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Dimensions of Cusp Forms for F 0 (p)
in Degree Two and Small Weights

By C. POOR and D. S. YUEN

Abstract. We investigate degree two Siegel cusp forms of small weight for F0 (p).
Using the Restriction Technique we compute some dimensions and verify the con-
jectures of HASHIMOTO in some examples of weights three and four. For weight
two we determine the dimension for primes p < 41 and find only lifts. We ex-
plain in general how to compute spaces of Siegel cusp forms for subgroups of
finite index in P.

1 Introduction

See the end of this section for a list of basic notations used in this article. For weights
k > 5, the dimensions of the spaces of cusp forms in degree two for Po(p) were
computed by K. HASHIMOTO [7]. He also gave conjectural dimension formulas
in the cases of weights 3 and 4, leaving only weights 1 and 2 untouched. The
intervening years have not seen many examples to test his conjectures. It is the proof
of the upper bound that makes the computation of dim SZ (I'o (p)) difficult. Recent
techniques make the computation of this upper bound feasible for Siegel modular
forms. We use Vanishing Theorems [16] and the Restriction Technique [17, 21] to
compute dim SZ (I'o(p)) for k = 2, 3, 4 and for small primes p. For k = 1, all
examples were trivial and we refer to [12] by T. IBUKIYAMA and N. SKORUPPA,
where it is shown that S l (Fo(N)) = {0} for all positive integers N. Lower bounds
are given by constructing Siegel modular cusp forms. This paper both explains how
to use the Vanishing Theorems and the Restriction Technique for subgroups of finite
index and performs the following computations. For primes p = 2 and p = 3 the
results can be found in [26, 9].

Theorem 1.1. For weight k = 4, we have the following dimensions:

p 2	 3	 5	 7	 11	 13
dim S2 (Fo (p)) 0	 1	 1	 3	 7	 11

Conjecture 7-1 in [7], pg. 485-486 of K. HASHIMOTO is true in all these cases.
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Theorem 1.2. For weight k = 3, we have the following dimensions:

p 2	 3	 5	 7	 11	 13	 17	 19	 23
dim SZ (Po(p)) 0	 0	 0	 0	 0	 0	 1	 1	 2

Conjecture 7-2 in [7], pg. 486 of K. HASHIMOTO is true in all these cases.

Theorem 1.3. For weight k = 2, we have the following dimensions:

p 2	 3	 5	 7	 11	 13	 17	 19	 23	 29	 31	 37	 41
dim SZ (Fo(p)) 0	 0	 0	 0	 1	 0	 1	 1	 3	 3	 3	 2	 6

For primes p < 41, the Hecke eigenforms in S2 (I'0(p)) are all lifts of elliptic
eigenforms; they are either Yoshida lifts, Saito-Kurokawa lifts, or both.

These computations are feasible because of two theoretical innovations. First,
although SIEGEL had estimated the number of Fourier coefficients needed to de-
termine a Siegel modular form, these estimates were rough and superior ones were
discovered in [16]. Section 2 surveys these estimates, relaxes some restrictions
found in [ 16], and provides an improved list of constants for estimations with Siegel
modular forms on subgroups of finite index. Section 3 works out specific details
for the subgroup Fo(p). Second, the Restriction Technique, introduced in [17],
efficiently produces linear relations among the Fourier coefficients of Siegel mod-
ular forms. The restriction of a Siegel modular form to a modular curve gives an
elliptic modular form; known linear relations among the Fourier coefficients of el-
liptic modular forms may then be pulled back to produce linear relations among the
Fourier coefficients of Siegel forms. Along with a determining set of Fourier coeffi-
cients, these linear relations provide upper bounds for dim S (F0(p)). Whether or
not this method always generates a complete set of linear relations is unknown. An
exposition of the Restriction Technique for level one and some partial converses to
the generation question can be found in [21]. Section 5 here explains the Restriction
Technique for subgroups of finite index but refers to [17, 21] for full details.

The weight two case is interesting because the L -functions of the rational non-
lift Hecke eigenforms may also be those of rational abelian varieties. It would be
most interesting to find a weight two rational Hecke eigenforen that is not a lift
of elliptic eigenforms but we evidently need to extend our search to higher levels
to reach this goal. Also, the dimension of dim SS (Po(p)) may grow more slowly
than 0(p3 ), which is the growth rate of HASHIMOTO's dimension formulas for
k > 2. The weight three case is also interesting as it corresponds to holomorphic
differential forms on the modular threefold Fo(p)\3e2. We thank R. SCHARLAU
for discussions at AIM in Palo Alto in 2003 about the paper [24]. Many of the
experimental results in [24] become theorems by using Theorem 2.5 (or 3.3) here.
We thank S. BÖCHERER for communicating the general result in Section 6. We
thank A. BRUMER and T. IBUKIYAMA for discussions about this work and for their
encouragement. We thank the referee for improving the Introduction and for short-
ening a number of proofs.
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Notations. Let n, k E Z+.
• n (R) = real positive definite n x n matrices and Jpnenu(R) = real positive

semidefinite n x n matrices.
• 3en = {S2 E (Cn	 Q symmetric and Im(S2) > 01 = Siegel upper half

space.
• Sp, (F) = symplectic 2n x 2n matrices over a ring F.
• Define Pn = Spn (Z) = the Siegel modular group.
• Fo (N) = { (C D l E Spn (Z) I C = 0 mod N], and A n (Z) = { ó D^ E

Sp, (Z) } .
• Vn (Z) = symmetric n x n matrices over Z. For S e Vn (Z), define t(S) _

ó Í) E Spu (Z). For U E GLn (Z), define u (U) = (ó Ü- ) E Spn (Z).
• For S2 E Sen and or = (C D) E Spn (JR), define a(2) = (AQ + B) (CS2 +

D) -1 , and for f : 3Cn 	C, define (flka)(Q) =det(CQ +D) —kf(Q(0)).
• For I' c F„ of finite index, define the Siegel modular forms of weight k with

respect to the subgroup r tobe 114(F) and the Siegel cusp forms to be S, (F),
see [6].

• When t (V7z (Z)) C F, we have the Fourier expansion

ƒ(Q) =	 a(t; .f)e((t, Q))
tE X,

for f E Sn (F). Here, (t, S2) = tr(tQ), e(z) = e2"'Z and Xn = integral-valued
half-integral positive definite n x n matrices.

• For f E Sn (F) as above, define the support of f to be supp(f) = It E xn

a(t; f) 0 01, and the semihull of f tobe

v(f) = Closure(ConvexHull(R>l supp(f))) inside P m'(R)

• For T, u E GLn (R), define T[u] = u t Tu.
• Fors E ßDnem'(R) define

(1) m(s) = infUE7n \{o} u tsu, the Minimum function.
(2) ti(s) = infuEGL„(ZZ) tr(u tsu), the reduced trace function.
(3) S(s) = det(s) 1 /n, the reduced determinant function.
(4) w (s) = infUEJ n (u)mina) , the dyadic trace function.

