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1 Introduction

In this paper, we study the cohomology of certain local systems on moduli spaces of

principally polarized abelian surfaces with a level 2 structure that corresponds to pre-

scribing a number of Weierstrass points in case the abelian surface is the Jacobian of a

curve of genus 2. These moduli spaces are defined over Z[1/2], and we can calculate the

trace of Frobenius on the alternating sum of the étale cohomology groups of these local

systems by counting the number of pointed curves of genus 2 with a prescribed number

of Weierstrass points that separately or taken together are defined over the given finite

field. This cohomology is intimately related to vector-valued Siegel modular forms. Two

of the present authors carried out this scheme for local systems on the moduli space A2

of level 1 in [11]. This provided new information on Siegel modular forms and led for

example to a precise formulation of a conjecture of Harder about congruences between

genus 1 and genus 2 modular forms and also to experimental evidence supporting it,

cf. [13, 16].

Received April 20, 2008; Revised July 25, 2008; Accepted July 31, 2008

Communicated by Prof. Jim Cogdell

C© The Author 2008. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permissions@oxfordjournals.org.

Downloaded from https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnn100/709402
by University of Oklahoma user
on 25 August 2018



2 J. Bergström et al.

Here, we extend this scheme to level 2, where new phenomena appear. In order

to be able to extract information on Siegel modular forms, we must subtract the con-

tributions to the cohomology from the boundary, that is, the Eisenstein cohomology,

and the endoscopic contributions. We determine the contribution of the Eisenstein co-

homology together with its S6-action for the full-level two-structure and on the basis

of our computations, we make precise conjectures on the endoscopic contribution. We

also make a prediction about the existence of a vector-valued analogue of the Saito–

Kurokawa lift. Assuming these conjectures that are based on ample numerical evidence,

we obtain the traces of the Hecke-operators T (p) for p ≤ 37 on the remaining spaces of

“genuine” Siegel modular forms. We present a number of examples of one-dimensional

spaces of eigenforms where these traces coincide with the Hecke eigenvalues to illus-

trate this. We hope that the experts on lifting and endoscopy will be able to prove our

conjectures.

2 The Moduli Spaces A2(wn)

Let M2 be the moduli space of curves of genus 2 and A2 the moduli space of principally

polarized abelian surfaces. These are Deligne–Mumford stacks defined over Spec(Z), and

by the Torelli map, we can view M2 as an open substack of A2. A curve of genus 2

admits a unique morphism of degree 2 to P1 and its ramification points are called the

Weierstrass points. If the element 2 is invertible on the base, there are six Weierstrass

points. We now can look at covers of M2, namely, for 0 ≤ n ≤ 6, we consider the stack

M2(wn) that is the moduli space of pairs (C , (r1, . . . , rn)) of curves of genus 2 together

with n ordered Weierstrass points. These are Deligne–Mumford stacks defined over

Spec(Z[1/2]).

Let (C , r1, . . . , r6) be a genus 2 curve with its six numbered Weierstrass points,

which together form the set W. A Weierstrass point r1 defines an embedding of C into its

Jacobian Jac(C ) given by q �→ q − r1. This provides us with a set of five points of order 2 of

Jac(C ), namely, {ri − r1 : i = 2, . . . , 6}. The nonzero points of order 2 on Jac(C ) correspond

bijectively to the pairs {ri, rj} with i �= j. For the Weil pairing, we have 〈rj − ri, rk − ri〉 = 1

for j �= k. The map (Z/2)W → Jac(C )[2] defined by a �→ ∑
ai(ri − r1) makes it possible to

identify Jac(C )[2] with the kernel of the summation map
∑

: (Z/2)W → (Z/2) modulo the

diagonally embedded Z/2. The symplectic form can be identified with (a, b) �→ ∑
aibi.

Hence, we obtain an embedding of the symmetric group S6 into GSp(4, Z/2) (and Sp(4, Z/2))

and this is an isomorphism.
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Siegel Modular Forms of Genus 2 and Level 2 3

By associating to a (decorated) curve its (decorated) Jacobian, we have an

embedding

M2(w6) ↪→ A2[2],

where A2[2] is the moduli space of principally polarized abelian surfaces X with a full

level two-structure, that is, an isomorphism of the kernel X[2] of multiplication 2X × 2

on X with a fixed symplectic module ((Z/2)4, 〈 , 〉). The symmetric group S6 acts on M2(w6)

and the group GSp(4, Z/2) acts on A2[2] and the embedding defines the isomorphism of S6

with GSp(4, Z/2) given above. Let us identify GSp(4, Z/2) with S6 under this isomorphism

and define the quotient stacks

A2(wn) := A2[2]

S6−n
,

where S6−n is the subgroup of S6 fixing {1, . . . , n} pointwise. Note that we have inclusions

M2(wn) ↪→ A2(wn), and equalities A2(w0) = A2 and A2(w6) = A2[2].

