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Abstract. To calculate dimensions of Siegel modular forms including non-
cusp forms, we determine the image of Siegel Phi-operator for small weight
which were unknown in general theory. We treat the case of the Hecke type
group of prime level and also vector valued Siegel modular forms of level one
of degree two. For this purpose we propose a new basis problem on theta

functions related with the Witt operator. We also show the surjectivity of the
Witt operator in case of vector valued Siegel modular forms of level one for
big weight by giving certain new dimension formulas of Siegel modular forms.
We also give new upper and lower bounds of unknown dimensions of vector
valued Siegel modular forms of small weight.

1. Introduction

In this paper, we are interested in the dimensions of the whole Siegel modular

forms which are not necessarily cusp forms. The dimensions of holomorphic Siegel

cusp forms of degree two are explicitly known for many discrete subgroups if the

weight k is big enough. There are also some results for small k (cf. [12], [11]),

though there are no general ways to calculate dimensions for small weights. So to

calculate the dimension including non-cusp forms, we must investigate the difference

from cusp forms. Since cusp forms are defined to be modular forms which vanish

at the boundary of the Satake compactification of the Siegel modular variety, this

difference is the same as the dimension of the image of the restriction of the Siegel

modular forms to the boundary. This restriction operator is called the (generalized)

Siegel Φ-operator. Since irreducible components of this boundary consists of Siegel

modular varieties of smaller dimensions, the image of the Siegel Φ-operator consists

of vectors of functions whose components are Siegel modular forms of smaller degree

on each irreducible component of the boundary which coincide at the intersections

of the components. If the Φ-operator is surjective to the space of modular forms on

the boundary, then the difference of dimensions is reduced to the calculation of the

dimensions of modular forms of lower degrees. The surjectivity of this operator for

scalar valued modular forms is known for any degree in Satake [14] when the weight
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2 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

is big enough. But for small weights, this operator is not necessarily surjective and

the image is not known in general.

Now to determine the image of the Siegel Φ operator in case of degree two, we

noticed that it is useful to consider the so-called Witt operator defined as follows.

For Z =

(
τ z
z ω

)
= tZ ∈ H2 (where H2 is the Siegel upper half space of degree

two) and any function F (Z) of H2, we write

(WF )(τ, ω) = F

(
τ 0

0 ω

)
.

This Witt operator W was often used to determine the ring structure of Siegel

modular forms of degree two. In this paper, first we treat the discrete subgroup

Γ0(p) of Hecke type in Sp(2,R) (matrix size four). We investigate the image of

the Witt operator of scalar valued Siegel modular forms belonging to Γ0(p) by

investigating a variant of the basis problem, asking if some modular forms are

spanned by theta functions. As an application, we shall show that for weight k = 2

the Siegel Φ-operator is not surjective but the dimension of the image is exactly

obtained (Theorem 3.2, 4.1).

Secondly we treat vector valued Siegel modular forms of Sp(2,Z). The surjec-

tivity of the vector valued Siegel Φ-operator is known when the weight is detk Symj

with k ≥ 5 by Arakawa [1]. We shall determine the image for all weights k ≤ 4 un-

known before (cf. Theorem 5.1). We also determine the image of the Witt operator

for weight k ≥ 10 by showing that W is surjective to a certain space well described

by modular forms of one variable (cf. Theorem 6.3). This result is interesting as

itself, and it is also interesting to ask to what extent the same sort of theorem holds

for weight k ≤ 10, since if we can determine the image of W , we can get a dimen-

sion formula for small weight. Although this is still unknown, we can give upper

or lower bounds of still unknown dimensions of vector valued Siegel cusp forms of

weight detk Symj with k = 2 or 3 in the last section. In particular, we have an

existence theorem for non-zero Siegel modular forms of weight det3 Symj for big j.
This theorem is completely new since no such examples were known before for any

j.

2. Review on Siegel Modular Forms

We denote by Hn the Siegel upper half space of degree n,

Hn = {Z = tZ ∈ Mn(C); Im(Z) > 0}

where Im(Z) > 0 means that the imaginary part of Z is a positive definite matrix.

We denote by Sp(n,R) the real symplectic group of rank n.

Sp(n,R) = {g ∈ M2n(R); gJ tg = J}

where J =

(
0 −1n

1n 0

)
and 1n is the n × n unit matrix. The group Sp(n,R)

acts on Hn in the usual way by gZ = (AZ + B)(CZ + D)−1 for g =

(
A B
C D

)
∈

Sp(n,R). We fix a rational irreducible representation (ρ, V ) of GLn(C). For every
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 3

g =

(
A B
C D

)
∈ Sp(n,R) and a V -valued mapping F on Hn, we write

(F |ρ[g])(Z) = ρ(CZ + D)−1F (gZ).

This defines an action of Sp(n,R) on the space of holomorphic functions on Hn.

We take a discrete subgroup Γ of Sp(n,R) with vol(Γ\Hn) < ∞. A holomorphic

function F on Hn is said to be a Siegel modular form of weight ρ belonging to Γ if

F |ρ[γ] = F for all γ ∈ Γ (with the holomorphy condition at cusps of Γ when n = 1).

When F vanishes at the boundary of the Satake compactification of Γ\Hn, then F
is said to be a cusp form. We denote by Aρ(Γ) or Sρ(Γ) the space of Siegel modular

forms or Siegel cusp forms, respectively. When ρ(u) = det(u)k for u ∈ GLn(C),

we say that F is of weight k and we write Ak(Γ) = Aρ(Γ) and Sk(Γ) = Sρ(Γ).

In this paper, we mainly consider the case n = 2. In this case, the polynomial

representations of GL2(C) are written as ρk,j = det
k Symj for some integers k ≥ 0

and j ≥ 0 where Symj is the symmetric tensor representation of degree j, and we

write Aρk,j
(Γ) = Ak,j(Γ) and Sρ(Γ) = Sk,j(Γ).

We put Sp(n,Z) = Sp(n,R)∩M2n(Z). For any integer N , we define the Hecke

type congruence subgroup Γ
(n)
0 (N) of Sp(n,Z) by

Γ
(n)
0 (N) =

{
g =

(
A B
C D

)
∈ Sp(n,Z);C ≡ 0 mod N

}
.

When n = 2, we simply write Γ0(N) = Γ
(2)
0 (N).

3. The Siegel Φ-operator and the Witt operator

For a function F on H2, we define a function ΦF on H1 by

(ΦF )(τ) = lim
λ→∞

F

(
τ 0

0 iλ

)
when it converges. This ΦF is well defined for every F ∈ Ak(Γ0(N)). By definition,

F is a cusp form if and only if Φ(F |k[g]) = 0 for any g ∈ Sp(2,Z). For any prime

p, the structure of the boundary of the Satake compactification of Γ0(p)\H2 is

well known (e.g. see [9]) and it has two one-dimensional cusps isomorphic to the

compactification of Γ
(1)
0 (p)\H1 crossing at a zero-dimensional cusp among three

zero-dimensional cusps. So the space ∂Ak(Γ0(p)) of modular forms on the boundary

is a vector space of pairs of modular forms on Ak(Γ
(1)
0 (p)) which takes the same

value at the crossing point cusp. The compactification of Γ
(1)
0 (p) has two cusps i∞

and 0 and by a suitable realization of cusps of Γ0(p)\H2, the above space can be

identified with

∂Ak(Γ0(p)) := {(f, g); f, g ∈ Ak(Γ
(1)
0 (p)), f, g have the same value at the cusp 0}.

Here we understand as usual that f and g have the same value at 0 if

lim
λ→∞

(f |k[π1])(iλ) = lim
λ→∞

(g|k[π1])(iλ),

where for any natural number n, we put

πn =

(
0 −√

p−1
1n√

p1n 0

)
.
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4 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

For F ∈ Ak(Γ0(p)), the generalized Φ-operator is identified with the mapping of

Ak(Γ0(p)) to ∂Ak(Γ0(p)) defined by

F → Φ̃(F ) = (Φ(F ),Φ(F |k[π2])).

If k is odd, then Ak(Γ
(1)
0 (p)) = {0} and Φ̃ is always surjective since it is a mapping

to {0}. So obviously we have Ak(Γ0(p)) = Sk(Γ0(p)). When k is even, if k ≥ 4,

for any (c1, c2) ∈ C2, there exists a modular form E ∈ Ak(Γ
(1)
0 (p)) such that the

value of E is c1 at i∞ and c2 at the cusp 0, so dimAk(Γ
(1)
0 (p))/Sk(Γ

(1)
0 (p)) = 2.