•	 SUPu p	 m(s) the Hermite constant.

2 Vanishing Theorems

For computational purposes it is convenient to choose a function 0 to linearly order
the support of a Siegel modular form.

Definition 2.1. A function q5 : ,q)nemi(R) —* pg>o is called type one if
(1) For alls E Jn(R),4(s) > 0,
(2) for all ), E JR>o ands e Jpn"'(R), Ø(;s) = 7q5(s),
(3) for all si, s2 E ,q)nemi(R) ¢(si +S2) > ¢(si) +0(s2).

A type one function is continuous on n (R) and respects the partial order on
psemi (R) The following vanishing theorem is essentially from [16], pg. 215.
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Theorem 2.2. Let 0 be type one. For all n E Z+ there exists a cn (0) E 1W> 0 such
that

`dk E Z+, V f E Sn, info (supp(f)) > cn (0)k = f = 0.	 (2.1)

The constant c,(0) may be taken to be 4 sup- 	 inffEr„ 0 ((Imo`

Proof. There is an S2o E X7-1 where rß f(0) = det(Im S2)k/2 I f (Q) I attains its max-
imum. The Semihull Theorem from [16], pg. 211 says that 4n (ImQo) -1 E v(f)
if f is nontrivial. Therefore, for some a s > 0 with E a .  1, we have x =

Ysesupp(f) ass arbitrarily close to 4n (Im 90) -1 . By the continuity of 0 we have

(x) _ (^ ass) >	 as í^ (s) >	 as inf q5 (supp( f)) > inf 0 (supp(f))

arbitrarily close to On o ((ImQo) -1 ) so that -Lo ((ImQo) —I ) >_ info (supp(f)).
Any 0 E F7z (Qo) also has this property so that infaar„ 4 (Imo (S2o)) 1 ) >
info (supp(f)) and 4n sup2E.^e„ inffEr,, 0 ((Ima(Q)) -1 ) > info (supp(f)). q

Theorem 2.3. Equation (2.1) holds if we select for c n (0) the following:

(1) For the Minimum function m, c0 (m) = 1 2 µn.
— 4n

(2) For the reduced trace tr, c„ (tr) = 4n nµn.

(3) For the reduced determinant 8, cn (8) = 1 2 µn .= 4n

(4) For the dyadic trace w, cn (w) = 4n n.

(5) For n = 1, cl (çß) = 120(1) and this is optimal.
(6) Forn = 2, c2(m) = io and this is optimal.

(7) For n = 2, c2 (tr) = 5 and this is optimal.

(8) For n = 2, c2 (w) = 6.
(9) For n = 3, c3 (m) = 9 and this is optimal.

(10) Forn=3,c3(tr)=4n ß 2•
(11) For n = 4, c4(m) = $ and this is optimal.

(12) Forn=4, c4(tr)=4r--2'

(13) For n = 5, c5 (tr) = á7m 21

(14) Forn=5,c5(m)= 41 2 2.

(15) Forn = 6, c6(m) = 4nß 3

(16) Forn = 7, c7(m) = 41 3.

Proof. Estimates (1)—(4) were proven in [16], pp. 216-218. The formula (5)
cl (q5) = 1Ø (1) follows from the Valence Inequality. Estimates (6)—(8) were proven
in [19], pg. 71. A reference for (9) c3(m) = 9 and (11) c4(m) = g is [23]. Esti-
mates (10), (12) and (13) were proven in [19], pg. 63. Estimates (14)—(16) were
published in [20]. q

The constants in Theorem 2.3 are the best currently known to the authors.
Item (8) is the estimate used in the computations of this paper. The following
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Theorem for cusp forms on subgroups of finite index is also essentially from [16],
pp. 215-216.

Theorem 2.4. Let be type one. For all n E Z+ there exists a cn (¢) E I1 >ø
such that: For any subgroup T c Fn with finite index I and coset decomposition

r, = U '=1 TM;, we have

Vk E 7G+ , d f E S(F), j	 info (supp(f)) > cn(0)k f 0. (2.2)
i=1

Any constant cn (0) for which equation (2.1) holds makes equation (2.2) hold, and
conversely.

Proof. If f is level one then
I	 I

j inf(i(supp(fIMj)) = j ^infg5(supp(f)) = inf0(supp(f))
a-1	 i=1

and so any constant valid for equation (2.2) is also valid for equation (2.1). On
the other hand, assume that c (0) is valid for equation (2.1). If f E Sn (T)
then Norm(f) = fl I f J Mi E S" is level one. We have supp (Norm( f)) C_

^isupp (fDMZ) so that info (supp (Norm(f))) > infØ(F-1 supp (f1Mi))

>_ E1 info (supp (f I Mi)). Thus 1 Ei info (supp(fJ Mi)) > cn (0)k im-
plies inf¢ (supp (Norm(f))) > Y 1 infØ(supp(flMi)) > cn (çb)Ik so that

	

Norm(f) = 0 by Theorem 2.2 and hence f = 0.	 D

3 r0 (p)

We explain how to use the Vanishing Theorems for a subgroup of finite index in
T2. We work out the details of Section 2 and find determining sets of Fourier co-
efficients for S2 (I'o(p)), p a prime. The dimension of S2 (Fo(p)) was determined
in [7] for k > 5, and in [12] for k = 1, so we focus on weights k = 2,3, 4
here. Recall the definitions To (N) _ { (C D l E Spn (7L) I C = 0 mod N}, and
An (7G) _ {^ A D) E Spn (Z)}. The index is [F2 : Fo(p)] = (1+p)(1+p2) and the
double coset decomposition has three double cosets:

r2 = ro(p)Eo U Fo(p)E102(Z) U ro(p)E2A2(Z),

where Er = I4_2i. ® Jr for r = 0, 1, 2; namely,

E0	
( 1000\	 El— Có o1óó/	 E2= Col lóó/

The width of a double coset is the number of distinct single cosets it contains
and the widths of the above double cosets are 1, p + p2 and p 3 , respectively.
Our interest is in the double coset decomposition because for f E Sn (Po(f)) and
S = (ó ^u * ) E On (Z) we have supp(f 1S) = u t supp(f)u. If 0 is a class func-
tion then 0 (supp(f I M)) depends only on the double coset To (f) ML (Z). Let
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f E Sz (I'o(p)) and consider the three Fourier expansions:

