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Abstract

A conjecture on lifting to Siegel cusp forms of half-integral weight
k − 1/2 of degree two from each pair of cusp forms of SL2(Z) of weight
2k − 2 and 2k − 4 is given with a conjectural relation of the L functions
and numerical evidences. We also describe the space of Siegel modular
forms of half-integral weight, its “plus subspace” and Jacobi forms of
degree two by explicitly given theta functions.

This paper has two aims.
(1) We describe Siegel modular forms of half integral weight of Γ0(4) of degree
two explicitly.
(2) We give a conjecture on lifting preserving L function from a pair of elliptic
modular forms to Siegel modular forms of half integral weight of degree two
with numerical evidences on coincidence of the Euler factors.

As for (1), we also describe the so-called “plus subspace” consisting of a
kind of new forms which is isomorphic to the space of Jacobi forms of some
sort. We state our results in section §1 (cf. Theorems 1.3, 1.5, 1.8, 1.9) and
give the proof in §2. In the remaining sections we treat (2) (cf. Conjecture
3.1).

Now we explain more precise content of this paper. First of all, rough
content of our conjecture mentioned above is as follows. We denote by
Mk−1/2(Γ0(4)) the space of Siegel modular forms of Γ0(4) of degree two of
weight k − 1/2 and by Sk−1/2(Γ0(4)) the subspace of cusp forms. We denote
by S+

k−1/2(Γ0(4)) the plus subspace of degree two. (This plus space was first
introduced by W. Kohnen in case of one variable and later generalized by the
present authors for general degree. As for the definition, see §2). Now our
conjecture claims that for each pair of common eigen cusp forms f of weight
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2k − 2 and g of weight 2k − 4 belonging to SL2(Z), there should exist a com-
mon eigen Siegel cusp form F ∈ S+

k−1/2(Γ0(4)) of weight k − 1/2 of Γ0(4) such
that L(s, F ) = L(s, f)L(s − 1, g) (cf. §3, Conjecture 3.1). Here L(s, f) and
L(s, g) are the usual Hecke L functions and L(s, F ) is a L function defined by
Zhuravlev [22] (cf. also [6]). His Hecke theory on Siegel modular forms of half
integral weight and the precise definition of L function will be reviewed in §3.

This conjecture is based on our numerical calculation of examples of L
functions of explicitly given Siegel cusp forms of half integral weight. So we ex-
plain our explicit results on Siegel modular forms. Denote by Mk−1/2(Γ0(4), χ)
the space of Siegel modular forms of weight k−1/2 of Γ0(4) of degree two with
character χ. Then the direct sum ⊕∞

k=1Mk−1/2(Γ0(4), χ) is not a ring. But we
can regard it as a module over a certain ring of Siegel modular forms of inte-
gral weight, and we can give explicit generators of modules of Siegel modular
forms of half integral weight (with or without character) by theta constants
(cf. Theorem 1.1, 1.2, 1.3). By this, we can give a dimension formula of Siegel
modular forms of half integral weight of Γ0(4) as a corollary (cf. Corollary 1.2,
1.5) which was first obtained by Tsushima [17] by using holomorphic Lefschetz
Theorem.

Then we need a description of the plus subspace. In degree one case, this
space is isomorphic to holomorphic or skew holomorphic Jacobi forms of index
one. (Eichler-Zagier [2], Skoruppa [15]). We can generalize the notion of the
plus space for general degree so that the plus space of weight k− 1/2 of degree
n is isomorphic to the space of holomorphic or skew holomorphic Jacobi forms
of index one of weight k of degree n of Sp(n,Z), depending on parity of k
or on character. (This is mostly known in Ibukiyama [9] and Hayashida [3].
The remaining case can be done in a similar way.) Now we have Tsushima’s
dimension formula for Jacobi forms of degree two. By using his result, we can
also give each basis of the space of holomorphic or skew holomorphic Jacobi
forms, or of the plus subspace explicitly(cf. Theorem 1.8, 1.9, 1.10). The result
is very simple. Each space is a free module over the ring isomorphic to Siegel
modular forms of even weight belonging to Sp(2,Z). Extracting modular forms
with small weights, the Euler factors at small primes in the plus space can be
given by computer calculations, and we see that these examples support our
conjecture (cf. §3).

The authors would like to express their thanks to Professor Tsushima for
showing us his new results on dimensions.

1. Modules of Siegel modular forms

1.1. Graded rings of modular forms of integral weights
Let n or N be any natural number. For any commutative ring R, we

denote by Sp(n,R) the symplectic group of size 2n with components in R.

Sp(n,R) =
{
g ∈M2n(R); gJ tg = J

}
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where J =
(

0 1n
−1n 0

)
and 1n is the unit matrix of size n. We put

Γ(n)
0 (N) =

{
g =

(
A B
C D

)
∈ Sp(n,Z);C ≡ 0 mod N

}
.

Sometimes a conjugate of Γ(n)
0 (4) is easier to treat, so we put

ρ2 =
(

1n 0
0 2 · 1n

)
,

and put Γ(n) = ρ−1
2 Γ(n)

0 (4)ρ2. Then, we get

Γ(n) =
{
g =

(
A B
C D

)
∈ Sp(n,Z);B ≡ C ≡ 0 mod 2

}
.

If we define

ψ(g) =
( −1

det(D)

)
for g =

(
A B
C D

)
∈ Γ(n)

0 (4) ∪ Γ(n),

then this gives a character of the group Γ(n)
0 (4) or Γ(n). For any integer k, any

discrete subgroup Γ
′
of Sp(n,R) with vol(Γ

′\Sp(n,R)) <∞ and a character χ
of Γ

′
, and any function F (τ ) on the Siegel upper half space

Hn = {τ = X + iY = tτ ∈Mn(C);X,Y ∈Mn(R), Y > 0 (positive definite)},

we write

(F |k,χγ)(τ ) = χ(γ)−1 det(Cτ +D)−kF (γτ ).

We say that a holomorphic function F on Hn is a modular form of weight k
with character χ belonging to Γ

′
if it satisfies

F |k,χγ = F

for all γ ∈ Γ
′
and is bounded at each cusps of Γ

′
. The space of these modular

forms is denoted by Mk(Γ
′
, χ) and cusp forms by Sk(Γ

′
, χ). When χ is the triv-

ial character, we may sometimes omit χ in the above notation. For simplicity,
we write

M(Γ
′
, χ) = ⊕∞

k=0Mk(Γ
′
, χk).

Then, this is obviously a graded ring.
In this paper, we mainly treat the case n = 2. So we write Γ0(4) = Γ(2)

0 (4)
and Γ = Γ(2). The following formula for n = 2 was calculated by Tsushima,
using [10] and [16].
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Proposition 1.1 (Tsushima [17]).

∞∑
k=0

dimMk(Γ0(4), ψk)tk =
1

(1 − t)(1 − t2)2(1 − t3)
,

∞∑
k=0

dimMk(Γ0(4))tk =
(1 + t4)(1 + t11)
(1 − t2)3(1 − t6)

,

∞∑
k=0

dimM2k(Γ0(4), ψ)t2k =
t12 + t14

(1 − t2)3(1 − t6)
.

First, we shall obtain the graded ring ⊕∞
k=0Mk(Γ0(4), ψk). Instead of

Γ0(4), we consider Γ, partly because Γ ⊂ Γ0(2) and M(Γ0(2)) has been known
in Ibukiyama [7]. Indeed the ring Meven(Γ0(2)) of modular forms of even
weights is generated by four algebraically independent modular forms X, Y ,
Z, K of degree two defined by

X = ((θ0000)4 + (θ0001)4 + (θ0010)4 + (θ0011)4)/4,
Y = (θ0000θ0001θ0010θ0011)2,
Z = ((θ0100)4 − (θ0110)4)2/16384,
K = (θ0100θ0110θ1000θ1001θ1100θ1111)2/4096,

(see [7]), where θm is the theta constant on H2 defined by

θm(τ ) =
∑
p∈Z2

e

(
1
2
t

(
p+

m′

2

)
τ

(
p+

m′

2

)
+ t

(
p+

m′

2

)
m′′

2

)
,

for m = t(tm′, tm′′) ∈ Z4, m′,m′′ ∈ Z2, τ ∈ H2 and e(x) = e2πix. (cf. Igusa
[11]). Now, we put

f1 = (θ0000)2,
f2 = f2

1 ,

g2 = (θ0000)4 + (θ0100)4 + (θ1000)4 + (θ1100)4

f3 = (θ0001θ0010θ0011)2,
χ5 = θ0000θ0001θ0010θ0011θ0100θ0110θ1000θ1001θ1100θ1111,

f6 = (θ4
0001 − θ4

0010)(θ
4
0001 − θ4

0011)(θ
4
0010 − θ4

0011),
f11 = f6χ5,

f21/2 = f11/θ0000.