But if k = 2, then dimAk(Γ
(1)
0 (p)/S2(Γ0(p)) = 1. These are well known classical

results proved by dimension formula or by the theory of Eisenstein series. So the

dimension of ∂Ak(Γ0(p)) for even k is given by

dim ∂Ak(Γ0(p)) = 2 dimSk(Γ
(1)
0 (p)) +

{
1 k = 2,
3 k ≥ 4.

For even k, the surjectivity of Φ̃ is known for big k as follows.

Theorem 3.1 (Satake [14]). Notation being as above, assume that k ≥ 6. Then
Φ̃ is surjective to ∂Ak(Γ0(p)).

Actually the surjectivity holds also for k = 4. This result was obtained after the

conference in a joint work with Böcherer and will be reported elsewhere. Here in

this paper, we would like to describe the image of Φ̃ in the case k = 2. In this case,

we shall show later that Φ̃ is not surjective to ∂A2(Γ0(p)) but dim Φ̃(A2(Γ0(p))) =

dim(A2(Γ0(p))/S2(Γ0(p))) = dimA2(Γ
(1)
0 (p)) for any prime p.

Before proving this, we shall explain the Witt operator and a variant of the

basis problem which is used for the proof. For every holomorphic function F on

H2, the Witt operator W is defined by

(WF )(τ, ω) = F

(
τ 0

0 ω

)
.

This operator was first introduced in Witt [20] and later used, for example by Igusa,

Hammond, Freitag, to determine the structure of the ring of Siegel modular forms.

For any gi =

(
ai bi

ci di

)
∈ Γ

(1)
0 (N) (i = 1, 2), we put

ι(g1, g2) =

⎛⎜⎜⎝
a1 0 b1 0

0 a2 0 b2
c1 0 d1 0

0 c2 0 d2

⎞⎟⎟⎠ .

Then we have ι(g1, g2) ∈ Γ0(N). So if F ∈ Ak(Γ0(N)), then for each variable τ

or ω, WF is a modular form of weight k of one variable belonging to Γ
(1)
0 (N). In

particular, for odd k we have WF = 0. So we assume that k is even now. By the

action of the matrix

U =

⎛⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ ∈ Γ0(N)
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 5

on F , we see F

(
ω z
z τ

)
= (−1)kF

(
τ z
z ω

)
. Hence we have WF (τ, ω) = WF (ω, τ )

for even k. This means that we can regard WF as an element of the vector space

Sym2(Ak(Γ
(1)
0 (N))) of the symmetric tensors of degree two of Ak(Γ

(1)
0 (N)).

We can determine the image of Φ̃ by the image of W at least when N = p is

a prime. This can been seen as follows. When k ≥ 4, for a cusp κ = i∞ or 0, we

denote by Eκ an Eisenstein series in Ak(Γ
(1)
0 (p)) whose value is non-zero at κ and

0 at the other cusp. We can assume that (Ei∞|k[π1])(τ ) = E0(τ ) and then we have

(E0|k[π1])(τ ) = Ei∞(τ ). When k = 2, we denote by E the unique Eisenstein series

(up to constant) in A2(Γ
(1)
0 (p)), which does not vanish at any cusps. In this case,

we have E|k[π1] = −E(τ ). For any F ∈ Ak(Γ0(p)), we have

WF (τ, ω) =

d∑
j=1

(fj(τ )gj(ω) + fj(ω)gj(τ ))

where fj , gj ∈ Ak(Γ
(1)
0 (p)). When k ≥ 4, WF (τ, ω) is given modulo

Sym2(Sk(Γ
(1)
0 (p))) by∑

κ

(fκ(ω)Eκ(τ ) + fκ(τ )Eκ(ω))

+c1(Ei∞(τ )E0(ω) + E0(τ )Ei∞(ω)) + c2Ei∞(τ )Ei∞(ω) + c3E0(τ )E0(ω)

where fκ are cusp forms of weight k and ci are constants. We may assume that

Ei∞(i∞) = 1 and then we have

Φ(F ) = f∞(τ ) + c1E0(τ ) + c2Ei∞(τ ).

On the other hand, we have W (F |k[π2]) = p−k(τω)−k(WF )(−(pτ )−1,−(pω)−1). If

f(τ ) ∈ Ak(Γ
(1)
0 (p)), then we also have f |k[π1] ∈ Ak(Γ

(1)
0 (p)) and if f ∈ Sk(Γ

(1)
0 (p)),

then the latter is also a cusp form. So for the same F as above, we have

(pτω)−k(WF )(−(pτ )−1,−(pω)−1) =

g0(ω)Ei∞(τ ) + g0(τ )Ei∞(ω) + gi∞(ω)E0(τ ) + gi∞(τ )E0(ω)

+c1(Ei∞(τ )E0(ω) + E0(τ )Ei∞(ω)) + c2E0(τ )E0(ω) + c3Ei∞(τ )Ei∞(ω).

modulo Sym2(Sk(Γ
(1)
0 (p))) where gκ = fκ|k[π1]. So we have

Φ(F |k[π2]) = g0(τ ) + c1E0(τ ) + c3Ei∞(τ ).

Similarly, when k = 2, there exist a cusp form f ∈ S2(Γ
(1)
0 (p)) and a constant c

such that

WF (τ, ω) = f(τ )E(ω) + E(τ )f(ω) + cE(τ )E(ω)

modulo Sym2(Sk(Γ
(1)
0 (p))). So we have

(pτω)−2WF (−(pτ )−1,−(pω)−1) = −(f |2[π1])(τ )E(ω)−(f |2[π])(ω)E(τ )+cE(τ )E(ω).

Hence assuming E(i∞) = 1, we have

ΦF = f(τ ) + cE(τ )

Φ(F |k[π2]) = −g(τ ) + cE(τ ).

where g = f |2[π1]. Of course, here, both Φ(F ) and Φ(F |k[π2]) are modular forms

of Ak(Γ
(1)
0 (p)) which have the same value at the cusp 0.
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6 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

The Witt operator is not surjective to Sym2(Ak(Γ
(1)
0 (N))) in general even when

N is a prime. The author was informed of this fact by Cris Poor. Motivated by

investigation of the image of Φ̃, we define the mapping W by composition of W and

the natural projection Sym2(Ak(Γ
(1)
0 (p))) → Sym2(Ak(Γ

(1)
0 (p)))/Sym2(Sk(Γ

(1)
0 (p))).

We saw above that the image of Φ̃ is determined by the image of W .

Theorem 3.2. For any prime p, we have
(1) The mapping W is surjective.
(2) If k ≥ 4, then the Siegel operator Φ̃ is surjective to ∂Ak(Γ0(p)).
(3) If k = 2, the operator Φ̃ is not surjective, but we have

dim Φ̃(A2(Γ0(p))) = dimA2(Γ
(1)
0 (p)).

Proof. If we assume that (1) is true, then the proof of (2) and (3) is obvious

from the above consideration. When k ≥ 6, then we know by Satake [14] that (2)

is true. This also implies (1). So the problem is to show (1) for k = 2 and k = 4.

The proof for k = 4 is a joint work with Boecherer and will be written elsewhere.

We shall prove the case k = 2 in the next section.

4. A Variant of the basis problem

To prove Theorem 3.2, we consider some more general problem. For a natural

number k, let S be a 2k× 2k positive definite integral symmetric matrix. If all the

diagonal components of S are even, S is said to be even. The minimum of natural

numbers N such that NS−1 is also even is called the level of S. For a natural

number n, we write

θ
(n)
S (Z) =

∑
X∈M2k,n(Z)

exp(πiTr(tXSXZ)).

If det(S) is a square, we have θ
(n)
S (Z) ∈ Ak(Γ

(n)
0 (N)). The usual basis problem asks

if Ak(Γ0(N)) is spanned by θS for various S. We consider the following variant of

this problem.

A variant of the basis problem. Is the space
Sym2(Ak(Γ

(1)
0 (N)))/Sym2(Sk(Γ

(1)
0 (N))) spanned by the images of theta functions

θ
(1)
S (τ )θ

(1)
S (ω) associated with 2k× 2k positive definite even integral symmetric ma-

trices S of level N?
A numerical example. Assume that N = 5. We denote by E8 the 8 × 8 even

unimodular symmetric matrix which is unique up to isomorphism. We put

S0 =

⎛⎜⎜⎝
2 1 0 0

1 2 0 1

0 0 10 5

0 1 5 4

⎞⎟⎟⎠ S1 =

⎛⎜⎜⎝
2 0 1 2

0 4 −1 −1

1 −1 4 −1

2 −1 −1 4

⎞⎟⎟⎠ S2 =

⎛⎜⎜⎝
4 −1 −1 −1

−1 4 −1 −1

−1 −1 4 −1

−1 −1 −1 4

⎞⎟⎟⎠
The levels of Si are all 5 and we have det(S0) = 52. det(S1) = 5, and det(S2) = 53.