Starting instead on the side of the abelian varieties, we let U be a symplectic

space of dimension 4 over Z/2 with basis e1, e2, f1, f2, and with symplectic form 〈 , 〉
such that 〈ei, ej〉 = 〈 fi, fj〉 = 0 and 〈ei, fj〉 = δi j (Kronecker delta). One observes that U

contains six (maximal) sets Vi (i = 1, . . . , 6) of five vectors uj ∈ U − {0} with 〈uj, uk〉 = 1

for j �= k. For instance, one such set is {e1, f1, e1 + f1 + f2, e1 + e2 + f1, e1 + e2 + f1 + f2}.
We have #(Vi ∩ Vj) = 1 if i �= j. The action of GSp(4, Z/2) on these six sets Vi defines

an isomorphism of GSp(4, Z/2) with S6 but this is compatible with the one above as a

Weierstrass point ri on a curve of genus 2 determines a set of five points rj − ri ( j �= i) of

order 2 and they satisfy 〈rj − ri, rk − ri〉 = 1 for j �= k.

Consider the inverse image �2(wn) under Sp(4, Z) → Sp(4, Z/2) → S6 of a subgroup

S6−n of S6 fixing the set Vi for each i between 1 and n. Then, the orbifold �2(wn)\H2, with

H2 the Siegel upper half space of degree 2, is the complex fibre of the moduli stack A2(wn).

By �2[2] = �2(w6), we shall mean the kernel of Sp(4, Z) → Sp(4, Z/2).

3 Local Systems

Let π : X → A2 denote the universal abelian surface. The moduli space A2 carries natural

local systems Vl,m indexed by the pairs (l, m) of integers with l ≥ m ≥ 0 that correspond

to irreducible representations of GSp(4), cf. [11]. The local system V1,0 is the one defined
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4 J. Bergström et al.

by V := R1π∗Q� and Vl,m is of weight l + m and occurs “for the first time” in Syml−m(V) ⊗
Symm(∧2V). When l > m > 0, the local system is called regular. By pullback to A2(wn),

we obtain local systems that we will denote by the same symbol Vl,m. We are interested

in the cohomology (with compact support) of these local systems, more precisely in the

motivic Euler characteristic

ec(A2(wn), Vl,m) =
6∑

i=0

(−1)i
[
Hi

c (A2(wn), Vl,m)
]
,

where this expression is taken in the Grothendieck group of an appropriate category (for

instance, the category of mixed Hodge structures). Note that this cohomology is zero if

l + m is odd and thus we will from now on only consider the case when l + m is even.

For any A, among the moduli spaces considered, there is a natural map

H∗
c (A, Vl,m) → H∗(A, Vl,m) whose image is called the inner cohomology and denoted by

H∗
! (A, Vl,m). By work of Faltings and Chai, one knows that for regular λ, the cohomol-

ogy groups Hi
! (A, Vl,m) vanish for i �= 3 (see [9, Corollary to Theorem 7, p. 84] and [10,

pp. 233–7]). Moreover, one knows that H3(A, Vl,m) (resp. H3
c (A, Vl,m)) carry mixed Hodge

structures of weights ≥ l + m + 3 (resp. ≤ l + m + 3) and that H3
! (A, Vl,m) carries a pure

Hodge structure with Hodge filtration

(0) ⊆ F l+m+3 ⊆ F l+2 ⊆ F m+1 ⊆ F 0 = H3
! (A, Vl,m).

The first step in this Hodge filtration is connected to Siegel modular forms by the iso-

morphism

F l+m+3 ∼= Sl−m,m+3(�2(wn)),

where Sl−m,m+3(�2(wn)) is the complex vector space of vector-valued cusp forms of weight

(l − m, m + 3) on the group �2(wn), cf. [10, Theorem 5.5], see also [15, Theorem 17]. By

a Siegel modular form of weight ( j, k), we mean a vector-valued function on the Siegel

upper half space that transforms with the factor of automorphy:

Sym j(cτ + d) det(cτ + d)k,

for (a, b; c, d) ∈ Sp(4, Z) or in a subgroup �2(wn). We can equivalently define a Siegel modu-

lar form of weight ( j, k) as a section of Sym j(�X /A2 ) ⊗ (∧2�X /A2 )
⊗k with �X /A2 the cotangent
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Siegel Modular Forms of Genus 2 and Level 2 5

bundle of X along the zero section. Thus, the cohomology of the moduli spaces consid-

ered is closely connected to Siegel modular forms of the corresponding groups. In [11],

two of the three present authors studied the cohomology in the case of level 1 (i.e. on A2)

using counts of curves of genus 2 of compact type defined over finite fields (cf. also [15]).

Recall that the Eichler–Shimura theorem says (cf. [8]) that for the local system

Vk := Symk(V) (with V := R1π∗Ql ), on the moduli space A1 of elliptic curves with universal

family π : X1 → A1, one has for even k ≥ 2,

−ec(A1, Vk) = S[SL(2, Z), k + 2] + 1,

−e(A1, Vk) = S[SL(2, Z), k + 2] + Lk+1,

where we from now on denote by L := h2(P1) the Tate motive of weight 2 and by

S[SL(2, Z), k + 2] the motive for cusp forms of weight k + 2 of SL(2, Z) as constructed

by Scholl, cf. [20] (see also [7] for an alternative construction). For k = 0, one can use the

same formulas if one puts S[SL(2, Z), 2] := −L − 1.