By definition, we have Y = f1f3 and it is not difficult to show that Z =
(g2 + 2X − 3f2)2/36864. (Since all the relations between θ4

m are known by
Igusa [10], it is a routine calculation to show this anyway. We omit the details
here.) Here the form f21/2 is obviously holomorphic. The notation f6 and χ5

are introduced to make notation simpler.
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Proposition 1.2. (1) The function X, f2, g2, Z, Y , K, or f11 is a
modular form of Γ of weight 2, 2, 2, 4, 4, 6, or 11, respectively, and f1 or f3 is a
modular form of Γ with character ψ of weight 1 or 3, respectively.
(2) The four forms X, f1, g2, K are algebraically independent.
(3) We have

f2
3 = −4096K +

1
9
f2(4g2X − 6f2g2 + 24f2X + g2

2 − 32X2) + Y (4X − 2f2)

= −4096K + f2(4096Z − f2
2 + 4f2X − 4X2) + Y (4X − 2f2),

and hence X, f2, g2, f3 are also algebraically independent.

We denote by B the weighted polynomial ring generated by X, f2, g2, K.

B = C[X, f2, g2,K].

Theorem 1.1. The ring M(Γ, ψ) = ⊕∞
k=0Mk(Γ, ψk) is given by a

weighted polynomial ring

M(Γ, ψ) = C[f1, g2, X, f3].

Also, the ring M(Γ) = ⊕Mk(Γ) is given by

M(Γ) = B ⊕ Y B ⊕ f11(B ⊕ Y B).

The formula for f2
11 is easily obtained but the result is complicated and

not so interesting, so we omit it here.

Theorem 1.2. The module of Siegel modular forms of even weight of
Γ with character ψ is given by

⊕∞
k=0M2k(Γ, ψ) = f11f1B ⊕ f11f3B.

We note that the result for Mk(Γ, ψ) for odd k is already contained in
Theorem 1.1.

We can rewrite the above results for Γ to those for Γ0(4) very easily, since
Mk(Γ0(4), ψ) = {F (2τ );F ∈Mk(Γ, ψ)} andMk(Γ0(4)) = {F (2τ );F ∈Mk(Γ)}.
The latter spaces are also described by usual theta constants by using Rie-
mann’s theta relations (cf. Igusa [11, p. 233]). For example, we get

f1(2τ ) = (θ0000(τ )2 + θ0001(τ )2 + θ0010(τ )2 + θ0011(τ )2)/4,
X(2τ ) = (2X(τ ) + 12(θ0000(τ )θ0001(τ )θ0010(τ )θ0011(τ ))

+ 3(θ0000(τ )2θ0001(τ )2 + θ0000(τ )2θ0010(τ )2 + θ0000(τ )2θ0011(τ )2

+ θ0001(τ )2θ0010(τ )2 + θ0001(τ )2θ0011(τ )2 + θ0010(τ )2θ0011(τ )2))/32,
g2(2τ ) = X(τ ).
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1.2. Modular forms of half integral weights
We put θ(τ ) =

∑
p∈Zn exp(2πi(tpτp)). Let F be a holomorphic function

on Hn. For any integer k ≥ 1, we say that F is a Siegel modular form of weight
k− 1

2 belonging to Γ0(4) with character χ, if F satisfies the following condition

F (γτ ) = χ(γ)
(
θ(γτ )
θ(τ )

)2k−1

F (τ ) for every γ ∈ Γ(n)
0 (4) .

We denote the space of above forms by Mk− 1
2
(Γ(n)

0 (4), χ). When χ is ψ or the
trivial character, we also put

Mk−1/2(Γ(n), χ) =
{
f(τ/2); f ∈Mk−1/2(Γ

(n)
0 (4), χ)

}
.

The following Theorem 1.3 for n = 2 was first observed by Tsushima [17]
by showing the dimension formulas in the Corollary 1.2 by Riemann Roch
theorem and by comparing the dimensions of both sides in Theorem 1.3. We
use a different argument, that is, without using the dimension formula, we first
prove the following theorem directly by using ring theoretic argument, and
next gives a dimension formula of modular forms of half integral weights as a
corollary of this theorem.

Theorem 1.3. We get

⊕∞
k=0Mk+1/2(Γ0(4)) = θ0000(2τ )(⊕∞

k=0Mk(Γ0(4), ψk)).

We put

M (1/2)(Γ) = (⊕∞
k=0Mk(Γ, ψk)) + (⊕∞

k=0Mk+1/2(Γ)).

Since

(θ0000(γτ )/θ0000(τ ))2 = ψ(γ) det(cτ + d)

for γ =
(
a b
c d

) ∈ Γ, the module M (1/2)(Γ) is a graded ring corresponding to the
automorphic factors (θ0000(γτ )/θ0000(τ ))k (k = 0, 1, . . . , γ ∈ Γ). By Theorem
1.1 and 1.3, we get

Corollary 1.1.

M (1/2)(Γ) = C[θ0000, g2, X, f3].

Corollary 1.2.

∞∑
k=0

dimMk+1/2(Γ0(4))tk =
∞∑
k=0

dimMk+1/2(Γ)tk =
1

(1 − t)(1 − t2)2(1 − t3)
.

We denote by S(Γ) the space of cusp forms in ⊕∞
k=0Mk+1/2(Γ). The de-

scription of cusp forms is given as follows.
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Theorem 1.4. The space S(Γ) is generated as a ⊕∞
k=0M2k(Γ) module

by four cusp forms

θ0000(f3(3f2 − 2X − g2)), θ0000(g2 − 4X)(−3f3 + f1(g2 + 8X − 6f2)),
θ0000K, θ0000(8X + g2 − 6f2)(g2 − 4X)(3f2 − 2X − g2)

of weight 11/2, 11/2, 13/2, 13/2.

This module is not a free module. We can describe the module structure
precisely (cf. the proof in §2) and get the following dimension formula of cusp
forms, which was first obtained by Tsushima by Riemann Roch Theorem. Here
we shall give a simple alternative proof based on the above theorem.

Corollary 1.3.

∞∑
k=0

dimSk+1/2(Γ)tk =
2t5 + t7 + t9 − 2t11 + 4t6 − t8 + t10 − 3t12 + t14

(1 − t2)3(1 − t6)
.

We also give Siegel modular forms of half integral weight with character
ψ. The following Corollary 1.5 was also obtained by Tsushima first (cf. [17]).
Our proof is independent of his argument.

Theorem 1.5. We have

⊕∞
k=0Mk+1/2(Γ, ψ) = f21/2(⊕∞

k=0Mk(Γ, ψk)).

We denote by Sk+1/2(Γ, ψ) the subspace of cusp forms of Mk+1/2(Γ, ψ).
Then we have

Corollary 1.4.

⊕∞
k=0Sk+1/2(Γ, ψ) = ⊕∞

k=0Mk+1/2(Γ, ψ).

Corollary 1.5.

∞∑
k=0

dimMk+1/2(Γ0(4), ψ)tk =
∞∑
k=0

dimSk+1/2(Γ0(4), ψ)tk

=
t10

(1 − t)(1 − t2)2(1 − t3)
.

1.3. The plus subspace of Siegel modular forms of half integral
weight

In order to explain the relation between the plus space and Jacobi forms
shortly, first we introduce holomorphic Jacobi forms of general degree following
Ziegler [23]. Let k be a natural number and let F (τ, z) be a holomorphic func-
tion on (τ, z) ∈ Hn × Cn. If F satisfies the next three conditions (1), (2), (3),
we say that F is a holomorphic Jacobi form of weight k of index 1 of degree n.