Then theta functions associated with E8, 5E8, S0 + S0, S1 + S1, S1 + S2, S2 + S2

are in A4(Γ0(5)) and the answer is affirmative for k = 4.

Theorem 4.1. When N is a prime p, then for any natural number k, the
answer to the above variant of the basis problem is affirmative.
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 7

Again when k = 4, this is a joint work with Boecherer and will be reported

elsewhere. When k ≥ 6, then by [3], the space Ak(Γ0(p)) is spanned by θ
(2)
S (Z).

Since Φ̃ is surjective for k ≥ 6 by virtue of Satake (loc.cit.), W is also surjective

as shown in the last section. For n = 2, we have W (θ
(2)
S ) = θ

(1)
S (τ )θ

(1)
S (ω) and

we are done. When k = 2, then by the result of Eichler [4], the space A2(Γ0(p))

is spanned by theta functions θ
(1)
S (τ ). We have Φ(θ

(2)
S (Z)) = θ

(1)
S (τ ) for any S

so Φ is surjective to A2(Γ0(p)). By the results in the last section, we see that

dimSym2(A2(Γ
(1)
0 (p)))/Sym2(S2(Γ

(1)
0 (p))) = dimA2(Γ0(p)) and the surjectivity

of (single) Φ to A2(Γ0(p)) and the surjectivity of W are equivalent. So we are done.

Hence we also proved Theorem 3.2.

It seems interesting to ask if we can generalize the above results to more general

N .

5. The image of Φ-operator in the vector valued case.

Now we consider the space Ak,j(Sp(2,Z)) for j > 0. Since we can see easily

that Ak,j(Sp(2,Z)) = 0 for any odd j by writing down the action of −14, we assume

from now on that j is even. To fix an idea, we give a realization of Symj . We denote

by u1, u2 two independent variables. For g ∈ GL2(C), we write (v1, v2) = (u1, u2)g.
We define the (j + 1) × (j + 1) matrix Symj(g) by

(vj
1, v

j−1
1 v2, . . . , v

j
2) = (uj

1, u
j−1
1 u2, . . . , u

j
2)Symj(g).

This gives the symmetric tensor representation of GL2(C) of degree j. For F ∈
Ak,j(Sp(2,Z)), the Siegel Φ-operator is defined as usual by

Φ(F ) = lim
λ→∞

F

(
τ 0

0 iλ

)
.

Since Sp(2,Z) has the unique one-dimensional cusp, this coincides with the operator

to the boundary. By definition, Φ(F ) is a Cj+1 -valued function. But as shown

in Arakawa [1], the first component of Φ(F ) belongs to Sk+j(SL2(Z)) (under the

assumption that j > 0) and all the other components vanish. So we can identify

Φ(F ) as an element of Sk+j(SL2(Z)). Then since Sk+j(SL2(Z)) = 0 for odd k, Φ is

of course surjective to Sk+j(SL2(Z)) in this case and we see that Ak,j(Sp(2,Z)) =

Sk,j(Sp(2,Z)) if k is odd. Arakawa proved the surjectivity of Φ for even k ≥ 6 in

[1] by constructing Klingen type Eisenstein series. We determine the image of Φ

for k ≤ 4 here.

Theorem 5.1. If k ≥ 4 and j is even with j > 0, then we have Φ(Ak,j(Sp(2,Z)))

= Sk+j(SL2(Z)). If k = 2, then Φ(A2,j(Sp(2,Z))) = 0 and A2,j(Sp(2,Z)) =

S2,j(Sp(2,Z)).

Proof. Since the case k ≥ 6 is known by Arakawa [1], we prove the case k = 4

and k = 2. First we prove the case k = 4. We write the inner product of x, y ∈ R8

by (x, y). Let E8 ⊂ R8 be the lattice of rank 8 which is even unimodular with

respect to (∗, ∗). This is unique up to isomorphism. We take a vector a ∈ C8 such

that (a, a) = 0 and define a vector valued theta function θa(Z) (Z = ( τ z
z ω ) ∈ H2)
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8 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

associated with a harmonic polynomial by

θa(Z) =

⎛⎜⎝θa,0(Z)
...

θa,j(Z)

⎞⎟⎠
where we put

θa,ν(Z) =

(
j

ν

) ∑
x,y∈E8

(x, a)j−ν(y, a)νexp(πi((x, x)τ + 2(x, y)z + (y, y)ω).

It is easy to see that θa(Z) ∈ A4,j(Sp(2,Z)). (For example, see Freitag [6] p. 161.)

We see that in the Fourier expansion of Φ(θa), the only terms with y = 0 remain

and we have

Φ(θa) =
∑

x∈E8

(x, a)jexp(πi(x, x)τ ) ∈ Sj+4(SL2(Z)).

(This can be regarded as a special case of Freitag [5] Hilfssatz 1.4). It is classically

well known that every harmonic polynomial of 8 variables of degree j is a linear

combination of (x, a)j with a ∈ C8 with (a, a) = 0 (cf. e.g. Takeuchi [15]). On

the other hand, the space S4+j(SL2(Z)) (j > 0) is spanned by theta functions

accociated with harmonic polynomials by virtue of Waldspurger [18] or Theorem

5 in Boecherer [2]. So the functions Φ(θa) associated with a ∈ C8 with (a, a) = 0

spans the whole S4+j(SL2(Z)). This implies that Φ is surjective to this space

S4+j(SL2(Z)). This proves the case k = 4. Now we prove the case k = 2. We

define the Witt operator as before. This time, WF is a vector valued function

on H1 × H1. If we write down the condition that F is invariant by the action of

ι(g1, g2) ∈ Sp(2,Z) where g1, g2 ∈ SL2(Z), we can see that the first component of

WF (τ, ω) is a modular form of weight 2+j of SL2(Z) with respect to the variable τ
and of weight 2 of SL2(Z) with respect to the variable ω. Since A2(SL2(Z)) = {0},
we have WF = 0. As we explained, Φ(F ) can be identified with the first component,

which is equal to the first component of limλ→∞WF (τ, iλ), which is zero. So we

prove the assertion.

6. The Witt operator in the vector valued case

In the argument of the last section, to show A2,j(Sp(2,Z)) = S2,j(Sp(2,Z)),

we used the Witt operator W for the vector valued case. Now it is interesting

to investigate the image W (Ak,j(Sp(2,Z))) for general k by several reasons. For

F ∈ Ak,j(Sp(2,Z)), we write the ν-th component of F by Fν−1.

F =

⎛⎜⎜⎜⎝
F0

F1

...

Fj

⎞⎟⎟⎟⎠
By the action of

ι(g1, g2) =

⎛⎜⎜⎝
a1 0 b1 0

0 a2 0 b2
c1 0 d1 0

0 c2 0 d2

⎞⎟⎟⎠ ∈ Sp(2,Z)
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 9

with gi =

(
ai bi

ci di

)
∈ SL2(Z), we see that

WFν(g1τ, g2ω) = (c1τ + d1)
k+j−ν(c2ω + d2)

k+νWF (τ, ω),

so we have WFν(τ, ω) =
∑t

j=1 fj(τ )gj(ω) for some fj ∈ Ak+j−ν(SL2(Z)) and gj ∈
Ak+ν(SL2(Z)). In other words, we can regardWFν as an element of Ak+j−ν(SL2(Z))⊗

Ak+ν(SL2(Z)). Besides, by automorphy with respect to U =

⎛⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠, we

have

WFν(ω, τ ) = (−1)kWFj−ν(τ, ω).

In particular, if we write j = 2m with m ∈ Z, then WFm(ω, τ ) = (−1)kWFm(τ, ω).

This means that WFm belongs to the space of symmetric tensors

Sym2(Ak+m(SL2(Z))) or alternating tensors Alt2(Ak+m(SL2(Z))) according to k
is even or odd. We have some more conditions on WF . Since the first component of

Φ(F ) is a cusp form and all the other components are zero, we should have WF0 ∈
Sk+j(SL2(Z)) ⊗ Ak(SL2(Z)) and WFν ∈ Ak+j−ν(SL2(Z)) ⊗ Sk+ν(SL2(Z)), and

besides, since WFν(ω, τ ) = (−1)kWFj−ν(τ, ω), we have WFν ∈ Sk+j−ν(SL2(Z))⊗
Sk+ν(SL2(Z)) for any ν �= 0 or j. In particular, if F is a cusp form, then we have

WFν ∈ Sk+j−ν(SL2(Z)) ⊗ Sk+ν(SL2(Z)) for all ν with 0 ≤ ν ≤ j.
We denote by Vk,j the Cj+1-valued functions

f(τ, ω) =

⎛⎜⎜⎜⎝
f0(τ, ω)

f1(τ, ω)
...

fj(τ, ω)

⎞⎟⎟⎟⎠
on H1 ×H1 defined by

Vk,j = {f(τ, ω) = (fν(τ, ω)) ; fν(τ, ω) ∈ Sk+j−ν(SL2(Z)) ⊗ Sk+ν(SL2(Z)),

fν(ω, τ ) = (−1)kfj−ν(τ, ω)}

We denote by Ṽk,j the space spanned by Vk,j and functions⎛⎜⎜⎜⎜⎜⎝
f(τ )Ek(ω)

0
...