4 The Eisenstein Cohomology

The compactly supported cohomology has a natural map to the usual cohomology and the

kernel is called the Eisenstein cohomology. The corresponding motivic Euler character-

istic is denoted by eEis(A, Vl,m). By the full Eisenstein cohomology, we mean the difference

between the compactly supported and the usual cohomology, with corresponding Euler

characteristic,

eEisf (A, Vl,m) := ec(A, Vl,m) − e(A, Vl,m).

For example, for genus 1 we have by Eichler–Shimura eEis(A1, Vk) = −1, and for the full

Eisenstein cohomology eEisf (A1, Vk) = Lk+1 − 1.

Remark 4.1. The full Eisenstein cohomology is anti-invariant under Poincaré duality

and eEis(A, Vl,m) determines the full Eisenstein cohomology by antisymmetrizing. The

converse also holds by considerations of weights if λ is regular, cf. [19]. �

We shall write �(2) for the full-level two congruence subgroup of SL(2, Z) and �0(N)

for the congruence subgroup of matrices (a, b; c, d) with N|c. For any of these groups �,

we will write Sk(�) for the space of cusp forms of � of weight k, and S[�, k] for the motive
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6 J. Bergström et al.

associated to this space. The motive S[�, k] has a Hodge realization that decomposes as

Sk(�) ⊕ S̄k(�). For � = �0(N), let Sk(�)new denote the subspace of newforms in Sk(�), and

S[�, k]new the corresponding motive, constructed in [20].

Theorem 4.2. For regular pairs (l, m), the Eisenstein cohomology of the local system

Vl,m on the moduli space A2[2] is given by

15 dim Sl−m+2(�(2))− 15 dim Sl+m+4(�(2)) Lm+1 + 15

{
S[�(2), m + 2] + 3 if m even

−S[�(2), l + 3] if m odd.

�

This can be proved as in [14] using the BGG-complex of Faltings–Chai (see [10]),

by first computing eEisf (A2[2], Vl,m) and then deducing eEis(A2[2], Vl,m), see Remark 4.1.

If the pair (l, m) is not regular, we still expect the formula to hold as long as we put

S[�(2), 2] := −L − 1 in case m = 0 and dim S2(�(2)) := −1 in case l = m.

The factors 15 in the formula come from the fact that the Satake compactification

of A2[2] has 15 one-dimensional and 15 zero-dimensional boundary components.

The group S6 acts on A2[2] and this induces an action on the Eisenstein cohomol-

ogy of a local system. We can decompose this piece of the cohomology into irreducible

representations for S6. Note that we can identify Sk(�(2)) with Sk(�0(4)) via the map

f (z) �→ f (2z) and the corresponding motive can be split as

S[�0(4), k] = S[�0(4), k]new + 2 S[�0(2), k]new + 3 S[SL(2, Z), k].

Notation 4.3. Define τN,k := dim Sk(�0(N))new. �

We also need notation concerning representations of Sp(4, Z/2) ∼= S6. Let Q

(resp. P ) be the subgroup of Sp(4, Z/2) that fixes a nonzero vector v (resp. a two-

dimensional totally isotropic subspace V of U ). It acts on v⊥/〈v〉 (resp. V ), and this

defines a map onto SL(2, Z/2) ∼= S3. Starting from the trivial, the two-dimensional and

the alternating representations of S3, inflating to Q (resp. P ) and inducing to Sp(4, Z/2),

one obtains representations A, B, C (resp. A′, B ′, C ′) of Sp(4, Z/2). As representations of
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Siegel Modular Forms of Genus 2 and Level 2 7

S6, they are the sums of the following irreducible representations s[p], p a partition of 6:

A = s[6] + s[5, 1] + s[4, 2], A′ = s[6] + s[4, 2] + s[23],

B = s[4, 2] + s[3, 2, 1] + s[23], B ′ = s[5, 1] + s[4, 2] + s[3, 2, 1],

C = s[3, 13] + s[2, 14], C ′ = s[4, 12] + s[32].

We note that dim A = dim A′ = dim C = dim C ′ = 15 while dim B = dim B ′ = 30.

Theorem 4.4. For regular pairs (l, m), the contributions in Theorem 4.2 to the Eisenstein

cohomology of the local system Vl,m can be decomposed under the action of S6 as follows.

The term 15 dim Sk(�0(4)) with k = l − m + 2 or k = l + m + 4 decomposes as

τ1,k · A′ + (τ1,k + τ2,k) · B ′ + τ4,k · C ′

while the term 15S[�0(4), k] with k = m + 2 or k = l + 3 can be written as

(A+ B) ⊗ S[�0(1), k] + B ⊗ S[�0(2), k]new + C ⊗ S[�0(4), k]new

and finally 15 · 3 L0 = (A+ B) L0. �

For l = m, we conjecture that 15 dim S2(�0(4)) decomposes as −A′, and for m = 0

that the term 15S[�0(4), 2] decomposes as A · (−L − 1). The theorem can be proved by the

method of [14] taking into account the action of S6 on the boundary components.