�

�

�

�

�

�

�

�

496 Shuichi Hayashida and Tomoyoshi Ibukiyama

(1) F (M(τ, z)) = e(tz(Cτ + D)−1Cz) det(Cτ + D)kF (τ, z) for any M ∈
Sp(n,Z), where M(τ, z) = (Mτ, t(Cτ +D)−1

z) ∈ Hn × Cn.
(2) F (τ, z + τλ+ µ) = e(−tλτλ− 2tλz)F (τ, z) for any λ, µ ∈ Zn.
(3) F (τ, z) has the Fourier expansion of the following form,

F (τ, z) =
∑
N,r

A(N, r)e(tr(Nτ ) +t rz).

where we denote by L∗
n the set of all half integral symmetric matrices, and N

runs over all positive semi-definite elements in L∗
n, and r runs over all elements

in Zn satisfying 4N − rtr ≥ 0 (i.e. positive semi-definite).
Moreover, if the Fourier coefficients A(N, r) are zero unless 4N − rtr > 0

(i.e. positive definite), then we say that F is a holomorphic Jacobi cusp form.
Next we introduce skew holomorphic Jacobi forms following Skoruppa [15]

and Arakawa [1]. Let k be a natural number. Let F (τ, z) be a function on
(τ, z) ∈ Hn × Cn which is real analytic in the real and the imaginary part of
τ and holomorphic in z. If F satisfies the next three conditions (1), (2) and
(3), we say that F is a skew holomorphic Jacobi form of weight k of index 1 of
degree n.

(1) F (M(τ, z)) = e(tz(Cτ+D)−1Cz) det(Cτ+D)k−1| det(Cτ+D)|F (τ, z)
for any M ∈ Sp(n,Z).

(2) F (τ, z + τλ+ µ) = e(−tλτλ− 2tλz)F (τ, z) for any λ, µ ∈ Zn.
(3) F (τ, z) has the Fourier expansion of the following form,

F (τ, z) =
∑
N,r

A(N, r)e
(

tr
(
Nτ − 1

2
i(4N − r tr)Y

))
+t rz

)
.

where Y is the imaginary part of τ , N runs over L∗
n, and r runs over all elements

of Zn satisfying r tr − 4N ≥ 0.
Moreover, if the Fourier coefficients A(N, r) are zero unless r tr− 4N > 0,

then we say that F is a skew holomorphic Jacobi cusp form.
We denote by J (n)

k,1 or J (n),sk
k,1 the space of holomorphic Jacobi forms or skew

holomorphic Jacobi forms of weight k of index 1 defined above. We denote the
space of cusp forms of J (n)

k,1 (resp. J (n),sk
k,1 ) by J (n),cusp

k,1 (resp. J (n),sk, cusp
k,1 ).

Now we review shortly relations between Siegel modular forms of half
integral weight and Jacobi forms of degree n. Let l = 0 or 1 and F (τ ) ∈
Mk−1/2(Γ

(n)
0 (4), ψl). We write the Fourier expansion of F (τ ) as

F (τ ) =
∑
T≥0

a(T )e(tr(Tτ )),

where T runs over half-integral symmetric matrices. We say that F belongs to
the plus space M+

k−1/2(Γ
(n)
0 (4), ψl) if a(T ) = 0 unless T − (−1)k+l−1λtλ ∈ 4L∗

n
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for some column vector λ ∈ (Z/2Z)n. We have a theorem for general degree n.

Theorem 1.6. We have the following isomorphisms.

J
(n)
k,1

∼= M+
k−1/2(Γ

(n)
0 (4), ψk).

J
(n),sk
k,1

∼= M+
k−1/2(Γ

(n)
0 (4), ψk+1).

When k is even, then ψk = id and the above first isomorphism is the
claim in Ibukiyama [9], and the second isomorphism for any k is the claim in
Hayashida [3]. The remaining case is easy to prove and we omit the proof in
this paper.

Now from now on, we consider the case n = 2 exclusively until the end of
this paper. We put Jk,1 = J

(2)
k,1 , Jcuspk,1 = J

(2),cusp
k,1 and so on.

For any modular form f(Z) ∈ Mk(Sp(2,Z)), if we take g(Z) = f(4Z),
then the Fourier coefficients of g(Z) is non zero only at T with T ∈ 4L∗

2.
Besides, we have g(Z) ∈ Mk(Γ0(4)). Hence, if we put A

′
= {f(4Z); f ∈

⊕∞
k=0M2k(Sp(n,Z))}, then M+

k−1/2(Γ0(4), ψk) is A
′
-module. To make our cal-

culation easier a little, in §1 and §2 we sometimes use the group Γ = ρ−1
2 Γ0(4)ρ2

instead of Γ0(4). So, for l = 0 or 1, we put

M+
k−1/2(Γ, ψ

l) = {f(τ/2); f ∈M+
k−1/2(Γ0(4), ψl)},

A = {f(τ/2); f ∈ A
′}.

Of course every result on Γ can be easily interpreted to the one for Γ0(4) by
taking the image of f(τ ) → f(2τ ). Also we put

M+(Γ) = ⊕∞
k=1M

+
k−1/2(Γ),

M+(Γ, ψ) = ⊕∞
k=1M

+
k−1/2(Γ, ψ).

Then M+(Γ) and M+(Γ, ψ) are A-modules. The following dimension formulae
by Tsushima are very helpful to determine the A-module structures, and we
can show they are free A-modules as the formulae may suggest.

Theorem 1.7 (Tsushima [18]).

∞∑
k=0

dim(Jk,1)tk =
t4 + t6 + t10 + t12 + t21 + t27 + t29 + t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

∞∑
k=0

dim(Jskk,1)t
k =

t+ t7 + t9 + t15 + t24 + t26 + t30 + t32

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.
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∞∑
t=0

dim(Jcuspk,1 )tk

=
t10 + t12 + t14 + 2 t16 + t18 − t26 − t28 + t21 + t27 + t29 + t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

∞∑
k=0

dim(Jsk cusp
k,1 )tk

=
t11 + 2 t13 + t15 + t17 + 2 t19 + t21 − 2 t23 − t25 − t29 − t31 + t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)

+
t24 + t26 + t30 + t32

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

To make our expression slightly shorter, we replace the generators g2 or f3
by

R2 = 6f2
1 − 2g2 − 4X,

V3 = 2(f3
1 − 2f1X + f3).

and put

P7/2 = θ0000 (−48 f1 3 + 21V3 + 112 f1 X)/64,

P11/2 = θ0000 (−1152 f1 5 − 11 f1 R2
2 + 792 f1 2V3 + 792V3X + 4224 f1 X2)/3072,

P19/2 = θ0000 (f1 R2
4 − 162V3

3 + 36R2
2V3X)/1358954496,

P23/2 = θ0000 (16 f1 3R2
4 + 3R2

4V3 + 4R2
4f1 X + 18 f1 R2

2V3
2 − 864 f1 4R2

2V3

+1728 f1 2R2
2V3X + 3888 f1 2V3

3 − 6480V3
3X

−288R2
2V3X

2)/21743271936,
P1/2 = θ0000,

P13/2 = θ0000(−192 f6
1 − 26 f2

1 R
2
2 + 4992 f3

1 f3 + 7488 f2
3

+312 f3
1 V3 − 2808 f3 V3 + 117V 2

3 )/12288,
P17/2 = θ0000(768 f8

1 + 13056 f5
1 f3 − 544 f1R2

2 f3 + 104448 f2
1 f

2
3 − 1632 f5

1 V3

+17 f1R2
2 V3 − 1632 f2

1 f3 V3 + 408 f2
1 V

2
3 + 78336 f2

3 X − 29376 f3 V3X

+1224V 2
3 X)/196608,

P29/2 = θ0000(144 f6
1 R

4
2 + 5 f2

1 R
6
2 + 3744 f3

1 R
4
2 f3 + 720R4

2 f
2
3 − 684 f3

1 R
4
2 V3

+180R4
2 f3 V3 − 45R4

2 V
2
3 − 41472 f1R2

2 f3 V
2
3 + 9396 f1R2

2 V
3
3

−69984 f2
1 V

4
3 + 116640V 4

3 X)/100192997081088.

Then we have the following structure theorem.