(f I Eo)(2) =	 an(t)e ((t, Q))
tE X2

(.f IEi)(Q) = L ai (t)e ((t, Q)) ,
tEx (' ^2

(fI E2)(2) = E al(t)e ((t, Q)) .	 (3.1)

tE

 the first Fourier series the translation subgroup of Fo(p) is
{ ^ E V2 (Z) I (ó I) E I'o (p) } = V2 (Z) so that t runs over 2. The similar-
ity subgroup of Fo(p) is {u E GL2(Z) I (o o } E ho(p)} = GL2(7L) so that
ao(u ttu) = det(u)kao(t) for all u E GL2(Z). For the third Fourier series, the trans-
lation subgroup is {1 E V2(Z) I ( o Í) E E2Po(p)E2} = pV2(Z) so that t runs
over "X2. The similarity subgroup is {u E GL2(Z) I (ó 0) E E2I'o(p)E2} _
GL2(Z) so that a2(u ttu) = det(u)ka2(t) for all u E GL2(7G). For the middle cusp
Fo(p)EIA2(Z), the translation subgroup is { E V2(Z) I (o I) E EIPo(p)E1} =

l ( b b ) I (g b) E V2 (Z) } so that t runs over (b C^ p ^ E p2 (Q) with

b b } E X2, we call this set ^G21) for convenience. The similarity sub-
group is {u E GL2(Z) I (o 0 ) E EiFo(p)Ei} = (( ^ l o ) Fo(p)) so that
al(u ttu) = det(u)kai(t) for all u E (( ^l o ), Fo(p)).

Our goal is to choose sets Co, C1, C2 E 5'2(Q) so that the following map is
inj ective:

SZ(Fo(p))__>FlCxF(Cxrl (C
Co	 ei	 C2	 (3.2)

f — (ao(t))tEco x (al(t))tEC l x (a2(t))tEe2 .

Theorem 3.1. For p, k E Z+, define

Co = {t E X2 I w(t) < 6 (1 + p)k},

Ci =0,

C2 = {t E -1X2 I w(t) < 6( 1 p )k}.

For these Cr the map (3.2) is injective. That is, Co and G2 are a determining set of
Fourier coefficients for elements of S2 (['o (p)).

Proof. Let y = 6 (1 + p)k. Let I = [['2 : Fo(p)] = (1 + p)(1 + p2). Take an
f E S2 (Po(p)) and suppose that a(t) = 0 for all t E Cr and 0 < r < 2. Since the
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dyadic trace is a class function we have

1 	infw (supp(f^M)) =
	

X
I ^_ 1 	(l +p)(l +p Z )

(1 inf w (supp(f)) + (p + p2) inf w (supp(f I El )) + p3 inf w (supp(f 1E2))).

Since inf w (supp(f I El)) > 0 we have

l	 infw(supp(fIM)) >	 1( 1 + p)( 1 + p
Z
) 
(1Y +0+p3 1 y) = Y = k

I i_ 1 	p 	 1 + p	 6 *

Hence we have f = 0 by Theorem 2.4 and item (8) of Theorem 2.3. 	 q

Note that Co and pC2 in Theorem 3.1 represent the same classes so that we
immediately have the upper bound

kdimSz (Po(p)) < 2#{classes [t] t E X2 andw(t) < 6(p+ 1)k}.

We will write abc for 2 b b) E V2(Q). From [16], pg. 224 we know that for
reduced a b c with 21b1 < a < c we have w(ab c) = Z(a + c — IbI). This already
proves that dim S (Po(p)) = 0 for p = 2, 3. For odd weights k, we automatically
have ar (t) = 0 for r = 0, 2 if t has an improper automorphism; an improper
automorphism of t is au E GL (Z) with det(u) = —1 and u ttu = t. In the theory
of quadratic forms, forms possessing an improper automorphism are ususally called
ambiguous. We define t to be nonamibiguous if it has no improper automorphisms.
Thus for odd k,

dim SZ (Fo(p)) <
2 #{classes [t] I t E X2, w(t) < 6 (p + 1)k and t nonamibiguous}.

This already proves that dim SZ (Fo(p)) = 0 for p = 2,...,23 and that
dim SZ (['o(p)) = 0 for p = 2, 3, 5, 7. To illustrate, we give the following sets
of determining Fourier coefficients:

For SZ (To(ll)), Co = {t E X2 I W (t) < 3 }

_ [2 1 2] U [2 °2] U [2 1 4] U [2 °4] U [424] U [2 1 6] U [4 1 4];
CZ = 111 Co.

For SZ (ro(ll)), Co = {t E X2 I w(t) < 66 and t nonamibiguous}

= [4 1 6] U [4 1 8];
C2 = 111 Co.

4 Restriction Technique for SZ (Fo(p))

Consider f E SZ (Fo(p)) with Fourier expansions at the cusps E0 and E2 given by
equation (3.1). Let Co and C2 be as in Theorem 3.1. Our goal is to generate linear
relations among the Fourier coefficients off at Co and C2. Toward this end we will
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generate linear relations on the Fourier coefficients from possibly larger sets 2o and
(32 with Co C 2o and C2 c 2. After fixing bo and 22, we then choose a set
A _c J,, (Z) and for each s E A we apply the technique of restriction to modular
curves. We summarize this technique and refer to [21] for more details. Denote
0,.: 3f1 Jf,z by Ø(r) = sr. Then we have (see [18], pg. 375)

0s : S2 (Fo(p)) -^ Slk (Fo(Pf))

where 2 E Z+ satisfies 2s -1 E P2(Z). Let gl, ... , gN be a basis of Mlk (Po(pe)).
For any f E S (Fo (p)) there must be parameters c1, ... , cN E C such that

N

0s.f = T, cmgm.	 (4.1)

m=1

For each or E F1 we have
N

(Os f) I2k6 =	 Cmgm l2ka•	 (4.2)

m=1

We obtain a countable set of linear equations by expanding both sides of equa-
tion (4.2) into Fourier series. The equations on the cm that one obtains in this man-
ner depend only upon the coset Fo(pt)u. The point is that much is known about
elements of Mik (Po (pt)) and that each gm 12ka can be expanded in a Fourier series
by known methods. For example, we may generate M via theta series
and transform these theta series using the shadow theory of modular forms [22].

On the other hand, we can compute the Fourier series of (0s f) 12k° in terms of
the Fourier coefficients of f. First, we compute Øf as follows [ 17]

(Øf) (t) _	 (	 ao(t))gi

jEZ+ tEX2:(t, ^)=j

_	 ( 	 v(j , s, t)ao(t))qi	
(4.3)

jEZ+ tEX,d
2

whereq=e(i). Here x2d ={(g b)EX2 I 0<_2b<_a<_c} and v(j,s,t)=
card{v E [t] I (v, s) = j} for even k, while for odd k we define

v(j, s, t) =
0,	 if t is not nonamibiguous,I EV , rt]:(V" )=j 3(t, v),	 if t is nonamibiguous,

where for nonamibiguous t we define

S(t, v) __ +1, if t and v are properly equivalent,
—1, if t and v are improperly equivalent.