0

(−1)kEk(τ )f(ω)

⎞⎟⎟⎟⎟⎟⎠
where Ek is the unique normalized Eisenstein series of weight k of SL2(Z) and f is

any element in Sk+j(SL2(Z)). We see in the above that for every F ∈ Ak,j(Sp(2,Z))

or Sk,j(Sp(2,Z)), we have WF ∈ Ṽk,j or Vk,j , respectively. Now we ask if W is

surjective. If k = 2 and j > 0 for example, this is not surjective as we have seen

already, but for big k, we have the following theorem.

Theorem 6.1. If k ≥ 10, then we have W (Ak,j(Sp(2,Z))) = Ṽk,j and
W (Sk,j(Sp(2,Z))) = Vk,j.
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10 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

The assertion for cusp forms is obtained if we can show

dim ker(W |Sk,j(Sp(2,Z)) = dimSk,j(Sp(2,Z)) − dimVk,j .

The assertion for Ak,j(Sp(2,Z)) easily follows from this result and the surjectivity

of the Φ-operator. So, the first thing we should do is to characterize the kernel

of W . This is well known in the scalar valued case and similarly done for the

vector valued case as follows. We define the theta constant on H2 associated with

characteristic m = (m
′
,m

′′
) ∈ Z by

θm(Z) =
∑
p∈Z2

e

(
1

2
t

(
p +

m
′

2

)
Z

(
p +

m
′

2

)
+ t

(
p +

m
′

2

)
m

′′

2

)
where e(x) = exp(2πix) for any x. We define the holomorphic function χ5(Z) on

H2 by the product of ten theta constants with even characteristics.

χ5 = θ0000θ0001θ0010θ0011θ0100θ0110θ1000θ1001θ1100θ1111.

It is known that χ5|5[γ] = sgn(γ)χ5 for any γ ∈ Sp(2,Z) where sgn(γ) = 1 or

−1 depending on γ. This sgn defines a character of Sp(2,Z) of order two. The

kernel of sgn is a normal subgroup of Sp(2,Z) of index two and denoted by Γe(1)

in Igusa [13], so we use the same notation here. The group Γe(1) contains the

principal congruence subgroup Γ(2) of level 2 and we have Sp(2,Z)/Γ(2) ∼= S6 (the

permutation group on six letters). The above sgn is nothing but the sign character

on S6 with the alternative group A6 as the kernel and this corresponds to Γe(1)

(See Igusa loc. cit.). If we denote by Ak,j(Sp(2,Z), sgn) the space of holomorphic

functions F on H2 such that F |k[γ] = sgn(γ)F for any γ ∈ Sp(2,Z), then we have

the direct sum decomposition

Ak,j(Γe(1)) = Ak,j(Sp(2,Z)) + Ak,j(Sp(2,Z), sgn).

It is well known that χ5 is a cusp form, Wχ5 = 0, and that χ5/(e
πiτ + 1)(eπiτ − 1)

is non-vanishing holomorphic function on the fundamental domain of Sp(2,Z) (cf.

Freitag [6] p. 145). This means that if WF = 0 for F ∈ Ak,j(Sp(2,Z)), then F/χ5

is also holomorphic and F/χ5 ∈ Ak−5,j(Sp(2,Z), sgn). If j = 0 and k is even, then

this implies automatically that F/χ2
5 is also holomorphic, but in our case j > 0,

this does not hold in general. Anyway, we have

ker(W |Sk,j(Sp(2,Z))) = Ak−5,j(Sp(2,Z), sgn).

Now we show that Ak,j(Sp(2,Z), sgn) = Sk,j(Sp(2,Z), sgn). For F = (Fν) ∈
Ak,j(Sp(2,Z), sgn), we have

WF0(τ, γω) = sgn1(γ)(cω + d)kWF (τ, ω)

for any γ ∈ SL2(Z) where sgn1 is defined by the character of SL2(Z) which gives the

sign character of S3 throught the isomorphism SL2(Z/2Z) ∼= S3. Any such function

is a multiple of η12(ω) = ∆1/2(ω) where η is the Dedekind eta function and ∆ is the

Ramanujan Delta function. So WF is a cusp form with respect to ω. This implies

that Φ(F ) = 0, so F is a cusp form. Hence we can show the surjectivity of W if we

can calculate the dimensions of Sk,j(Sp(2,Z)), Sk−5,j(Sp(2,Z), sgn) and Vk,j . The

dimension of Vk,j is calculated by classical dimension formulas for SL2(Z). The

dimension of Sk,j(Sp(2,Z)) is known for for all k if j = 0 by Igusa and for k ≥ 5,

j > 0 by Tsushima [16]. The dimension of Sk,j(Γe(1)) is given below.
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 11

In [16], the dimension formula of Sk,j(Sp(2,Z)) were obtained by the Riemann-

Roch-Hirzeburuch theorem and holomorphic Lefschetz theorem. In [19], the same

dimensions have been obtained by Selberg trace formula and we use this method

here. In the Selberg trace formula, the dimensions are given as a sum of complicated

integrals defined over conjugacy classes of elements in the discrete group and we

shall call each such value in the summand as a contribution of the conjugacy classes.

In the dimension formula, a contribution is non-zero only when the semi-simple

parts of the Jordan decomposition of elements are torsion. From [8, Section 5-1],

the principal polynomials of the torsion elements of Sp(2,Q) are as follows:

f1(x) = (x− 1)4, f1(−x) f7(x) = (x2 + x + 1)2

f2(x) = (x− 1)2(x+ 1)2 f8(x) = (x2 + 1)(x2 + x+ 1), f8(−x)

f3(x) = (x− 1)2(x2 + 1), f3(−x) f9(x) = (x2 + x + 1)(x2 − x + 1)

f4(x) = (x− 1)2(x2 + x + 1), f4(−x) f10(x) = (x4 + x3 + x2 + x + 1), f10(−x)

f5(x) = (x− 1)2(x2 − x + 1), f5(−x) f11(x) = x4 + 1

f6(x) = (x2 + 1)2 f12(x) = x4 − x2 + 1 .

So for each l with 1 ≤ l ≤ 12, we denote by Hl the contribution to the di-

mensions dimSk,j(Γe(1)) of elements such that the principal polynomial of the

semi-simple part is fl(x) or fl(−x). The contribution Hl is a sum of contributions

of semi-simple elements, unipotent elements or quasi-unipotent elments (i.e. ele-

ments such that some power are unipotent), and we denote by He
l , Hu

l or Hqu
l for

each such subcontribution.

In the theorem below, we use notation t = [t0, t1, . . . , tl−1; l]m which means

that t = tn if m ≡ n (mod l). We note that dimC Sk,j(Γe(1)) = 0 if j is odd. In

case of j = 0, the dimensions of Sk,0(Γe(1)) were calculated by Igusa [13]. In case

of j > 0, the following result is new.

Theorem 6.2. Assume that k ≥ 5 and j is even with j ≥ 0. Then we have

dimC Sk,j(Γe(1)) =

12∑
i=1

Hi,

where Hi are the total contribution of elements of Γe(1) with principal polynomial
fi(±x) and given below:

H1 = He
1 + Hu

1 , He
1 = 2−63−35−1(j + 1)(k − 2)(j + k − 1)(j + 2k − 3),

Hu
1 = −2−63−2(j + 1)(j + 2k − 3) + 2−43−1(j + 1).

H2 = He
2 + Hqu

2 , He
2 = 2−63−2(−1)k(j + k − 1)(k − 2),

Hqu
2 = −2−43−1(−1)k(j + 2k − 3) + 2−6 · 3 · (−1)k.

H3 = He
3 + Hqu

3 , He
3 = 0,

Hqu
3 = −2−3[(−1)j/2,−1, (−1)j/2+1, 1; 4]k + 2−4[1, (−1)j/2,−1, (−1)j/2+1; 4]k.