Theorem 1.8. The vector space M+(Γ) is a free A module of rank 8,
and we have

M+(Γ) = AP7/2⊕AP11/2⊕AP19/2⊕AP23/2⊕AP1/2⊕AP13/2⊕AP17/2⊕AP29/2.
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We put S+(Γ) = S(Γ)∩M+(Γ) and we denote by Acusp the space of cusp
forms in A. We denote by Ek(τ ) the Eisenstein series of Sp(2,Z) of weight
k such that the constant term of the Fourier expansion is one. We also put
E∗
k(τ ) = Ek(2τ ) and B

′
= C[E∗

4 , E
∗
6 ]. Then S+(Γ) is given as follows.

Theorem 1.9.

S+(Γ) = AcuspP7/2 ⊕AcuspP11/2 ⊕AP19/2 ⊕AP23/2

⊕AcuspP1/2 ⊕AcuspP13/2 ⊕AcuspP17/2 ⊕ B
′
P25/2 ⊕AP29/2 ,

where

P25/2 =
(
5 (E∗

4)3 P1/2 − 5 (E∗
6)2 P1/2 + 6E∗

6 P13/2 − 6E∗
4 P17/2

)
/17280.

Let S+(Γ, ψ) be the space of cusp forms in M+(Γ, ψ). In order to describe
the explicit structure M+(Γ, ψ) and S+(Γ, ψ), we put

P41/2 = f21/2R2(2322432 f1 3V3X + 1008 f1 R2
2V3 +R2

4 − 497664V3f1 X2

+9216 f1 2R2
2X − 1824768 f1 5V3 + 217728 f1 2V3

2 − 10368V3
2X

−7962624 f1 6X + 7962624 f1 4X2

−2654208 f1 2X3 + 2654208 f1 8)/521838526464,
P53/2 = f21/2R2(−4608 f1 6R2

4 + 2 f1 2R2
6 + 1296 f1 3R2

4V3 + 4608 f1 4R2
4X

+9R2
4V3

2 + 144R2
4V3f1 X + 41472 f1 4R2

2V3
2

+3888 f1 R2
2V3

3 + 41472 f1 2R2
2V3

2X − 279936 f1 2V3
4

−93312V3
4X)/307792887033102336,

P57/2 = f21/2R2(−16 f1 2R2
6X − 72R2

4V3
2X − 3456 f1 5R2

4V3

+27648 f1 3R2
4V3X + 1658880 f1 4R2

2V3
2X + 62208V3

3R2
2f1 X

+165888V3
2R2

2f1 2X2 − 1152R2
4V3X

2f1 − 48 f1 4R2
6

+2239488 f1 4V3
4 − 1119744 f1 V3

5 + 746496V3
4X2

−8957952 f1 2V3
4X + 73728 f1 4R2

4X2 − 73728 f1 6R2
4X

+248832 f1 3R2
2V3

3 + 2376 f1 2R2
4V3

2 − 497664 f1 6R2
2V3

2

+3 f1 R2
6V3)/4924686192529637376,

P69/2 = f21/2R2(135 f1 R2
6V 3 − 870912 f1 5R2

4V 3 + 71663616 f1 9R2
2V 3

+5474304 f1 8R4V 2 − 35831808 f1 6R2
2V 4 + 9072 f1 4R2

6V 2

+6718464V 6X2 − 10077696 f1 V 7 + 181398528 f1 4V 6

−322486272 f1 7V 5 + 110592 f1 10R2
6 + 26542080 f1 9R2

4V X

+64512 f1 5R2
6V X − 11114496 f1 6R2

4V 2X − 31850496 f1 7R2
4V X2

+2448 f1 2R2
6V 2X + 752467968 f1 5V 5X − 648R2

4V 4X

+68040 f1 2R2
4V 4 + 18 f1 3R2

8V − 76032 f1 7R2
6V

−7962624 f1 11R2
4V − 36864 f1 4R2

6X3 + 107495424V 5X3f1
+128 f1 4R2

8X − 537477120 f1 3V 5X2 − 134369280 f1 2V 6X
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+184320 f1 6R2
6X2 − 258048 f1 8R2

6X + 2304 f1 3R2
6V X2

+1181952 f1 3R2
4V 3X + 6469632 f1 4R2

4V 2X2 + 15925248 f1 5R2
4V X3

−167215104 f1 7R2
2V 3X + 23887872 f1 4R2

2V 4X

+119439360 f1 5R2
2V 3X2 − 62208R2

4V 3X2f1 − 829440R2
4V 2X3f1 2

−2654208R2
4V X4f1 3 − 186624R2

2V 5f1 X
−23887872R2

2V 3f1 3X3)/2904698108822600835661824,
P47/2 = f21/2R2 (9216 f7

1 R
2
2 − 32 f3

1 R
4
2 − 18432 f4

1 R
2
2 f3 + 9216 f1R2

2 f
2
3

−3456 f4
1 R

2
2 V3 +R4

2 V3 − 5760 f1R2
2 f3 V3 − 41472 f5

1 V
2
3

+1296 f1R2
2 V

2
3 + 124416 f2

1 f3 V
2
3

−10368 f2
1 V

3
3 − 82944 f3 V 2

3 X + 31104V 3
3 X)/133590662774784,

P51/2 = f21/2R2 (221184 f9
1 R

2
2 + 384 f5

1 R
4
2 − f1R

6
2 − 221184 f6

1 R
2
2 f3

−1920 f2
1 R

4
2 f3 − 221184 f3

1 R
2
2 f

2
3 + 221184R2

2 f
3
3

−110592 f6
1 R

2
2 V3 + 24 f2

1 R
4
2 V3 − 165888 f3

1 R
2
2 f3 V3

−165888R2
2 f

2
3 V3 − 2488320 f7

1 V
2
3 − 10368 f3

1 R
2
2 V

2
3 + 4976640 f4

1 f3 V
2
3

+17280R2
2 f3 V

2
3 − 4478976 f1 f2

3 V
2
3 + 1741824 f4

1 V
3
3 + 5184R2

2 V
3
3

+1990656 f1 f3 V 3
3 − 248832 f1 V 4

3 − 24R4
2 V3X

+1990656 f3 V 2
3 X

2 − 746496V 3
3 X

2)/6412351813189632,
P59/2 = f21/2R2 (48 f5

1 R
6
2 + 16 f2

1 R
6
2 f3 − 4032 f6

1 R
4
2 V3 − 6 f2

1 R
6
2 V3

+3456 f3
1 R

4
2 f3 V3 + 576R4

2 f
2
3 V3 − 216 f3

1 R
4
2 V

2
3 − 360R4

2 f3 V
2
3

+72576 f4
1 R

2
2 V

3
3 + 45R4

2 V
3
3 + 10368 f1R2

2 f3 V
3
3

−3888 f1R2
2 V

4
3 − 279936 f2

1 V
5
3 − 93312V 5

3 X)/78794979080474198016,
P63/2 = f21/2R2 (576 f7

1 R
6
2 + 2 f3

1 R
8
2 + 2688 f4

1 R
6
2 f3 − 192 f1R6

2 f
2
3

−76032 f8
1 R

4
2 V3 − 432 f4

1 R
6
2 V3 − 76032 f5

1 R
4
2 f3 V3 + 240 f1R6

2 f3 V3

+165888 f2
1 R

4
2 f

2
3 V3 + 25056 f5

1 R
4
2 V

2
3 − 45 f1R6

2 V
2
3

−64800 f2
1 R

4
2 f3 V

2
3 + 1368576 f6

1 R
2
2 V

3
3 + 8424 f2

1 R
4
2 V

3
3

+2737152 f3
1 R

2
2 f3 V

3
3 − 124416R2

2 f
2
3 V

3
3 − 590976 f3

1 R
2
2 V

4
3

+155520R2
2 f3 V

4
3 − 6718464 f4

1 V
5
3 − 46656R2

2 V
5
3

−13436928 f1 f3 V 5
3 + 3359232 f1 V 6

3 − 13824R4
2 f

2
3 V3X

+8640R4
2 f3 V

2
3 X − 1080R4

2 V
3
3 X

+2239488V 5
3 X

2)/3782158995862761504768.

Then we have the following structure theorem.

