterior square map from the L-group ${ }^{L} \mathrm{GU}_{2,2}(\mathbb{C})$ to $\mathrm{GL}_{6}(\mathbb{C})$ introduced by Kim and Krishnamurthy [11].

Notice that a holomorphic Hermitian cusp form of $\operatorname{GU}(2,2)$ of weight 4 is canonically identified with a holomorphic differential 4 -form on a modular 4 -fold. A globally generic weak endoscopic lift of $\operatorname{PGSp}_{4}(\mathbb{A})$ is sent to a noncuspidal representation of $\operatorname{PGL}_{4}(\mathbb{A})$ through the generic transfer lift to $\mathrm{GL}_{4}(\mathbb{A})$ (cf. [2]). However, a holomorphic weak endoscopic lift as in Theorem B is sent to a cuspidal automorphic holomorphic representation.

The paper is organized as follows. After reviewing a result of van Geemen and van Straten [7], and summarizing our main tools θ-lifts, and Whittaker functions in Section 1, we prove Theorem A in Section 2. We prove Theorem B in Section 3.

Notation. For a reductive algebraic group G defined over a number field F, let $\mathcal{A}(G(\mathbb{A}))$ denote the space of automorphic forms on $G(\mathbb{A})$. At a place v of F, let $\operatorname{Irr}\left(G\left(F_{v}\right)\right)$ denote the set of equivalence classes of irreducible admissible representations of $G\left(F_{v}\right)$. If σ is an element of $\operatorname{Irr}\left(G\left(F_{v}\right)\right)$ or irreducible automorphic representation, then ω_{σ} denotes the central character of σ. For an irreducible automorphic representation $\pi=\bigotimes_{v} \pi_{v}$ of $G(\mathbb{A})$, let S_{π} denote the finite set of places for which π_{v} is ramified, and let $L_{S}(s, \pi ; r)=\prod_{v \notin S} L\left(s, \pi_{v} ; r\right)$ the partial Langlands L-function outside of $S\left(\supset S_{\pi}\right)$ with respect to a finite dimensional representation r of the L-group of $G\left(k_{v}\right)$. For a commutative ring R, we denote

$$
\operatorname{GSp}_{2 n}(R)=\left\{\left.g \in \operatorname{GL}_{2 n}(R)\right|^{t} g \eta_{n} g=v(g) \eta_{n}\right\}
$$

where $\eta_{n}=\left[I_{I_{n}}{ }^{-I_{n}}\right]$ and $\nu(g) \in R^{\times}$is the similitude norm of g. We will denote by $Z(R)\left(\simeq R^{\times}\right)$the center of $\operatorname{GSp}_{2 n}(R)$. For a quasi-character χ and a representation τ of $\operatorname{GSp}_{2 n}(R)$, let $\chi \tau$ denote the representation sending g to $\chi(\nu(g)) \tau(g)$.

2. Preliminaries

2.1. Review of van Geemen and van Straten's result

van Geemen and van Straten computed some local factors of Evdokimov's L-functions of the 6tuple products f_{i}, g_{j} of Igusa theta constants. To begin with, we will compare Evdokimov's L-function of a Siegel modular cusp form of degree 2 with the spinor L-function of a unitary irreducible cuspidal automorphic representation of $\mathrm{GSp}_{4}(\mathbb{A})$. We will relate Siegel modular forms to automorphic forms, in order to regard Evdokimov's Hecke operator for Siegel modular forms as an operator for automorphic forms. For $Z \in \mathfrak{H}_{2}$ and $g=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}_{4}(\mathbb{R})$, let $j(g, Z)=\operatorname{det}(C Z+D)$ and $g \cdot Z=(A Z+B)(C Z+D)^{-1}$. For a function f on \mathfrak{H}_{2}, an element $g \in \operatorname{Sp}_{4}(\mathbb{R})$, and a positive integer κ, we define

$$
\left.f\right|_{\kappa} g(Z)=j(g, Z)^{-\kappa} f(g \cdot Z)
$$

Let $\mathbb{K}_{\infty}=\left\{g \in \operatorname{Sp}_{4}(\mathbb{R}) \mid g \cdot \mathrm{i}_{2}=\mathrm{i}_{2}\right\} \simeq \mathrm{U}_{2}(\mathbb{C})$ where $\mathrm{i}_{2}=\mathrm{i} I_{2}$. For a congruence subgroup $\Gamma \subset \mathrm{Sp}_{4}(\mathbb{Z})$, let

$$
\Gamma_{\mathbb{A}}=\mathbb{K}_{\infty} \otimes_{p<\infty} \Gamma_{p}, \quad \Gamma_{\mathbb{A}, 0}=\bigotimes_{p<\infty} \Gamma_{p}
$$

where Γ_{p} is the p-adic completion of Γ. For a Siegel modular form f of degree 2 of weight κ with respect to a congruence subgroup $\Gamma \subset \mathrm{Sp}_{4}(\mathbb{Z})$, we put $f^{\sharp}(g)=f\left(g \cdot \mathrm{i}_{2}\right) j\left(g, \mathrm{i}_{2}\right)^{-\kappa}$ with $g \in \mathrm{Sp}_{4}(\mathbb{R})$. Through the isomorphism: $\Gamma \backslash \mathfrak{H}_{2} \simeq \Gamma \backslash \mathrm{Sp}_{4}(\mathbb{R}) / \mathbb{K}_{\infty} \simeq \mathrm{Sp}_{4}(\mathbb{Q}) \backslash \mathrm{Sp}_{4}(\mathbb{A}) / \Gamma_{\mathbb{A}}$, we extend f^{\sharp} to an automorphic form on $\mathrm{Sp}_{4}(\mathbb{A})$, which is also denoted by f^{\sharp}. Let $\tilde{\Gamma}_{p}$ be the compact subgroup of $\mathrm{GSp}_{4}\left(\mathbb{Z}_{p}\right)$ generated by elements of Γ_{p} and $\left[\begin{array}{cc}I_{2} & \\ & z I_{2}\end{array}\right]$ with $z \in \mathbb{Z}_{p}^{\times}$. Let $\tilde{\Gamma}_{\mathbb{A}}=\left(Z(\mathbb{R}) \mathbb{K}_{\infty}\right) \otimes_{p<\infty} \tilde{\Gamma}_{p}$. Because $\operatorname{Sp}_{4}(\mathbb{Q}) \backslash \operatorname{Sp}_{4}(\mathbb{A}) / \Gamma_{\mathbb{A}} \simeq \mathrm{GSp}_{4}(\mathbb{Q}) \backslash \mathrm{GSp}_{4}(\mathbb{A}) / \tilde{\Gamma}_{\mathbb{A}}$, we can write an element $g \in \mathrm{GSp}_{4}(\mathbb{A})$ as $\gamma \operatorname{tg}_{1}\left[\begin{array}{ll}I_{2} & \\ z I_{2}\end{array}\right]$ with $g_{1} \in \operatorname{Sp}_{4}(\mathbb{A}), \gamma \in \operatorname{GSp}_{4}(\mathbb{Q}), t \in Z(\mathbb{R}), z \in \bigotimes_{p} \mathbb{Z}_{p}^{\times}$. We put

$$
\begin{equation*}
\tilde{f}(g)=f^{\sharp}\left(g_{1}\right) \tag{2.1}
\end{equation*}
$$

Then, \tilde{f} is an automorphic form on $\mathrm{GSp}_{4}(\mathbb{A})$. Let χ_{Γ} be a congruence character of $\Gamma / \Gamma(N)$. Let

$$
S_{\kappa}\left(\chi_{\Gamma}\right)=\left\{f \in S_{\kappa}(\Gamma(N))|f|_{\kappa} \gamma=\chi_{\Gamma}(\gamma) f(\gamma \in \Gamma)\right\}
$$

We identify χ_{Γ} with a character $\chi_{\Gamma}=\mathbf{1}_{\infty} \otimes_{p} \chi_{\Gamma_{p}}$ on $\Gamma_{\mathbb{A}}$. For an integer N, let $\Gamma^{\sharp}(N)_{p}$ be the subgroup generated by elements of $\Gamma(N)_{p}$ and $\left[\begin{array}{cc}z I_{2} & \\ z^{-1} I_{2}\end{array}\right]$ with $z \in \mathbb{Z}_{p}^{\times}$. Define $\Gamma^{\sharp}(N)=\mathrm{Sp}_{4}(\mathbb{Q}) \cap$ $\otimes_{p} \Gamma^{\sharp}(N)_{p}$. For a character $\chi_{\Gamma^{\sharp}(N)}$ on $\Gamma^{\sharp}(N) / \Gamma(N)$, we define $\left.\tilde{\chi}_{\Gamma(N)_{p}}(u)=\chi_{\Gamma(N)_{p}}\left(\begin{array}{ll}u^{1} & \\ v(u)^{-1} I_{2}\end{array}\right]\right)$ and $\chi_{\tilde{\Gamma}(N)}=\mathbf{1}_{\infty} \otimes_{p} \tilde{\chi}_{\Gamma(N)_{p}}$. Let

$$
\begin{equation*}
\mathcal{A}_{\kappa}\left(\chi_{\tilde{\Gamma}(N)}\right)=\left\{f \in \mathcal{A}\left(\operatorname{GSp}_{4}(\mathbb{A})\right) \mid \varrho(u) f=j\left(u_{\infty}, \mathrm{i}_{2}\right)^{-\kappa} \otimes_{p} \tilde{\chi}_{\Gamma_{p}}\left(u_{p}\right) f \text { for } u \in \tilde{\Gamma}(N)_{\mathbb{A}}\right\} \tag{2.2}
\end{equation*}
$$

Note that the central character of each $f \in \mathcal{A}_{\kappa}\left(\chi_{\tilde{\Gamma}(N)}\right)$ is unitary. If $f \in S_{\kappa}\left(\chi_{\Gamma^{\sharp}(N)}\right)$, then $\tilde{f} \in$ $\mathcal{A}_{\kappa}\left(\chi_{\tilde{\Gamma}(N)}\right)$. Now, we can regard Evdokimov's Hecke operators (cf. (2.13) of [5]) for Siegel modular forms as the following operator $T_{p^{n}}^{\prime}$ for $\mathcal{A}_{\kappa}\left(\chi_{\tilde{\Gamma}(N)}\right)$ with $p \nmid N$:

$$
T_{p^{n}}^{\prime} \tilde{f}(g)=p^{n(\kappa-3)} \sum_{j} \tilde{f}\left(i_{\infty}\left(h_{j}\right) g\right)=p^{n(\kappa-3)} \sum_{j} \tilde{f}\left(g i_{\infty}\left(h_{j}\right) h_{j}^{-1}\right)
$$

where $g \in \operatorname{Sp}_{4}(\mathbb{R})$, i_{v} denotes the embedding $\mathrm{GSp}_{4}(\mathbb{Q})$ to $\mathrm{GSp}_{4}\left(\mathbb{Q}_{v}\right)$, and $h_{j} \in \mathrm{GSp}_{4}(\mathbb{Q}) \cap \mathrm{M}_{4}(\mathbb{Z})$ is taken so that

$$
h_{j} \equiv\left[\begin{array}{ll}
I_{2} & \tag{2.3}\\
& p^{n} I_{2}
\end{array}\right] \quad(\bmod N), \quad \Gamma(N)\left[\begin{array}{ll}
I_{2} & \\
& p^{n} I_{2}
\end{array}\right] \Gamma(N)=\bigsqcup_{j} \Gamma(N) h_{j} .
$$

Suppose that $f \in S_{K}\left(\chi_{\Gamma^{\sharp}(N)}\right)$ is a common eigenform and that \tilde{f} lies in a (unitary) irreducible cuspidal automorphic representation π. Let $\lambda_{p^{n}}^{\prime}$ denote the eigenvalue of $T_{p^{n}}^{\prime}$ on f. The p-factor of Evdokimov's L-function of f is

$$
\begin{align*}
& \left(1-\lambda_{p}^{\prime} p^{-s}+\left(\lambda_{p}^{\prime 2}-\lambda_{p^{2}}^{\prime}-\omega_{\pi_{p}}(p)^{-1} p^{2 \kappa-4}\right) p^{-2 s}-\omega_{\pi_{p}}(p)^{-1} \lambda_{p}^{\prime} p^{2 \kappa-3-3 s}\right. \\
& \left.\quad+\omega_{\pi_{p}}(p)^{-2} p^{4 \kappa-6-4 s}\right)^{-1} \tag{2.4}
\end{align*}
$$

Let $\lambda_{p^{n}}$ be the eigenvalue of the Hecke operator

$$
\begin{equation*}
T_{p^{n}} \tilde{f}(g)=\sum_{j} \tilde{f}\left(g i_{p}\left(h_{j}\right)\right)=\sum_{j} \omega_{\pi_{p}}\left(p^{n}\right) \tilde{f}\left(g i_{p}\left(h_{j}\right)^{-1}\right) \tag{2.5}
\end{equation*}
$$

The spinor L-function of unramified π_{p} is

$$
\left(1-p^{-3 / 2} \lambda_{p} p^{-s}+p^{-3}\left(\lambda_{p}^{2}-\lambda_{p^{2}}-p^{2} \omega_{\pi_{p}}(p)\right) p^{-2 s}-p^{-3 / 2} \omega_{\pi_{p}}(p) \lambda_{p} p^{-3 s}+\omega_{\pi_{p}}(p)^{2} p^{-4 s}\right)^{-1}
$$

In order to compare these L-functions, we recall generalized Whittaker function. Let F be a Siegel modular cusp form, and \tilde{F} be the automorphic form on $\operatorname{GSp}_{4}(\mathbb{A})$ related to F as above. Let $\mathfrak{S}_{2}(\mathbb{Q})=$ $\left\{T={ }^{t} T \in \mathrm{M}_{2}(\mathbb{Q})\right\}$. For a $T \in \mathfrak{S}_{2}(\mathbb{Q})$, the Fourier coefficient \tilde{F}_{T} with respect to ψ of \tilde{F} is

$$
\tilde{F}_{T}(g)=\int_{\mathfrak{S}_{2}(\mathbb{Q}) \backslash \mathfrak{S}_{2}(\mathbb{A})} \psi(\operatorname{Trace}(T s))^{-1} \tilde{F}\left(\left[\begin{array}{cc}
I_{2} & s \\
& I_{2}
\end{array}\right] g\right) \mathrm{d} s
$$

and that of F is $\tilde{F}_{T}(1)$. Because F is a cusp form, some $\tilde{F}_{T}(1)$ is not zero for some T with $\operatorname{det} T \neq 0$. For a character μ of $\mathrm{SO}_{T}(\mathbb{Q}) \backslash \mathrm{SO}_{T}(\mathbb{A})$, the generalized Whittaker function \tilde{F}_{T}^{μ} is defined by

$$
\tilde{F}_{T}^{\mu}(g)=\int_{\mathrm{SO}_{T}(\mathbb{Q}) \backslash \mathrm{SO}_{T}(\mathbb{A})} \mu(z)^{-1} \tilde{F}_{T}\left(\left[\begin{array}{ll}
z & \\
& t^{-1}
\end{array}\right] g\right) \mathrm{d} z
$$

and factors as $\otimes_{v} \tilde{F}_{T, v}^{\mu}$ (cf. [19]). Because $\tilde{F}_{T}=\sum_{\mu} \tilde{F}_{T}^{\mu}$, some $\tilde{F}_{T}^{\mu}(1)$ is not zero.
Proposition 2.1. Suppose that a Siegel modular form $f \in S_{\kappa}(\Gamma(N))$ of degree 2 is a common eigenfunction with respect to Evdokimov's Hecke operators. Suppose that \tilde{f} lies in a (unitary) irreducible cuspidal automorphic representation π. Then, for $p \nmid N$,

$$
L(s, f ; \mathrm{AE})_{p}=L\left(s-\kappa+\frac{3}{2}, \omega_{\pi, p}^{-1} \pi_{p} ; \operatorname{spin}\right)
$$

Proof. It suffices to show that

$$
\begin{equation*}
\lambda_{p^{n}}^{\prime}=p^{n(\kappa-3)} \omega_{\pi, p}(p)^{-n} \lambda_{p^{n}} \tag{2.6}
\end{equation*}
$$

for $n=1,2$. To do it, we will observe the actions of the operators on $\tilde{f}_{T}^{\mu}=\bigotimes_{v} \tilde{f}_{T, v}^{\mu}$ with $T \in \mathfrak{S}_{2}(\mathbb{Z})$ such that $\tilde{f}_{T}^{\mu}(1) \neq 0$. Then $\tilde{f}_{T, p}^{\mu}(1) \neq 0$. Abbreviate $\tilde{f}_{T, p}^{\mu}$ as B_{p}. In the case $n=1$, as a complete system $\left\{h_{j}\right\}$ in (2.3), we can take the following types:

$$
\left[\begin{array}{llll}
1 & & * & * \\
& 1 & * & * \\
& & p & \\
& & & p
\end{array}\right], \quad\left[\begin{array}{llll}
p & & & \\
& p & & \\
& & 1 & \\
& & & 1
\end{array}\right], \quad\left[\begin{array}{llll}
1 & * & * & * \\
& p & * & * \\
& & p & \\
& & * & 1
\end{array}\right], \quad\left[\begin{array}{llll}
p & & * & * \\
& 1 & * & * \\
& & 1 & \\
& & & p
\end{array}\right]
$$

where $*$ indicate elements of \mathbb{Z}. But one can show $B_{p}\left(h_{j}^{-1}\right)=0$, if h_{j} is not of the first type. Indeed, for example, using the property

$$
\begin{aligned}
B_{p}\left(\left[\begin{array}{ll}
p I_{2} & \\
& I_{2}
\end{array}\right]^{-1}\right) & =B_{p}\left(\left[\begin{array}{ll}
p I_{2} & \\
& I_{2}
\end{array}\right]^{-1} n(s)\right) \\
& =B_{p}\left(n\left(p^{-1} s\right)\left[\begin{array}{ll}
p I_{2} & \\
& I_{2}
\end{array}\right]^{-1}\right) \\
& =\psi_{p}\left(\frac{\operatorname{Trace}(T s)}{p}\right) B_{p}\left(\left[\begin{array}{ll}
p I_{2} & \\
& I_{2}
\end{array}\right]^{-1}\right)
\end{aligned}
$$

for $s \in S_{2}\left(\mathbb{Z}_{p}\right)$, one can show that $B_{p}\left(\left[\begin{array}{ll}p I_{2} & \\ & I_{2}\end{array}\right]^{-1}\right)=0$. Here $n(s)=\left[\begin{array}{cc}I_{2} & s \\ & I_{2}\end{array}\right]$, and note that B_{p} is right $\mathrm{GSp}_{4}\left(\mathbb{Z}_{p}\right)$-invariant. Then, (2.6) is derived from (2.1). The argument for the case $n=2$ is similar to that for the case $n=1$ and omitted.