Remark 4.5. The coefficient τ1,k (resp. τ1,k + τ2,k, resp. τ4,k) equals the multiplicity of

the trivial (resp. the two-dimensional, resp. the alternating) representation in Sk(�(2)),

viewed as a representation of SL(2, Z/2) ∼= S3. Correspondingly, the term 15S[�(2), k] can

be written as

A⊗ S[�(2), k]3 + B ⊗ S[�(2), k]2,1 + C ⊗ S[�(2), k]13 ,

with S[�(2), k]µ = HomS3 (s[µ], S[�(2), k]) for µ a partition of 3. �

The S6-decomposition of the Eisenstein cohomology onA2[2] allows one to deduce

the formulas for A2(wn) for 0 ≤ n ≤ 6. For example, for A2(w1) and A2(w3), we find the

following.
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8 J. Bergström et al.

Corollary 4.6. For regular (l, m), the Eisenstein cohomology of Vl,m on A2(w1) is given by

dim Sl−m+2(�0(2)) − dim Sl+m+4(�0(2)) Lm+1 +
{

2(S[m + 2] + 1) if m even

−2 S[l + 3] if m odd.

�

Corollary 4.7. For regular (l, m), the Eisenstein cohomology of Vl,m on A2(w3) is given by

4 dim Sl−m+2(�0(4)) − 4 dim Sl+m+4(�0(4)) Lm+1

+
{

3S[�0(1), m + 2] + 3S[�0(2), m + 2] + S[�0(4), m + 2] + 12 if m even

−3S[�0(1), l + 3] − 3S[�0(2), l + 3] − S[�0(4), l + 3] if m odd.

�

5 Counting Points Over Finite Fields

Recall that the moduli space A2[2] of principally polarized abelian surfaces with level

2 structure can be identified with the moduli space of tuples (C , r1, . . . , r6), where C is

either an irreducible genus 2 curve or a pair of genus 1 curves intersecting in one point,

and where (r1, . . . , r6) is a six-tuple of marked Weierstrass points. In the case of two

intersecting elliptic curves, these are the points of order 2 on the two elliptic curves

taking the intersection point as origin on both.

For an odd prime number p, we consider this moduli space over the field Fq, where

q is a power of p. Let Hi
ét denote the compactly supported �-adic étale cohomology.

The natural action of S6 on A2[2] induces a decomposition of Hi
ét (A2[2] ⊗ Fq, Vl,m) into

pieces denoted Hi
ét ,µ(A2[2] ⊗ Fq, Vl,m) (with Hi

ét ,µ = Rµ ⊗ HomS6 (Rµ, Hi
ét ) for an irreducible

representation Rµ of S6 indexed by the partition µ of 6). We wish to compute the trace of

Frobenius Fq on the Euler characteristic

eét ,µ(A2[2] ⊗ Fq, Vl,m) :=
∑

i

(−1)i Hi
ét ,µ(A2[2] ⊗ Fq, Vl,m).

The necessary information to compute this, for any partition µ and pair (l, m), was found

for all odd q ≤ 37 with the aid of the computer. We indicate below how this was done.

We will denote by k a finite field and by k2 a degree 2 extension of k.
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Siegel Modular Forms of Genus 2 and Level 2 9

5.1 Irreducible curves of genus 2

Let P2(k) ⊂ k[x] be the set of all square-free polynomials of degree 5 or 6. Each element

f ∈ P2(k) defines a curve C f of genus 2 defined by y2 = f (x). For each f ∈ P2(k) and

k ∈ K := {Fq : 2 � q, q ≤ 37}, we computed the following: (1) the number of points of C f

defined over k, (2) the number of points of C f defined over k2, (3) the fields of definition

of all six ramification points of the canonical map C f → P1 given by (x, y) → x.

For a partition ν of 6, let P2(ν, k) ⊂ P2(k) be the subset of polynomials f defining

curves C f , which have fields of definition of their ramification points given by ν. Using the

Lefschetz trace formula, we can now, for each pair of numbers n1, n2, and k ∈ K, compute

a(M2, ν, n1, n2) :=
∑

f∈P2(ν,k) a1(C f )n1 · a2(C f )n2

|GL2(k)| , (5.1)

where a1(C f ) := Tr(Fq, H1
ét (C f )) and a2(C f ) := Tr(F 2

q , H1
ét (C f )). Note that |GL2(k)| is the

number of k-isomorphisms between the curves of P2(ν, k) (for the actual group, see [2,

Section 3]).

5.2 Pairs of elliptic curves

Similarly, let P1(k) ⊂ k[x] consist of all square-free polynomials f (x) ∈ k[x] of degree 3 and

let K′ := {Fq, Fq2 : 2 � q, q ≤ 37} be a collection of finite fields. Each element of P1(k) defines

an elliptic curve C f given by y2 = f (x) with x = ∞ as origin. For each element k ∈ K′ and

f ∈ P1(k) with corresponding curve C f , we computed the following: (1) the number of

points of C f defined over k, (2) the fields of definition of the three affine ramification

points of the map C f → P1 given by (x, y) → x.

To get the analogue of equation (5.1) for the pairs of elliptic curves joined at the

origin, we should sum over all possibilities of distributing the ramification points and the

marked points (which correspond to the monomials a1(C f )n1a2(C f )n2 ) on the two elliptic

curves. Let us define a(A1,1, ν, n1, n2) to be the sum, over all ordered choices of partitions

ρ and σ of 3 such that ν = ρ + σ and integers m1 ≤ n1 and m2 ≤ n2, of the following. We

put I ′
k := |GL2(k)|/(|k| + 1), which is the number of k-isomorphisms between the curves

of P1(k), and we divide into two cases according to if there is an automorphism that

interchanges the two elliptic curves or not.
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10 J. Bergström et al.