Theorem 1.10. The vector space M+(Γ, ψ) is a free A module of rank
8, and we have

M+(Γ, ψ) = S+(Γ, ψ)
= AP41/2 ⊕AP53/2 ⊕AP57/2 ⊕AP69/2 ⊕AP47/2 ⊕AP51/2

⊕AP59/2 ⊕AP63/2.
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2. Proofs on explicit structures of modular forms

2.1. Generators
We quote the theta transformation formula from Igusa [11, p. 227]. For

even theta characteristics m =t (tm
′
,tm ′′) with m′, m′′ ∈ Z2 (column vectors)

and M =
(
a b
c d

)
∈ Sp(2,Z), we write

M ·m =
(

d −c
−b a

)
m+

(
(c td)0
(a tb)0

)
,

where for any symmetric matrix x, we denote x0 the vector whose components
consist of diagonal elements of x. Then we get

θM ·m(Mτ ) = κ(M)e(φm(M)) det(cτ + d)
1
2 θm(τ ),

where κ(M) is a certain eighth root of unity, e(x) = e2πix and

φm(M) = −1
8
( tm

′ tbdm
′
+ tm

′′ tacm
′′ − 2 tm

′ tbcm
′′ − 2 t(a tb)0(dm

′ − cm
′′
)).

For any natural number N , we denote by Γ(N) the principal congruence sub-
group of Sp(2,Z) of level N . Then Γ ⊃ Γ(2), and any coset in Γ/Γ(2) is

represented by some element of the form M =
(
a 0
0 d

)
.

Proof of Proposition 1.2. The assertion for X, Y , K are in [7]. We shall
show the rest. For the above M with b = c = 0, we get φm(M) = 0 for all m,
and

M ·m =
(

dm
′

am
′′

)
.

So, we get f2|2M = f2, and the action f → f |2M gives a permutation on
{(θ0001)4, (θ0010)4, (θ0011)4)}, or {(θ1000)4, (θ0100)4, (θ1100)4)}. Hence we get f2,
g2 ∈ A2(Γ). The assertion for modular forms of odd weight can be obtained
similarly. Now, we show the relation of modular forms given in the proposition.
Using the notation of Igusa [10], we put

y0 = (θ0110)4, y1 = (θ0100)4, y2 = (θ0000)4,
y3 = −(θ1000)4 − (θ0110)4, y4 = −(θ1100)4 − (θ0110)4.

It is known that these forms generate the graded ring Aeven(Γ(2)) of even
weights modular forms with the fundamental relation

(y1y1 + y0y2 + y1y2 − y3y4)2 − 4y0y1y2(y0 + y1 + y2 + y3 + y4) = 0.

Using Riemann’s theta relation (cf. [10, Lemma 1]), and using the reduction
process in Igusa [10, p. 393], we get
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f2 = y2,

g2 = −2y0 + y1 + y2 − y3 − y4,

X = (y0 + y1 + 4y2 + 2y3 + 2y4)/4,
Y = (−y0y1 + y0y2 + y1y2 + y3y4 + 2y2

2 + 2y2y3 + 2y2y4)/2,
K = (−y2

0y1 + y2
0y2 − y0y

2
1 − 2y0y1y2 − 2y0y1y3 − y0y3y4

−2y0y1y4 + y2
1y2 − y1y3y4)/8192,

f2
3 = (y2 + y3)(y2 + y4)(y0 + y1 + y2 + y3 + y4).

By direct calculation, we get

f2
3 = −4096K + f2(4g2X − 6f2g2 + 24f2X + g2

2 − 8X2)/9 + (4X − 2f2)Y.

Hence we prove (1) and (3). Now we show that X, f2, g2, K are algebraically
independent. We define the Witt operator W on any function F (Z) on H2 by

(WF )(τ1, τ2) = F

(
τ1 0
0 τ2

)
.

For i = 1, 2, we put xi = θ01(τi), yi = θ10(τi), zi = θ00(τi). It is well known
that z4

i = x4
i + y4

i . We get

W (X) = (x4
1 + z4

1)(x4
2 + z4

2)/4,
W (f2) = (z1z2)4,

W (g2) =
2∏
i=1

(2z4
i − x4

i ),

W (K) = 0.

Since the four forms x1, x2, z1, z2 are algebraically independent, three forms
W (X), W (f2), W (g2) are also algebraically independent. Now, assume that
P (X, f2, g2,K) = 0 for a polynomial P (X1, X2, X3, X4) of four variables. Writ-
ing P = P1(X1, X2, X3) + X4P2(X1, X2, X3, X4) and applying W , we get
P1(W (X),W (f2),W (g2)) = 0. Hence we get P1 = 0 as a polynomial. Hence
P2(X, f2, g2,K) = 0. Since the degree of P2 is smaller than the one of P , we
get P = 0 by induction. By using the relation between f2

3 and K, we also get
that f2, g2, X and K are algebraically independent.

Lemma 2.1. If F + Y G = 0 for any F , G ∈ B, then F = G = 0.

Proof. Let Pi (i = 1, 2) be polynomials of four variables and assume that

(2.1) F + Y G = 0

for F = P1(X, f2, g2,K) and G = P2(X, f2, g2,K). For each i = 1, 2, we take
polynomials Qi1 of three variables and Qi2 of four variables such that

Pi(X1, X2, X3, X4) = Qi1(X1, X2, X3) +X4Qi2(X1, X2, X3, X4).
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Taking the image of the Witt operator W of both sides of (2.1), we get

Q11(W (f2),W (g2),W (X)) +W (Y )Q21(W (f2),W (g2),W (X)) = 0.

Since we have W (Y ) = (z1z2x1x2)4 = W (f2(g2−6f2 +8X))/3 and three forms
W (f2), W (g2), W (X) are algebraically independent, we get

Q11(X1, X2, X3) = −1
3
X1(−6X1 +X2 + 8X3)Q21(X1, X2, X3).

So, if we put f = Y − f2(g2 − 6f2 + 8X)/3, then

fQ21(f2, g2, X) +K(Q12(f2, g2, X,K) + Y Q22(f2, g2, X,K)) = 0.

Now, we shall show Q21 = 0. Put

γ =




1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1


 .

Then, we get

(θ0000)4|2γ = (θ0000)4,
(θ1000)4|2γ = (θ1001)4,
(θ0100)4|2γ = (θ0110)4,
(θ1100)4|2γ = (θ1111)4,

and X|2γ = X, Y |4γ = Y , K|6γ = K. Hence W (f |4γ) = z4
1z

4
2(x4

1 − z4
1)(x4

2 −
z4
2) �= 0. We get W (f2|2γ) = (z1z2)4, W (g2|2γ) = (z4

1 + x4
1)(x

4
2 + z4

2) − 3x4
1x

4
2,

W (X|2γ) = (x4
1 + z4

1)(x4
2 + z4

2)/4, so these three forms are also algebraically
independent, and since W (K|6γ) = 0, we get Q21 = 0 as a polynomial. Hence,
we get

P12(f2, g2, X,K) + Y P22(f2, g2, X,K) = 0.

Since the degree of P12, or P22 is less than the degree of P1, or P2, respectively,
we get P12 = P22 = 0 by induction. Hence F = G = 0. q.e.d.

It is also obvious that f1B + f3B is a direct sum. By comparing the
dimensions, we get Theorem 1.1 and 1.2.

Finally, we shall prove Theorem 1.3. We shall show

Proposition 2.1. If f ∈Mk+1/2(Γ, ψ), then f/θ0000 is holomorphic on
H2.

Theorem 1.3 and Corollary are easily obtained from this. For the proof
of this Proposition, we use the explicit structure of M(Γ, ψ). We need several
Lemmas.
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Lemma 2.2. For any F ∈ C = C[g2, X,K], assume that F/f1 is holo-
morphic. Then F = 0.

Proof. By Theorem 1.1, it is easy to see that
∑∞
k=1M2k−1(Γ, ψ) = f1B⊕

f1Y B ⊕ f3C. Since F/f1 ∈ M2k−1(Γ, ψ) for some integer k, we write F =
f1(f1α1 + f1α2Y + f3α3) for some α1, α2 ∈ B and α3 ∈ C. Hence F − f2α1 =
f2Y α2 + Y α3 ∈ B ∩ Y B = {0} and we get F = f2α1. Since F ∈ C and f2, g2,
X, K are algebraically independent, we get F = 0.

Lemma 2.3. For any F ∈ M(Γ, ψ) = ⊕∞
k=0Mk(Γ, ψk), assume that

F/θ0000 is holomorphic. Then, F/f1 is also holomorphic.