H4 = He
4 + Hqu

4 ,

He
4 = 2−23−3 ([(j + k − 1),−(j + k − 1), 0; 3]k + [(k − 2), 0,−(k − 2); 3]j+k) ,

Hqu
4 = −2−23−2 ([1,−1, 0; 3]k + [1, 0,−1; 3]j+k) − 3−2 ([0,−1,−1; 3]k + [1, 1, 0; 3]j+k) .
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12 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

H5 = He
5 + Hqu

5 , Hqu
5 = −2−23−1 ([−1,−1, 0, 1, 1, 0; 6]k + [1, 0,−1,−1, 0, 1; 6]j+k) ,

He
5 = 2−23−2 ([−(j + k − 1),−(j + k − 1), 0, (j + k − 1), (j + k − 1), 0; 6]k

+[(k − 2), 0,−(k − 2),−(k − 2), 0, (k − 2); 6]j+k) .

H6 = He
6 + Hqu

6 , Hqu
6 = −2−3(−1)j/2,

He
6 = 2−6(−1)j/2(j + 2k − 3) + 2−6(−1)j/2+k(j + 1).

H7 = He
7 + Hqu

7 , Hqu
7 = −2−13−1[1,−1, 0; 3]j ,

He
7 = 3−3(j + 2k − 3)[1,−1, 0; 3]j + 2−13−3(j + 1)[0, 1,−1; 3]j+2k.

H8 = 0.

H9 = 2−13−2

⎧⎪⎨⎪⎩
[1, 0, 0,−1, 0, 0; 6]k (j = 6n)

[−1, 1, 0, 1,−1, 0; 6]k (j = 6n + 2)

[0,−1, 0, 0, 1, 0; 6]k (j = 6n + 4)

.

H10 = 2 · 5−1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[1, 0, 0,−1, 0; 5]k (j = 10n)

[−1, 1, 0, 0, 0; 5]k (j = 10n + 2)

0 (j = 10n + 4)

[0, 0, 0, 1,−1; 5]k (j = 10n + 6)

[0,−1, 0, 0, 1; 5]k (j = 10n + 8)

.

H11 = 2−3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1, 1,−1,−1; 4]k (j = 8n)

[−1, 1, 1,−1; 4]k (j = 8n + 2)

[−1,−1, 1, 1; 4]k (j = 8n + 4)

[1,−1,−1, 1; 4]k (j = 8n + 6)

.

H12 = 0.

Proof. If we classify the Sp(2,Z)-conjugacy classes which belong to Γe(1),

then we can calculate the dimension formula by the general arithmetic formula [19,

Theorem 4.2] and the data of the conjugacy classes and the centralizers of Sp(2,Z)

(cf. [7]). Hence we only explain the classification of the Sp(2,Z)-conjugacy classes

inside Γe(1).

We denote by (i1i2 · · · ij) the cyclic permutation of i1, i2, . . . , ij in the symmetric

group S6 . We identify Sp(2,Z)/Γ(2) with S6 as in [13]. Since this isomorphism is

obtained by the action of Sp(2,Z) on 6 odd characteristics, it is easy to calculate

the image for each element of Sp(2,Z). We write the projection of Sp(2,Z) to S6

simply by Sp(2,Z) % γ → σ ∈ S6. Then we have

Sp(2,Z) %

⎛⎜⎜⎝
1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠→ (12), Sp(2,Z) %

⎛⎜⎜⎝
0 1 0 1

1 0 1 0

1 0 1 1

−1 1 0 1

⎞⎟⎟⎠→ (123456).

We give a list of representatives of the Sp(2,Z)-conjugacy classes and their images

in S6. We put τ1 = (13)(24)(56), τ2 = (12)(36)(45), τ3 = (12)(34)(56). We denote

by Eij the 4 × 4 matrix unit such that the (i, j) component is one and the other

components are zero. We denote by I4 the 4 × 4 unit matrix. The notations α∗,
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 13

ε(S), δ̂(n), · · · below are representatives of Sp(2,Z) conjugacy classes used in [7].

Sometimes we use an abbreviated notation ±γ → τ . This means that γ and −γ
are not conjugate and must be considered separately but projected in the same

element in S6. Below we give a list of conjugacy classes which are projected to A6.

The contributions to the dimensions are given by the sum of contributions of such

conjugacy classes known in [19]. The details of the calculations are omitted here.

The contribution H1.

He
1 . ±α0 = I4 → 1 ∈ A6.

Hu
1 . ±ε(S) = I4 +s1E13 +s12(E14 +E23)+s2E24, ((s1, s12, s2) ∈ Z3, (s1, s12, s2) �=

(0, 0, 0)). If (s1, s12, s2) ≡ (0, 0, 0) mod 2, ε(S) → 1 ∈ A6. If (s1, s12, s2) ≡ (1, 0, 0)

mod 2, ε(S) → (12) �∈ A6. If (s1, s12, s2) ≡ (0, 1, 0) mod 2, ε(S) → τ3 �∈ A6. If

(s1, s12, s2) ≡ (0, 0, 1) mod 2, ε(S) → (34) �∈ A6. If (s1, s12, s2) ≡ (1, 0, 1) mod 2,

ε(S) → (12)(34) ∈ A6. If (s1, s12, s2) ≡ (1, 1, 0) mod 2, ε(S) → (12)τ3 ∈ A6. If

(s1, s12, s2) ≡ (0, 1, 1) mod 2, ε(S) → (34)τ3 ∈ A6. If (s1, s12, s2) ≡ (1, 1, 1) mod 2,

ε(S) → (56) �∈ A6.

The contribution H2.

He
2 . δ1 = E11 − E22 + E33 − E44 → 1 ∈ A6. δ2 = δ1 − E14 + E23 → τ3 �∈ A6.

Hqu
2 . ±δ̂1(n) = δ1 + nE13, (n ∈ Z, n �= 0). If n ≡ 0 mod 2, δ̂1(n) → 1 ∈ A6. If

n ≡ 1 mod 2, δ̂1(n) → (12) �∈ A6. ±δ̂2(n) = δ1 + nE13 −E14 +E23, (n ∈ Z, n �= 0).

If n ≡ 0 mod 2, δ̂2(n) → τ3 �∈ A6. If n ≡ 1 mod 2, δ̂2(n) → τ3(12) ∈ A6.
ˆ̂
δ1(m,n) =

δ1+mE13+nE24, ((m,n) ∈ Z2, m �= 0, n �= 0). If (m,n) ≡ (0, 0) mod 2,
ˆ̂
δ1(m,n) →

1 ∈ A6. If (m,n) ≡ (1, 0) mod 2,
ˆ̂
δ1(m,n) → (12) �∈ A6. If (m,n) ≡ (0, 1) mod 2,

ˆ̂
δ1(m,n) → (34) �∈ A6. If (m,n) ≡ (1, 1) mod 2,

ˆ̂
δ1(m,n) → (12)(34) ∈ A6.

ˆ̂
δ2(m,n) = δ1 + mE13 − E14 + E23 + nE24, ((m,n) ∈ Z2, m �= 0, n �= 0). If

(m,n) ≡ (0, 0) mod 2,
ˆ̂
δ2(m,n) → τ3 �∈ A6. If (m,n) ≡ (1, 0) mod 2,

ˆ̂
δ2(m,n) →

τ3(12) ∈ A6. If (m,n) ≡ (0, 1) mod 2,
ˆ̂
δ2(m,n) → τ3(34) ∈ A6. If (m,n) ≡ (1, 1)

mod 2,
ˆ̂
δ2(m,n) → τ3(12)(34) �∈ A6.

ˆ̂
δ3(m,n) = δ1 + 2mE13 + (m + 2)E14 + E21 +

(m−2)E23+nE24+E34, ((m,n) ∈ Z2, m �= 0, 2m−n �= 0). If (m,n) ≡ (0, 0) mod 2,
ˆ̂
δ3(m,n) → τ1τ2τ1 �∈ A6. If (m,n) ≡ (1, 0) mod 2,

ˆ̂
δ3(m,n) → τ1τ2τ1τ3(34) �∈ A6.

If (m,n) ≡ (0, 1) mod 2,
ˆ̂
δ3(m,n) → τ1τ2τ1(34) ∈ A6. If (m,n) ≡ (1, 1) mod 2,

ˆ̂
δ3(m,n) → τ1τ2τ1τ3 ∈ A6.

ˆ̂
δ4(m,n) = δ1+(2m−1)E13+mE14+E21+(m−1)E23+

nE24 + E34, ((m,n) ∈ Z2). If (m,n) ≡ (0, 0) mod 2,
ˆ̂
δ4(m,n) → τ1τ2τ1(12) ∈ A6.

If (m,n) ≡ (1, 0) mod 2,
ˆ̂
δ4(m,n) → τ1τ2τ1τ3(34)(56)(34) ∈ A6. If (m,n) ≡ (0, 1)

mod 2,
ˆ̂
δ4(m,n) → τ1τ2τ1(12)(34) �∈ A6. If (m,n) ≡ (1, 1) mod 2,

ˆ̂
δ4(m,n) →

τ1τ2τ1(12)τ3 �∈ A6.