The v(j, s, t) are readily computable number theoretic functions. Also, note that
for odd k, Øf is identically zero if s is not nonamibiguous. The Fourier expansion
of (¢s f) Ia is computed in the next three Lemmas and Propositions. The following
Lemma may be proven from the general recipe given in [ 10], Proposition 3.4.
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Lemma 4.1. Let (1 D) E Sp„ (Z). Then we have

,,C
 D)'0 w'

for some M E Fo (p) and some (ó yy*) E Sp 	and where r = rankje (C) E
{O, ... , n}.

Although the following Proposition is stated for n = 2, it is true for general n,
and is an easy consequence of Lemma 4.1.

Proposition 4.2. Let s E 5'2(Z)  and t E Z such that i s 1 E 52 (7Z). Let or _
a b ) E SL2 (7G). Then we havecd

(

aI2 bs A £
Cs -1 dI2) 

= MEr 0 
^b*

for some M E F0 (p), some r E {0, 1, 2} and some (á A ) E Sp2 (Q). Furthermore,
ifpftthenr=Oifpjcandr=2ifp-fc.

Proposition 4.3. Let f E S2 (i'o(p)) along with the hypothesis of Proposition 4.2,
we have

((Os f)12kU) (t) = det(A)k (.f I kEr) (AsAtr + £At).

Proof This follows as in the proof of Proposition 2.3 in [ 17]. 	 q

Now we are able to expand both sides of equation (4.2) into Fourier series; how-
ever, for computational purposes we truncate the series (4.3) once Fourier coeffi-
cients from outside the set go appear. For J E Q+, define the truncation operator
Truncj as truncation at order q J . Define:

J(s, m, T, d3) = sup{j E mZ I {t E J I (s, t) < j} C 8}.

Applying the operator TruncJ(s,1;x2,Bo) to the Fourier expansion of (4.1) gives us
1 + J(s, 1; X, £o) number of equations involving the Fourier coefficients of f
with indices from 30 and the parameters cl, ... , CN. We get other sets of such
equations by considering (cs f) I6 for other cusps or. We truncate the Fourier series
of equation (4.2) at

J(AsA t , widthpe(a); X2, 2p), if r = 0 and

J(AsA t , widthpe(a); pX2, £2), if r = 2.

In this manner we get 1-I- widthpe (a) J more linear equations involving the Fourier
coefficients off with indices from á2o, 22 along with the parameters cl, ... , cv.

The hope is that by using the collection of equations over all cusps a, we can
eliminate the parameters Cl , ... , cN and thus obtain relations among the Fourier co-
efficients off with indices from Bo, 132. Finally, by using s from a large enough
set A, we hope we can generate enough linear relations among the Fourier coeffi-
cients off with indices from S0, £2 to deduce enough linear relations among the
Fourier coefficients of f with indices from Co, C2 to yield an optimal upper bound
on dim S2 (To (p)).
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Although Proposition 4.3 completes the theoretical desription of the Restriction
Technique, for computational purposes it is beneficial to be even more specific. The
following is a straightforward generalization of [17], Prop 2.4.

Proposition 4.4. With the hypotheses of Proposition 4.3 and with the additional
hypothesis that gcd(c, pt/c) = 1, let c E Z such that cc - 1 mod pt/c. Then we
have

((4s.f)12ka) (t) = det( 4 ) k (.fIkEr ) (4s4t(t +dc))

= det(A) k^i .. t (f kEr) (t + dc)

Furthermore, if r = 0 or r = 2 this is

det(,4)k 	(
	

v(j, AsAt , t)ar (t))e(t + dc)j

jEQ+ tGX(r)2

where X
	 d ,	 fr = 0

2	 P Xrd, (fr =22

These calculations can be further simplified by choosing s so that p2 is square-
free. By choosing p f 2, Proposition 4.2 insures that only the cases r = 0 and
r = 2 will occur. And choosing t squarefree allows us to use Proposition 4.4 to
further advantage in the following way. Since p2 is squarefree, each cusp Q has a
representative of the form

6 = ( 1 0
cl

where c ranges over the divisors of pt. Let c be as in Proposition 4.4 for this a.
Then

1 0_ pt/c	 —c	 1	 c	 c
c 1	 pt	 1 —cc) '	 0 pt/c pt'

Note that ( 1) 1 _ac ) is an Atkin-Lehner involution, denoted by WW, where we

write c = p^. Note that Wpe is the Fricke involution. For  E M

11
gI2k (c 0) (t) _ (gl2kWE)1 (0 c) (t)	 = (c)_k (912kWi) / t c

\

Thus we can avoid the whole t + c business by replacing (t + c) by r to get the
first part of the following Corollary.

Corollary 4.5. Let f E S2 (Fo (p)) have Fourier expansions as in equation (3.1).
Lets E J"2(Z) and t c 7G+ such that 2s — ' E P2(Z). Let o = (a á) E SL2(Z).
Assume that c I pi. Denote c = P. Assume gcd(c, c) = 1, which is automatically
true if pt is square free. We have

( aI2 bs 
ME (

cs- 1 dI2) r \ 0 , )
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for some M E Fo(p), some r E {0, 2} and some ( ó # ) E Sp2 (Q). We have r = 0

if p I c and r = 2 otherwise. For any such choice of ( ó A.) we have

	(c) k ((0sf)I W^) (ct) = det(	 (	 v(j, ^bs^bt, t)ar(t))gJ ,

JEQ tEx^r)
2

and equivalently,

((4^s.f)I W^) (t) _ (c)k det( 4)k 	(	 v(j, c^bs^b t , t)ar(t))q'

JEZ+ tExZ
r)

= (c)k det( 4)k ^As &t(fI Er)) (t).

Proof The second equation is gotten by replacing t by cz on both sides of the first
equation.	 q

Using the second form above that avoids fractional exponents speeds up calcula-
tions.

Proposition 4.6. Let f E SZ (1'0(p)). Lets E P2(7G) and f = det(s). Assume that
pit. Then

(os .f) I WW =Øf.f

Proof. We will apply the second part of Corollary 4.5 with c = p and c = f and
or = (1 01) to get that

(0, f)I Wt = () k det()kAst(fIEr).

Note r = 0 because p I c, and we have to compute ,4 according to Proposition 4.2.
Let c be as in Proposition 4.4 so that t I (cc — 1). Observe

I	 0_ s	 —c1 	c—, 

 cI
cs -1 I) = (cI 	 (1 — cc)s —i ) 0	 s

has I s  (1_&)S_1) E 1'o(p) because c = p and because (1 — cc)s -1 is integral

Thus we may take A = s -1 . Then observing that (j)k det(4)k = 1 and that

pe As At = fs -1 is properly equivalent to s (because s is 2 x 2) completes the
proof. q

Proposition 4.7. Let f E S2 (Po(p)). Let s E P2(Z) and tE 7G+ such that

is -1 E p2(Z). Assume that p t E. Then

(0s ƒ) I Wp = pkops (ƒI E2)

Proof. We will apply the second part of Corollary 4.5 with c = f and c" = p and
v = tl 01) to get that

k

(0sf)I WP — () det(^)kø 9 bsrót(fIEr)•
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Note r = 2 because p t c, and we have to compute A according to Proposition 4.2.
Let c be as in Proposition 4.4 so that p I (cc — 1). Observe

I	 0 '\ ( 	 —I	 0 I I Cs
(cs —i 	I	 (1 — cc)I —cs —I) (—I 0) (0 I

has (tl_as _— I E IFo(p) because p 1 (1 — cc) and because cs -1 is integral.
Thus we may take A = I. The Proposition follows immediately.	 q

In the case where t is prime, the above two propositions tell us how to get the
other expansions (os f) I Wo from just the Øf expansion.