Proof. First, we assume that F is of odd weight. Then F = f1α1 + f3α2

for α2 ∈ C and α1 ∈ B + Y B. Since F/θ0000 is holomorphic, and f1 =
θ2
0000, we see (f3α2/θ0000) is holomorphic and hence (f3α2/θ0000)2 also. Since
f2
3 = −4096K + f1h for some holomorphic function h, we see Kα2

2/f1 is also
holomorphic. Since the numerator belongs to C, we get α2 = 0 by virtue of
the previous lemma. Hence F/f1 = α1 is holomorphic. Secondly, we assume
that F is of even weight. We write F = α1 + f2α2 + Y α3, where α1 ∈ C, α2,
α3 ∈ B. Since f2 = θ4

0000, Y = θ2
0000f3, and F/θ0000 is holomorphic, we see

α1/θ0000 is holomorphic, hence α2
1/f1 also. Since α2

1 ∈ C, we get α1 = 0 by the
previous lemma. Hence F/f1 = f1α2 + f3α3 is holomorphic.

Proof of Proposition 2.1. Since f ∈Mk+1/2(Γ), we see that F := θ0000f ∈
Mk+1(Γ, ψk+1). Since f = F/θ0000 is holomorphic, F/f1 = f/θ0000 is again
holomorphic by Lemma 2.3.

2.2. Cusp forms
We define a maximal parabolic subgroup P1(Q) of Sp(2,Q) corresponding

to the one dimensional cusps by

P1(Q) =






∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗


 ∈ Sp(2,Q)


 .

We can take a complete set of representatives of Γ\Sp(2,Q)/P1(Q) as follows.

M1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , M2 =




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0


 ,

M3 =




1 0 0 0
0 1 0 −1
0 0 1 0
0 1 0 0


 , M4 =




1 1 0 0
0 0 1 −1
0 0 1 0
0 1 0 0


 .
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A modular form F of Γ is a cusp form, if and only if Φ(F |kMi) = 0 for all i
with 1 ≤ i ≤ 4, where Φ is the usual Siegel Φ-operator. For the characteristic
m ∈ Z4 whose second component is odd, we get Φ(θm) = 0. Otherwise, we
get Φ(θm1,0,m3,m4) = θm1m3 . Now we put x = θ01 and z = θ00. Then θ4

10 =
z4 − x4. By the theta transformation formula, the forms Φ(F |M) = Φ(F |kMi)
is obtained for generators F as follows.

1. Φ(K) = Φ(f3 + f1f2 − 2Xf1) = Φ(2X − 3f2 + g2) = 0. Φ(f1) = z2 and
Φ(X) = (x4 + z4)/2 are algebraically independent.

2. Φ(K|M2) = Φ(f3|M2) = Φ((g2 + 8X − 6f2)|M2) = 0. Φ(f1|M2) = z2

and Φ(X|M2) = (x4 + z4)/4 are algebraically independent.
3. Φ(K|M3) = Φ(f1|M3) = Φ(f3|M3) = 0. Φ(X|M3) = (x4 + z4)/4 and

Φ(g2|M3) = 2z4 − x4 are algebraically independent.
4. Φ(K|M4) = Φ(f3|M4) = Φ((g2 − 4X)|M4) = 0. Φ(f1|M4) = z2 and

Φ(X|M4) = (x4 + z4)/4 are algebraically independent.
For any f = θ0000F ∈ Mk+1/2(Γ) with odd k, we see that f is a cusp form
if and only if F is a cusp form. Indeed, Φ(θ0000|Mi) = 0 only for i = 3 in
the above four cases. In this case, we also get Φ(f1|M3) = Φ(f3|M3) = 0, so
Φ(F |M3) = 0 for any F = f1G+ f3H ∈ Mk(Γ, ψ). When k is even, the above
observation is false. For example, F = (2X−3f2 +g2)(g2 +8X−6f2)(g2−4X)
is not a cusp form, while θ0000F is a cusp form. Anyway, in order to show that
f = θ0000F is a cusp form, we have to check only the conditions (1), (2), (4)
for F of integral weight. We first treat the case of odd weight for Γ. Since K
is a cusp form, we can assume that

F = f1(P1(X, f2, g2) + Y P2(X, f2, g2)) + f3P3(X, g2),

up to the ideal generated by K. From (4) above, we get P1(X1, X2, 4X1) = 0
and hence P1 = (X3 − 4X1)Q1(X1, X2, X3) for some polynomial Q1. Also
from (2), we get P1 = (X3 + 8X1 − 6X2)(X3 − 4X1)Q2(X1, X2, X3) for some
polynomial Q2. Now, we putX∗

2 = X2−(2X1+X3)/3. Then from the condition
(1), we get

−9(4X1 −X3)2Q2(X1, X
∗
2 + (2X1 +X3)/3, X3)

+ (2X1 +X3)(4X1 −X3)P2(X1, X
∗
2 + (2X1 +X3)/3, X3)

+ 3(4X1 −X3)P3(X1, X
∗
2 + (2X1 +X3)/3, X3) = 0.

This means that there are polynomials Ri (i ≤ i ≤ 4) such that

P1 = (4X1 −X3 − 6X∗
2 )(X3 − 4X1)(R1(X1, X3) +X∗

2R2(X1, X
∗
2 , X3),

P2 = R3(X1, X3) +X∗
2R4(X1, X

∗
2 , X3),

P3 = 3(4X1 −X3)R1(X1, X3) +
1
3
(2X1 +X3)R3(X1, X3).

Hence, θ0000F is a cusp form for odd weight F , if and only if
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F = (3f1Y − f3(2X + g2))R3(X, g2)
+ (g2 − 4X)(−3f3 + f1(g2 + 8X − 6f2))R1(X, g2)
+ (f1Y (3f2 − 2X − g2))R4(X, f∗2 , g2)
+ f1(8X + g2 − 6f2)(g2 − 4X)(3f2 − 2X − g2)R2(X, f∗2 , g2)
+ f1K(R5(X, f2, g2,K) + Y R6(X, f2, g2,K)) + f3KR7(X, g2,K)

for some polynomials Ri (1 ≤ i ≤ 7), where we put f∗2 = f2 − (2X + g2)/3. By
the structure Theorem 1.1, we can see that the above polynomials Ri depends
only on F . Hence, the generating function of the dimension of cusp forms is
given by

2t5

(1 − t2)2
+

2t7

(1 − t2)3
+

t7(1 + t4)
(1 − t2)3(1 − t6)

+
t9

(1 − t2)2(1 − t6)
.

Now, we assume that k is even. Then, we can assume F = P1(X, f2, g2) +
Y P2(X, f2, g2) as before. By the condition (2) and (4), we get P1(X1, X2, X3) =
(X3 − 4X1)(X3 +8X1 − 6X2)Q1(X1, X2, X3) for some polynomial Q1. Now we
put X∗

3 = X3 + 2X1 − 3X2. We write

Q1(X1, X2, X3) = R1(X1, X2) +X∗
3R2(X1, X2, X

∗
3 ),

P2(X1, X2, X3) = R3(X1, X2) +X∗
3R4(X1, X2, X

∗
3 ).

Then by the condition (1), we get

9(X2 − 2X1)R1(X1, X2) +X2R3(X1, X2) = 0.

So, we get R1(X1, X2) = X2R5(X1, X2) and R3(X1, X2) = 9(2X1−X2)R5(X1,
X2) for some polynomial R5. Hence, any modular form θ0000F with F with
even weight is a cusp form if and only if

F = Y (g2 + 2X − f2)R4(X, f2, g∗2)
+ (g2 − 4X)(g2 + 8X − 6f2)(g2 + 2X − 3f2)R2(X, f2, g∗2)
(f2(g2 − 4X)(g2 + 8X − 6f2) + 9Y (2X − f2))R5(X, f2)
+K(R6(X, f2, g2,K) + Y R7(X, f2, g2,K))

for some polynomials Ri (i = 2, 4, 5, 6, 7), where we put g∗2 = g2+2X−3f2. We
can show by the structure Theorem 1.1 that these polynomials Ri are uniquely
determined by F . Hence the generating function of the dimension of cusp forms
is given by

2t6

(1 − t2)3
+

t6

(1 − t2)2
+

t6(1 + t4)
(1 − t2)3(1 − t6)

.