Case (i) If ρ �= σ or (m1, m2) �= (n1 − m1, n2 − m2), we add 1/2 times

⎛
⎝ ∑

f∈P1(ρ,k)

a1(C f )
m1 · a2(C f )

m2/I ′
k

⎞
⎠ ·

⎛
⎝ ∑

f∈P1(σ ,k)

a1(C f )
n1−m1 · a2(C f )

n2−m2/I ′
k

⎞
⎠ .

Case (ii) If ρ = σ and (m1, m2) = (n1 − m1, n2 − m2), we have the contribution from

pairs of elliptic curves that are defined over k,

1/2 ·
⎛
⎝ ∑

f∈P1(ρ,k)

a1(C f )
m1 · a2(C f )

m2/I ′
k

⎞
⎠

2

.

Moreover, if in addition n1 = 0 and νi = 0 for all odd i, then the two elliptic curves

together with marked ramification and ordinary points may also form a conjugate pair.

We construct these by taking an elliptic curve defined over k2, and join it at the origin

with its Frobenius conjugate. Define the partition ν1/2 := [1ν22ν43ν6 ]. We then add

1/2 ·
⎛
⎝ ∑

f∈P1(ν1/2,k2)

a1(C f )
n2/I ′

k2

⎞
⎠ .

In both these formulas, the factor 1/2 is due to the extra automorphism.

5.3 Adding the contributions from the two strata

To the irreducible representation of S6 indexed by the partition µ of 6, we can associate

sµ, the ordinary Schur polynomial, and to an irreducible representation of the symplec-

tic group Sp(4, Q) indexed by the partition λ = [l, m], the Schur polynomial s<λ>, see [12,

Appendix A]. Written in terms of the power sums pi, we have sµ = ∑
ν αµ

ν · pν1
1 · · · pν6

6 and

s<λ> = ∑
n1,n2

βλ
n1,n2

· pn1
1 pn2

2 for some rational numbers αµ
ν and βλ

n1,n2
. The trace of Frobe-

nius on eét ,µ(A2[2] ⊗ Fq, Vλ) is then equal to (compare [2, Equation (3.1)] or [4, Section

4.2])

∑
n1,n2

∑
ν

αµ
ν βλ

n1,n2
· (a(M2, ν, n1, n2) + a(A1,1, ν, n1, n2)) · q(|λ|−n1−n2)/2.

Downloaded from https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnn100/709402
by University of Oklahoma user
on 25 August 2018



Siegel Modular Forms of Genus 2 and Level 2 11

Using these results, we have been able to (conjecturally) identify the non-Eisenstein

pieces of ec(A2[2], Vl,m). In this process, we have greatly benefited from William Stein’s

tables of modular forms [21].

6 A lifting to Vector-Valued Modular Forms

The Saito–Kurokawa lifting (see e.g. [18, 24]) gives a way to transform a cusp form f that

is a normalized eigenform of weight 2k (k odd) on SL(2, Z) into a scalar-valued cusp (eigen)

form of weight k + 1 on Sp(4, Z). In terms of L-factors, the reciprocal of the characteristic

polynomial of Frobenius at a prime p is in the Saito–Kurokawa case equal to

(1 − pk−1 X)(1 − a(p)X + p2k−1 X2)(1 − pk X),

with a(p) the Hecke eigenvalue of f at p.

Based on our calculations of the cohomology of local systems Vl,m on A2[2],

we conjecture the following (Yoshida type) lifting from pairs of elliptic modular forms

to vector-valued Siegel modular forms. Recall the notion of spinor L-function (see [1])

and that the Atkin–Lehner involution w2 acts on Sk(�0(2)) with eigenspaces S+
k (�0(2)) and

S−
k (�0(2)) for the eigenvalues +1 and −1.

Conjecture 6.1. For an eigenform f ∈ Sl+m+4(�0(2))new and an eigenform g ∈
Sl−m+2(�0(2))new, there is a Siegel modular form F ∈ Sl−m,m+3(�2[2]), an eigenform for the

Hecke algebra, with spinor L-function

L(F , s) = L( f , s)L(g, s − m − 1).

The form F generates an S6-subrepresentation of Sl−m,m+3(�2[2]) of dimension 5 if f

and g have the same eigenvalue ± under w2 and of dimension 1 if they have opposite

eigenvalues under w2.

Similarly, for an eigenform f ∈ Sl+m+4(�0(4))new and an eigenform g ∈
Sl−m+2(�0(4))new, there is a Siegel modular form F ∈ Sl−m,m+3(�2[2]) with spinor L-function

L(F , s) = L( f , s)L(g, s − m − 1)

and it will generate an S6-subrepresentation of Sl−m,m+3(�2[2]) of dimension 5. �
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12 J. Bergström et al.

The S6-subrepresentations are described below.