Next, we recall the result of Sections 6, 7 of van Geemen and van Straten [7]. Let

$$
\begin{aligned}
\Gamma^{\prime}(2) & =\left\{\left.\left[\begin{array}{cc}
A & B \\
2 C^{\prime} & D
\end{array}\right] \in \Gamma(2)\left(\subset \operatorname{Sp}_{4}(\mathbb{Z})\right) \right\rvert\, \operatorname{diag}\left(C^{\prime}\right) \equiv 0(\bmod 2)\right\}, \\
\Gamma(4,8) & =\left\{\left.\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \in \Gamma(4)\left(\subset \operatorname{Sp}_{4}(\mathbb{Z})\right) \right\rvert\, \operatorname{diag}(B) \equiv \operatorname{diag}(C) \equiv 0(\bmod 8)\right\} .
\end{aligned}
$$

Let f_{i}, g_{j} with $1 \leqslant i \leqslant 7,1 \leqslant j \leqslant 4$ be the 6 -tuple products of Igusa theta constants in the table on p. 864 of [7]. We will abbreviate $\left.f_{i}\right|_{3} \gamma,\left.g_{j}\right|_{3} \gamma^{\prime}$ for some $\gamma, \gamma^{\prime} \in \mathrm{Sp}_{4}(\mathbb{Z})$ as $f_{i}^{\prime}, g_{j}^{\prime}$. Through Igusa's transformation formula, from $F=f_{i}^{\prime}$ (resp. g_{j}^{\prime}), we obtain a congruence character χ_{F} of Γ (2) (resp. $\left.\Gamma^{\prime}(2)\right)$. In Theorem 6.4 of [7], they showed that $S_{3}\left(\chi_{F}\right)$ is 1-dimensional and

$$
\begin{aligned}
S_{3}(\Gamma(4)) & =\sum_{f_{1}^{\prime}} S_{3}\left(\chi_{f_{1}^{\prime}}\right), \\
S_{3}(\Gamma(4,8)) & =S_{3}(\Gamma(4))+\sum_{i=2}^{7} \sum_{f_{i}^{\prime}} S_{3}\left(\chi_{f_{i}^{\prime}}\right), \\
S_{3}(\Gamma(2,4,8)) & =S_{3}(\Gamma(4,8))+\sum_{j=1}^{4} \sum_{g_{j}^{\prime}} S_{3}\left(\chi_{g_{j}^{\prime}}\right) .
\end{aligned}
$$

Proposition 2.2. (See van Geemen and van Straten [7].) Let $\tilde{f}_{i}, \tilde{g}_{j}$ be the automorphic forms related to f_{i}, g_{j} as above. Then each $\tilde{f}_{i}\left(\right.$ resp. $\left.\tilde{g}_{j}\right)$ lies in an irreducible cuspidal automorphic representation of $\mathrm{PGSp}_{4}(\mathbb{A})$.

Proof. Let $f=f_{i}$. Write $\tilde{f}=\sum_{l} h_{l} \in \sum_{l} \pi_{l}$ where π_{l} 's are irreducible cuspidal automorphic representations. From (2.1), it follows that $\varrho\left(\left[{ }^{I_{2}}{ }_{z I_{2}}\right]\right) \tilde{f}=\tilde{f}$ for any $z \in \mathbb{Z}_{\mathbb{A}, 0}^{\times}$. Thus,

$$
\operatorname{vol}\left(\mathbb{Z}_{\mathbb{A}, 0}^{\times}\right)^{-1} \int_{\mathbb{Z}_{\mathrm{A}, 0}^{\times}} \sum_{l} \varrho\left(\left[\begin{array}{ll}
I_{2} & \\
& z I_{2}
\end{array}\right]\right) h_{l} \mathrm{~d} z=\sum_{l} h_{l} .
$$

Hence, we can assume that

$$
\varrho\left(\left[\begin{array}{ll}
I_{2} & \tag{2.7}\\
& z I_{2}
\end{array}\right]\right) h_{l}=h_{l}, \quad z \in \mathbb{Z}_{\mathbb{A}, 0}^{\times} .
$$

With the similar argument, we can assume that

$$
\begin{align*}
& \varrho\left(u_{0}\right) h_{l}=\chi_{f}\left(u_{0}\right) h_{l}, \quad u_{0} \in \Gamma(2)_{\mathbb{A}, 0} \tag{2.8}\\
& \varrho\left(u_{\infty}\right) h_{l}=\operatorname{det}\left(-B \mathrm{i}_{2}+A\right)^{-3} h_{l}, \quad u_{\infty}=\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] \in \mathbb{K}_{\infty} . \tag{2.9}
\end{align*}
$$

Using Proposition 6.2 of [7], we find that $\chi_{f, p}\left(\left[\begin{array}{c}z I_{2} \\ z^{-1} I_{2}\end{array}\right]\right)=1$ for any $z \in \mathbb{Z}_{p}^{\times}$. It follows that the central character of \tilde{f} is trivial. Hence $\omega_{\pi_{l}}$ is also trivial. Consulting Eq. (2) of p. 505 of Oda and Schwermer [16], we find that $\pi_{l, \infty} \mid \mathrm{Sp}_{4}$ is the holomorphic discrete series representation with Blattner parameter (3,3). Define the function h_{l}^{b} on $Z \in \mathfrak{H}_{2}$ by $h_{l}^{b}(Z)=h_{l}\left(g_{\infty}\right) j\left(g_{\infty}, \mathrm{i}_{2}\right)^{3}$, where $g_{\infty} \in \mathrm{Sp}_{4}(\mathbb{R})$ is taken so that $g_{\infty} \cdot \mathrm{i}_{2}=Z$. Then, $h_{l}^{b} \in S_{3}\left(\chi_{f}\right)$. Because $S_{3}\left(\chi_{f}\right)$ is 1 -dimensional, $h_{l}^{b} \in \mathbb{C} f$. One can show that $h_{l} \in \mathbb{C} \tilde{f}$, noting (2.7), (2.8), (2.9) and $\omega_{\pi_{l}}=1$. This completes the proof for f_{i}. The proof for \tilde{g}_{j} is similar.

We will denote by $\Pi_{f_{i}}$ (resp. $\Pi_{g_{j}}$) the irreducible cuspidal automorphic representation of $\operatorname{PGSp}_{4}(\mathbb{A})$ containing $\tilde{f}_{i}\left(\right.$ resp. $\left.\tilde{g}_{j}\right)$.

Noting that $\Gamma^{\prime}(2), \Gamma(2,4,8)$ are normal subgroups of $\Gamma(2)$ and $\Gamma(2) / \Gamma^{\prime}(2) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$, one can extend $\chi_{g_{j}}$ in 4 ways, $\chi_{g_{j}, l}$ with $1 \leqslant l \leqslant 4$. Then $S_{3}\left(\chi_{g_{j}}\right)=\sum_{l} S_{3}\left(\chi_{g_{j}, l}\right)$. However, because $\operatorname{dim}_{\mathbb{C}} S_{3}\left(\chi_{g_{j}}\right)=1, \operatorname{dim}_{\mathbb{C}} S_{3}\left(\chi_{g_{j}, l}\right)=1$ for an l and $\operatorname{dim}_{\mathbb{C}} S_{3}\left(\chi_{g_{j}, l}\right)=0$ for other l. We define the character $\tilde{\chi}_{g_{j}}$ on $\Gamma(2)$ by $\operatorname{dim}_{\mathbb{C}} S_{3}\left(\tilde{\chi}_{g_{j}}\right)=1$.

Proposition 2.3. For $\Gamma=\operatorname{ker}\left(\chi_{f_{i}}\right), \operatorname{ker}\left(\tilde{\chi}_{g_{j}}\right), H^{3,0}\left(\operatorname{Gr}_{3}^{W} H^{3}\left(S_{\Gamma}, \mathbb{C}\right)\right)$ is 1-dimensional.
Proof. We give the proof for $\Gamma=\operatorname{ker}\left(\chi_{g_{j}}\right)$. The proof for $\Gamma=\operatorname{ker}\left(\chi_{f_{i}}\right)$ is similar and omitted. To prove $H^{3,0}\left(\operatorname{Gr}_{3}^{W} H^{3}\left(S_{\operatorname{ker}\left(\chi_{g}\right)}, \mathbb{C}\right)\right)\left(\simeq S_{3}\left(\operatorname{ker}\left(\chi_{g}\right)\right)\right)$ is 1-dimensional, it suffices to show that $\operatorname{ker}\left(\chi_{g}\right) \not \subset$ $\operatorname{ker}\left(\chi_{f_{i}^{\prime}}\right)$ for any f_{i}^{\prime} and $\operatorname{ker}\left(\chi_{g}\right) \not \subset \operatorname{ker}\left(\chi_{g_{l}^{\prime}}\right)$ for any $g_{l}^{\prime} \neq g$. Using the tables in Proposition 6.2 of [7], we find that $\chi_{f_{1}}$ is $\{ \pm 1\}$-valued, and that $\chi_{f_{i}}$ for $i \neq 1$ and $\chi_{g_{1}^{\prime}}$ are $\{ \pm 1, \pm i\}$-valued. Thus

$$
\Gamma(2) / \operatorname{ker}\left(\chi_{f_{1}^{\prime}}\right) \simeq \mathbb{Z} / 2 \mathbb{Z}, \quad \Gamma^{\prime}(2) / \operatorname{ker}\left(\chi_{g_{l}^{\prime}}\right) \simeq \Gamma^{\prime}(2) / \operatorname{ker}\left(\chi_{f_{i}^{\prime}} \Gamma_{\Gamma^{\prime}(2)}\right) \simeq \mathbb{Z} / 4 \mathbb{Z} \quad(i \neq 1)
$$

Because the commutator subgroup of $\Gamma(2)$ is $\Gamma(4,8)$, and $g \notin S_{3}(\Gamma(4,8))$, it is impossible to extend χ_{g} to a character on $\Gamma(2)$. Hence, $\chi_{f_{i}} \mid \Gamma^{\prime}(2) \neq \chi_{g}, \bar{\chi}_{g}$ and $\operatorname{ker}\left(\chi_{g}\right) \not \subset \operatorname{ker}\left(\chi_{f_{i}^{\prime} \mid \Gamma^{\prime}(2)}\right)$ for $i \neq 1$. As described in the proof of Proposition 7.5 in [7], and $\chi_{g_{l}^{\prime}} \neq \chi_{g}, \bar{\chi}_{g}$. Hence $\operatorname{ker}\left(\chi_{g}\right) \not \subset \operatorname{ker}\left(\chi_{g_{l}^{\prime}}\right)$ for $g_{l}^{\prime} \neq g$. Finally, assume that $\operatorname{ker}\left(\chi_{g}\right) \subset \operatorname{ker}\left(\chi_{f_{1}^{\prime}}\right)$ for some f_{1}^{\prime}. Then, $\chi_{g}^{2}=\chi_{f_{1}}$, and hence $\operatorname{ker}\left(\chi_{g}^{2}\right) \supset \Gamma(4)$. But, this conflicts to the table of Proposition 6.2(b) in [7]. Hence $\operatorname{ker}\left(\chi_{g}\right) \not \subset \operatorname{ker}\left(\chi_{f_{1}^{\prime}}\right)$. This completes the proof.

2.2. θ-lifts

In this section, we summarize the θ-correspondence for $\operatorname{GSO}(4)$ and $\operatorname{GSp}(4)$. Let $X_{/ \mathbb{Q}}$ be a $2 m$-dimensional space defined over \mathbb{Q} with a nondegenerate quadratic form (,). For $x=\left(x_{i}\right)$, $y=\left(y_{i}\right) \in X^{n}$, we denote $\left(\left(x_{i}, y_{j}\right)\right)$ also by (x, y). Let d_{X} be the discriminant of X. Let $\chi_{X}(*)=$ $\left\{*,(-1)^{m} d_{X}\right\}_{v}$ where $\{*, *\}_{v}$ denotes the Hilbert symbol. We fix the standard additive character ψ on $\mathbb{Q} \backslash \mathbb{A}$. Let $\mathcal{S}\left(X\left(\mathbb{Q}_{v}\right)^{n}\right)$ be the space of Schwartz-Bruhat functions of $X\left(\mathbb{Q}_{v}\right)^{n}$. The Weil representation r_{v}^{n} of $\mathrm{Sp}_{2 n}\left(\mathbb{Q}_{v}\right) \times \mathrm{O}_{X}\left(\mathbb{Q}_{v}\right)$ with respect to ψ_{v} is the unitary representation on $\mathcal{S}\left(X\left(\mathbb{Q}_{v}\right)^{n}\right)$ given by

$$
\begin{align*}
r_{v}^{n}(1, h) \varphi_{v}(x) & =\varphi_{v}\left(h^{-1} x\right), \tag{2.10}\\
r_{v}^{n}\left(\left[\begin{array}{cc}
a & 0 \\
0 & t_{a^{-1}}
\end{array}\right], 1\right) \varphi_{v}(x) & =\chi_{x}(\operatorname{det} a)|\operatorname{det} a|^{m} \varphi_{v}(x a), \tag{2.11}\\
r_{v}^{n}\left(\left[\begin{array}{cc}
I_{n} & b \\
0 & I_{n}
\end{array}\right], 1\right) \varphi_{v}(x) & =\psi_{v}\left(\frac{\operatorname{Trace}(b(x, x))}{2}\right) \varphi_{v}(x), \tag{2.12}\\
r_{v}^{n}\left(\left[\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right], 1\right) \varphi_{v}(x) & =\gamma \varphi_{v}^{\vee}(x) . \tag{2.13}
\end{align*}
$$

The Weil constant γ is a fourth root of unity depending on the anisotropic kernel of X, n and ψ. The Fourier transformation φ^{\vee} of φ is defined by

$$
\varphi^{\vee}(x)=\int_{x\left(\mathbb{Q}_{v}\right)^{n}} \psi_{v}(\operatorname{Trace}(x, y)) \varphi(y) \mathrm{d} y
$$

where $\mathrm{d} y$ is the self-dual Haar measure. As in [21], we extend r_{v}^{n} to the group $\left\{(g, h) \in \operatorname{GSp}_{n}\left(\mathbb{Q}_{v}\right) \times\right.$ $\left.\mathrm{GO}_{X}\left(\mathbb{Q}_{v}\right) \mid \nu(g)=\nu(h)\right\}$, where $\nu(h)$ denotes the similitude norm of h. Let $r^{n}=\bigotimes_{v} r_{v}^{n}$. For $\varphi=$ $\otimes_{v} \varphi_{v} \in \mathcal{S}\left(X(\mathbb{A})^{n}\right)$, we put

$$
\theta_{n}(\varphi)(g, h)=\sum_{x \in X(\mathbb{Q})^{n}} r(g, h) \varphi(x) .
$$

This series converges absolutely. Let $\mathrm{d} h$ be a right Haar measure on $\mathrm{SO}_{X}(\mathbb{Q}) \backslash \mathrm{SO}_{X}(\mathbb{A})$. Let σ be an irreducible cuspidal automorphic representation of $\operatorname{GSO}_{X}(\mathbb{A})$. Take an $f \in \sigma$. We define the θ-lift of f to $\operatorname{GSp}_{n}(\mathbb{A})$ with respect to φ by

$$
\begin{equation*}
\theta_{n}(\varphi, f)(g)=\int_{\operatorname{SO}_{X}(\mathbb{Q}) \backslash \mathrm{SO}_{X}(\mathbb{A})} \theta_{n}(\varphi)(g, h) f\left(h h_{0}\right) \mathrm{d} h, \tag{2.14}
\end{equation*}
$$

where h_{0} is chosen so that $v(g)=v\left(h_{0}\right)$, and the value of $\theta_{n}(\varphi, f)(g)$ is independent of the choice of h_{0}. This integral converges absolutely and is an automorphic forms on $\operatorname{GSp}_{2 n}(\mathbb{A})$. We will denote by $\Theta_{n}(\sigma)$ the subspace of $\mathcal{A}\left(\operatorname{GSp}_{4}(\mathbb{A})\right)$ spanned by $\theta_{n}(\varphi, f)$ with $\varphi \in \mathcal{S}\left(X(\mathbb{A})^{n}\right)$ and $f \in \sigma$. We call $\Theta_{n}(\sigma)$ the global θ-lift of σ to $\operatorname{GSp}(2 n)$. In the case of $m=2$, these θ-lifts are weak endoscopic lifts or D-critical representations under some situations as follows. For our later use and the sake of simplicity, we assume the central character of σ is trivial.