Thus we complete the proof of Theorem 1.4 and its Corollary 1.3.
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Let f ∈ Mk−1/2(Γ, ψ), then θ0000f ∈ Mk(Γ, ψk+1). By Theorem 1.1, 1.2,
we have

⊕∞
k=0Mk(Γ, ψk+1) = f11(B ⊕ Y B ⊕ f1B ⊕ f3B)

= f11C[f1, X, g2, f3]
= f11M(Γ, ψ) .

Moreover, f11 = θ0000f21/2. Hence we have Theorem 1.5.

Let Mi (i=1,2,3,4) be representatives of Γ\Sp(2,Q)/P1(Q) which were

defined before. For each i, we see
(−1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 1

)
∈ M−1

i ΓMi. So, for any

f ∈ Mk−1/2(Γ, ψ), we have Φ(f |Mi) = Φ(f |Mi

(−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)
) = −Φ(f |Mi).

Hence f belongs to Sk−1/2(Γ, ψ). Thus we prove Corollary 1.4.
Corollary 1.5 is obvious by Theorem 1.5 and Corollary 1.4.

2.3. Plus space

Proof of Theorem 1.6. This is mostly known by [9] and [3]. The remaining
case uncovered by these papers can be easily proved in the same way and the
proof is omitted here.

Proof of Theorem 1.8. Although the plus space is originally defined for
Γ0(4), we are taking its conjugate Γ for some convenience of calculation. As we
explained, the original plus space is obtained by taking f(2τ ) for our f(τ ) for
Γ. Now if the basis of Mk−1/2(Γ) is concretely given, the basis of the plus space
M+
k−1/2(Γ) is obtained in principle as follows. The condition of the plus space

is the linear conditions on Fourier coefficients. By demanding this condition
for Fourier coefficients at several T , we get a linear subspace M of Mk−1/2(Γ)
which contains M+

k−1/2(Γ). If we impose the condition at more T , the space M
becomes smaller or is unchanged. Since we know dimM+

k−1/2(Γ) by Theorem
1.7, we can continue the process until we get dimM = dimM+

k−1/2(Γ) and we
get the plus space.

For example, in the case of weight 7/2, a basis of M 7
2
(Γ) is given by

θ0000f
3
1 , θ0000f1g2, θ0000f1X, and θ0000f3. For any f ∈Mk−1/2(Γ), we have the

following Fourier expansion

F (τ ) =
∑
T

c(T )e
(

1
2
tr(Tτ )

)

where T runs over half integral symmetric matrices. We give Fourier coefficients
of the above four forms in the following table, where (a, c, b) means the Fourier
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coefficient c(T ) at T =
(

a b/2
b/2 c

)
.

θ0000f
3
1 θ0000f1g2 θ0000f1X θ0000f3

(1, 0, 0) 14 30 6 −2
(1, 1, 0) 168 456 24 8
(1, 1, 1) 0 192 0 0

Writing down the condition that a linear combination vanishes at (1, 0, 0),
(1, 1, 0) and (1, 1, 1), the following modular form is the unique candidate of
the element of the plus space up to constant:

− 3θ0000f3
1 + 14θ0000f1X + 21θ0000f3.

Since dimM+
7/2(Γ) = 1, this actually belongs to the plus space. By similar

method, we can give basis of Mk−1/2(Γ) for k − 1/2 = 7/2, 11/2, 19/2, 23/2,
1/2, 13/2, 17/2, 29/2, using the fact that the dimension of the plus space of
each of these weights is 1, 1, 3, 3, 1, 2, 2, 5, respectively. We also see that
Pk−1/2 ∈ M+

k−1/2(Γ). Now, we would like to show that these elements are
linearly independent over A. A set of generators of ⊕∞

k=0M2k(Sp(2,Z)) is given
by

E4(τ ) = 4X2 − 3Y + 12288Z,
E6(τ ) = −8X3 + 9XY + 73728XZ − 27648K,
χ10(τ ) = Y K,

χ12(τ ) = 3Y 2Z − 2XYK + 2072K2,

where E4(τ ) and E6(τ ) are the Eisenstein series of weight 4 or 6 with constant
term one as before and χ10 or χ12 is a cusp form of weight 10 or 12 , respectively,
which is normalized so that the coefficient at

(
1 1/2

1/2 1

)
is one. (cf. Igusa [10]).

We write E∗
k(τ ) = Ek(2τ ) for k = 4, 6 and χ∗

k(τ ) = χk(2τ ) for k = 10, 12.
Then we have A = C[E∗

4 , E
∗
6 , χ

∗
10, χ

∗
12]. We also get

E∗
4 = (−768Z +X2 + 3Y )/4,

E∗
6 = (−3456K −X3 + 9XY + 1152XZ)/8,

χ∗
10 = KZ,

χ∗
12 = (3K2 − 2KXZ + 3Y Z2)/4.

Let W be the Witt operator defined before. For i = 1, 2, we put xi =
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θ01(τi), yi = θ10(τi), zi = θ00(τi). It is well known that z4
i = x4

i + y4
i . We get

W (E∗
4) =

2∏
i=1

(
16xi8 + 16xi4 yi4 + yi

8
)
/28,

W (E∗
6) =

2∏
i=1

(
2xi4 + yi

4
) (

32xi8 + 32xi4 yi4 − yi
8
)
/212,

W (χ∗
10) = 0,

W (χ∗
12) = 3

2∏
i=1

xi
4 yi

16
(
xi

4 + yi
4
)
/230,

W (θ0000P7/2) = 2−6
2∏
i=1

(
xi

4 + yi
4
) (

8xi4 + yi
4
)
,

W (θ0000P11/2) = 2−10
2∏
i=1

(
xi

4 + yi
4
) (

32xi8 + 20xi4 yi4 − yi
8
)
,

W (θ0000P19/2) = 2−23
2∏
i=1

xi
4 yi

12
(
xi

4 + yi
4
)
,

W (θ0000P23/2) = 2−27
2∏
i=1

xi
4 yi

12
(
xi

4 + yi
4
) (

4xi4 + 5 yi4
)
.

It is clear that the A-module spanned by P7/2, P11/2, P19/2, P23/2 and the
A-module spanned by P1/2, P13/2, P17/2, P29/2 have no intersection except for
0, since the weights of the forms are k−1/2 with even k for the former but odd
k for the latter. We shall show linear independence of four forms P7/2, P11/2,
P19/2, P23/2 over A. Linear independence of four forms P1/2, P13/2, P17/2, P29/2

are shown almost in the same way and the proof will be omitted here.
We assume that there exist polynomials Qi(X1, X2, X3, X4)(i = 1, 2, 3, 4)

which satisfy the following relation

4∑
i=1

Qi(E∗
4 , E

∗
6 , χ

∗
10, χ

∗
12)Gi = 0,

where we put G1 = θ0000P7/2, G2 = θ0000P11/2, G3 = θ0000P19/2, G4 =
θ0000P23/2. If we define polynomials Ri , R

′
i by

Qi(X1, X2, X3, X4) = Ri(X1, X2, X4) +X3R
′
i(X1, X2, X3, X4) , (i = 1, 2, 3, 4)

we get

4∑
i=1

Ri(E∗
4 , E

∗
6 , χ

∗
12)Gi + χ∗

10

4∑
i=1

R
′
i(E

∗
4 , E

∗
6 , χ

∗
10, χ

∗
12)Gi = 0.
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By taking the image of both sides under Witt operator, we get

4∑
i=1

Ri(W (E∗
4),W (E∗

6),W (χ∗
12))W (Gi) = 0.

As we wrote before, the forms W (E∗
4), W (E∗

6), W (χ∗
12), W (G1), W (G2),

W (G3), W (G4) are polynomials of four algebraically independent variables
x1, x2, y1, y2. For each W (f) for E∗

4 etc. above, we denote by W (f)0 the
polynomial of x1, x2, y2 obtained by substituting y4

1 by −2x4
1. Then we get

W (E∗
4)0 = −3 x1

8
(
16x2

8 + 16x2
4 y2

4 + y2
8
)
/26,

W (E∗
6)0 = 0,

W (χ∗
12)0 = −3 x1

24 x2
4 y2

16
(
x2

4 + y2
4
)
/226,

W (G1)0 = −3x1
8

(
x2

4 + y2
4
)
,
(
8x2

4 + y2
4
)
/25,

W (G2)0 = 3x1
12

(
x2

4 + y2
4
) (

32x2
8 + 20x2

4 y2
4 − y2

8
)
/28,

W (G3)0 = x1
20 x2

4 y2
12

(
x2

4 + y2
4
)
/220,

W (G4)0 = −3x1
24 x2

4 y2
12

(
x2

4 + y2
4
) (

4x2
4 + 5 y24

)
/223.