The contribution H3.

He
3 . ±β5 = −E13 +E22 +E31 +E44 → (25) �∈ A6. ±β6 = E13 +E22 −E31 +E44 →

(25) �∈ A6.

Hqu
3 . ±β̂7(n) = β5 + nE24, (n ∈ Z, n �= 0). If n ≡ 0 mod 2, β̂7(n) → (25) �∈ A6.

If n ≡ 1 mod 2, β̂7(n) → (25)(34) ∈ A6. ±β̂8(n) = β6 + nE24, (n ∈ Z, n �= 0).

If n ≡ 0 mod 2, β̂8(n) → (25) �∈ A6. If n ≡ 1 mod 2, β̂8(n) → (25)(34) ∈ A6.

±β̂9(n) = β6 −E14 +E21 +nE24, (n ∈ Z). If n ≡ 0 mod 2, β̂9(n) → τ3(25) ∈ A6. If
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14 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

n ≡ 1 mod 2, β̂9(n) → τ3(25)(34) �∈ A6. ±β̂10(n) = β5 +E23 +nE24 +E34, (n ∈ Z).

If n ≡ 0 mod 2, β̂10(n) → (25)τ3 ∈ A6. If n ≡ 1 mod 2, β̂10(n) → (25)τ3(34) �∈ A6.

The contribution H4.

He
4 . ±β1 = E13 + E22 − E31 − E33 + E44 → (15)(25) ∈ A6. ±β2 = −E11 − E13 +

E22 + E31 + E44 → (12)(25) ∈ A6.

Hqu
4 . ±β̂3(n) = −E13 + E22 + nE24 + E31 − E33 + E44, (n ∈ Z, n �= 0). If n ≡ 0

mod 2, β̂3(n) → (15)(25) ∈ A6. If n ≡ 1 mod 2, β̂3(n) → (15)(25)(34) �∈ A6.

±β̂4(n) = −E11 + E13 + E22 + nE24 − E31 + E44, (n ∈ Z, n �= 0). If n ≡ 0

mod 2, β̂4(n) → (12)(25) ∈ A6. If n ≡ 1 mod 2, β̂4(n) → (12)(25)(34) �∈ A6.

±β̂5(n) = β̂4(n)+E14−E21, (n ∈ Z). If n ≡ 0 mod 2, β̂5(n) → (12)(25)τ1τ2τ1 �∈ A6.

If n ≡ 1 mod 2, β̂5(n) → (12)(25)τ1τ2τ1(34) ∈ A6. ±β̂6(n) = β̂3(n) − E23 − E34,

(n ∈ Z). If n ≡ 0 mod 2, β̂6(n) → τ1τ2τ1(15)(25) �∈ A6. If n ≡ 1 mod 2, β̂6(n) →
τ1τ2τ1(15)(25)(34) ∈ A6.

The contribution H5.

He
5 . ±β3 = −E13 + E22 + E31 + E33 + E44 → (15)(25) ∈ A6. ±β4 = E11 + E13 +

E22 − E31 + E44 → (12)(25) ∈ A6.

Hqu
5 . ±β̂1(n) = E13 + E22 + nE24 − E31 + E33 + E44, (n ∈ Z, n �= 0). If n ≡ 0

mod 2, β̂1(n) → (15)(25) ∈ A6. If n ≡ 1 mod 2, β̂1(n) → (15)(25)(34) �∈ A6.

±β̂2(n) = E11 − E13 + E22 + nE24 + E31 + E44, (n ∈ Z, n �= 0). If n ≡ 0 mod 2,

β̂2(n) → (12)(25) ∈ A6. If n ≡ 1 mod 2, β̂2(n) → (12)(25)(34) �∈ A6.

The contribution H6.

He
6 . ±α1 = E13+E24−E31−E42 → (25)(46) ∈ A6. γ1 = −E12+E21−E34+E43 →

τ1 �∈ A6. γ2 = γ1 + E13 − E24 → τ1τ3 ∈ A6.

Hqu
6 . γ̂1(n) = γ1 − nE14 + nE23, (n ∈ Z, n �= 0). If n ≡ 0 mod 2, γ̂1(n) → τ1 �∈ A6.

If n ≡ 1 mod 2, γ̂1(n) → τ1(12)(34) �∈ A6. γ̂2(n) = γ1 −nE14 +(n+1)E23, (n ∈ Z).

If n ≡ 0 mod 2, γ̂2(n) → τ1(12) ∈ A6. If n ≡ 1 mod 2, γ̂2(n) → τ1(34) ∈ A6.

γ̂3(n) = γ2 − nE14 + nE23, (n ∈ Z, n �= 0). If n ≡ 0 mod 2, γ̂3(n) → τ1τ3 ∈ A6. If

n ≡ 1 mod 2, γ̂3(n) → τ1τ3(12)(34) ∈ A6. γ̂4(n) = γ2 −nE14 +(n+1)E23, (n ∈ Z).

If n ≡ 0 mod 2, γ̂4(n) → τ1τ3(12) �∈ A6. If n ≡ 1 mod 2, γ̂2(n) → τ1τ3(34) �∈ A6.

The contribution H7.

He
7 . ±α2 = α1 − E33 − E44 → (354)τ1(354)τ1 ∈ A6. ±α3 = −α1 − E11 − E22 →

(345)τ1(345)τ1 ∈ A6. ±γ3 = γ1 − E22 − E33 → τ1τ2 ∈ A6.

Hqu
7 . γ̂5(n) = γ3 − nE13 − 2nE14 + nE23 − nE24, (n ∈ Z, n �= 0). If n ≡ 0 mod 2,

γ̂5(n) → τ1τ2 ∈ A6. If n ≡ 1 mod 2, γ̂5(n) → τ1τ2τ3 �∈ A6. γ̂6(n) = γ3 − nE13 −
2nE14+(n+1)E23−nE24, (n ∈ Z). If n ≡ 0 mod 2, γ̂6(n) → τ1τ2(12) �∈ A6. If n ≡ 1

mod 2, γ̂6(n) → τ1τ2τ3(12) ∈ A6. γ̂7(n) = γ3 − nE13 − 2nE14 + (n+ 2)E23 − nE24,

(n ∈ Z). If n ≡ 0 mod 2, γ̂7(n) → τ1τ2 ∈ A6. If n ≡ 1 mod 2, γ̂7(n) → τ1τ2τ3 �∈ A6.

The contribution H8.

±α19 = −E11 −E13 −E24 +E31 +E42 → (12)(25)(46) �∈ A6. ±α20 = E13 +E24 −
E31 − E33 − E42 → (15)(25)(46) �∈ A6. ±α21 = −E11 − E13 + E24 + E31 − E42 →
(12)(25)(46) �∈ A6. ±α22 = E13 − E24 − E31 − E33 + E42 → (15)(25)(46) �∈ A6.

The contribution H9.

±α7 = −E13−E23−E24+E31−E32+E42 → (25)(46)τ2 �∈ A6. ±α8 = −E13−E22−
E24 + E31 +E33 + E42 → (15)(25)(46)(36) ∈ A6. α9 = −E12 − E14 +E21 + E32 +
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 15

E43 → (12)(25)τ1 �∈ A6. α10 = E12 + E23 + E34 − E41 − E43 → (36)τ1(25) �∈ A6.

α11 = −E11 − E13 + E22 + E24 + E31 − E42 → (345)τ1(345)τ1 ∈ A6. α12 =

E13 − E24 − E31 − E33 + E42 + E44 → (354)τ1(354)τ1 ∈ A6.

The contribution H10.

±α15 = E12 +E13 +E14 +E23 +E34 −E41 −E44 → τ1(25)(56)(12) ∈ A6. ±α16 =

−E11 +E13 +E24 −E31 −E34 +E41 −E42 −E43 → (25)(46)τ3(15) ∈ A6. ±α17 =

−E12 −E13 −E21 −E24 +E31 −E32 −E33 +E42 → (15)τ3(25)(46) ∈ A6. ±α18 =

−E13 − E14 + E21 − E22 − E23 + E32 + E43 → (12)(56)(25)τ1 ∈ A6.

The contribution H11.

α4 = −E14 + E21 + E32 + E43 → (25)τ1 ∈ A6. α5 = −E12 − E23 − E34 + E41 →
τ1(25) ∈ A6. ±α6 = −E12 − E13 − E21 + E22 − E24 + E31 − E32 − E33 + E42 →
τ3(25)(46)(12)τ1 �∈ A6.

The contribution H12.