1) In the case that d_{X} is a square of a rational number, $X_{/ \mathbb{Q}}$ is isometric to a quaternion algebra $\mathrm{B}_{/ \mathbb{Q}}$ defined over \mathbb{Q}. Define $\rho\left(h_{1}, h_{2}\right) x=h_{1}^{-1} x h_{2}$ for $x \in \mathrm{~B}(R), h_{i} \in \mathrm{~B}(R)^{\times}$, where R denote $\mathbb{Q}, \mathbb{Q}_{v}$ or \mathbb{A}. Then ρ gives isomorphisms

$$
i_{\rho}:\left\{\begin{array}{l}
\mathrm{B}(R)^{\times} \times \mathrm{B}(R)^{\times} / \Delta\left(R^{\times}\right) \simeq \mathrm{GSO}_{X}(R), \tag{2.15}\\
\left\{\left(h_{1}, h_{2}\right) \in \mathrm{B}(R)^{\times} \times \mathrm{B}(R)^{\times} \mid N_{\mathrm{B} / R}\left(h_{1}\right)=N_{\mathrm{B} / R}\left(h_{2}\right)\right\} / \Delta\left(R^{\times}\right) \simeq \mathrm{SO}_{X}(R),
\end{array}\right.
$$

where $\Delta\left(R^{\times}\right)$denotes the diagonal embedding into $\mathrm{B}(R)^{\times} \times \mathrm{B}(R)^{\times}$. We identify a $\sigma_{v} \in \operatorname{Irr}\left(\operatorname{PGSO}_{X}\left(\mathbb{Q}_{v}\right)\right)$ with a pair $\left(\sigma_{1, v}, \sigma_{2, v}\right)$ of $\operatorname{Irr}\left(\operatorname{PB}\left(\mathbb{Q}_{v}\right)^{\times}\right)$through i_{ρ}. Then, σ is identified with $\sigma_{1} \boxtimes \sigma_{2}$ for a pair $\left(\sigma_{1}, \sigma_{2}\right)$ of irreducible automorphic representations of $\operatorname{PGSO}_{\mathrm{B}}(\mathbb{A})$. Then, $\Pi=\Theta_{2}\left(\sigma_{1} \boxtimes \sigma_{2}\right)$ is irreducible and factors as $\otimes_{v} \theta_{2}\left(\sigma_{1 v} \boxtimes \sigma_{2 v}\right)$. For an irreducible cuspidal automorphic representation τ of $\mathrm{B}(\mathbb{A})^{\times}$, we will let τ^{JL} denote the Jacquet-Langlands transfer to $\mathrm{GL}_{2}(\mathbb{A})$. Let S_{σ} be the set of places v for which $\sigma_{1, v}^{\mathrm{JL}} \boxtimes \sigma_{2, v}^{\mathrm{JL}}$ is ramified. Then, $S_{\Pi}=S_{\sigma}$, and

$$
L_{S_{\sigma}}(s, \Pi ; \text { spin })=L_{S_{\sigma}}\left(s, \sigma_{1}\right) L_{S(\sigma)}\left(s, \sigma_{2}\right), \quad L_{S_{\sigma}}\left(s, \Pi ; r_{5}\right)=\zeta_{S_{\sigma}}(s) L_{S_{\sigma}}\left(s, \sigma_{1} \times \sigma_{2}\right)
$$

where r_{5} indicates the 5 -dimensional representation of $\mathrm{GSp}_{4}(\mathbb{C})$ as in Section 2 of [26]. If both of σ_{1} and σ_{2} are cuspidal and $\sigma_{1} \neq \sigma_{2}$, then Π is cuspidal, and thus Π is a weak endoscopic lift of $\left(\sigma_{1}^{\mathrm{JL}}, \sigma_{2}^{\mathrm{JL}}\right)$. If $\mathrm{B}_{/ \mathbb{Q}}$ is a definite quaternion algebra, then Π is the so-called Yoshida lift of $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$, and Π_{∞} is holomorphic. Otherwise, Π is not holomorphic. In particular, if $\mathrm{B}_{\mathbb{Q}} \simeq \mathrm{M}_{2}(\mathbb{Q})$, then Π is globally generic, i.e., every $F \in \Pi$ has a nontrivial global Whittaker function. Let $c_{1}, c_{2} \in \mathbb{Q}^{\times}$. A global Whittaker function of an automorphic form F on $\operatorname{GSp}_{4}(\mathbb{A})$ with respect to $\psi_{c_{1}, c_{2}}$ is defined by

$$
W_{F, \psi_{c_{1}, c_{2}}}(g)=\int_{(\mathbb{Q} \backslash \mathbb{A})^{4}} \psi\left(-c_{1} t+c_{2} s_{4}\right) F\left(\left[\begin{array}{cccc}
1 & t & & \tag{2.16}\\
& 1 & & \\
& & 1 & \\
& & -t & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & s_{1} & s_{2} \\
& 1 & s_{2} & s_{4} \\
& & 1 & \\
& & & 1
\end{array}\right] g\right) \mathrm{d} t \mathrm{~d} s_{1} \mathrm{~d} s_{2} \mathrm{~d} s_{4}
$$

and factors as $\bigotimes_{v} W_{F, \psi_{c_{1}, c_{2}, v}}$. We call $W_{F, \psi_{1,1}}$ the standard Whittaker function and abbreviate as $W_{F, \psi}$. Let $\mathrm{B}=\mathrm{M}_{2}(\mathbb{Q})$. Let

$$
e=\left[\begin{array}{c}
1 \\
\end{array}\right], \quad \alpha=\left[\begin{array}{ll}
1 & \\
& -1
\end{array}\right] \in \mathrm{M}_{2}(\mathbb{Q}) .
$$

The pointwise stabilizer subgroup $Z_{(e, \alpha)}(R) \subset \mathrm{SO}_{\mathrm{B}}(R)$ of e, α is isomorphic to

$$
\left\{\left.\left(\left[\begin{array}{ll}
1 & s \\
& 1
\end{array}\right],\left[\begin{array}{ll}
1 & s \\
& 1
\end{array}\right]\right) \right\rvert\, s \in R\right\}
$$

via i_{ρ}. Let $\beta_{1, \psi}=\bigotimes_{v} \beta_{1, v}, \beta_{2, \psi}=\bigotimes_{v} \beta_{2, v}$ be the Whittaker functions of f_{1}, f_{2} with respect to ψ. Then, the v-component of the global standard Whittaker function of $F=\theta_{2}\left(\varphi, f_{1} \boxtimes f_{2}\right)$ on $\mathrm{Sp}_{4}\left(\mathbb{Q}_{v}\right)$ is

$$
\begin{equation*}
W_{F, \psi_{v}}(g)=\int_{z_{\left(e_{1}, \alpha\right)}\left(\mathbb{Q}_{v}\right) \backslash S O_{X}\left(\mathbb{Q}_{v}\right)} r_{v}^{2}\left(g, i_{\rho}\left(h_{1}, h_{2}\right)\right) \varphi_{v}\left(e_{1}, \alpha\right) \bar{\beta}_{1, v}\left(h_{1}\right) \beta_{2, v}\left(h_{2}\right) \mathrm{d} h_{1} \mathrm{~d} h_{2} . \tag{2.17}
\end{equation*}
$$

2) In the case that d_{X} is not a square of a rational number, $X_{\mathbb{Q}}$ is isometric to

$$
\begin{equation*}
X_{\mathrm{B}, d_{X}}=X_{\mathrm{B}}:=\left\{b \in \mathrm{~B} / \mathbb{Q} \otimes \mathbb{Q}\left(\sqrt{d_{X}}\right) \mid b^{i c}=-b\right\} \tag{2.18}
\end{equation*}
$$

for a quaternion algebra $\mathrm{B}_{\mathbb{Q}}$, where t denotes the main involution of B , and c is the generator of $\operatorname{Gal}\left(\mathbb{Q}\left(\sqrt{d_{X}}\right) / \mathbb{Q}\right)$. Put $L=\mathbb{Q}\left(\sqrt{d_{X}}\right)$. Let R be $\mathbb{Q}, \mathbb{Q}_{\mathbb{A}}$ or \mathbb{Q}_{v}. But assume that $L_{v} \not \not \mathbb{Q}_{v}^{2}$. For $x \in X$, $t \in R^{\times}, h \in \mathrm{~B}(R L)^{\times}$, define $\rho^{\prime}(t, h) x=t^{-1} h^{c} x h$. Then, ρ^{\prime} gives isomorphisms

$$
i_{\rho^{\prime}}:\left\{\begin{array}{l}
\left\{(t, b) \in R^{\times} \times \mathrm{B}(L R)^{\times}\right\} /\left\{\left(N_{L R / R}(s), s\right) \mid s \in L R^{\times}\right\} \simeq \operatorname{GSO}_{X}(R), \tag{2.19}\\
\left\{(t, b) \mid t^{2}=N_{L R / R} \circ N_{\mathrm{B}(L R) / L}(b)\right\} /\left\{\left(N_{L R / R}(s), s\right) \mid s \in L R^{\times}\right\} \simeq \operatorname{SO}_{X}(R)
\end{array}\right.
$$

We identify a $\sigma_{v} \in \operatorname{Irr}\left(\mathrm{PGSO}_{X}\left(\mathbb{Q}_{v}\right)\right)$ with one of $\operatorname{Irr}\left(\operatorname{PB}\left(L_{v}\right)^{\times}\right)$through i_{ρ}^{\prime}. If $L_{v} \simeq \mathbb{Q}_{v}^{2}$, then $\mathrm{GL}_{2}\left(L_{w_{1}}\right) \times$ $\mathrm{GL}_{2}\left(L_{w_{2}}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{Q}_{V}\right)^{2}$, and σ_{v} is identified with a pair of elements of $\operatorname{Irr}\left(\operatorname{PB}\left(\mathbb{Q}_{v}\right)\right)$. Let σ be an irreducible cuspidal automorphic representation of $\operatorname{PB}\left(L_{\mathbb{A}}\right)$, which is identified with an irreducible representation of $\operatorname{PGSO}_{X}(\mathbb{A})$. Contrary to the previous case, $\Theta_{2}(\sigma)$ is not irreducible in some cases. Anyway, every irreducible constituent τ of $\Theta_{2}(\sigma)$ factors as $\otimes_{v} \tau_{v}$, and

$$
L_{S_{\tau}}(s, \tau ; \text { spin })=L_{S_{\tau}}(s, \sigma), \quad L_{S_{\tau}}\left(s, \tau ; r_{5}\right)=L_{S_{\tau}}\left(s, \chi_{L}\right) L_{S_{\tau}}\left(s, \tau, \chi_{L} ; \text { Asai }\right)
$$

where χ_{L} is the quadratic character associated to the extension L / \mathbb{Q}, and the last L-function is the χ_{L}-twist of Asai's L-function (see [1] for the definition). Suppose that $d_{X}>0$ and each $\sigma_{\propto_{i}}^{\mathrm{JL}}$ is a holomorphic discrete series representation with lowest weight 2 or more. Employing the main result of Blasius [3], we find that σ^{LL} is tempered. Thus, in this case, every constituent of $\Theta_{2}(\sigma)$ is a D-critical representation in the sense of [31]. If $\mathrm{B}_{/ \mathbb{Q}}$ is a definite quaternion algebra, then each irreducible constituent of $\Theta_{2}(\sigma)$ is holomorphic. If $\mathrm{B}_{/ \mathbb{Q}} \simeq \mathrm{M}_{2}(\mathbb{Q})$, then an irreducible constituent of $\Theta_{2}(\sigma)$ is globally generic. Let $\mathrm{B}_{\mathbb{Q}}=\mathrm{M}_{2}(\mathbb{Q})$. Define $\psi_{L}(z)=\bigotimes_{v} \psi_{v}\left(\operatorname{Trace}_{L_{w} / \mathbb{Q}}(z)\right.$), where w denotes a place of L lying over v. Let $e, \alpha \in X_{\mathrm{M}_{2}, d_{L}}(\mathbb{Q})$ be the same as above. Then the pointwise stabilizer subgroup $Z_{(e, \alpha)}(\mathbb{A}) \subset \mathrm{SO}_{X_{\mathbb{B}}}(\mathbb{A})$ is isomorphic to

$$
\left\{\left.\left(1,\left[\begin{array}{ll}
1 & s \tag{2.20}\\
& 1
\end{array}\right]\right) \right\rvert\, s \in \sqrt{d_{X}} \mathbb{A}\right\}
$$

via $i_{\rho^{\prime}}$. Let $f \in \sigma, \varphi=\bigotimes_{v} \varphi_{v} \in \mathcal{S}\left(X(\mathbb{A})^{2}\right)$, and $F=\theta_{2}(\varphi, f)$. Let $\beta_{\psi}=\bigotimes_{w} \beta_{w}$ be the global Whittaker function of f associated to ψ_{L}. If $L_{V}=L_{w_{1}} \times L_{w_{2}} \simeq \mathbb{Q}_{V}^{2}$, then $W_{F, \psi_{v}}$ is similar to (2.17). If L_{v} / \mathbb{Q}_{V} does not split, then

$$
\begin{equation*}
W_{F, \psi_{v}}(g)=\int_{z_{(e, \alpha)}\left(\mathbb{Q}_{v}\right) \backslash \mathrm{SO}_{X_{\mathrm{M}_{2}(\mathbb{Q})}}\left(\mathbb{Q}_{v}\right)} r_{v}^{2}\left(g, i_{\rho^{\prime}}(t, b)\right) \varphi_{v}(e, \alpha) \beta_{w}(b) \mathrm{d} t \mathrm{~d} b . \tag{2.21}
\end{equation*}
$$

The next lemma is needed to prove Theorem A.
Lemma 2.4. Let L be a quadratic field. Let σ be an irreducible cuspidal automorphic representation of $\operatorname{PGL}_{2}\left(L_{\mathbb{A}}\right)$. If σ is not a base change lift of an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$, then every irreducible constituent of $\Theta_{2}(\sigma)$ is not a weak endoscopic lift.

Proof. Let τ be a constituent of $\Theta_{2}(\sigma)$. On the authority of Shahidi [25], Asai's L-function of σ does not vanish at $s=1$. Hence $L_{S_{\tau}}\left(s, \tau, \chi_{L} ; r_{5}\right)$, the χ_{L}-twist of $L_{S_{\tau}}\left(s, \tau ; r_{5}\right)$, has at least a simple pole at $s=1$. Assume that τ is a weak endoscopic lift. Then, $L_{S_{\tau}}\left(s, \tau, \chi_{L} ; r_{5}\right)$ is equal to $L_{S_{\tau}}\left(s, \chi_{L}\right) L_{s_{\tau}}\left(s, \sigma_{1} \times\right.$ $\chi_{L} \sigma_{2}$) for a cuspidal pair (σ_{1}, σ_{2}), and hence,

$$
\operatorname{ord}_{s=1} L_{S_{\tau}}\left(s, \tau, \chi_{L} ; r_{5}\right)= \begin{cases}-1 & \text { if } \sigma_{1}=\chi_{L} \sigma_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Hence the assertion.