Remark 6.2. The first part of this conjecture is consistent with work of Böcherer and

Schulze-Pillot who constructed a Yoshida-type lifting for a pair ( f , g) of newforms on

�0(2) with the same sign under w2 to Siegel modular forms on the congruence subgroup

�(2)
0 (2) ⊂ Sp(4, Z); see [6, Theorem 5.1 and the ensuing remark on p. 99]. �

Note that by Tsushima (see [23]), we know the dimensions of the spaces Sj,k(�2[2])

of Siegel modular forms of weight ( j, k) on the group �2[2]. In the cases ( j, k) = (4, 4), (6, 3),

and (8, 3), it seems that the conjectured lifts generate all of Sj,k(�2[2]).

Let us define Slift
j,k (�2[2]) to be the subspace in Sj,k(�2[2]) consisting of the cusp

forms obtained by the lifting described above. The following conjecture tells us the

action of S6 on the space of lifted cusp forms.

Notation 6.3. Put τ+
k := dim S+

k (�0(2))new and τ−
k := dim S−

k (�0(2))new. �

Conjecture 6.4. If we assume that l �= m and let k := l + m + 4, k′ := l − m + 2, then

Slift
l−m,m+3(�2[2]) decomposes as a representation of S6 as

τ4,k τ4,k′ · s[2, 14] + (τ+
k τ+

k′ + τ−
k τ−

k′ ) · s[23] + (τ+
k τ−

k′ + τ−
k τ+

k′ ) · s[16].

�

Remark 6.5. Note that there are no vector-valued lifts of level 1. �

We also give a corresponding conjecture for the Saito–Kurokawa lifts.

Conjecture 6.6. If we assume that l = m and let k := l + m + 4, then Slift
l−m,m+3(�2[2])

decomposes as a representation of S6 for m odd as

(τ+
k + τ1,k) · s[4, 2] + (τ−

k + τ1,k) · s[23] + τ1,k · s[6],

and for m even as

τ4,k · s[32] + τ+
k · s[16] + τ−

k · s[5, 1].

�
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7 Decomposing the Endoscopic Contribution

The Hecke algebra of GSp(4, Q) acts on the inner cohomology of the local system Vl,m,

cf. e.g. [10, p. 249], [17], and [22]. This inner cohomology on A2(wn) also has a Hodge

filtration (0) ⊆ F l+m+3 ⊆ F l+2 ⊆ F m+1 ⊆ F 0. The action of the Hecke algebra respects this

Hodge filtration. We now consider the irreducible representations H of the Hecke algebra

occurring in the inner cohomology that have the property that F l+m+3 ∩ H = (0). We define

the middle endoscopic part of the inner cohomology of our local system Vl,m on A2(wn)

to be the direct sum of the representations with that property, i.e., the part that contains

no contribution from holomorphic (vector-valued) Siegel modular cusp forms of weight

( j, k) = (l − m, m + 3). Here, we use that hl+m+3,0 = h0,l+m+3, which follows from the fact

that eigenforms have totally real eigenvalues and all representations of GSp(4, F2) are

defined over a totally real field, or even Q. This endoscopic part should come from the

group GL(2, Q) × GL(2, Q)/Gm.

The Saito-Kurokawa lift for level 1 associates, for odd l = m, to the space

Sl+m+4(SL(2, Z)) of cusp forms on SL(2, Z) the motive

−S[SL(2, Z), l + m + 4] − sl+m+4(Ll+2 + Lm+1)

in the cohomology of the local system Vl,m on A2, the minus sign indicating that it lands

in odd degree cohomology. In [11, Conjecture 4.1], we conjecture the existence of a (strict)

endoscopic part

−sl+m+4S[SL(2, Z), l − m + 2]Lm+1 = sl+m+4(Ll+2 + Lm+1).

Assuming this and adding the two contributions, the net result would be the existence

of S[SL(2, Z), l + m + 4] in the inner cohomology. In level 2, we see a similar phenomenon

that becomes clear if one takes the action of S6 into account.

For l �= m and f ∈ Sl+m+4(�0(N))new and g ∈ Sl−m+2(�0(N))new, the motive of the

corresponding lifting is of the form Mf + Lm+1Mg where Mf and Mg denote the motives

associated to the cusp forms f and g. Let us call Mf the “leading” part of the vector-

valued lift and Lm+1Mg the “trailing” one. Note that in the cohomology where this lift

appears, the trailing part contributes to the middle endoscopy. Let us define the strict

Downloaded from https://academic.oup.com/imrn/article-abstract/doi/10.1093/imrn/rnn100/709402
by University of Oklahoma user
on 25 August 2018



14 J. Bergström et al.

endoscopic part of the cohomology to be the middle endoscopy minus the contribution

from the trailing terms coming from the lifts described in Conjecture 6.1.

Conjecture 7.1. Assume that l �= m and let k := l + m + 4, k′ := l − m + 2. The middle

endoscopic part of the inner cohomology of Vl,m on A2[2] is given by

−Lm+1((τ4,k · s[3, 13]+τ1,k · s[32] + (τ1,k + τ2,k) · s[4, 12]
)
S[�0(4), k′]new

+ (
(τ1,k + τ2,k) · s[3, 2, 1]+τ4,k · s[4, 12] + τ1,k · s[4, 2]+τ1,k · s[5, 1]

)
S[�0(2), k′]new

+ (
τ+

k · s[4, 2]+ τ−
k · s[5, 1]

)
S+[�0(2), k′]new+ (

τ−
k · s[4, 2]+ τ+

k · s[5, 1]
)
S−[�0(2), k′]new

+ (
τ1,k · s[23]+ (τ1,k + τ2,k) · s[3, 2, 1]+ τ4,k · s[32] + τ4,k · s[4, 12]+(τ2,k+ 2τ1,k) · s[4, 2]

+ (τ1,k + τ2,k) · s[5, 1] + τ1,k · s[6]
)
S[�0(1), k′]

)
.