5 Upper Bounds

For m E Z+, a E R, denote [ai m = max{,B E mZ I ß < a}. Note that we
have [a J m < a. Recall in n = 2 that the dyadic trace of a half-integral form takes
values in z Z>o. From a weight k and a prime p we construct our set of determining
Fourier coefficients Co II G2 and, using an auxillary parameter ß, our net So and
£2 as follows:

Co = { t E X2 I w(t) < [ (p + 1) J Z and t nonamibiguous if k odd}

and C2 = p eo,
20 = It E X2 I w(t) < ß and t nonamibiguous if k odd} and 22 = p ßßo.

Our choices are given in Tables 1 through 3. Also, we choose a set A c_
ß"2(7L). Note that for k odd, we only need nonamibiguous forms in Co, C2,
ado, 22 and A. We ran the Restriction Technique with the choices in Tables 1
through 3 and obtained upper bounds for dim SZ (Fo(p)) as reported in these ta-
bles. By J [Go] I and I [So] I we denote the number of classes in Co and á3o,
respectively. For the first Table we use the sets: F0 = {2 1 2 2 1 3, 3 1 4, 4 1 4},
F1 = Fo U 12 1 4,3 1 5,5251, F2 = {30 5, 4 1 5, 507, 526, 6 1 6] and F3 =

12 1 6, 2 1 7, 2 1 9, 3 0 3, 309, 3 1 6, 4 1 6, 4 1 9, 5 1 6, 5 1 7, 5 1 8, 52 7, 627, 63 7, 63 8, 7 1 8, 8 3 8 1.
Instead of going through each Table, we give an example for weight two. To

enjoy any brevity of exposition the reader must cede us the ability to compute with
elliptic forms. Our programs used theta series to span spaces of elliptic forms. This
allowed us to compute the expansion of an elliptic form in a Fourier series at any
cusp. MAGMA will also give these cusp expansions when the cusp is given by an
Atkin-Lehner involution, as in the following example.

Example. We consider 4 (Io(11)) and use 0s : SZ (r0(11)) — Sl (r'(11Q)) for

s = ( ó 0 ), (ó z ), ( i fl , ( i 3 ) and t = 1, 2, 3, 5, respectively. The determining set is
given by Co and C2 where Co = [2 1 2] U [202] U[2 1 4] U [204] U [424] U [2 1 6] U [4 1 4]
and C2 = 111 Go and the net is given by £o = Co U [404] U [426] U [206] and
`22 = 111 Ø.
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p [4p + 1 )J2 I[Coil ,ß ['2o]I 4	 dimSz (Fo(p))
2 0.5 0 0
3 1.0 0 0
5 1.5 1 2 2 212 0
7 2.5 3 2.5 3 212 0

11 3.5 7 4 10 2 1 2, 2 1 3, 1 0 1, 1 02 1
13 4.5 13 5 17 same as above 0
17 5.5 21 7 39 212, 3 1 4, 4 1 4 1
19 6.5 32 7.5 46 Fo 1
23 7.5 46 9.5 84 Fo U 3 0 3, 2 1 4, 3 1 6 3

29 9.5 84 12 156 Fl U 4 1 5 3

31 10.5 109 12.5 172 Fl U3 °5,52 6 3
37 12.5 172 15 281 Fl U F2 2
41 13.5 211 16.5 361 F1UF2UF3 6

Table 1. Upper Bounds fork = 2

p L-(p + 1)J2 I[Co]I ß I[^o]I ,4	 dimS3 (I'o (p)) <
2 1.0 0 0
3 1.5 0 0
5 2.5 0 0
7 3.5 0 0
11 5.5 2 7 6 315 0
13 6.5 6 8.5 15 314,315 0
17 8.5 15 13 72 315,526 1

19 9.5 23 13.5 84 315,526 1

23 11.5 47 17 185 314,315,316,415,
4 1 8,5 1 6 526 5 2 7

2

Table 2. Upper Bounds fork = 3

p L-(p+ 1)J2 I[Coil ,6 I[2o]I A	 dim S2 (Fo (p)) <
2 1.5 1 1.5 1 2'2	 0
3 2.5 3 3.5 7 213	 1
5 3.5 7 6 27 2 1 2, 3 0 3, 2 1 4, 3 1 4	 1

7 5.0 17 8 55 212,303,	 3
2 1 3,3 1 4,4 1 4

11 7.5 46 11.5 138 212,213,214,	 7
3 0 3,3 1 5,3 1 6,4 1 4

13 9.0 74 13 192 212 314,303,315,316,	 11
4 1 4 4 1 5 42 8 52 5 63 9

Table 3. Upper Bounds fork = 4

First, considers = (o 0). For f E Sz (To(ll)) we have0* 1 ° f E S1 (1'0(11))
(o i)

and

(0*
ó° f)(2) = (2ao(2t2) + ao(2°2))q2

+ (4ao(2°2) + 2ao(2 °4) + 4ao(2 1 4))g 3

+ (4ao(2 °4) + 2ao(2°6) + 4ao(2 1 2) + 2ao(2 1 4)

+ 4ao(21 6) + ao(4°4) + 2ao(414) + 2ao(424))g 4 +..

((q5 *
i o^f)I wii)(r) = 1210* (1 o^ (.flE2) (r)
of	 11 of

= 121(2a2 ( 21 ) + a2 (Çi ))q 2 + ... .
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There is only one cusp form of weight 4 whose q-expansion begins with q 2 and it
is in the Fricke plus space:

((i)q( 11 r))4 =q 2 — 4q 3 + 2q 4 + 8q 5 + .. .