2.3. Degenerate Whittaker functions

Let R be a commutative ring. For $1 \leqslant r \leqslant 2$, let $P_{r}(R)=N_{r}(R) M_{r}(R) \subset \operatorname{GSp}_{4}(R)$ with

$$
\left.\begin{array}{l}
N_{P_{r}}(R) \\
=\left\{\left.\left[\begin{array}{llll}
1_{r} & & v & { }^{t} w \\
& 1_{2-r} & w & \\
& & 1_{r} & \\
& & 1_{2-r}
\end{array}\right]\left[\begin{array}{ccc}
1_{r} & u & \\
& 1_{2-r} & \\
& & 1_{r} \\
& & -{ }^{t} u \\
& 1_{2-r}
\end{array}\right] \right\rvert\, v={ }^{t} v \in \mathrm{M}_{r}(R), u, w \in \mathrm{M}_{r, 2-r}(R)\right\}, \\
\\
\\
M_{P_{r}}(R)
\end{array}\right)=\left\{\left[\begin{array}{llll}
z & & & \\
& a & & \\
& & \operatorname{det}(g)^{t} z^{-1} & \\
& c & & \\
& \simeq \operatorname{GL}_{r}(R) \times \operatorname{GSp}_{4-2 r}(R),
\end{array}\right.\right.
$$

where we understand $\mathrm{GSp}_{0}=\mathrm{GL}_{1}, \mathrm{GSp}_{2}=\mathrm{GL}_{2}$. We write $P_{1}=Q$ (resp. $P_{2}=P$) and call it Klingen (resp. Siegel) parabolic subgroup. Let e_{Q}, e_{P} denote the natural embedding of $\mathrm{GL}_{2} \times \mathrm{GL}_{1}$ into $M_{P_{r}}$. If E is a noncuspidal automorphic form on $\mathrm{GSp}_{4}(\mathbb{A})$, then, for $\bullet=P$ or Q,

$$
\begin{equation*}
\Phi_{\bullet}(E)(g, z):=\operatorname{vol}\left(N_{\bullet}(\mathbb{Q}) \backslash N_{\bullet}(\mathbb{A})\right)^{-1} \int_{N_{\bullet}(\mathbb{Q}) \backslash N_{\bullet}(\mathbb{A})} E\left(n e_{\bullet}(g, z)\right) \mathrm{d} n \tag{2.22}
\end{equation*}
$$

is a nontrivial automorphic form on $\mathrm{GL}_{2}(\mathbb{A}) \times \mathrm{GL}_{1}(\mathbb{A})$. Let $a \in \mathbb{Q}^{\times}$. We define $\psi_{(a)}(*)=\psi(a *)$. If a function $W_{\psi_{(a)}}^{\bullet}$ on $\operatorname{GSp}_{4}(\mathbb{A})$ (resp. $\operatorname{GSp}_{4}\left(\mathbb{Q}_{V}\right)$) satisfies

$$
W_{\psi_{(a)}}^{\bullet}\left(\left[\begin{array}{cccc}
1 & u & & \tag{2.23}\\
& 1 & & \\
& & 1 & \\
& & -u & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & * & * \\
& 1 & * & z \\
& & 1 & \\
& & & 1
\end{array}\right] g\right)=W_{\psi_{(a)}}^{\bullet}(g) \times \begin{cases}\psi(a u) & (\bullet=P), \\
\psi(a z) & (\bullet=Q),\end{cases}
$$

then we say $W_{\psi_{(a)}}^{\bullet}$ is a •-degenerate global (resp. local) Whittaker function.

3. Automorphic forms on $\mathrm{GSp}_{4}(\mathbb{A})$

Let $\Pi_{f_{i}}, \Pi_{g_{j}}$ be the irreducible cuspidal automorphic representations associated to f_{i}, g_{j} (cf. Proposition 2.2). The idea of our proof of Theorem A is as follows. We will show that a D-critical representation associated to the Hilbert modular form $\pi(\lambda)$ of $\mathbb{Q}(\sqrt{2})$, and the $\left(\frac{-2}{*}\right)$-twist of a SaitoKurokawa representation associated to ρ_{1} has a $\Gamma(2,4,8)_{2}$-fixed vector. Because the 2 -component of this D-critical representation, and that of this $\left(\frac{-2}{*}\right)$-twist of the Saito-Kurokawa representation are given by local θ-lifts from GSO(4), we will do it by constructing local Whittaker functions, or local degenerate Whittaker functions defined in 2.3 of these local θ-lifts. If it is done, then each of these representation has an automorphic form related to a Siegel modular form belonging to $S_{3}(\Gamma(2,4,8))$. From the eigenvalues of $\Pi_{f_{i}}, \Pi_{g_{j}}$ computed in [7], one concludes $\Pi_{g_{1}}$ is this D-critical representation and $\Pi_{g_{4}}$ is this $\left(\frac{-2}{*}\right)$-twist of the Saito-Kurokawa representation. In this way, the conjecture is verified.

3.1. D-critical representation, proof for $L\left(s, \Pi_{g_{1}}\right.$; spin $)$

Let L be a quadratic field with the ring of integers \mathfrak{o}. Let δ_{L} be the discriminant of L. For an integral ideal \mathfrak{m} of a Dedekind ring R, let

$$
\begin{aligned}
& \tilde{\Gamma}_{0}^{(n)}(\mathfrak{m})=\left\{\left.g=\left[\begin{array}{ll}
A_{g} & B_{g} \\
C_{g} & D_{g}
\end{array}\right] \in \operatorname{GSp}_{2 n}(R) \right\rvert\, C_{g} \in \mathrm{M}_{n}(\mathfrak{m})\right\} \\
& \Gamma_{0}^{(n)}(\mathfrak{m})=\tilde{\Gamma}_{0}^{(n)}(\mathfrak{m}) \cap \mathrm{Sp}_{2 n}(R)
\end{aligned}
$$

First, we show the following proposition.

Proposition 3.1. Let p be a prime which does not split in L / \mathbb{Q}, and \mathfrak{p} denote the unique prime ideal of L lying over p. Let π be an irreducible cuspidal automorphic representation of $\mathrm{PGL}_{2}\left(L_{\mathbb{A}}\right)$ of level \mathfrak{n}. Then, there is an automorphic form $F \in \Theta_{2}(\pi)$ such that

$$
\begin{equation*}
\varrho(g) F=\chi_{L, p}\left(\operatorname{det}\left(A_{g}\right)\right) F, \quad g \in \Gamma_{0}^{(2)}\left(p^{N} \mathbb{Z}_{p}\right) \tag{3.1}
\end{equation*}
$$

where χ_{L} is the quadratic character of \mathbb{A}^{\times}associated to the extension L / \mathbb{Q}, and

$$
N= \begin{cases}\frac{\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})}{2}+\operatorname{ord}_{\mathfrak{p}}\left(\delta_{L}\right) & \text { if } p \text { is ramified and } \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \text { is even } \\ \frac{\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})+1}{2}+\operatorname{ord}_{\mathfrak{p}}\left(\delta_{L}\right) & \text { if } p \text { is ramified and } \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \text { is odd } \\ \operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) & \text { otherwise }\end{cases}
$$

Proof. For a $\varphi=\bigotimes_{v} \varphi_{v} \in \mathcal{S}\left(X_{\mathrm{M}_{2}}(\mathbb{A})^{2}\right)$ and an $f \in \pi$, each component $W_{F, \psi_{v}}$ of the global standard Whittaker function of $F=\theta_{2}(\varphi, f)$ is given by (2.17) or (2.21). Therefore, it suffices to construct a nontrivial $W_{F, \psi_{p}}$ which is right $\Gamma_{0}\left(p^{N} \mathbb{Z}_{p}\right)$-semi invariant as in (3.1). We will give a proof for the first case with $L=\mathbb{Q}(\sqrt{2})$ and $p=2$. The other cases are easier and omitted. For an ideal $\mathfrak{m} \subset \delta_{L} \mathfrak{o}_{\mathfrak{p}}$ of $\mathfrak{o}_{\mathfrak{p}}$, let

$$
\tilde{\Gamma}_{0}^{\prime}(\mathfrak{m})=\left[\begin{array}{cc}
\mathfrak{o}_{\mathfrak{p}} & \delta_{L}^{-1} \mathfrak{o}_{\mathfrak{p}} \\
\mathfrak{m} & \mathfrak{o}_{\mathfrak{p}}
\end{array}\right] \cap \mathrm{GL}_{2}\left(L_{\mathfrak{p}}\right)
$$

In the case $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})=0$, the proof is easy and omitted. Suppose that $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ is a positive (even) integer. Then, $\pi_{\mathfrak{p}}$ is a ramified principal series representation or a supercuspidal representation. The conductor of the additive character $\psi_{L_{\mathfrak{p}}}=\psi_{p} \circ \operatorname{Trace}_{L_{\mathfrak{p}} / \mathbb{Q}_{p}}$ is \mathfrak{p}^{-3}. Using the local newform theory for $\mathrm{GL}(2)$, we find that $\pi_{\mathfrak{p}}$ has a right $\tilde{\Gamma}_{0}^{\prime}\left(\delta_{L} \mathfrak{n}\right)$-invariant local Whittaker function $\beta_{\mathfrak{p}}$ associated to $\psi_{L_{\mathfrak{p}}}$ such that

$$
\begin{align*}
\beta_{\mathfrak{p}}\left(\left[\begin{array}{ll}
1 & z \\
& 1
\end{array}\right]\left[\begin{array}{ll}
t & \\
& 1
\end{array}\right]\right) & = \begin{cases}\psi_{L_{\mathfrak{p}}}(z) & \text { if } t \in \mathfrak{o}_{\mathfrak{p}}^{\times} \\
0 & \text { otherwise }\end{cases} \tag{3.2}\\
\varrho\left(\left[\begin{array}{ll}
p^{N} & -1
\end{array}\right]\right) \beta_{\mathfrak{p}} & = \pm \beta_{\mathfrak{p}} \tag{3.3}
\end{align*}
$$

For an integral ideal \mathfrak{m} of a Dedekind ring R, let $R_{0}(\mathfrak{m})=\left\{\left.\left[\begin{array}{c}* * \\ c *\end{array}\right] \in \mathrm{M}_{2}(R) \right\rvert\, c \in \mathfrak{m}\right\}$ be the so-called Eichler order of $\mathrm{M}_{2}(R)$ of level \mathfrak{m}. We set

$$
\phi\left(x_{1}, x_{2}\right)=\operatorname{ch}\left(x_{1} ; R_{0}\left(p^{N}\right) \cap X_{\mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)}\right) \operatorname{ch}\left(x_{2} ; R_{0}\left(p^{N}\right) \cap X_{\mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)}\right)
$$

where ch indicates the characteristic function. Put $\mathbb{K}_{p}=i_{\rho^{\prime}}\left(\mathbb{Q}_{p}^{\times} \times \tilde{\Gamma}_{0}^{(1)}\left(p^{N}\right)\right) \cap \mathrm{SO}_{X}\left(\mathbb{Q}_{p}\right)$. If $g \in$ $\Gamma_{0}^{(2)}\left(p^{N}\right)$ and $h \in \mathbb{K}_{p}$, then

$$
\begin{equation*}
r_{p}^{2}(g, h) \phi=\chi_{L, p}\left(\operatorname{det} A_{g}\right) r_{p}^{2}(1, h) \phi \tag{3.4}
\end{equation*}
$$

From (2.21),

$$
\begin{equation*}
W_{F, \psi_{p}}(g)=\operatorname{vol}\left(\mathbb{K}_{p}\right) \int_{Z_{(e, \alpha)}\left(\mathbb{Q}_{p}\right) \backslash \mathrm{SO}_{X_{\mathrm{M}_{2}}}\left(\mathbb{Q}_{p}\right) / \mathbb{K}_{p}} r_{p}^{2}(g, h) \phi(e, \alpha) \beta_{\mathfrak{p}}(\bar{h}) \mathrm{d} \bar{h}, \tag{3.5}
\end{equation*}
$$

where \bar{h} indicates the projection of $h \in \mathrm{GL}_{2}\left(L_{\mathfrak{p}}\right)$ to $\mathrm{SO}_{X}\left(\mathbb{Q}_{p}\right)$ (see (2.20) for the definition of $\left.Z_{(e, \alpha)}\right)$. Then, we are going to see $W_{F, \psi_{p}}(1) \neq 0$. Using the Iwasawa decomposition of $\mathrm{GL}_{2}\left(L_{\mathfrak{p}}\right)$, we can take the following complete system of representatives for $Z_{(e, \alpha)}\left(\mathbb{Q}_{p}\right) \backslash \mathrm{SO}_{X}\left(\mathbb{Q}_{p}\right) / \mathbb{K}_{p}$:

$$
\left(2^{m},\left[\begin{array}{ll}
1 & s \\
& 1
\end{array}\right]\left[\begin{array}{ll}
2^{m} & \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
l & 1
\end{array}\right]\right), \quad\left(2^{m+\frac{N}{2}},\left[\begin{array}{ll}
1 & s \\
& 1
\end{array}\right]\left[\begin{array}{ll}
2^{m} & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
2^{N} & -1
\end{array}\right]\right)
$$

where $s \in \mathbb{Q}_{2}, m \in \mathbb{Z}$ and $l \in \mathfrak{o}_{\mathfrak{p}}$ modulo 2^{N}. We will observe the contributions of these types to the integral (3.5). We will denote $\rho^{\prime}(t, h)(e, \alpha)=\left(\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right],\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\right)$. For the former types, we calculate

$$
\rho^{\prime}(t, h)(e, \alpha)=\left(\left[\begin{array}{cc}
2^{-m} l & 2^{-m} \\
-2^{-m} l l^{c} & -2^{-m} l^{c}
\end{array}\right],\left[\begin{array}{cc}
1+2^{-m+1} l s & 2^{-m+1} s \\
-\left(l+l^{c}\right)-2^{-m+1} l l^{c} s & -1-2^{-m+1} l^{c} s
\end{array}\right]\right)
$$

where c is the generator of $\operatorname{Gal}(L / \mathbb{Q})$. Suppose $\rho^{\prime}(t, h)(e, \alpha) \in \operatorname{supp}(\phi)$. Observing b_{1}, we find $m \leqslant 0$. If $m<0$, then

$$
\rho^{\prime}\left(t,\left[\begin{array}{cc}
1 & \frac{1}{4} \\
& 1
\end{array}\right] h\right)(e, \alpha) \in \operatorname{supp}(\phi)
$$

Because $\beta_{2}\left(\left[\begin{array}{c}1 \\ 4 \\ 4\end{array}\right] h\right)=-\beta_{2}(h)$, we can ignore the contribution if $m<0$. Therefore, we can assume $m=0$. Then, observing c_{1}, we find $l \in \mathfrak{p}^{N}$. Observing b_{2}, we find $s \in 2^{-1} \mathbb{Z}_{2}$. We see that, if $m=0$, $l \in \mathfrak{p}^{N}$ and $s \in 2^{-1} \mathbb{Z}_{2}$, then $\rho^{\prime}(t, h)(e, \alpha) \in \operatorname{supp}(\phi)$. Now, recall that $\beta_{\mathfrak{p}}$ is a local new vector, which is right $\Gamma_{0}^{\prime}\left(\delta_{L} \mathfrak{n}\right)$-invariant. Hence, if $c \in \mathfrak{p}^{-1} \delta_{L} \mathfrak{n} \backslash \delta_{L} \mathfrak{n}$, then

$$
\varrho\left(\left[\begin{array}{ll}
1 & \\
c & 1
\end{array}\right]\right) \beta_{2}=-\beta_{2}
$$

Using this property, we conclude that the sum of the contributions of the former types are none. For the latter types, we calculate

$$
\rho^{\prime}(t, h)(e, \alpha)=\left(\left[\begin{array}{cc}
0 & 0 \\
2^{N-m} & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
-2^{N+1-m} s & 1
\end{array}\right]\right)
$$

Suppose $\rho^{\prime}(t, h)(e, \alpha) \in \operatorname{supp}(\phi)$. Using (3.2) and (3.3), we can assume $m=0$. Observing c_{2}, we find that $s \in 2^{-1} \mathbb{Z}_{2}$. Then, using (3.2) again, we see that the total contribution of the latter types is nontrivial. This completes the proof.