α13 = −E14 +E21 +E32 +E34 +E43 → (15)(25)τ1 �∈ A6. α14 = E12 +E21 +E23 +

E34 − E41 → (34)τ1(25) �∈ A6.

�

Numerical examples of dimC Sk,j(Γe(1)).

j �� k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 1 0 0 0 1 1 1 1 1 1 2 2 3 2 2 3

2 0 0 0 0 0 1 0 1 0 1 1 2 3 3 2 3 4

4 0 0 0 0 0 1 1 1 1 2 3 4 4 5 6 7 9

6 0 1 0 1 2 2 2 4 4 5 5 8 9 11 12 13 16

8 1 1 0 1 2 4 4 4 5 7 9 11 13 15 16 19 23

10 0 1 0 1 1 4 4 5 6 8 10 14 15 18 20 24 29

12 1 2 3 3 5 7 8 11 12 14 18 21 25 29 33 36 42

Numerical examples of dimC Sk,j(Sp(2,Z)).

j �� k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 3

2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 3

4 0 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 6

6 0 0 0 0 1 0 1 1 2 1 3 2 5 3 7 4 9

8 0 0 0 0 1 1 2 1 3 2 5 4 7 5 9 7 13

10 0 0 0 0 0 1 2 1 3 2 5 5 8 6 11 9 15

12 0 0 1 1 2 2 4 4 6 5 9 8 13 11 17 15 22

Numerical examples of dimC Sk,j(Sp(2,Z), sgn).

j �� k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 1 0 0 0 1 0 1 0 1 0 2 0 3 0 2 0

2 0 0 0 0 0 1 0 1 0 1 0 2 1 3 0 3 1

4 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 5 3

6 0 1 0 1 1 2 1 3 2 4 2 6 4 8 5 9 7

8 1 1 0 1 1 3 2 3 2 5 4 7 6 10 7 12 10

10 0 1 0 1 1 3 2 4 3 6 5 9 7 12 9 15 14

12 1 2 2 2 3 5 4 7 6 9 9 13 12 18 16 21 20
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16 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

(∗) In our theorem, we assumed k > 4. The above value for (k, j) = (4, 0) is valid

by virtue of Igusa [13]. As for k = 4, j > 0, the above values are conjectural.

Theorem 6.3. For every k ≥ 10 and j is even, we have

dimC Sk,j(Sp(2,Z)) − dimC Sk−5,j(Sp(2,Z), sgn) = dimC Vk,j .

The Witt operator W from Sk,j(Sp(2,Z)) to Vk,j is surjective for k ≥ 10.

Proof. Here, let Hi (resp. Hsgn
i ) be the total contribution of elements with

principal polynomial fi(±x) to dimC Sk,j(Sp(2,Z)) (resp. dimC Sk−5,j(Sp(2,Z), sgn)).

Let k ≥ 10. First we assume that k is even and put k = 2l and j = 2m. Then we

have

H1 + H2 + H6 −Hsgn
1 −Hsgn

2 −Hsgn
6

= 2−43−3(m− 1)m(m + 1) + 2−5(−1)m(m + 1)

+2−53−2(m + 1)(2l − 7)(2l + 2m− 7) +

{
2−33−1(m + 2l − 7) m ≡ 0(2)

0 m ≡ 1(2)

H3 −Hsgn
3 = −2−4(−1)l − 2−23−1(−1)m+l + 2−43−1(−1)l{l + m + (−1)ml},

H4 + H5 −Hsgn
4 −Hsgn

5

= −2−23−3(m + 2l − 7)([−1, 2,−1; 3]l − [2,−1,−1; 3]m+l)

−2−23−3m([−1, 2,−1; 3]l + [2,−1,−1; 3]m+l)

−2−13−3([−1, 1, 0; 3]l + [1,−1, 0; 3]m+l),

H7 + H9 + H12 −Hsgn
7 −Hsgn

9 −Hsgn
12

= −2−13−3(m + 1)[−1, 2,−1; 3]m−l

+3−3[1,−1, 0; 3]m +

{
2−13−1[1, 0,−1; 3]m+2l m ≡ 0(2)

0 m ≡ 1(2)
,

H8 −Hsgn
8 = 2−23−1(−1)l{[0,−1, 1; 3]l+m + (−1)m[1, 0,−1; 3]l},

H10 −Hsgn
10 = 0,

H11 −Hsgn
11 =

{
2−3(−1)l+m/2 m ≡ 0(2)

0 m ≡ 1(2)
.

Next, if k is odd and k = 2l + 1 and j = 2m, then we have

H1 + H2 + H6 −Hsgn
1 −Hsgn

2 −Hsgn
6

= 2−43−3(m− 2)m(m− 1) + 2−5(−1)m−1m

+2−53−2m(2l − 5)(2l + 2m− 7) −
{

0 m ≡ 0(2)

2−33−1(m + 2l − 6) m ≡ 1(2)
,

H3−Hsgn
3 = −2−4(−1)l+1−2−23−1(−1)m+l+2−43−1(−1)l+1{l+m+(−1)m−1(l+1)},

H4 + H5 −Hsgn
4 −Hsgn

5

= −2−23−3(m + 2l − 6)([−1, 2,−1; 3]l+1 − [2,−1,−1; 3]m+l)

−2−23−3(m− 1)([−1, 2,−1; 3]l+1 + [2,−1,−1; 3]m+l)

−2−13−3([−1, 1, 0; 3]l+1 + [1,−1, 0; 3]m+l),

204

Licensed to Univ of Oklahoma.  Prepared on Tue Oct  9 09:02:11 EDT 2018for download from IP 70.167.29.28/129.15.14.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 17

H7 + H9 + H12 −Hsgn
7 −Hsgn

9 −Hsgn
12

= −2−13−3m[−1, 2,−1; 3]m+2l+1

+3−3[1,−1, 0; 3]m−1 −
{

0 m ≡ 0(2)

2−13−1[1, 0,−1; 3]m+2l+1 m ≡ 1(2)
,

H8 −Hsgn
8 = 2−23−1(−1)l+1{[0,−1, 1; 3]l+m + (−1)m−1[1, 0,−1; 3]l+1},

H10 −Hsgn
10 = 0,

H11 −Hsgn
11 =

{
0 m ≡ 0(2)

−2−3(−1)l+(m+1)/2 m ≡ 1(2)
.

On the other hand, for any non negative k we have

dimC Vk,j = 2−1(−1)k dimC Sk+j/2(SL2(Z))

+2−1

j∑
a=0

dimC Sk+j−a(SL2(Z)) × dimC Sk+a(SL2(Z)).

We set

h1(k) = 2−23−1(k − 7), h2(k) = 2−2(−1)k/2 and h3(k) = 3−1[1, 0,−1; 3]k.

Then dimC Sk(SL2(Z)) = h1(k) + h2(k) + h3(k) if k is even and k ≥ 4 and

dimC Sk(SL2(Z)) = 0 if k is odd. If k = 2l and j = 2m, we have

dimC V2l,2m = 2−1 dimC S2l+m(SL2(Z))

+2−1
m∑

a=0

dimC S2l+2m−2a(SL2(Z)) × dimC S2l+2a(SL2(Z)).

To give formulas of dimVk,j , we put

J1 = 2−1
m∑

a=0

(h1(2l + 2m− 2a)h1(2l + 2a) + h2(2l + 2m− 2a)h2(2l + 2a)),

J2 = 2−1
m∑

a=0

(h1(2l + 2m− 2a)h2(2l + 2a) + h2(2l + 2m− 2a)h1(2l + 2a)),

J3 = 2−1
m∑

a=0

(h1(2l + 2m− 2a)h3(2l + 2a) + h3(2l + 2m− 2a)h1(2l + 2a)),

J4 = 2−1
m∑

a=0

h3(2l + 2m− 2a)h3(2l + 2a),

J5 = 2−1
m∑

a=0

(h2(2l + 2m− 2a)h3(2l + 2a) + h3(2l + 2m− 2a)h3(2l + 2a)).

Then we have

2−1
m∑

a=0

dimC S2l+2m−2a(SL2(Z)) × dimC S2l+2a(SL2(Z)) = J1 + J2 + J3 + J4 + J5,
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18 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

. Here Ji are explicitly given as follows.