If we set
(

1 o f = c (rt(t)rl(llt))4 and eliminate the parameter c in
of

1210*1 /1 0) (f E2) = c (p (t) rl (1 1 i))4 as well, we obtain the equations
of

0 = 4ao(202) + ao(2 o4) + 4ao(2 1 2) + 2ao(2 1 4),

0 = 4a2 ( iii ) + a2 ( ) + 4a2 ( ) + 2a2 ( 21 ) ,
0=-2a2( )++ 4a2(iii)+ 2a2(iii)+ 2a2( )+4a2()+a2(iii

+2a2(4 4) +2a2( 1?t),

0 = —2ao(202)) + 4ao(2 04) + 2ao(206) + 2ao(2 1 4) + 4ao(2 1 6) + ao (4o4)

+ 2ao(4 1 4) + 2ao(424),

0 = ao(2o2) + 2ao(2 1 2) — 121a2(í ) — 242a2( )

A similar analysis fors = ( 1 2) gives the equations

0 = 4ao(2o2)+ ao(2o4) + 4ao(2 1 2) + 2ao(2 1 4),

0 = 4a2(Ç )+a2(Ç) + 4a2( ) + 2a2( ),

0 = ao(2o2) + 2ao(204) + ao(206) + 4ao(2 1 2) + 2ao(2 1 6),

0 = a2 ^ 	 + 2a2(Ç) + a2() + 4a2() + 2a2 ( ) ,

0 = ao(202) + 2ao(2 1 2) — 121a2(iii) — 242a2().

For s = (i 1 ) we have 0* 2 1 : S2 (I'o(11)) —s Sl (Fo(33)) and the ex-
(1 2^

pansions under the Atkin-Lehner involutions W1l = (_33 1 ) , W3 = (33 1 i ),
W33= (-03o ) are

(0 21f)(i) = ao(212)g 3 + 3ao(202)g 4 + (3ao(2 1 2) + 3ao(2 14))g 5
1 2 / + (6ao(2o4) + ao(424))g6

+ (6ao(2 14) + 3ao(2 1 6) + 3ao(4 1 4))g 7

+ (6ao(2 o2) + 6ao(2o6) + 3ao(4 04) + 3ao(426))g 8 + ...>

0*21)f)IW11)(t) = 121 (a2 (í1í ^q 3 + 3a2 ( iii )q 4 + ... ^ ,

along with (0 2 
l \ f) I W3 

= 0 * ^
2 1 f

 , and ^O 2 
11

 f) I W33 = `0* 2 I ) f) I W111 2/

The subspace SV c S4 (Fo(33)) of cusp forms g for which the vanishing of
g, gI W3, gI Wil, gI W33 is each of at least order q 3 and for which gI W3 = g is
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2-dimensional. A basis for SV is

q 3 -3q 5 -2q 6 +6q 8 +...,

q4 -2q 5 —q 6 +5q 8 +...

This space SV is stable under the Atkin-Lehner involutions and in fact is fixed under
each Atkin-Lehner involution. Using these facts and setting (0( 2 1) f) (r) = a(q3 —

12

3q 5 + •) + ß(q 4 — 2q 5 + - ) gives the equations

ao(212) = u,

3ao(2°2) =

3ao(2 1 2) + 3ao(2 1 4) = —3a — 2ß,

6ao(2 04) + ao(424) = —2a — ß,

6ao(2 1 4) + 3ao(2 1 6) + 3ao(4 1 4) = 0,

6ao(2°2) + 6ao(2 °6) + 3ao(4°4) + 3ao(4 26) = 6a + 50

and corresponding equations in a2(... )s. Eliminating the parameters gives the lin-
ear relations

0 = 2ao(2 02) + 2ao(2 1 2) + ao(2 1 4)

0 = 2ao(214) + ao(216) + ao(414)

0 = 2ao(2 1 2) + 3ao(2 °2) + ao(424) + 6ao(2°4)

0 = 2ao(2 1 2) + 3ao(2 °2) — 2ao(2 06) — ao(404) — ao(426)

0 = ao(2 1 2) — l2la2( )

0 = ao(2°2) — 12 1a2( 1 )

0 = 2a2( to ) 
+ 2a2( 11 1 ) + a2 ( 11í)

0=2a2( 1'l) +a2 ( ill)+ a2 (414 )

0 = 2a2( )+3a2( Çi)+a2 (í )+ 6a2(Ç1 )

0=2a2( )+3a2(Ç1) — 2a2(Ç1) — all 1^1 I — a2 (Ç)

A similar analysis fors = (i 1 ) gives the linear relations

0 = 4ao(2 02) + ao(2°4) + 4ao(2 1 2) + 2ao(2 1 4),

0 = ao(2 04) — 2ao(214) + 4ao(21 6) + 4ao(424),

0 = 3ao(2 °4) + 2ao(206) + 2ao(2 1 4) + 2ao(4 1 4)
i

0 = ao(2 1 2) — 121a2(11)
0

0 = ao(2 02) — 121a2(1í)
i

0 = ao(2 14) — l2la2( )
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0 = 4a2( Çi )+a2(2i)+4a2(21)+2a2(2 ),

0=a2 (lol) -2a2 ( 14 )+ 4a2 (lil + 4a2 (1?1) ,

0 = 3a2( 0 ) +2a2(Ç) +2a2(2 ) 2a2( )

The solution space of these 29 equations has a one-dimensional projection onto the
Fourier coefficients from Co and e2 and is spanned by the following solution.

ao(2 2) ao(2 2) ao(214) ao(2 4) ao(4 4) ao(4 4) ao(2 6)
1 —1 0 0 1 1 —1

with all a2() = 121 ao(abc). ThusdimS2 (1'0(11)) < 1
The technique illustrated in the Example almost tells the whole story. For odd

weights, one must additionally keep track of the proper equivalence classes of the
indices of the Fourier coefficients. Finally, in the case of S2 (Fo(41)) the linear re-
lations provided by the forms in A have an 11-dimensional nullspace on the Fourier
coefficients from Co Ll C2. We used the fact that if ao(T; f) are the Fourier coeffi-
cients of a Siegel modular cusp form then

ao(T; Tqf) = q 2k-3 ao( 1 T; f) +qk 2ao( 
T {( q ?)]; f)

q-1
+qk 2 ^ao(IT[(1 q )]; f) + ao(qT; f)

are the Fourier coefficients of the Siegel modular cusp form Tq f. Here Tq is
the standard Hecke operator on S2 (I'o(p)), see [8] or [25]. The intersection of
the 11-dimensional nullspace and its image under T2 was 6-dimensional, hence
dim S2 (['0(41)) < 6.

6 Lower Bounds

Until this point we have discussed only upper bounds for dim S2 (Fo(p)). We ad-
dress the question of lower bounds by actually constructing cusp forms. The charm
of the subject has always been the diversity of ways in which modular forms arise.
Although our topic remains the same, this section has a decidedly different flavor as
we cast about for constructions of cusp forms.