�

Conjecture 7.2. Let k := l + m + 4, k′ := l − m + 2, then the strict endoscopic part of the

inner cohomology of Vl,m on A2[2] is given by

−5Lm+1 · dim Sk(�0(4)) · S[�0(4), k′],

where we interpret S[�0(4), 2] as −L − 1. �

Remark 7.3. In Conjecture 7.1, both the strict endoscopy and the lifts from Conjec-

ture 6.1 contribute to the terms −Lm+1 · τ4,k · s[3, 13]S[�0(4), k′]new, −Lm+1(τ+
k · s[4, 2] + τ−

k ·
s[5, 1])S+[�0(2), k′]new and −Lm+1(τ−

k · s[4, 2] + τ+
k · s[5, 1])S−[�0(2), k′]new. �

Conjecture 7.4. Assume that l = m and let k := 2m + 4. The middle endoscopic part of

the inner cohomology of Vm,m on A2[2] is given by

Lm+1(L + 1)

{
τ4,k · s[32] + τ+

k · s[16] + τ−
k · s[5, 1] if m odd

(τ+
k + τ1,k) · s[4, 2] + (τ−

k + τ1,k) · s[23] + τ1,k · s[6] if m even
�

8 Dimension Checks

In the case of one Weierstrass point, we have computed the numerical Euler characteris-

tic
∑

(−1)i dim Hi
c (A2(w1), Vl,m) ∈ Z for any (l, m) using methods as in [3] and [5]. The con-

jectural results agree for (l, m) with l + m ≤ 10 with these numerical Euler characteristics
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of the local systems and moreover for larger values of (l, m), e.g. for l + m ≤ 20, we find

that the numerical Euler characteristic minus the conjectured Eisenstein and endoscopic

part is always a nonpositive multiple of 4. For all l + m ≤ 20, this number equals −4 times

the dimension of the space of Siegel modular cusp forms Sl−m,m+3(�2(w1)) as calculated

by a program provided to us by R. Tsushima.

9 Examples of Eigenvalues of Hecke Eigenforms

We will now give a number of examples. We first write out some (conjectural) results for

the first few local systems. Needless to say they are based on ample numerical evidence.

Recall that the cohomology has the following parts,

ec(A, Vl,m) = eEis(A, Vl,m) + eEnds (A, Vl,m) − S[�2[2], (l − m, m + 3)],

where the third part has dimension 4 dim Sl−m,m+3(�2[2]). Here, we will write �N,k :=
S[�0(N), k]new and in all of the following cases, this will be a motive associated to a single

newform.

(l, m) ec(A2[2], Vl,m)

(0, 0) L3 + L2 − 14L + 16

(2, 0) −30L + 30

(1, 1) 5L3 − 10L2

(4, 0) −45L + 45 − 10L�4,6

(3, 1) −30L2 − 15�4,6

(2, 2) 9L4 − 21L3 − �2,8

(6, 0) −60L + 60 − 31L�2,8 − �2,10

(5, 1) −45L2 + 15 − 30�2,8 − 20L�4,6 − 5�4,10

(4, 2) −45L3 + 45 − S[�2[2], (2, 5)]

(3, 3) 10L5 − 35L4 − 15�4,6 − 5�2,10

(8, 0) −75L + 75 − 25L�4,10 − 40L�2,10 − 5�4,12

(7, 1) −60L2 + 30 − 15�4,10 − 30�2,10 − 40L2�2,8 − S[�2[2], (6, 4)]

(6, 2) −60L3 + 60 − 20L3�4,6 − S[�2[2], (4, 5)]

(5, 3) −60L4 − 30�2,8 − S[�2[2], (2, 6)]

(4, 4) 15L6 − 45L5 + 30 − 15�4,6 − 5�4,12
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In a number of cases, we can identify “genuine” Siegel modular forms, i.e. not lifts

of the type described in Conjecture 6.1. The space Sj,k(�2[2]) can be decomposed under

the action of S6 into a sum of spaces Sj,k(�2[2])µ corresponding to the S6-representation

given by the partition µ. For the cases appearing in the table above, we have

S2,5(�2[2]) = S2,5(�2[2])[2
2,12]

S6,4(�2[2]) = S6,4(�2[2])[2
2,12] ⊕ S6,4(�2[2])[3,13]

S4,5(�2[2]) = S4,5(�2[2])[2,14] ⊕ S4,5(�2[2])[2
2,12] ⊕ S4,5(�2[2])[3,2,1]

S2,6(�2[2]) = S2,6(�2[2])[3,13] ⊕ S2,6(�2[2])[3,2,1],

and each of these subspaces is generated by one vector-valued Siegel modular form.