J1 = 2−43−3(m− 1)m(m + 1) + 2−5(−1)m(m + 1)

+2−53−2(m + 1)(2l− 7)(2l + 2m− 7),

J2 = −2−4(−1)l − 2−23−1(−1)m+l + 2−43−1(−1)l{l + m + (−1)ml},
J3 = −2−23−3(m + 2l − 7)([−1, 2,−1; 3]l − [2,−1,−1; 3]m+l)

−2−23−3m([−1, 2,−1; 3]l + [2,−1,−1; 3]m+l)

−2−13−3([−1, 1, 0; 3]l + [1,−1, 0; 3]m+l),

J4 = −2−13−3(m + 1)[−1, 2,−1; 3]m−l + 3−3[1,−1, 0; 3]m,

J5 = 2−23−1(−1)l{[0,−1, 1; 3]l+m + (−1)m[1, 0,−1; 3]l}.
We also have

2−1 dimC S2l+m(SL2(Z)) ={
2−33−1(m + 2l − 7) + 2−3(−1)l+m/2 + 2−13−1[1, 0,−1; 3]m+2l m ≡ 0(2)

0 m ≡ 1(2)
.

Hence we have the equality in the theorem when k = 2l and j = 2m. If k = 2l + 1

and j = 2m, we have

dimC V2l+1,2m = −2−1 dimC S2l+m+1(SL2(Z))

+2−1
m−1∑
a=0

dimC S2l+2m−2a(SL2(Z)) × dimC S2l+2+2a(SL2(Z)),

and the proof in this case can be given similarly. �

7. Some bounds of dimensions for small weights

In this section, by using the Witt operator, we give some estimates for the

dimension of small k which is unknown yet. We have dimension formulas for

Ak,j(Sp(2,Z)) if k ≥ 5. We know that dimA0,j(Sp(2,Z)) = A1,j(Sp(2,Z)) = 0 for

j > 0. We are interested in A3,j(Sp(2,Z)) = S3,j(Sp(2,Z)) and A2,j(Sp(2,Z)) =

S2,j(Sp(2,Z)). An exact conjecture on the dimensions for S3,j(Sp(2,Z)) was given

in [10] but here we give an upper bound and a lower bound for those dimensions.

First we give an upper bound. As we explained, if WF = 0 for F ∈ Sk,j(Sp(2,Z)),

then F/χ5 is holomorphic and belongs to Sk−5,j(Sp(2,Z), sgn). If k < 5, then we

have Sk−5,j(Sp(2,Z), sgn) = 0, so we have F = 0. This means that if k < 5, then

we have

dimSk,j(Sp(2,Z)) ≤ dimVk,j .

For example. V2,j = 0 for j ≤ 18 and V3,j = 0 for j ≤ 20. So we have

S2,j(Sp(2,Z)) = 0 for j ≤ 18 S3,j(Sp(2,Z)) = 0 for j ≤ 20

We have
∞∑

j=0

dimV2,js
j =

s20(1 + s10)

(1 − s4)(1 − s6)(1 − s8)(1 − s12)
,

∞∑
j=0

dimV3,js
j =

s22

(1 − s2)(1 − s6)(1 − s8)(1 − s12)
.
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SIEGEL MODULAR FORMS OF SMALL WEIGHT AND THE WITT OPERATOR 19

Numerical examples of the upper bounds are given in the following table.

j 20 22 24 26 28 30 32 34 36 38 40

k = 2 1 0 1 1 2 2 4 3 6 6 8

k = 3 0 1 1 1 2 3 3 5 6 7 9

Next we give a lower bound. The idea is to consider χ5S3,j(Sp(2,Z)) inside

S8,j(Sp(2,Z), sgn). If we define the Witt operator on S8,j(Sp(2,Z), sgn) in the

same way, then we have dimS3,j(Sp(2,Z)) = dim Ker(W |S8,j(Sp(2,Z), sgn)). We

consider the image of W on S8,j(Sp(2,Z), sgn) = A8,j(Sp(2,Z), sgn). We define

the character sgn1 of SL2(Z) by SL2(Z) → SL2(Z/2Z) ∼= S3 → S3/A3
∼= {±1}.

For each integer k, we denote by Ak(SL2(Z), sgn1) the space of holomorphic func-

tions f on H1 such that f |k[γ] = sgn1(γ)f for all γ ∈ SL2(Z) and holomorphic

also at i∞. For each k and j, we define the space Wk,j of Cj+1-valued functions on

H1 ×H1 by

Wk,j = {f(τ, ω) = (fj−ν(τ, ω))0≤ν≤j ; fj−ν(τ, ω) = (−1)k+1fν(ω, τ ),

fj−ν(τ, ω) ∈ Sk+j−ν(SL2(Z), sgn1) ⊗ Sk+ν(SL2(Z), sgn1)}.
We see easily that Ak(SL2(Z), sgn1) = Sk(SL2(Z), sgn1) = ∆1/2Ak−6(SL2(Z))

for any k. In the same way as in the last section, we see that for F ∈ Ak(Sp(2,Z), sgn),

we have WF ∈ Wk,j . In general, we see from numerical examples that W is not

surjective. But since ker(W |S8,j(Sp(2,Z), sgn)) = S3,j(Sp(2,Z)), we have

dimS8,j(Sp(2,Z), sgn) − dimS3,j(Sp(2,Z)) ≤ dimW8,j .

In other words, we have

dimS8,j(Sp(2,Z), sgn) − dimW8,j ≤ dimS3,j(Sp(2,Z)).

We have a formula for dimS8,j(Sp(2,Z), sgn) as given in the last section and

∞∑
j=0

dimS8,j(Sp(2,Z), sgn)sj =
s6 + s8 + s10 + 2s12 + s14 + s16 − s22

(1 − s6)(1 − s8)(1 − s10)(1 − s12)

It is also easy to calculate dimW8,j and we have

∞∑
j=0

dimW8,js
j =

s6(1 + s4 − s12 − s16 + s18)

(1 − s2)(1 − s6)(1 − s8)(1 − s12)

We give numerical examples of lower bounds of dimS3,j(Sp(2,Z)) in the following

table.
j 60 62 64 66 68 70 72 74 76 78

lowerbound 1 0 0 2 2 1 5 3 5 7

We have a conjecture on dimS3,j(Sp(2,Z)) in [10] for any j given by

∞∑
j=0

Conj. dimS3,j(Sp(2,Z))sj =
s36

(1 − s6)(1 − s8)(1 − s10)(1 − s12)
.

Compared with this, which predicts the existence of a Siegel cusp form for j =

36 already, the above estimate is not so sharp. But we would like to emphasize

here that as far as the author knows, no example of non-zero Siegel modular form

in S3,j(Sp(2,Z)) was known before for any j since there were no known way to

construct such modular forms, and our results assure at least the existence of such

forms.
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20 TOMOYOSHI IBUKIYAMA AND SATOSHI WAKATSUKI

Now as for S2,j(Sp(2,Z)), we have also the inequality

dimS7,j(Sp(2,Z), sgn) − dimW7,j ≤ dimS2,j(Sp(2,Z)).

Unfortunately the left hand side is always zero or negative, so we cannot get any

non-tirivial lower bound of the dimension. But the space Sk,j(Sp(2,Z)) can be in

principle obtained explicitly in the following steps.

(1) Construct a basis of Sk+10(Sp(2,Z)), for example by theta functions with

pluri-harmonic polynomials.

(2) Get the kernel of W |Sk+10(Sp(2,Z)) and divide F in the kernel by χ5.

(3) Give basis of the space of F/χ5 ∈ Sk+5,j(Sp(2,Z), sgn) which are in the

kernel of W again.

(4) For any element of such kernel, divide it again by χ5.

Then we get the space Sk,j(Sp(2,Z)). If we can give a basis of Sk+5,j(Sp(2,Z), sgn)

directly, then we can skip (1) and (2) but this is often more difficult. By excut-

ing these steps, R. Uchida has shown that S2,20(Sp(2,Z)) = 0 in [17], the first

non-trivial case for k = 2.

Problem. Is there any non-zero Siegel modular forms in S2,j(Sp(2,Z)) for
some j?

As for large k, we can prove the following theorem by an argument similar to

the proof of Theorem 6.3.

Theorem 7.1. For k ≥ 10 and even j ≥ 0, we have

dimC Sk,j(Sp(2,Z), sgn) − dimC Sk−5,j(Sp(2,Z)) = dimC Wk,j

+

{
[1, 0, 0; 3; j] − dimC Sk(SL2(Z), sgn) − dimC Sj(SL2(Z), sgn) k ≡ 0 (mod 2)

[1, 0, 0; 3; j] − dimC Sj(SL2(Z), sgn) + dimC Sk+j−5(SL2(Z)) k ≡ 1 (mod 2)
,

where we put formally dimC Sj(SL2(Z), sgn) = 2−23−1(j − 1) + 3−1[1, 0,−1; 3]j −
2−2(−1)j/2 for any j.

We omit the proof here. We do not know the meaning of the above mysterious

equality.

Problem. Give more intrinsic proof of Theorems 6.3 and 7.1 e.g. by con-
structing Siegel modular forms which behave well under W .
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