Let $\zeta_{8}=\frac{(1+\mathrm{i})}{\sqrt{2}}$. Let $L=\mathbb{Q}(\sqrt{2})$ (resp. $\left.K=\mathbb{Q}\left(\zeta_{8}\right)\right)$ with the ring of integers \mathfrak{o} (resp. \mathfrak{O}). Let \mathfrak{p} (resp. \mathfrak{P}) be the unique (ramified) prime ideal of \mathfrak{o} (resp. \mathfrak{O}) lying over the prime ideal 2 of \mathbb{Q}. Next, we observe the irreducible cuspidal automorphic representation $\pi(\lambda)$ of $G L_{2}\left(L_{\mathbb{A}}\right)$ obtained from the größencharacter λ of $K_{\mathbb{A}}^{\times}$on p. 870 of [7]. The definition of λ is as follows. For the two archimedean places ∞_{1}, ∞_{2} of $K, \lambda_{\infty_{1}}(z)=|z|^{3} / z^{3}, \lambda_{\infty_{2}}(z)=|z| / z, z \in \mathbb{C}^{\times}$. Thus, the lowest weights of the archimedean components of $\pi(\lambda)$ are 4,2 , respectively. The conductor of λ is $\mathfrak{P}^{4}=(2)$, and

$$
\left(\mathfrak{O} / \mathfrak{P}^{4}\right)^{\times}=\left\langle\zeta_{8}(\bmod 2)\right\rangle \oplus\langle(1+\sqrt{2})(\bmod 2)\rangle \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Then, $\lambda_{\mathfrak{P}}$ is defined by

$$
\lambda_{\mathfrak{P}}\left(\zeta_{8}(\bmod 2)\right)=1, \quad \lambda_{\mathfrak{P}}((1+\sqrt{2})(\bmod 2))=-1
$$

We define the quasi-character μ on $L_{\mathfrak{p}}^{\times}$with conductor \mathfrak{p}^{3} by

$$
\mu\left((1+\sqrt{2})\left(\bmod \mathfrak{p}^{3}\right)\right)=\mathrm{i}
$$

where $\left(\mathfrak{o} / \mathfrak{p}^{3}\right)^{\times}=\left\langle(1+\sqrt{2})\left(\bmod \mathfrak{p}^{3}\right)\right\rangle \simeq \mathbb{Z} / 4 \mathbb{Z}$. Then, it holds $\lambda_{\mathfrak{P}}=\mu \circ N_{K / L}$. Let $\chi_{K / L}$ be the quadratic character of $L_{\mathbb{A}}^{\times}$associated to the extension K / L. The central character of $\pi(\lambda)$ is $\left.\lambda\right|_{L_{\mathbb{A}}} \chi_{K / L}$. Because both of $\lambda_{\infty_{i}} \chi_{K / L, \infty_{i}}$ and $\lambda_{\mathfrak{P}} \chi_{K / L, \mathfrak{p}}=\mu \circ N_{K / L, \mathfrak{p}} \chi_{K / L, \mathfrak{p}}$ are trivial, so is the central character of $\pi(\lambda)$. Employing Theorem 4.6(iii) of [9], we find that $\pi(\lambda)_{\mathfrak{p}}$ is the principal series representation

$$
\begin{equation*}
\pi\left(\mu, \mu \chi_{K / L, \mathfrak{p}}\right)=\pi(\mu, \bar{\mu}) \tag{3.6}
\end{equation*}
$$

of level \mathfrak{p}^{6}.
Finally, we prove the conjecture. One can construct an automorphic form $F \in \Theta_{2}(\pi(\lambda))$ satisfying $\varrho(u) F=F$ for $u \in \mathrm{Sp}_{4}\left(\mathbb{Z}_{p}\right)$ at $p \neq 2$, and (3.1) at 2 . The local standard Whittaker function $W_{F, \psi, 2}$ is right $\Gamma_{0}^{(2)}\left(2^{6}\right)_{2}$-semi invariant and $W_{F, \psi, 2}(1) \neq 0$. Let $g_{0}=\operatorname{diag}\left(2^{5}, 2^{3}, 2^{-2}, 1\right) \in \mathrm{GSp}_{4}(\mathbb{Q})$, and $F^{\prime}(g)=F\left(g_{0} g g_{0}^{-1}\right)=F\left(g g_{0}^{-1}\right)$. Let

$$
\Gamma^{\prime}:=g_{0}^{-1} \Gamma_{0}^{(2)}\left(2^{6} \mathbb{Z}_{2}\right) g_{0}=\left[\begin{array}{cccc}
\mathbb{Z}_{2} & 2^{2} \mathbb{Z}_{2} & 2^{6} \mathbb{Z}_{2} & 2^{5} \mathbb{Z}_{2} \\
2^{-2} \mathbb{Z}_{2} & \mathbb{Z}_{2} & 2^{5} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} \\
\mathbb{Z}_{2} & 2 \mathbb{Z}_{2} & \mathbb{Z}_{2} & 2^{-2} \mathbb{Z}_{2} \\
2 \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} & 2^{2} \mathbb{Z}_{2} & \mathbb{Z}_{2}
\end{array}\right] \cap \operatorname{Sp}_{4}\left(\mathbb{Q}_{2}\right)
$$

Then, F^{\prime} is right Γ^{\prime}-semi invariant, and so is $W_{F^{\prime}, \psi_{4,8}}$. Note that $\Gamma(2,4,8)_{2} \cap \Gamma_{0}^{(2)}\left(8 \mathbb{Z}_{2}\right) \subset \Gamma^{\prime}$. Because

$$
\varrho\left(\left[\begin{array}{cccc}
1 & & s_{1} & s_{2} \\
& 1 & s_{2} & \\
& & 1 & \\
& & & 1
\end{array}\right]\right) W_{F^{\prime}, \psi_{4,8}, 2}(1)=W_{F^{\prime}, \psi_{4,8}, 2}(1) \neq 0
$$

for $s_{1}, s_{2} \in \mathbb{Q}_{2}$,

$$
\begin{equation*}
\int_{(2,4,8)_{2}} \varrho(u) W_{F^{\prime}, \psi_{4,8}}(1) \mathrm{d} u \not \equiv 0 \tag{3.7}
\end{equation*}
$$

Hence, there is an irreducible globally generic constituent of $\Theta_{2}(\pi(\lambda))$, which has a right $\Gamma(2,4,8)_{2} \times$ $\prod_{p \neq 2} \mathrm{Sp}_{4}\left(\mathbb{Z}_{p}\right)$-invariant vector. We denote this representation by $\Pi^{\text {gen }}$.

Theorem 3.2. The irreducible cuspidal automorphic representation $\Pi_{g_{1}}$ is a D-critical representation associated to $\pi(\lambda)$. The conjecture is true.

Proof. First, employing the result of local θ-correspondence for $\mathrm{Sp}_{4}(\mathbb{R})$ and $\mathrm{O}_{2,2}(\mathbb{R})$ due to Przebinda [20], we find that $\left.\Pi_{\infty}^{\text {gen }}\right|_{\mathrm{Sp}_{4}}$ is the large discrete series repesentation with Blattner parameter $(3,-1)$, a cohomological weight. Next, we claim that $\Pi^{\text {gen }}$ is not a weak endoscopic lift, nor a CAP representation. Recall that the lowest weights of the archimedean components of $\pi(\lambda)$ are $(4,2)$. Hence, $\pi(\lambda)$ is not a base change lift. From Lemma $2.4, \Pi^{\text {gen }}$ is not a weak endoscopic lift. On the authority of Piatetski-Shapiro [18], and Soudry [26], every partial spinor L-function of a CAP representation is, up to finitely many Euler factors, in the form of $L\left(s-\frac{1}{2}, \chi\right) L\left(s+\frac{1}{2}, \chi\right) L\left(s-\frac{1}{2}, \chi^{\prime}\right) L\left(s+\frac{1}{2}, \chi^{\prime}\right)$, $L\left(s-\frac{1}{2}, \mu\right) L\left(s+\frac{1}{2}, \mu\right)$, or $L\left(s-\frac{1}{2}, \chi\right) L\left(s+\frac{1}{2}, \chi\right) L\left(s, \sigma_{1}\right)$. Here χ, χ^{\prime} are some quadratic character of \mathbb{A}^{\times}, μ is a quasi-character of $L_{\mathbb{A}}^{\times}$for a quadratic field L, and σ_{1} is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$. But, $L(s, \pi(\lambda))=L(s, \lambda)$ satisfies the Ramanujan conjecture. Hence the claim. Finally, according to Theorem III and Proposition 1.5 of Weissauer [31], there is an irreducible cuspidal automorphic representation $\Pi^{\text {hol }}$ such that

- $\left.\Pi_{\infty}^{\mathrm{hol}}\right|_{\mathrm{Sp}_{4}}$ is the holomorphic discrete series representation with Blattner parameter $(3,3)$.
- $\Pi_{v}^{\mathrm{hol}} \simeq \Pi_{v}^{\text {gen }}$ at $v \neq \infty$.

Thus, $\Pi^{\text {hol }}$ contributes to $H^{3,0}\left(\operatorname{Gr}_{3}^{W}\left(S_{\Gamma(2,4,8)}, \mathbb{C}\right)\right) \simeq S_{3}(\Gamma(2,4,8))$, i.e., $\Pi^{\text {hol }}$ is one of the 11 irreducible representations $\Pi_{f_{1}}, \ldots, \Pi_{g_{4}}$. Observing some L-factors of them calculated in [7], one can conclude that $\Pi^{\mathrm{hol}}=\Pi_{g_{1}}$. This completes the proof.

Remark 1. Using the definition of μ, one can show that $\pi(\lambda)$ is invariant but not distinguished in the sense of Roberts [22]. Employing Theorem 8.5 of [22], we find that the set of D-critical representations associated to $\pi(\lambda)$ consists of four irreducible representations $\Pi^{\text {gen }}=\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi_{4}$. They are all given by a θ-lift from GSO(4). Further, $\Pi_{2, \infty} \simeq \Pi_{3, \infty}$ (resp. $\Pi_{1, \infty} \simeq \Pi_{4, \infty}$) is the holomorphic (resp. large) discrete series representation with Blattner parameter $(3,3)$ (resp. $(3,-1)$), and $\Pi_{1, p} \simeq \Pi_{2, p}, \Pi_{3, p} \simeq \Pi_{4, p}$ at every nonarchimedean place. Noting this fact, one can show the above theorem.

3.2. Saito-Kurokawa representation, proof for $L\left(s, \Pi_{g_{4}}\right.$; spin $)$

First, we will recall some known results on Saito-Kurokawa representation. For a square free integer a, let $\chi^{(a)}$ denote the quadratic character of \mathbb{A}^{\times}associated to the extension $\mathbb{Q}(\sqrt{a}) / \mathbb{Q}$. For an irreducible cuspidal automorphic representation τ of $\mathrm{GSp}_{2 n}(\mathbb{A})$, we will abbreviate $\chi^{(a)} \tau$ as $\tau^{(a)}$. Let B / \mathbb{Q} be a quaternion algebra. Let σ be an irreducible cuspidal automorphic representation of $\mathrm{PB}(\mathbb{A})^{\times}$. Suppose that $\sigma_{\infty}^{\mathrm{JL}}$ is the holomorphic discrete series representation of lowest weight 4 . Let $\mathbf{1}_{\mathrm{B}(\mathbb{A})^{\times}}=\mathbf{1}$ denote the trivial representation of $\mathrm{B}(\mathbb{A})$. For a $\{ \pm 1\}$-valued character χ of $\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}$, we denote by $\chi \sigma$ the representation of $\operatorname{PB}(\mathbb{A})^{\times}$sending $h \in \mathrm{~B}(\mathbb{A})^{\times}$to $\chi\left(N_{B / \mathbb{Q}}(h)\right) \sigma(h)$. We will abbreviate $\chi \mathbf{1}_{\mathrm{B}(\mathbb{A})^{\times}}$ as χ. If $\mathrm{B}_{/ \mathbb{Q}}$ is not split, then $\Theta_{2}(\chi \boxtimes \sigma)$ is cuspidal. It is easy to show that $\Theta_{2}(\chi \boxtimes \sigma)$ is not vanishing, if and only if $L\left(\frac{1}{2}, \chi \sigma\right) \neq 0$, by using a result of Waldspurger [29]. On the other hand, if $\mathrm{B}_{/ \mathbb{Q}}$ is split, then $\Theta_{2}(\chi \boxtimes \sigma)$ is non-vanishing and noncuspidal. Indeed, one can construct an $f \in \Theta_{2}(\chi \boxtimes \sigma)$ so that the P-degenerate Whittaker function $W_{f, \psi}^{P}$ is nontrivial as is explained below (hence, $\Phi_{P}(f)$ defined in (2.22) is nontrivial). We will recall the result of Cogdell and Piatetski-Shapiro [4] and Schmidt [24]. Let π be an irreducible cuspidal automorphic representation of $\mathrm{PGL}_{2}(\mathbb{A})$. The global cuspidal SaitoKurokawa packet $\mathrm{SK}_{0}(\pi)$ is defined as the set of irreducible cuspidal automorphic representations of $\operatorname{PGSp}_{4}(\mathbb{A})$ whose spinor L-functions are equal to $\zeta\left(s-\frac{1}{2}\right) \zeta\left(s+\frac{1}{2}\right) L(s, \pi)$, up to finitely many Euler factors. Let D_{v} be the unique division quaternion algebra over \mathbb{Q}_{v}. When π_{v} is square-integrable, let π_{v}^{\prime} denote the Jacquet-Langlands transfer to D_{v}^{\times}. The local Saito-Kurokawa packet is the following set:

$$
\operatorname{SK}\left(\pi_{v}\right)= \begin{cases}\left\{\theta_{2}\left(\mathbf{1}_{v} \boxtimes \pi_{v}\right), \theta_{2}\left(\mathbf{1}_{v} \boxtimes \pi_{v}^{\prime}\right)\right\}, & \text { if } \pi_{v} \text { is square-integrable } \\ \left\{\theta_{2}\left(\mathbf{1}_{v} \boxtimes \pi_{v}\right)\right\}, & \text { otherwise }\end{cases}
$$

At a nonarchimedean place $v=p$, as is explained on pp. 230-233 of [24], $\theta_{2}\left(\mathbf{1}_{p} \boxtimes \pi_{p}\right)$ is the local Saito-Kurokawa representation that is the unique irreducible quotient of the Siegel parabolically induced representation $|*|^{1 / 2} \pi_{p} \rtimes|*|^{-1 / 2}$ (cf. [24,23]). For a $\{ \pm 1\}$-valued character $\chi_{p}, \theta_{2}\left(\chi_{p} \boxtimes \pi_{p}\right)$ is the χ_{p}-twist of the local Saito-Kurokawa representation $\theta_{2}\left(\mathbf{1}_{p} \boxtimes \chi_{p} \pi_{p}\right)$.

Next, we will observe the global cuspidal Saito-Kurokawa packet of ρ_{1}, and that of $\rho_{1}^{(-2)}$. For a moment, let

$$
\begin{equation*}
\mathrm{B} / \mathbb{Q}=\mathbb{Q}+\mathbb{Q} I+\mathbb{Q} J+\mathbb{Q} I J, \quad I^{2}=J^{2}=-1, \quad I J=-J I . \tag{3.8}
\end{equation*}
$$

This quaternion algebra splits outside of $\{\infty, 2\}$. As is seen in Section 4 of [17], ρ_{1} has the JacquetLanglands transfer to $\operatorname{PB}(\mathbb{A})^{\times}$. Denote it by ρ_{1}^{\prime}. In [17], the Siegel modular form F_{1} is constructed by the Yoshida lift of $\left(\mathbf{1}, \rho_{1}^{\prime}\right)$. This implies

$$
L\left(\frac{1}{2}, \rho_{1}\right) \neq 0, \quad \varepsilon\left(\frac{1}{2}, \rho_{1}\right)=\varepsilon\left(\frac{1}{2}, \rho_{1,2}, \psi_{2}\right)=1
$$

The 2-component $\rho_{1,2}^{\prime}$ is the finite dimensional representation of $\mathrm{B}_{2}^{\times} \simeq \mathrm{D}_{2}^{\times}$described as follows. We fix the maximal order $\mathcal{R}=\mathbb{Z}_{2}+\mathbb{Z}_{2} I+\mathbb{Z}_{2} J+\mathbb{Z}\left(\frac{1+I+J+I J}{2}\right) \subset B_{2}$. Let $\varpi \in B_{2}$ be an uniformizer. Let $\mathcal{R}(2)=\mathbb{Z}_{2}+\varpi^{2} \mathcal{R}$. As a complete system of representatives U of $\mathcal{R}^{\times} / \mathcal{R}(2)^{\times}$, we can take $\left\{1, I, J, \frac{1 \pm I \pm J \pm I J}{2}\right\}$. Let $W=\mathbb{C} I+\mathbb{C} J+\mathbb{C} I J$. Then, we obtain a finite dimensional representation τ_{2} of B_{2}^{\times}from the automorphism of W defined by $u^{-1} w u$. Because $\mathrm{B}_{\mathbb{A}}^{\times}=\mathrm{B}_{\mathbb{Q}}^{\times} \mathcal{R}(2)_{\mathbb{A}}^{\times}$, from this representation, one can obtain an automorphic representation τ of $\mathrm{PB}_{\mathbb{A}}^{\times}$. One can construct a right $\Gamma_{0}^{(1)}(8)$-invariant vector in $\Theta_{1}(\tau \boxtimes \tau)$ (see also Proposition 3.8). This means $\rho_{1}^{\prime}=\tau$, because the space of elliptic cusp form of weight 4 of level 8 is 1 -dimensional. Hence τ_{2} is irreducible and equivalent to $\rho_{1,2}^{\prime}$.

Lemma 3.3. The root number of $\rho_{1}^{(-2)}$ is -1 .