For k = 2, the work of S. BÖCHERER and R. SCHULZE -PILLOT [2] on the
injectivity of the Yoshida lift provides the dimension Y of the subspace of cusp
forms that is spanned by Yoshida lifts. We quote the results from the thesis of
M. KLEIN [13] from part of his Tabelle 2.3:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43
g 0 0 0 0 1 0 1 1 2 2 2 2 3 3
d+ 0 0 0 0 0 0 0 0 0 0 0 1 0 1
d— 0 0 0 0 1 0 1 1 2 2 2 1 3 2
Y 0 0 0 0 1 0 1 1 3 3 3 1 6 3

Table 4. Dimension of Yoshida lifts
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In the Table above: g = dim S1 (Fo (p)); df = dim{ f E Sl (Fo(p)) .II Wp =

±f};  We have Y = d_ + ( 2) + (d2) for primes p < 389. In general, Y =

d* + (2) + (d2) where d,, < d_ is the dimension of the space spanned inside of
{ f E S1 (Po (p)) I fI W, = - f}  by Hecke eigenforms whose L-function does not
vanish at s = 1.

The case of p = 37 requires further comment, the space of Yoshida lifts is one-
dimensional but we need a lower bound of 2 on dim S2 (Fo (37)). We will see that
there is also a (generalized) Saito-Kurokawa lift in SZ(Po(37)), see [15]. From
Table 4 we see that Si (Fo(37)) has two eigenforms, one each in the Fricke plus
and minus spaces. By the Shimura correspondence these correspond to distinct,
and hence linearly independent, eigenforms of half integral weight. As sharpened
by KOHNEN [14], pg. 64 we have the noncanonical isomorphism, Si (Fo(37))

3

S1 (Fo(4.37))+. The generalized Saito-Kurokawa lift

SK : Sl (Fo(4 . 37))+ -, SZ (ro(3 7))

is linear so that dim S2 (Fo (37)) > 2.
One minor difficulty with the above discussion is that in [15] the generalized

Saito-Kurokawa lift was demonstrated only for even k > 2, whereas we need the
case k = 2. In [15], the map SK was factored

z (Fo(4N)) + -> Jk 1 (ro(N))	 SS(ro(N))

for odd squarefree N. The second map holds for general k but the proof of the first
map used Poincare series and so required k > 2. The following ad hoc Lemma
amends Theorem 2 from [15] to include the case k = 2 but we should mention
that we have received from T. IBUKIYAMA [11] a development of the theory of the
Saito-Kurokawa lift to SZ (I'o(N)) that treats all even weights in a uniform manner
for any N E Z. See [5] for the definition of Jkisp (Fo(N)).

Lemma 6.1. The linear map .3 defined by

c(D)e(
r2
	i +rz) H	 c(D)e(I DI r)

D <O,r e7G, D-r2 mod 4	 D <o, D=0,1 mod 4

1

induces an isomorphism between J "(Po(N)) and S1 2 (Fo(4N))+ in the case
k =2.

Proof. The space of Jacobi forms is an M1 (Fo(N))-module. For g E M1 (['o (N))
and F E Jk lsp (Fo(N)) we have .3(g(r)F(T, z)) = g(4r) 3(F(t, z)); indeed,
this is true even as a map on formal series. We may use the statement of the

3

Lemma for even k > 2 by Theorem 2 of [15]. Take f E S1 (Fo(4N))+. If

f(Z) = 1:D<0,D=0,1 mod4 c(D)e(IDIr), define F by the convergent power series

	F(r,z) = Y-D<o,rEz,D=r2 mod 4 c(D)e( rz4D -r + rz), so that F:	 x (C - Cis
holomorphic. Let E4 be the weight 4 Eisenstein series of level one. There exists F6
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such that 3(F6) = E4(4r)f(r). We have F6(r, z) = E4(r)F(r, z) because they
have the same series expansion. Thus

F(r z) _ F6(t, z) 	(6.1)
E4(t)

and we conclude F E Jk, l (Fo(N)). Since the q -expansions of Eisenstein series be-
gin with 1 at the cusps, equation (6.1) shows that F is a Jacobi cusp form. Therefore
S is surjective in the case k = 2. It is clearly injective from the definition. q

More generally, S. BÖCHERER has explained to us [1] that the Saito-Kurokawa
lifts of elliptic eigenforms in SS (Po (p)) whose L-function vanishes at s = 1 are al-
ways linearly independent from the space of Yoshida lifts. The reason is essentially
that in this case the standard L-function of the Saito-Kurokawa lift does not have a
pole at s = 1 as it would were it in the span of the theta series, see Theorem 4.1
in [3]. Arguing from this result one may increase the dimension of the space of
known lifts in SZ (Fo(p)) to d+ (d+ + 1)/2 + d_(d_ + 1)/2.

For k = 3, the work of S. BÖCHERER and R. SCHULZE -PILLOT [3] on Yoshida
lifts, while not giving a general injectivity result, does allow us to construct lifts in
specific cases. For example, in p = 17 we have the nontrivial Yoshida lift computed
in [3]. These are theta series with pluriharmonic coefficients. Let A c_ Rm be an
even lattice of rank m and square determinant det A = N 2 . Let P : Mn xm (C) C
be a pluri-harmonic polynomial [6], p. 161 of degree v and define OA,P : 3Cn C
by

A,P(2) _	 P(L)e(Z(LLt, 0)).
LEA"

The function l A,P is then a Siegel modular cusp form of weight 2 + v and level
Fo(N) and degree n, see [6]. Furthermore for B, X E Mnxm ((C), the polyno-
mial P(X) = det(BXt)v is pluri-harmonic when v = i or whenever B satis-
fies BB t = 0. To list some Fourier coefficients of 19Á,P we let A = ZM
for M E GLm (JR), give the Gram matrix MMt , and write the Fourier series
#A,P(Q) = (cont.) >.1T a(T)e((^, T)).

level MMt B cont. 4 1 6 4 1 8 4 1 10 6 1 12 62 8 62 10 62 12 8 1 12 82 12

F0(17)
2	 1	 1	 0\

41 61	 1 0010
4v' 17 1 —1 —1 —1 1 1 —1 1 —31 01000	 1	 2	 10

/ 4021'  0010
1'0(19) 1 0 4 12 	1 —4	 19 1 0 —1 0 —1 0 1 0 —1

0100\1216

4 1 0 0 1000
r0(23) (16 	 0 0' 2J17 1 0 2 —2 0 0 0 2 00041 001000016

4 1 0 0 1000
P0(23) l í 6 00 2V7 1 2 0 —2 0 0 0 0 —2

01000 0 1 12

This table of the Fourier coefficients of t A,P for A = Z' M and P(X) = det(BX t)
shows that dim SS (Po(17)) > 1, dim S2 (Fo(19)) > 1 and dim SS (Fo(23)) > 2.
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For k = 4 we construct modular forms from the theta series of 8-by-8 in-
tegral positive definite even quadratic forms with square determinant. We ob-
tain cusp forms by taking linear combinations. For Q E J m (Q), let (S2) =

ENEZmxn e(2 (Nt QN, Q)). If Q = MMt is the Gram matrix of the lattice
A = zm M then = ?9A,1. For the construction of cusp forms from theta se-
ries, the following Lemma is useful.