For instance for (l, m) = (4, 2), we have one vector-valued Siegel modular form appearing

with the representation s[22, 12], i.e. with multiplicity 9, which agrees with the result of

Tsushima that S2,5(�2[2]) is nine-dimensional, see [23]. Moreover, according to our data,

S4,5(�2[2])[2,14] is generated by a lift with corresponding motive �4,12 + L3�4,6.

The trace of Frobenius, for a prime p > 2, on the space S[�2[2], ( j, k)] is equal to

the trace of the Hecke operator T (p) on Sj,k(�2[2]). In the following two tables, we write

the (conjectural) Hecke eigenvalues for the generating Siegel modular form for 3 ≤ p ≤ 23

in four cases when Sj,k(�2[2])µ is generated by a single vector-valued Siegel modular form.

We are assuming here the conjectures on the endoscopy given above. Note that all these

eigenvalues have many small prime factors.

p S2,5(�2[2])[2
2,12] S6,4(�2[2])[2

2,12]

3 −23 · 5 −23 · 5 · 7

5 −22 · 52 · 13 −22 · 5 · 149

7 24 · 3 · 5 · 13 −24 · 3 · 5 · 401

11 23 · 11 · 13 · 31 23 · 36383

13 −22 · 5 · 3469 22 · 5 · 37 · 251

17 −22 · 5 · 11 · 13 · 197 22 · 5 · 19 · 6983

19 23 · 52 · 11 · 13 · 17 −23 · 5 · 29 · 6287

23 −24 · 5 · 13 · 311 −24 · 5 · 43 · 2267
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p S6,4(�2[2])[3,13] S10,3(�2[2])[2
2,12]

3 −23 · 3 23 · 52

5 22 · 32 · 7 · 41 22 · 5 · 127

7 24 · 52 · 73 −24 · 3 · 52 · 13

11 −23 · 32 · 4793 −23 · 439 · 1123

13 −22 · 7 · 21563 22 · 52 · 47 · 4457

17 −22 · 32 · 2351 22 · 52 · 799441

19 −23 · 7 · 11 · 37 · 383 23 · 5 · 7 · 461 · 1723

23 −24 · 32 · 11 · 17 · 29 · 43 24 · 52 · 3653483

We compute the slopes for the single Siegel modular cusp form generating the

space S2,6(�2[2])[3,13] and for the one generating S2,6(�2[2])[3,2,1]. Recall that the reciprocal

of the characteristic polynomial of Frobenius is

1 − λ(p)X + (λ(p)2 − λ(p2) − pl+m+2)X2 − λ(p)pl+m+3 X3 + p2l+2m+6 X4

and the “slope” refers to the slopes of the Newton polygon.

p λ(p) λ(p2) slopes

3 23 · 33 −22 · 36 · 107 3, 4, 7, 8

5 −22 · 34 · 17 22 · 181 · 26161 0, 4, 7, 11

3 −23 · 32 · 5 34 · 1753 2, 4, 7, 9

5 22 · 3 · 5 · 72 52 · 117119 1, 4, 7, 10

10 Harder’s Congruences

Harder predicts a congruence between an elliptic modular form f and a Siegel modular

form whenever a “large” prime � divides a critical value L( f , s) of the L-series of the

elliptic modular form, see [13, 16, 17]. In cooperation with Harder, we checked a few

cases. This lends at the same time credibility to our computations and conjectures and

to Harder’s conjecture.
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For example, if f is a newform in the one-dimensional space S+
20(�0(2)), then 61

divides L( f , 12) and one expects the congruence

p8 + a(p) + p11 ≡ λ(p) (mod 61)

for the Hecke eigenvalues λ(p) of an eigenform F ∈ S2,10(�2[2]) for every prime p �= 2. By us-

ing dimension formulas of R. Tsushima for Sj,k(�2(w0)) and Sj,k(�2(w1)) (see also Section 8),

we find that dim S2,10(�2(w0)) = 0 and dim S2,10(�2(w1)) = 1. For p ≤ 37 the eigenvalues λ(p)

we have calculated for a nonzero F ∈ S2,10(�2(w1)) satisfy the required congruence, e.g.

λ(3) = 18360 and 38 − 13092 + 311 ≡ 18360 (mod 61).

In the following table, we list a few congruences that are valid for the eigenvalues

that we find. Also, in these cases, the corresponding spaces of modular forms are one-

dimensional and the Siegel modular forms do not come from level 1.

〈 f〉 〈F 〉 s �

S+
20(�0(2)) S2,10(�2(w1)) 12 61

S+
20(�0(2)) S10,6(�2(w1)) 16 109

S−
18(�0(2)) S6,7(�2(w1)) 13 29

S−
20(�0(2)) S12,5(�2(w1)) 17 79

S+
22(�0(2)) S16,4(�2(w1)) 20 37

Moreover, for a newform f ∈ S16(�0(4)), we find that our traces of Frobenius on

both S8,5(�2[2])[4,12] and S8,5(�2[2])[3
2] satisfy the expected congruence modulo � = 37, which

divides L( f , 13).

As explained to us by Harder, using the character table of S6 and some arguments

from the representation theory of GSp(4, Q2), one finds: if the level of f is 2, then the Siegel

modular form appears with each of the representations s[5, 1], s[4, 2], and s[3, 2, 1]. If f

is of level 4, then the Siegel modular form appears with both s[4, 12] and s[32]. This is

compatible with our examples.
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