Proof. Because $\rho_{1, p}^{(-2)}$ is unramified for $p \neq 2$ and $\rho_{1, \infty}$ is the holomorphic discrete series representation of lowest weight 4 , it suffices to show that $\varepsilon\left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right)=-1$. We will see the ε-factor of the base change lift $\rho_{1, \mathfrak{p}}^{\mathrm{BC}}$ to $\mathrm{GL}_{2}\left(\mathbb{Q}(\sqrt{-2})_{\mathfrak{p}}\right)$ with $\mathfrak{p}=\sqrt{-2}$. Let $L=\mathbb{Q}(\sqrt{-2})$. Let $\psi_{L}=\psi \circ \mathrm{Trace}_{L / \mathbb{Q}}$. We identify $L \simeq \mathbb{Q}(I+J) \subset \mathrm{B}_{/ \mathbb{Q}}$ for the above $\mathrm{B}_{/ \mathbb{Q}}$. Then $\mathcal{R}(2) \cap L_{\mathfrak{p}}$ is the maximal order of $L_{\mathfrak{p}}$. Thus, every character (constituent) of the restriction $\left.\rho_{1,2}^{\prime}\right|_{L_{\mathfrak{p}}^{\times}}$is unramified. Because $(I+J)^{-1}(I+J)(I+J)=$ $I+J \in W$, the trivial character of $L_{\mathfrak{p}}^{\times}$appears in this restriction. Applying Lemma 14 of [10], we have

$$
\begin{aligned}
-1 & =-\omega_{\rho_{1}, 2}(-1) \\
& =\varepsilon\left(\frac{1}{2}, \rho_{1, \mathfrak{p}}^{\mathrm{BC}}, \psi_{L, \mathfrak{p}}\right) \\
& =\varepsilon\left(\frac{1}{2}, \rho_{1,2}, \psi_{2}\right) \varepsilon\left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right) \\
& =\varepsilon\left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right)
\end{aligned}
$$

From Lemma 3.3, it follows that $L\left(s, \rho_{1}^{(-2)}\right)=-L\left(1-s, \rho_{1}^{(-2)}\right)$, and hence

$$
L\left(\frac{1}{2}, \rho_{1}^{(-2)}\right)=0, \quad \varepsilon\left(\frac{1}{2}, \rho_{1}^{(-2)}\right)=\varepsilon\left(\frac{1}{2}, \rho_{1,2}^{(-2)}, \psi_{2}\right)=-1 .
$$

Employing the main lifting theorem of [24], and Theorem 3.1 of [4], we conclude

$$
\begin{aligned}
\mathrm{SK}_{0}\left(\rho_{1}\right) & =\left\{\left(\bigotimes_{v=\infty, 2} \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1,2}^{\prime}\right)\right) \otimes\left(\bigotimes_{v \neq \infty, 2} \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, v}\right)\right)\right\}, \\
\mathrm{SK}_{0}\left(\rho_{1}^{(-2)}\right) & =\left\{\theta_{2}\left(\mathbf{1} \boxtimes \rho_{1,2}^{\prime(-2)}\right) \otimes\left(\bigotimes_{v \neq 2} \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, v}^{(-2)}\right)\right), \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, \infty}^{\prime(-2)}\right) \otimes\left(\bigotimes_{v \neq \infty} \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, v}^{(-2)}\right)\right)\right\} .
\end{aligned}
$$

Note that $\theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, \infty}^{(-2)}\right)| |_{\operatorname{sp}(4)}$ is the holomorphic discrete series representation with Blattner parameter $(3,3)$. Therefore, we guess that the latter constituent of $S K_{0}\left(\rho_{1}^{(-2)}\right)$ is $\chi^{(-2)} \Pi_{g_{4}}$. We want to show that $\theta_{2}\left(\chi_{p}^{(-2)} \boxtimes \rho_{1, p}\right)$ has a right $\Gamma(2,4,8)_{p}$-invariant vector for every p. The local θ-lift $\theta_{2}\left(\chi_{v}^{(-2)} \boxtimes \rho_{1, v}\right)=\chi_{v}^{(-2)} \theta_{2}\left(\mathbf{1} \boxtimes \rho_{1, v}^{(-2)}\right)$ does not have a local Whittaker function. But it has a local P-degenerate Whittaker function $W_{\psi_{v}}^{P}$ as follows. Let $e^{\prime}=\left[{ }^{1}\right]$. Let $Z_{\left(e, e^{\prime}\right)} \subset \mathrm{SO}_{X}$ be the pointwise stabilizer subgroup of e, e^{\prime}, which is isomorphic to

$$
\left\{\left.\left(\left[\begin{array}{ll}
1 & s \\
& 1
\end{array}\right],\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]\right) \right\rvert\, s \in \mathbb{Q}_{v}\right\}
$$

via i_{ρ}. Then, $W_{\psi_{v}}^{P}(g)$ of $\theta_{2}\left(\chi_{v}^{(-2)} \boxtimes \rho_{1, v}\right)$ is

$$
\begin{equation*}
\int_{z_{\left(e, e^{\prime}\right)}\left(\mathbb{Q}_{v}\right) \backslash \mathrm{SO}_{\mathrm{M}_{2}}\left(\mathbb{Q}_{v}\right)} r_{v}^{2}\left(g, i_{\rho}\left(h_{1}, h_{2}\right)\right) \varphi_{v}\left(e, e^{\prime}\right) \chi_{v}^{(-2)}\left(\operatorname{det}\left(h_{1}\right)\right) \beta_{v}\left(h_{2}\right) \mathrm{d} h_{1} \mathrm{~d} h_{2} \tag{3.9}
\end{equation*}
$$

where β_{v} is a Whittaker function of $\rho_{1, v}$ with respect to ψ_{v}. It is easy to construct a right $\mathrm{Sp}_{4}\left(\mathbb{Z}_{p}\right)$ invariant $W_{\psi_{p}}^{P}$ for a nonarchimedean place $p \neq 2$. We will construct a right $\Gamma(2,4,8)_{2}$-invariant P-degenerate Whittaker function of $\theta\left(\chi_{2}^{(-2)} \boxtimes \rho_{1,2}\right)$. From $\rho_{1,2}$, we take the right $\Gamma_{0}^{(1)}\left(8 \mathbb{Z}_{p}\right)$-invariant local Whittaker function β_{2} with respect to ψ_{2} such that $\beta_{2}(1)=1$. We define
$\phi^{\prime}\left(x_{1}, x_{2}\right)=\chi_{2}^{(-2)}\left(b_{1}\right) \operatorname{ch}\left(x_{2} ; \mathrm{M}_{2}\left(\mathbb{Z}_{2}\right)\right) \times \begin{cases}1 & \text { if } \operatorname{ord}_{2}\left(a_{1}\right) \geqslant 0, \operatorname{ord}_{2}\left(b_{1}\right)=0, \operatorname{ord}_{2}\left(c_{1}\right), \operatorname{ord}_{2}\left(d_{1}\right) \geqslant 3, \\ 0 & \text { otherwise, }\end{cases}$
where we write $x_{1}=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right] \in \mathrm{M}_{2}\left(\mathbb{Q}_{2}\right)$. Let

$$
\Gamma^{\prime \prime}=\left[\begin{array}{cccc}
1+2^{3} \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} \\
2^{3} \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} \\
2^{6} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} & 1+2^{3} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} \\
2^{3} \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2} & \mathbb{Z}_{2}
\end{array}\right] \cap \operatorname{Sp}_{4}\left(\mathbb{Z}_{2}\right)
$$

Then, ϕ^{\prime} is right $\Gamma^{\prime \prime}$-invariant. One can calculate (3.9) is not zero at $g=1$, directly. Let $g_{0}^{\prime}=$ $\operatorname{diag}\left(2^{4}, 2^{3}, 2^{-1}, 1\right)$. Then

$$
g_{0}^{\prime-1} \Gamma^{\prime \prime} g_{0}^{\prime}=\left[\begin{array}{cccc}
1+2^{3} \mathbb{Z}_{2} & 2 \mathbb{Z}_{2} & 2^{5} \mathbb{Z}_{2} & 2^{4} \mathbb{Z}_{2} \\
2^{2} \mathbb{Z}_{2} & \mathbb{Z}_{2} & 2^{4} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} \\
2 \mathbb{Z}_{2} & 2^{-1} \mathbb{Z}_{2} & 1+2^{3} \mathbb{Z}_{2} & 2^{2} \mathbb{Z}_{2} \\
2^{-1} \mathbb{Z}_{2} & 2^{-3} \mathbb{Z}_{2} & 2 \mathbb{Z}_{2} & \mathbb{Z}_{2}
\end{array}\right] \cap \operatorname{Sp}_{4}\left(\mathbb{Q}_{2}\right)
$$

There is a right $g_{0}^{\prime-1} \Gamma^{\prime \prime} g_{0}^{\prime}$-invariant $W_{\psi_{(1 / 2)}, 2}^{P} \in \theta_{2}\left(\chi_{2}^{(-2)} \boxtimes \rho_{1,2}\right)$ such that $W_{\psi_{(1 / 2)}, 2}^{P}(1) \neq 0$. Then, an integral similar to (3.7) gives a nontrivial right $\Gamma(2,4,8)_{2}$-invariant local P-degenerate Whittaker function of $\theta_{2}\left(\chi_{2}^{(-2)} \boxtimes \rho_{1,2}\right)$. Consequently,

Theorem 3.4. The irreducible cuspidal automorphic representation $\Pi_{g_{4}}$ is the $\chi^{(-2)}$-twist of the irreducible (holomorphic) constituent of $\mathrm{SK}_{0}\left(\rho_{1}\right)$. The conjecture is true.

Finally, we give a remark. Observing the eigenvalues of g_{4} in the table of Section 8 of [7], we find that $\Pi_{g_{4}}$ does not satisfy the generalized Ramanujan conjecture. Indeed

$$
\left|\alpha_{p 1}\right|=\left|\alpha_{p 2}\right|=p^{\frac{3}{2}}, \quad\left|\alpha_{p 3}\right|=p, \quad\left|\alpha_{p 4}\right|=p^{2}
$$

for $p=3,5,7,11,13,17,19$, if we write the Hecke polynomial of $\Pi_{g_{4}, p}$ as $\prod_{i=1}^{4}\left(X-\alpha_{p i}\right)$. Then, one can see that $\Pi_{g_{4}}$ is a twist of a Saito-Kurokawa representation with the following proposition.

Proposition 3.5. For a Siegel modular 3-fold S_{Γ}, if an irreducible cuspidal automorphic representation Π contributes to $H^{3,0}\left(\mathrm{Gr}_{3}^{W}\left(S_{\Gamma}, \mathbb{C}\right)\right)$ and does not satisfy the Ramanujan conjecture, then Π is a twist of a SaitoKurokawa representation.

Proof. As stated by Theorem I of Weissauer [31], there is a $\mathrm{GL}_{4}\left(\overline{\mathbb{Q}}_{2}\right)$-valued Galois representation ρ_{Π} of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that

$$
L_{S_{\Pi}}\left(s-\frac{3}{2}, \Pi ; \text { spin }\right)=L_{S_{\Pi}}\left(s, \rho_{\Pi}\right)
$$

Assume that Π is not a CAP representation. Then ρ_{Π} is pure of weight 3, the eigenvalues of $\rho_{\Pi}\left(\operatorname{Frob}_{p}\right)$ has absolute value $p^{3 / 2}$, and hence Π does not satisfy the Ramanujan conjecture. This is a contradiction. Hence Π is a CAP representation, i.e., an irreducible cuspidal automorphic representation associated to a parabolically induced representation. As stated by Theorem A of Soudry [26], every CAP representation associated to a Borel or Klingen parabolically induced representation is a constituent of a global θ-lift of an irreducible automorphic representation σ_{T} of $\mathrm{GO}_{T}(\mathbb{A})$ for a quadratic field T. It is not hard to see the local θ-lift to $\mathrm{Sp}_{4}(\mathbb{R})$ of $\sigma_{T, \infty}$ is not a holomorphic discrete series representation with Blattner parameter $(3,3)$. Hence Π is a CAP representation associated to a Siegel parabolically induced representation. On the authority of Piatetski-Shapiro [18], such a representation is a twist of a Saito-Kurokawa representation.

3.3. Weak endoscopic lift

Let f_{5} be the 6-tuple product of Igusa theta constants defined in [7], and $\chi_{f_{5}}$ be the character of $\Gamma(2)$ obtained from f_{5} through the Igusa transformation formula (cf. Lemmas 5.2, 5.3 in [7]). Let $\Pi_{f_{5}}$ be the irreducible cuspidal automorphic representation of $\mathrm{GSp}_{4}(\mathbb{A})$ associated to f_{5} in Proposition 2.2. Our aim is to prove

Theorem 3.6. An irreducible cuspidal automorphic representation which is weakly equivalent to $\Pi_{f_{5}}$ contributes to $H^{2,1}\left(\operatorname{Gr}_{3}^{W}\left(S_{\operatorname{ker}\left(\chi_{f_{5}}\right)}, \mathbb{C}\right)\right)$.

First, we recall that $\Pi_{f_{5}}$ is a weak endoscopic lift of the pair $\left(\pi(\mu), \pi\left(\mu^{3}\right)\right)$ of the following CMelliptic cusp forms. Let $E_{/ \mathbb{Q}}$ be the CM-elliptic curve defined by the equation $y^{2}=x^{3}-x$. Let μ be the größencharacter of $\mathbb{Q}(\mathrm{i})_{\mathbb{A}}^{\times}$such that $L\left(s-\frac{1}{2}, \mu\right)=L\left(s, E_{/ \mathbb{Q}}\right)$. At $v=\infty, \mu_{\infty}(z)=|z| / z, z \in \mathbb{C}^{\times}$. Thus, the lowest weights of the holomorphic discrete series representations $\pi(\mu)_{\infty}, \pi\left(\mu^{3}\right)_{\infty}$ are 2,4 , respectively. Let $\mathfrak{o}=\mathbb{Z}[i]$. Let $\mathfrak{p} \subset \mathfrak{o}$ be the prime ideal lying over 2 . The conductor of μ is \mathfrak{p}^{3}, and thus $\pi(\mu)_{p}, \pi\left(\mu^{3}\right)_{p}$ are unramified at $p \neq 2$. The group $\left(\mathfrak{o} / \mathfrak{p}^{3}\right)^{\times}$is the cyclic group of order 4 generated by $\mathrm{i}\left(\bmod \mathfrak{p}^{3}\right)$, and $\mu_{\mathfrak{p}}$ is defined by $\mu_{\mathfrak{p}}\left(\mathrm{i}\left(\bmod \mathfrak{p}^{3}\right)\right)=\mathrm{i}$.

Lemma 3.7. The 2 -components $\pi(\mu)_{2}, \pi\left(\mu^{3}\right)_{2}$ are equivalent and supercuspidal.
Proof. From the definition, $\mu_{\mathfrak{p}}$ is $\{ \pm 1, \pm \mathrm{i}\}$-valued on $\mathfrak{o}_{\mathfrak{p}}^{\times}$. Thus $\mu_{\mathfrak{p}}=\bar{\mu}_{\mathfrak{p}}^{3}$ on $\mathfrak{o}_{\mathfrak{p}}^{\times}$. Noting that the central character of $\pi(\mu)$ is trivial, we have

$$
\pi(\mu)_{2}=\pi\left(\bar{\mu}^{3}\right)_{2}=\overline{\pi\left(\mu^{3}\right)_{2}}=\pi\left(\mu^{3}\right)_{2} .
$$

There is no quasi-character ξ of \mathbb{Q}_{2}^{\times}such that $\xi \circ N_{\mathbb{Q}(\mathrm{i})} / \mathbb{Q}_{2}=\mu$. Employing Lemma 4.6 of [9], we find that $\pi(\mu)_{2}$ is supercuspidal. This completes the proof.

Employing this lemma and the Jacquet-Langlands theory, we find that both of $\pi(\mu), \pi\left(\mu^{3}\right)$ have the Jacquet-Langlands transfers $\pi(\mu)^{\prime}, \pi\left(\mu^{3}\right)^{\prime}$ to $\operatorname{PB}(\mathbb{A})^{\times}$for the definite quaternion algebra $\mathrm{B}_{\mathbb{Q}}$ defined in (3.8). In [17], we really construct a Siegel modular form lying in $\Pi_{f_{5}}$ by the Yoshida lift $\Theta_{2}\left(\pi(\mu)^{\prime} \boxtimes \pi\left(\mu^{3}\right)^{\prime}\right)$. Thus, $\Pi_{f_{5}}=\Theta_{2}\left(\pi(\mu)^{\prime} \boxtimes \pi\left(\mu^{3}\right)^{\prime}\right)$. Further, employing Theorem 8.5 of [22], we find that the set of all weak endoscopic lifts of ($\pi(\mu), \pi\left(\mu^{3}\right)$) is

$$
\left\{\Theta_{2}\left(\pi(\mu) \boxtimes \pi\left(\mu^{3}\right)\right), \Theta_{2}\left(\pi(\mu)^{\prime} \boxtimes \pi\left(\mu^{3}\right)^{\prime}\right)\right\} .
$$

Therefore, we guess that the irreducible cuspidal automorphic representation of $\operatorname{GSp}_{4}(\mathbb{A})$ as in Theorem 3.6 is $\Theta_{2}\left(\pi(\mu) \boxtimes \pi\left(\mu^{3}\right)\right)$, which is globally generic.

Next, in order to show the theorem, we will observe the local θ-lift $\theta_{2}\left(\pi(\mu)_{2} \boxtimes \pi\left(\mu^{3}\right)_{2}\right)=$ $\theta_{2}\left(\pi(\mu)_{2} \boxtimes \pi(\mu)_{2}\right)$, which is the 2-component of $\Theta_{2}(\pi(\mu) \boxtimes \pi(\mu))$. For the sake of generality, let $\mathrm{B}_{\mathbb{Q}}$ be a general quaternion algebra and consider $\Theta_{2}(\sigma \boxtimes \sigma)$ for an irreducible cuspidal automorphic representation σ of $\operatorname{PB}(\mathbb{A})^{\times}$.