Lemma 6.2. Let f E MZ (Fo(p)), and let Wp denote the Fricke involution. If
(Do (f) = 0 and (Do (f I Wp ) = 0 then f E SZ (I'o (p)).

Proof. From [6], pg. 127 it suffices to check (Do (f IM) = 0 for a complete set
of representatives F2 = UM Fo(p)M. For the M we may take the 1 representa-
tive Eo; the p3 representatives E2t(S), where S E A4 <' (Z) represents each class
in MZ ' (IFp); and the p(p + 1) representatives EI t ((ó xO )) u(U), where x E Z

represents each class in IF p and U = (i?) or U = (? 1 ) where j E Z repre-
sents each class in IFp . These choices of U have bottom rows which represent each
one-dimensional subspace of  JF,. Our assumptions are equivalent to assuming that
ePo(fIEo) = 0 and (Do(f I E2) = 0 and we will show that all other 00(f I M) = 0
follow from these.

Let f be any Siegel form for a group of finite index. One elementary relation is
(Do (f) = 0 if and only if (Do (f I t (S)) = 0. From this we see that (Do (f 1E2) = 0
implies (Do(fIE2t(S)) = 0. Another elementary relation is (Do(fIEi) = q)o(f)IJ1.
This takes care of the representatives in the double coset Fo(p)EiA2(7G) that have
U = (n). For those with U = (° Vil ) we note that Elt((o o))u((o _1)) _

u(Jl)E2t(( ó)E1, so that

4>o(fl E l t ((3 °)) u ((? ;1 ))) ='to(flu(Ji)E2t((xj ó ))Ei)

_ <Do(flu(Ji)E2t((j ó))l 1 JI .

Now we make use of f E M (Fo(p)) so that f Iu(Ji) = f; then the vanishing of

(Do(fIE2)isequivalentto that ofco(fIu(Jl)E2t((^ ó)))IJl•	 q

This Lemma, along with the standard action of the Fricke operator on theta series,

O Q I WZ = i nk det(Q) —n/2tnk/2 0 íQ* ,

allows us to check if linear combinations of theta series are indeed cusp forms. For
standard lattices like E6, A2, etc., we refer to [4]. For more obscure lattices we give
the Gram matrices here. For convenience in typesetting, if Q and Q are even forms
and Q is the Gram matrix of the lattice A, then we define (Q (r ) ®f • A) to be

A nontrivial \cusp form in S2 (Fo(3)) is

1019(A2EDE6)-90tg(A2®E6)-79(E8)+81í9(3•E8)
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so that dim SZ (1o(3)) > 1. A nontrivial cusp form in S2 (ro(5)) is

62519 (Q5 ® Q5) — 3619 (A4 ® A4) — 900í9(A4 ® A4) — 315í9(A4 ® A4)

+ t (E8) + 62519 (5 • Es)

so that dim S2 (Po (5)) > 1. Here we set
2 1 -1-1 \

Qs = 11 ó 4 Zl 
) 

and note det(Q5) = 52 .
-1 -1 2 4

We have S2 (Fo(7)) 2 Span( f, T2f, Tz f) where f = 362619(B (4)) — 123219(B
A6 p) — 192^9(B ® A6) — 9408^9(B ® A6) + 3(E8) + 720319(7 • E8). Here we
have

4 1 1 1 0 2
1 4 -1 0 2 2

	sup	 1 -1 4 -2 1 1	 2 1
46 — 1 0 -2 4 -2-1 andB= ^14^'

0 2 1 -2 4 2
2 2 1 -1 2 4

These forms are linearly independent so that dim S24 (F0(7)) > 3. On this space we
have T2 = 35T2 — 324T2 + 51612.

We have S2 (Po(11)) D Span(fi, f2, .f3, T2f1, T2f2, T2f3, T2 fi) where f =
—3t, (Q1) + 2 (Q2) + (Q3) E S2 (1'0(11)) and f = f19(Q1) for i = 1, 2, 3,
and where

l

	

Q1 = O1 0l 6 0 	Q2 = /
2

 11 0l 4 1	
1

4	

\

1Q3 = 1 Ol 2 4 4

These forms are linearly independent so that dim SZ (ro(11)) > 7.
We have S2 (ro(13)) 2 Span( f, T2f, T2 f, ... , T2 f, g, T2g, T2 g) where f =

15 9 (Qá2 ) +3?%(Qb ®Qc) — 21g(Q«) —16 í9 (Qß) and g = —19(Qá2 ) — 13^i(Qb

QC) + 146(Qa ) + 166(Q y ) — 166(Q1). Here we have

Qa — (o12 0 	 81 )
Qb—

(1004/
Qc

1 3 1310)
= 1 3

1

6 -3 3 -3 -3 2 -2 -1 2 -1	 1\ 1	 0 0	 0	 0
-3 6 -3 0 2 -3 1	 0 -1 4 -2 1	 0 -1 1 -2
3 -3 6 -3 -1 2 -2 -2 1 -2 4 2	 0 0	 0	 0
-3 0 -3 6

Q« =
1	 -1 3	 0 _

Qß —
1 1	 2 4	 1 0	 2 -1

-3 2	 -1	 1 6	 1 3 -2 ' 0 0	 0 1	 6 -2 1	 3
2 -3 2 -1 1	 6 -1	 0 0 -1 0 0 -2 6	 3	 1
-2 1	 -2 3 3	 -1 6	 0 0 1	 0 2	 1 3	 12	 5
-1 0 -2 0 -2 0 0	 6 0 -2 0 -1	 3 1	 5	 12

2	 0 0 0 -1 -1	 0 0 4 1	 -1 0	 0 1	 1	 2
0	 2	 1 0 -1 0	 0 0 1 4	 1 1	 -10 2 -1
0	 1	 2 0 0 1	 1 1 -1 1	 4 -1	 0 1	 2	 -1
0	 0 0 2	 1

QY =
0	 1 1

QS
0 1	 -1 4	 1 0 -1 -1

-1-101	 6 3	 3 3 — 0 -1	 0 1	 4 -1	 0 -1
-1	 0	 10 3 12	 5 5 1 0	 1 0 -1 4	 0	 0
0	 0	 11	 3 5	 12 -1 1 2	 2 -1	 0 0	 6 -2
0	 0	 11	 3 5	 -1 12 2 -1 -1 -1 -1 0 -2 10

We mention that although we have an 11-dimensional space, the minimal poly-
nomial of T2 has degree 8. These linearly independent theta series show that
dim S2 (1'0(13)) > 11.
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7 Conclusion

The lower bounds of Section 6 all coincide with the upper bounds in the Tables of
Section 5. This proves the dimensions in the Theorems of the Introduction. The
results used modest computing power, mainly a desktop personal computer. We
plan a more computationally intensive search for paramodular cusp forms of weight
two.
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