Proposition 3.8. Let σ be an irreducible cuspidal automorphic representation of $\operatorname{PB}(\mathbb{A})$. Let Φ_{Q} be the operator defined in Section 2.3. Then, $\left.\Phi_{Q}\left(\Theta_{2}(\sigma \boxtimes \sigma)\right)\right|_{\mathrm{GL}(2)}=\sigma^{\mathrm{JL}}$.

Proof. For a $\varphi \in \mathcal{S}\left(\mathrm{M}_{2}(\mathbb{A})^{2}\right)$, put $\varphi_{0}(x)=\varphi(0, x) \in \mathcal{S}\left(\mathrm{M}_{2}(\mathbb{A})\right)$. Take an $f \in \sigma$, and put $F=\theta_{2}(\varphi, f \boxtimes f)$. We calculate $\left.\Phi_{Q}(F)\right|_{\mathrm{GL}(2)}=\theta_{1}\left(\varphi_{0}, f \boxtimes f\right)$. We abbreviate $W_{F, \psi}^{Q}\left(e_{Q}(g, 1)\right)$ as $W^{1}(g)$ for $g \in \operatorname{SL}_{2}(\mathbb{A})$. Then

$$
\begin{equation*}
W^{1}(1)=\int_{Z_{1}(\mathbb{A}) \backslash S O_{B}(\mathbb{A})} r^{1}\left(g, i_{\rho}\left(h_{1}, h_{2}\right)\right) \varphi_{0}(1)\left(\int_{Z_{1}(\mathbb{Q}) \backslash Z_{1}(\mathbb{A})} \bar{f}\left(b h_{1}\right) f\left(b h_{2}\right) \mathrm{d} b\right) \mathrm{d} h_{1} \mathrm{~d} h_{2}, \tag{3.10}
\end{equation*}
$$

where Z_{1} denotes the stabilizer subgroup of $1 \in \mathrm{~B}(\mathbb{Q})$, which is isomorphic to $\left\{(b, b) \mid b \in \mathrm{~B}(\mathbb{A})^{\times}\right\}$ via i_{ρ}. Obviously, the integral in the parenthesis is nontrivial, and so is $W^{1}(1)$. Thus $\theta_{1}\left(\varphi_{0}, f \boxtimes f\right)$ is nontrivial. Because $\theta_{1}\left(\varphi_{0}, f \boxtimes f\right)$ is right $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$-invariant for almost all p, it is easy to see that $\left.\Phi_{\mathrm{Q}}(F)\right|_{\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)} \in \sigma_{p}^{\mathrm{JL}}$. Noting the strong multiplicity theorem for $\mathrm{GL}(2)$, we find $\left.\Phi_{\mathrm{Q}}(F)\right|_{\mathrm{GL}(2)} \in \sigma^{\mathrm{JL}}$. Hence the assertion.

Remark 2. This proof implies that $\Phi_{Q}\left(\Theta_{2}\left(\sigma_{1} \boxtimes \sigma_{2}\right)\right)=0$ if $\sigma_{1} \neq \sigma_{2}$.

Remark 3. If π_{p} is a supercuspidal representation, then $\theta_{2}\left(\pi_{p} \boxtimes \pi_{p}\right)$ (resp. $\theta_{2}\left(\pi_{p}^{\prime} \boxtimes \pi_{p}^{\prime}\right)$) is the constituent $\tau\left(S, \pi_{p}\right)$ (resp. $\tau\left(T, \pi_{p}\right)$) of the parabolically induced representation $1 \rtimes \pi_{p}$ (see [23] for the meanings of these symbols).

From this proof, there are a pair of $\phi_{1} \in \mathcal{S}(\mathrm{~B}(\mathbb{A}))$ and $f_{0} \in \sigma$ such that $\theta_{1}\left(\phi_{1}, f_{0} \boxtimes f_{0}\right)$ is a newform of σ^{JL}. In particular, if we set a $\varphi \in \mathcal{S}\left(\mathrm{B}(\mathbb{A})^{2}\right)$ so that $\varphi_{0}=\phi_{1}$, then $\theta_{2}(\varphi, f \boxtimes f)$ is nontrivial. For example, set $\varphi\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{2}\right) \varphi_{\infty}^{\prime}\left(x_{1}\right) \otimes_{p} \operatorname{ch}\left(x_{1} ; \mathcal{R}_{p}\right)$, where \mathcal{R} is a maximal order of $\mathrm{B}(\mathbb{Q})$ and $\varphi_{\infty}^{\prime}$ is an arbitrary Schwartz-Bruhat function on B_{∞} such that $\varphi_{\infty}^{\prime}(0) \neq 0$. Then, $\theta_{2}\left(\varphi, f_{0} \boxtimes f_{0}\right)$ is right $\mathrm{Kl}_{p}\left(\operatorname{ord}_{p}(N)\right)$-invariant if B_{p} is split, and $\mathrm{Kl}_{p}^{\prime}\left(\operatorname{ord}_{p}(N)\right)$-invariant otherwise, where N is the level of σ^{JL}, and

$$
\begin{aligned}
\mathrm{Kl}_{p}(n) & :=\left[\begin{array}{cccc}
\mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
\mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
p^{n} \mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p}
\end{array}\right] \cap \operatorname{GSp}_{4}\left(\mathbb{Z}_{p}\right), \\
\operatorname{KI}_{p}^{\prime}(n) & :=\left[\begin{array}{cccc}
\mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
\mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
p \mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p} & \mathbb{Z}_{p} \\
p^{n} \mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & p^{n} \mathbb{Z}_{p} & \mathbb{Z}_{p}
\end{array}\right] \cap \operatorname{GSp}_{4}\left(\mathbb{Z}_{p}\right)
\end{aligned}
$$

for an integer n. van Geemen and van Straten [7] conjectured that, up to the Euler factors at 2,

$$
L\left(s, \Pi_{f_{i}} ; \text { spin }\right)=L\left(s, \chi_{i} \pi(\mu)\right) L\left(s, \chi_{i} \pi\left(\mu^{3}\right)\right)
$$

for $4 \leqslant i \leqslant 6$, where $\chi_{4}=\chi^{(-2)}, \chi_{5}=\mathbf{1}, \chi_{6}=\chi^{(2)}$.
Corollary 3.9. The above conjecture is true.
Proof. It is possible to show the level of $\pi(\mu)$ (resp. $\left.\chi^{(\pm 2)} \pi(\mu)\right)$ is 2^{5} (resp. 2^{6}) (cf. Proposition 4.8 of [17]). From the above argument, the local θ-lift $\theta_{2}\left(\pi(\mu)_{2}^{\prime} \boxtimes \pi(\mu)_{2}^{\prime}\right)$ (resp. $\theta_{2}\left(\chi^{(\pm 2)} \pi(\mu)_{2}^{\prime} \boxtimes\right.$ $\left.\chi^{(\pm 2)} \pi(\mu)_{2}^{\prime}\right)$) has a local right $\mathrm{Kl}_{2}^{\prime}(5)$ (resp. $\mathrm{Kl}_{2}^{\prime}(6)$)-invariant Q-degenerate Whittaker function. Now, noting that

$$
\mathrm{Kl}_{2}^{\prime}(6) \simeq\left[\begin{array}{cccc}
\mathbb{Z}_{2} & 2^{7} \mathbb{Z}_{2} & 2^{5} \mathbb{Z}_{2} & 2^{4} \mathbb{Z}_{2} \\
2^{-1} \mathbb{Z}_{2} & \mathbb{Z}_{2} & 2^{4} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} \\
2^{-4} \mathbb{Z}_{2} & 2^{2} \mathbb{Z}_{2} & \mathbb{Z}_{2} & 2^{-1} \mathbb{Z}_{2} \\
2^{2} \mathbb{Z}_{2} & 2^{3} \mathbb{Z}_{2} & 2^{7} \mathbb{Z}_{2} & \mathbb{Z}_{2}
\end{array}\right] \cap \operatorname{GSp}_{4}\left(\mathbb{Q}_{2}\right)
$$

one can show that the local θ-lift has a right $\Gamma(4,8)_{2}$-invariant vector and verify the conjecture in the same manner as in 3.1.

Finally, we will prove the theorem. Put

$$
f_{5}^{\prime}(Z):=\frac{\theta_{(1,0,0,0)}(Z) \theta_{(1,1,0,0)}(Z)}{\theta_{(1,0,0,1)}(Z) \theta_{(0,0,0,0)}(Z)}
$$

From f_{5}^{\prime}, a character of $\Gamma(2)$ is obtained through the Igusa transformation formula. Using Proposition 6.2 of [7], we check that this character coincide with $\chi_{f_{5}}$. For our computation, we put

$$
f_{5}^{\prime \prime}(Z)=f_{5}^{\prime} l_{0} \eta_{2}(Z)=c \frac{\theta_{(0,0,1,0)}(Z) \theta_{(0,0,1,1)}(Z)}{\theta_{(0,1,1,0)}(Z) \theta_{(0,0,0,0)}(Z)}
$$

with $c \neq 0$. Let $\chi_{f_{5}^{\prime \prime}}$ be the character of $\Gamma(2)$ obtained from $f_{5}^{\prime \prime}$. Then $\operatorname{ker}\left(\chi_{f_{5}}\right) \simeq \operatorname{ker}\left(\chi_{f_{5}^{\prime \prime}}\right)$. We can regard $f_{5}^{\prime \prime}$ as the θ-kernel $\theta_{2}\left(\phi^{\prime \prime}\right)(g, 1)$ with $\phi^{\prime \prime}=\bigotimes_{v} \phi_{v}^{\prime \prime} \in \mathcal{S}\left(\mathrm{M}_{2}(\mathbb{A})^{2}\right)$. In particular, $\phi_{2}^{\prime \prime}\left(x_{1}, x_{2}\right)$ is in the form $\phi_{1}^{\prime \prime}\left(x_{1}\right) \times \phi_{0}^{\prime \prime}\left(x_{2}\right)$ such that

- $\phi_{1}^{\prime \prime}(0) \neq 0$.
- $\phi_{0}^{\prime \prime}\left(\varrho\left(h_{1}, h_{2}\right) x_{2}\right)=\phi_{0}^{\prime \prime}\left(x_{2}\right)$ if $h_{1}, h_{2} \in \tilde{\Gamma}_{0}^{(1)}(32)_{\mathbb{A}}$.

For a positive integer κ and a congruence subgroup $\Gamma_{1} \subset \mathrm{GL}_{2}(\mathbb{Q})$, let $S_{\kappa}^{(1)}\left(\Gamma_{1}\right)$ denote the space of elliptic cusp forms of weight κ with respect to Γ_{1}. Identifying this space with a subspace of automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$, we define the subspace

$$
S_{\kappa}^{(1)}\left(\Gamma_{1}\right)^{\otimes 2, \mathrm{dis}}=\left\{\left(f_{1}, f_{2}\right) \in S_{\kappa}^{(1)}\left(\Gamma_{1}\right)^{\otimes 2} \mid \int_{Z(\mathbb{A}) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A})} \bar{f}_{1}(g) f_{2}(g) \mathrm{d} g \neq 0\right\}
$$

of automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})^{\otimes 2}$. Composing Remark 2 and the proof of Theorem 2 of Oda [15], we can obtain the following lemma.

Lemma 3.10. Let κ be a positive integer. Let Γ_{1} be a congruence subgroup of $\mathrm{GL}_{2}(\mathbb{Q})$. Suppose that a $\varphi \in \bigotimes_{p<\infty} \mathcal{S}\left(\mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)\right)$ satisfies that $\varphi\left(\varrho\left(h_{1}, h_{2}\right) x\right)=\varphi(x)$ for any $h_{1}, h_{2} \in \Gamma_{1, \mathbb{A}}$. Then, there is a $\varphi_{\infty} \in$ $\mathcal{S}\left(\mathrm{M}_{2}(\mathbb{R})\right)$ such that $\theta_{1}\left(\varphi_{\infty} \times \varphi, f\right) \not \equiv 0$ for a certain $f \in S_{\kappa}^{(1)}\left(\Gamma_{1}\right)^{\otimes 2 \text {, dis }}$.

Applying this lemma to the above $\otimes_{p<\infty} \phi_{0, p}^{\prime \prime}$, we find that there is $\phi^{\prime \prime \prime}$ such that $\phi_{p}^{\prime \prime \prime}=\phi_{p}^{\prime \prime}$ for all $p<\infty$ and $\theta_{1}\left(\phi^{\prime \prime \prime}, f\right)$ is not trivial for a certain $f \in S_{2}^{(1)}\left(\Gamma_{0}^{(1)}(32)\right)^{\otimes 2 \text {,dis. However, } S_{2}^{1}\left(\Gamma_{0}^{(1)}(32)\right) \text { is }}$ 1 -dimensional, generated by a newform $f^{\text {new }}$ of $\pi(\mu)$. Thus

$$
\theta_{1}\left(\phi^{\prime \prime \prime}, f^{\text {new }} \boxtimes f^{\text {new }}\right) \not \equiv 0
$$

From the above argument, $\Theta_{2}(\pi(\mu) \boxtimes \pi(\mu))$ has a right $\operatorname{ker}\left(\chi_{f_{5}^{\prime \prime}}\right)_{\mathbb{A}}$-invariant vector. Thus $\Theta_{2}(\pi(\mu) \boxtimes$ $\left.\pi\left(\mu^{3}\right)\right)$ also has a right $\operatorname{ker}\left(\chi_{f_{5}^{\prime \prime}}\right)_{\mathbb{A}}$-invariant vector, and Theorem 3.6 follows immediately.

4. Hermitian modular forms

Let $K=\mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field. For a Hermitian space W over K, let $U_{W}(K)$ denote the unitary group acting on W and $\mathrm{GU}_{W}(K)$ the similitude one. In particular, we write

$$
\mathrm{GU}_{n, n}(K)=\left\{g \in \mathrm{GL}_{2 n}(K) \mid g \eta_{n}{ }^{t} \bar{g}=v(g) \eta_{n}, v(g) \in \mathbb{Q}^{\times}\right\}
$$

and the $2 n$-dimensional split Hermitian space as $W_{n, n}$. Let $\mathrm{B}_{/ \mathbb{Q}}$ be a definite quaternion algebra such that $\mathrm{B}_{\mathbb{Q}} \otimes K \simeq \mathrm{M}_{2}(K)$. We set the 6 -dimensional positive quadratic space $V=K+\mathrm{B}_{\mathbb{Q}}$. Then, $\operatorname{PGSO}_{V}(\mathbb{Q}) \simeq \mathrm{PGU}_{W_{\mathrm{B}}}(K)$ for a certain 4-dimensional Hermitian space W_{B} (cf. Section 11 of [12]). Let $r_{U_{W_{n, n} \otimes W_{\mathrm{B}}}}$ be the global Weil representation of $\mathrm{U}_{W_{n, n} \otimes W_{\mathrm{B}}}\left(K_{\mathrm{A}}\right)$ associated to the trivial character of \mathbb{A}^{\times}and the additive character $\psi_{K}=\psi \circ \operatorname{Trace}_{K / \mathbb{Q}}(c f .[8,30])$. We get the Weil representation $r_{U, n}$ of $\left\{(g, h) \in \mathrm{GU}_{n, n} \times \mathrm{GU}_{W_{\mathrm{B}}} \mid \nu(g)=\nu(h)\right\}$ by restricting $r_{U_{W_{n, n} \otimes W_{\mathrm{B}}}}$. For a $\varphi \in \mathcal{S}\left(W_{\mathrm{B}}\left(K_{\mathbb{A}}\right)^{n}\right)$, we define

$$
\theta_{U, n}(\varphi)(g, h)=\sum_{y \in W_{\mathrm{B}}(K)^{n}} r_{U, n}(g, h) \varphi(y) .
$$

For an automorphic form f on $\mathrm{GU}_{4}\left(K_{\mathbb{A}}\right)$, define

$$
\theta_{U, n}(\varphi, f)(g)=\int_{U_{W_{\mathrm{B}}}(K) \backslash U_{W_{\mathrm{B}}}\left(K_{\mathbb{A}}\right)} \theta_{U, n}(\varphi)\left(g, h h_{1}\right) f\left(h h^{\prime}\right) \mathrm{d} h
$$

where h^{\prime} is chosen so that $v(g)=v\left(h^{\prime}\right)$ and $\mathrm{d} h$ is a right Haar measure on $\mathrm{U}_{W_{\mathrm{B}}}(K) \backslash \mathrm{U}_{W_{\mathrm{B}}}\left(K_{\mathrm{A}}\right)$. Because W_{B} is positive definite, this integral converges absolutely, and $\theta_{n, n}(\varphi, f)$ is an automorphic form on $\mathrm{GU}_{n, n}\left(K_{\mathbb{A}}\right)$. For an irreducible cuspidal automorphic representation σ of $\mathrm{GU}_{4}\left(K_{\mathbb{A}}\right)$, let $\Theta_{U, n}(\sigma)$ denote the space spanned by $\theta_{U, n}(\varphi, f)$ with $f \in \sigma$ and $\varphi \in \mathcal{S}\left(W_{\mathrm{B}}\left(K_{\mathrm{A}}\right)^{n}\right)$. In the case $n=2$, imitating the method in Section 4 of [27], it is possible to show that

$$
\Theta_{U, 2}(\sigma)_{w} \simeq \sigma_{w}
$$

if $\sigma_{w}, K_{w} / \mathbb{Q}_{v}$ and B_{v} are all unramified, where w is a place of K lying over a place v of \mathbb{Q}. We will identify irreducible cuspidal automorphic representations of $\operatorname{PGSO}_{V}(\mathbb{A})$ and those of $\operatorname{PGU}_{W_{B}}\left(K_{\mathbb{A}}\right)$ via the isomorphism. Then, consider global θ-lifts of σ to $\mathrm{GSp}_{4}(\mathbb{A})$. Let σ^{\prime} be an irreducible constituent of $\sigma \mid \mathrm{so}_{v}$. Assume $\Theta_{2}(\sigma) \neq 0$. Let Π^{\prime} be an irreducible constituent of $\Theta_{2}(\sigma)$. Using [14], we calculate

$$
\begin{equation*}
L_{S_{\sigma^{\prime}}}\left(s, \sigma^{\prime}\right)=\zeta_{S_{\sigma^{\prime}}}(s) L_{S_{\sigma^{\prime}}}\left(s, \Pi^{\prime},\left(\frac{-d}{*}\right) ; r_{5}\right) \tag{4.1}
\end{equation*}
$$

where $L_{S_{\sigma^{\prime}}}\left(s, \sigma^{\prime}\right)$ is the standard Langlands L-function of σ^{\prime} (of degree 6) and $L_{S_{\sigma^{\prime}}}\left(s, \Pi^{\prime}, \chi_{K} ; r_{5}\right)$ is the $\left(\frac{-d}{*}\right)$-twist of $L_{S_{\sigma^{\prime}}}\left(s, \Pi^{\prime} ; r_{5}\right)$ (note $\left.S_{\sigma^{\prime}}=S_{\Pi^{\prime}}\right)$. Assume $\Theta_{U, 2}(\sigma) \neq 0$. Let τ^{\prime} be an irreducible constituent of $\Theta_{U, 2}(\sigma)$. Using the description of L-functions of unramified $\tau_{w}^{\prime} \in \operatorname{Irr}\left(\mathrm{GU}_{2}\left(K_{w}\right)\right)$ in Section 3 of [11], we calculate

$$
L_{S_{\sigma^{\prime}}}\left(s, \tau^{\prime} ; \wedge_{t}^{2}\right)=L_{S_{\sigma^{\prime}}}\left(s, \sigma^{\prime}\right)
$$

Now (1.2) is shown. We will show the existence of \tilde{F} of Theorem B.
Proposition 4.1. Let $K, \mathrm{~B}_{\mathbb{Q}}, V$ and W_{B} be as above. Let σ be an irreducible automorphic representation of $\operatorname{PGSO}_{V}(\mathbb{A}) \simeq \operatorname{PGU}_{W_{\mathrm{B}}}(\mathbb{A})$. If $\Theta_{2}(\sigma)$ is cuspidal and nontrivial, then $\Theta_{U, 2}(\sigma) \neq 0$.

Proof. Since $\Theta_{2}(\sigma) \neq 0$, there is an automorphic form $f \in \operatorname{Ind}_{\mathrm{GSO}_{V}}^{\mathrm{GO}_{V}} \sigma$ and $\phi \in \mathcal{S}\left(V(\mathbb{A})^{2}\right)$ such that

$$
F(g):=\int_{O_{V}(\mathbb{Q}) \backslash \mathrm{O}_{V}(\mathbb{A})} \theta_{2}(\phi)\left(g, h h_{0}\right) f\left(h h_{0}\right) \mathrm{d} h
$$

is nontrivial, where $h_{0} \in G O_{V}(\mathbb{A})$ is chosen so that $v(g)=v\left(h_{0}\right)$. Since V is positive definite, F is a cusp form on $\operatorname{GSp}_{4}(\mathbb{A})$ is related to a (holomorphic) Siegel modular form. Since F is a cusp form, $F_{T}(1) \neq 0$ for a positive $T={ }^{t} T$. Take $x_{1}, x_{2} \in V$ so that $\left(x_{1}, x_{2}\right)=T$. Let $Z_{\left(x_{1}, x_{2}\right)}(\mathbb{Q}) \subset O_{V}(\mathbb{Q})$ be the pointwise stabilizer subgroup of $\left(x_{1}, x_{2}\right)$. Then,

$$
F_{T}(1)=\int_{z_{\left(x_{1}, x_{2}\right)}(\mathbb{Q}) \backslash O_{V}(\mathbb{A})} r^{2}(1, h) \phi\left(x_{1}, x_{2}\right) f(h) \mathrm{d} h .
$$

Hence,

$$
\int_{\left.z_{\left(x_{1}, x_{2}\right)}\right)(\mathbb{Q}) \backslash Z_{\left(x_{1}, x_{2}\right)}(\mathbb{A})} f(z h) \mathrm{d} z \not \equiv 0 .
$$

Because $Z_{\left(x_{1}, x_{2}\right)}(\mathbb{Q}) \simeq O_{4}(\mathbb{Q})$, there is a subgroup $U_{x}(K)\left(\simeq U_{2}(K)\right)$ of $Z_{\left(x_{1}, x_{2}\right)}(\mathbb{Q})$ such that

$$
\int_{\mathrm{U}_{x}(K) \backslash \mathrm{U}_{\chi}\left(K_{\mathrm{A}}\right)} f(z h) \mathrm{d} z \not \equiv 0 .
$$

Now then, we will consider $\Theta_{U, 2}(\sigma)$. Let $\langle *, *\rangle$ denote the Hermite form of W_{B}. Notice that U_{x} stabilizes a pair $\left(y_{1}, y_{2}\right) \in W_{\mathrm{B}}(K)^{2}$. Put $Y=\left[\begin{array}{c}\left.y_{1}, y_{1}\right\rangle\left\langle y_{1}, y_{2}\right\rangle \\ \left\langle y_{2}, y_{1}\right\rangle\left\langle y_{2}, y_{2}\right\rangle\end{array}\right]$, which is positive definite. Then, for a $\varphi \in \mathcal{S}\left(W_{\mathrm{B}}\left(K_{\mathbb{A}}\right)^{2}\right)$, the Fourier coefficient of $\theta_{U, 2}(\varphi, f)(g)$ at Y is

$$
\begin{aligned}
& \quad \int_{\mathrm{U}_{\chi}(K) \backslash \mathrm{U}_{W_{\mathbf{B}}}\left(K_{\mathrm{A}}\right)} r_{U, 2}(g, h) \varphi\left(y_{1}, y_{2}\right) f(h) \mathrm{d} h \\
& =\operatorname{vol}\left(\mathrm{U}_{x}(K) \backslash \mathrm{U}_{x}\left(K_{\mathbb{A}}\right)\right)^{-1} \int_{\mathrm{U}_{x}\left(K_{\mathrm{A}}\right) \backslash \mathrm{U}_{W_{W_{\mathbf{B}}}\left(K_{\mathrm{A}}\right)}} r_{U, 2}(g, h) \varphi\left(y_{1}, y_{2}\right)\left(\int_{\mathrm{U}_{\chi}(K) \backslash \mathrm{U}_{x}\left(K_{\mathbb{A}}\right)} f(z h) \mathrm{d} z\right) \mathrm{d} \dot{h},
\end{aligned}
$$

where $\mathrm{d} \dot{h}$ indicates the Haar measure of $\mathrm{U}_{x}(K) \backslash \mathrm{U}_{x}\left(K_{\mathbb{A}}\right)$ associated to $\mathrm{d} h$. Since the integral in the parenthesis is nontrivial, it is possible to choose φ so that this value does not vanish at $g=1$ (cf. concluding remarks in [28]). Hence the assertion.

Finally, we will show the last assertion of the theorem, observing the L-function $L_{S_{\tau}}\left(s, \tau ; \wedge_{t}^{2}\right)$ for an irreducible, noncuspidal, automorphic representation τ of $\mathrm{GU}_{2,2}\left(K_{\mathrm{A}}\right)$. Let $K^{1}=\left\{z \in K^{\times}\right\}$ $\left.N_{K / \mathbb{Q}}(z)=1\right\}$. Let $P_{1}(K)=N_{1}(K) M_{1}(K)$ with

$$
\begin{aligned}
& N_{1}(K)=\left\{\left.\left[\begin{array}{cccc}
1 & & v & w \\
& 1 & \bar{w} & \\
& & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & u & & \\
& 1 & & \\
& & 1 & \\
& & -u & 1
\end{array}\right] \right\rvert\, v \in \mathbb{Q}, u, w \in K\right\}, \\
& M_{1}(K)=\left\{\left.\left[\begin{array}{lll}
t z & & \\
& z^{c} \alpha & \\
& & t^{-1} z v\left(g_{1}\right) \\
z^{c} \beta & \\
& z^{c} \gamma & \\
z^{c} \delta
\end{array}\right] \right\rvert\, g_{1}=\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in \operatorname{GU}_{1,1}(K), z \in K^{1}, t \in \mathbb{Q}^{\times}\right\} .
\end{aligned}
$$

The modular character $\delta_{P_{1}}$ of $P_{1}\left(K_{\mathrm{A}}\right)$ is given by $\delta_{P_{1}}(n m)=|\nu(g)|^{-4}|t|^{6}$. We embed $\mathrm{GU}_{1,1}(K) \times$ $K^{1} \times \mathbb{Q}^{\times}$into $M_{1}(K)$, naturally. For a triple of irreducible automorphic representations π, μ, ξ of $\mathrm{GU}_{1,1}\left(K_{\mathbb{A}}\right) \times K_{\mathbb{A}}^{1} \times \mathbb{A}^{\times}$, let $\pi \otimes \mu \otimes \xi$ denote the representation of $P_{1}\left(K_{\mathbb{A}}\right)$ sending $n m=n\left(g_{1}, z, t\right)$ to $\pi\left(g_{1}\right) \mu(z) \xi(t)$. Hermitian modular forms of $\mathrm{SU}_{2,2}(K)$ are related to automorphic forms on $\mathrm{GU}_{2,2}\left(K_{\mathrm{A}}\right)$ with a manner similar to that in Section 2.1. We will identify them. A Hermitian modular form is noncuspidal, if and only if

$$
\Phi_{U}(F)(g, t, z ; h):=\operatorname{vol}\left(N_{1}(k) \backslash N_{1}(\mathbb{A})\right)^{-1} \int_{N_{1}(K) \backslash N_{1}\left(K_{\mathbb{A}}\right)} F\left(n\left(g_{1}, t, z\right) h\right) \mathrm{d} n
$$

is not a zero function of $\left(g_{1}, t, z\right)$ at some $h \in \mathrm{GU}_{2,2}\left(K_{\mathbb{A}}\right)$, where Φ_{U} is equal to the Siegel operator in [13], essentially. Hence, if a noncuspidal τ is generated by a Hermitian modular form, then τ is a constituent of an induced representation from $\pi \otimes \mu \otimes \xi$. In this case, there is an automorphic form $f \in \tau$, such that

$$
\Phi_{U}(f)(n m h)=\left|\nu\left(g_{1}\right)\right|^{-2}|t|^{3} \pi\left(g_{1}\right) \mu(z) \xi(t) \Phi_{U}(f)(h)
$$

Further, if the central character of π_{1} is trivial, with regarding π_{1} as an irreducible automorphic representation of $\operatorname{PGL}_{2}(\mathbb{A})\left(\simeq \mathrm{SO}_{2,1}(\mathbb{A}) \simeq \mathrm{PGU}_{1,1}\left(K_{\mathbb{A}}\right)\right)$, we write

$$
\begin{equation*}
L_{S_{\tau}}\left(s, \tau ; \wedge_{t}^{2}\right)=L_{S_{\tau}}\left(s-\frac{1}{2}, \sigma_{1}\right) L_{S_{\tau}}\left(s-\frac{1}{2}, \sigma_{1}, \xi\right) L_{S_{\tau}}(s, \mu) . \tag{4.2}
\end{equation*}
$$

Now, apply the above argument to our case. Since every automorphic form of $\Theta_{U, 2}(\sigma)$ is related to a Hermitian modular form of weight 4, the weight of ξ is $4-3=1$, if $\Theta_{U, 2}(\sigma)$ is noncuspidal. Since the central character of σ is trivial, so is that of $\Theta_{U, 1}(\sigma)$. Then, obviously, (4.2) does not satisfy the Ramanujan conjecture. The last assertion of the theorem follows, immediately. This completes the proof.

Acknowledgments

I express my thanks to Professor R. Salvati Manni for suggesting to solve the conjectures, and to Professor T. Ibukiyama and Professor T. Yamauchi for their kind advice and encouragement.

References

[1] T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields, Nagoya Math. J. 71 (1978) 149-167.
[2] M. Asgari, F. Shahidi, Generic transfer from GSp(4) to GL(4), Compos. Math. 142 (2006) 541-550.
[3] D. Blasius, Hilbert modular forms and Ramanujan conjecture, arXiv:math/0511007 [math.NT], 2008.
[4] J. Cogdell, I. Piatetski-Shapiro, Base change for the Saito-Kurokawa representations of PGSp(4), J. Number Theory 30 (1988) 298-320.
[5] S.A. Evdokimov, Euler products for congruence subgroups of the Siegel group of genus 2, Math. USSR Sb. 28 (4) (1976) 431-458.
[6] B. van Geemen, N.O. Nygaard, On the geometry and arithmetic of some Siegel modular threefolds, J. Number Theory 53 (1995) 45-87.
[7] B. van Geemen, D. van Straten, The cuspform of weight 3 on $\Gamma_{2}(2,4,8)$, Math. Comp. 61 (1993) 849-872.
[8] S. Gelbert, J. Rogawski, L-functions and Fourier-Jacobi coefficients for the unitary groups U(3), Invent. Math. 105 (1991) 445-472.
[9] H. Jacquet, R.P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math., vol. 114, Springer, 1970.
[10] M. Harris, D. Soudry, R. Taylor, l-adic representations associated to modular forms over imaginary quadratic fields, Invent. Math. 112 (1993) 377-411.
[11] H. Kim, M. Krishnamurthy, Twisted exterior square lift from $G U(2,2) E / F$ to $G L_{6} / F$, J. Ramanujan Math. Soc. 23 (4) (2008) 381-412.
[12] Max A. Knus, Quadratic Forms, Clifford Algebras and Spinors, Lect. Notes Semin. Mat. vol. 1, Campinas, 1988.
[13] A. Krieg, Modular Forms on Half-Spaces of Quaternions, Lecture Notes in Math., vol. 1143, Springer, 1985.
[14] S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986) 229-255.
[15] T. Oda, On modular forms associated with indefinite quadratic forms of signature ($2, n-2$), Math. Ann. 231 (1977) 97-144.
[16] T. Oda, J. Schwermer, Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two, Math. Ann. 286 (1-3) (1990) 481-509.
[17] T. Okazaki, L-functions of $S_{3}(\Gamma(4,8))$, J. Number Theory 125 (2007) 117-132.
[18] I.I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983) 309-338.
[19] I.I. Piatetski-Shapiro, L-functions for $G S p_{4}$, Pacific J. Math. 181 (1997) 259-275.
[20] T. Przebinda, The oscillator duality correspondence for the pair $O(2,2), S p(2, \mathbb{R})$, Mem. Amer. Math. Soc. 79 (403) (1989).
[21] B. Roberts, The nonarchimedean theta correspondence for $G S p(2)$ and $G O(4)$, Trans. Amer. Math. Soc. 351 (2) (1999) 781811.
[22] B. Roberts, Global L-packets for $\mathrm{GSp}(2)$ and theta lifts, Doc. Math. 6 (2001) 247-314.
[23] B. Roberts, R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Math., vol. 1918, Springer, 2007.
[24] R. Schmidt, The Saito-Kurokawa lift and functoriality, Amer. J. Math. (2005) 209-240.
[25] F. Shahidi, On certain L-function, Amer. J. Math. 103 (1981) 297-355.
[26] D. Soudry, The CAP representation of $G S p(4, \mathbb{A})$, J. Reine Angew. Math. 383 (1988) 87-108.
[27] H. Yoshida, Siegel's modular forms and the arithmetics of quadratic forms, Invent. Math. 60 (1980) 193-248.
[28] H. Yoshida, On Siegel modular forms obtained by theta series, J. Reine Angew. Math. 352 (1984) 184-219.
[29] J.L. Waldspurger, Correspondence de Shimura et quaternions, Forum Math. 3 (1991) 219-307.
[30] T. Watanabe, Theta lifting of cusp forms on the unitary group $U(d, d)$, Duke Math. J. 67 (1) (1992) 159-187.
[31] R. Weissauer, Four dimensional Galois representations, Astérisque 302 (2005) 67-150.

[^0]: E-mail address: okazaki@cc.nara-wu.ac.jp.
 1 This work was supported partially by Grant-in-Aid for JSPS Fellows.