Now we write Ri as

Ri(X1, X2, X3) = Ri,1(X1, X3) +X2Ri,2(X1, X2, X3).

Dividing the relation into the part where the total degree is 0 mod 16 and
8 mod 16, we get

R1,1(W (E∗
4)0,W (χ∗

12)0)W (G1)0 +R4,1(W (E∗
4)0,W (χ∗

12)0)W (G4)0 = 0.

and

R2,1(W (E∗
4)0,W (χ∗

12)0)W (G2)0 +R3,1(W (E∗
4)0,W (χ∗

12)0)W (G3)0 = 0.

Since four forms x1, x2, y1, y2 are algebraic independent, W (G4)0 is divis-
ible by y2, so R1,1(W (E∗

4)0,W (χ∗
12)0)W (G1)0 must be divisible by y2. But

W (G1)0 is not divisible by y2, so the polynomial R1,1(X1, X3) is also divis-
ible by X3. In the same argument we see that R4,1(X1, X3) is divisible by
X3. Repeating the process, we see R1,1(X1, X3) = R4,1(X1, X3) = 0. We get
R2,1(X1, X3) = R3,1(X1, X3) = 0 in the same way. So we get Ri(X1, X2, X3) =
0, and Qi(X1, X2, X3, X4) = 0. Thus we have proved Theorem 1.8.

The proof of Theorem 1.10 is almost same as the proof of Theorem 1.8.
But the computation is more complicate. To determine P69/2, we need Fourier

coefficients of basis of M69/2(Γ, ψ) at
(

a 1
2b

1
2b c

)
with 0 ≤ a ≤ 20, 0 ≤ c ≤ 20,

and 0 ≤ b ≤ 40. We omit details here.
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Next we shall prove Theorem 1.9. By applying the Siegel Φ operator at
each cusp, we can show that P19/2, P23/2, P29/2 are all cusp forms. So in order
to prove the theorem, it is sufficient to determine cusp forms in AP7/2⊕AP11/2

and in AP1/2 ⊕AP13/2 ⊕AP17/2. We see

Φ(E∗
4) = 2−4

(
16x1

8 + 16x1
4 y1

4 + y1
8
)
,

Φ(E∗
6) = 2−6

(
2x1

4 + y1
4
) (

32x1
8 + 32x1

4 y1
4 − y1

8
)
,

Φ(θ0000P7/2) = 2−3
(
x1

4 + y1
4
) (

8x1
4 + y1

4
)
,

Φ(θ0000P11/2) = 2−5
(
x1

4 + y1
4
) (

32x1
8 + 20x1

4 y1
4 − y1

8
)
.

We assume that R1(E∗
4 , E

∗
6)P7/2 + R2(E∗

4 , E
∗
6)P11/2 is a cusp form for some

polynomials Ri(X1, X2). By definition we get

R1(Φ(E∗
4),Φ(E∗

6))Φ(θ0000P7/2) +R2(Φ(E∗
4),Φ(E∗

6))Φ(θ0000P11/2) = 0.

For f = E∗
4 etc., we denote by (Φ(f))0 the polynomial of x1 obtained from

Φ(f) by substituting y4
1 by −2x4

1. Then,

(Φ(E∗
4))0 = −3 x1

8/4,
(Φ(E∗

6))0 = 0,
(Φ(θ0000P7/2))0 = −3x1

8/4,

(Φ(θ0000P11/2))0 = 3x1
12/8.

Let Ri(X1, X2) = Ri,1(X1) +X2Ri,2(X1, X2). We get

R1,1((Φ(E∗
4))0, (Φ(θ0000P7/2))0) +R2,1((Φ(E∗

4))0, (Φ(θ0000P11/2))0) = 0.

Regarding this as an equality between polynomials of x1, we get Ri(X1, X2) =
0. So, there are no cusp forms in C[E∗

4 , E
∗
6 ]P7/2 + C[E∗

4 , E
∗
6 ]P11/2 except

for 0. By similar calculation, we can show that there are no cusp forms in
C[E∗

4 , E
∗
6 ]P1/2 + C[E∗

4 , E
∗
6 ]P13/2 + C[E∗

4 , E
∗
6 ]P17/2 except for the ideal gener-

ated by P25/2. Thus we complete the proof of Theorem 1.9.

3. A lifting conjecture

3.1. Statement of Conjecture
For Siegel cusp forms of half integral weight of degree two, we propose the

following conjecture.

Conjecture 3.1. For any f ∈ S2k−2(SL(2,Z)) and g ∈ S2k−4(SL(2,Z))
which are common eigen forms of Hecke operators, there exists a common eigen
form F ∈ S+

k−1/2(Γ0(4)) of Hecke operators such that

L(s, F ) = L(s, f)L(s− 1, g).
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Here L(s, f) and L(s, g) are the usual Hecke L function and L(s, F ) is the
L function of F defined by Zhuravlev which will be reviewed in §3.2. This
conjecture is based on numerical examples of Euler factors of cusp forms given
in §3.5. Conceptually, it can also be regarded as half-integral analogue of vector
valued version of Yoshida lifting in [19]. We have also some similar experimental
results for Siegel cusp forms outside the plus space but our knowledge would
be too vague to state any conjecture in that case.

As for the L function of common eigen non-cusp forms of half integral
weight, we can prove a theorem given below which is similar to the theorem by
Zharkovskaya [20] for integral weight. The theorem below may be regarded as a
non-cusp form version of the above conjecture, though this seems very different
from usual liftings. Let k be a positive integer and let F be an element of
M+
k−1/2(Γ0(4)). If F is not a cusp form, then we get Φ(F ) �= 0 and Φ(F )

belongs to the plus space of modular forms of one variable.

Theorem 3.1. Let F ∈ M+
k−1/2(Γ0(4)) be a Hecke eigen form with

Φ(F ) �= 0. Then Φ(F ) is an eigen form of T1(p2) of weight k − 1/2, where
T1(p2) is the usual Hecke operator on modular forms of half integral weight of
degree one at p. Besides we have

L(s, F ) = L(s− 1, E2k−4) L(s,Φ(F )),

where E2k−4 is the Eisenstein series in M2k−4(SL(2,Z)).

The proof of this theorem will be given in §3.4. Almost the same theorem
was given in [4] for Mk−1/2(Γ

(n)
0 (4)), but here we assumed that f is in the plus

space, hence our theorem includes the claim for Euler 2 factors too.

3.2. Hecke theory for Siegel modular forms of half integral weigh
of degree 2 at odd prime

The Hecke theory at odd primes on Siegel modular forms of half integral
weight is developed in Zhuravlev [21], [22]. We review his result in case of
degree two. The definition of L function is not very clearly written there in
terms of Hecke operators, so we review some argument also. (See also the
definition in [6]). As for modular forms of Γ0(4), two is a bad prime, but if
we restrict ourselves to the plus space, we have a good theory also at two. We
shall explain this in the next section.

Now we put

GSp+(2,R) =
{
M =

(
A B
C D

)
∈M(4,R) ; MJ tM = n(M)J , n(M) ∈ R+

}
.

We denote by ˜GSp+(2,R) the covering group of GSp+(2,R) defined as fol-

lows. The underlying set of ˜GSp+(2,R) consists of pairs (M,φ(τ )), where
M ∈ GSp+(2,R) and φ(τ ) is any holomorphic function on H2 such that

|φ(τ )| = | detM |−1/4|Cτ +D|1/2. The group operation on ˜GSp(2,R) is given
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by (M,φ(τ )) (M
′
, φ

′
(τ )) =

(
MM

′
, φ(M

′
τ )φ

′
(τ )

)
. Then, we can embed Γ0(4)

into the group ˜GSp+(2,R) by

Γ0(4) �M �→ (M, θ(Mτ )θ(τ )−1) ∈ ˜GSp+(2,R),

where θ(τ ) = θ0000(2τ ).
For any odd prime p, we put

K1 =




1
p

p2

p


 , K2 =




1
1

p2

p2


 .

Then (Ks, p
1
2 s) ∈ ˜GSp+(2,R) (s = 1, 2). We put K̃s = (Ks, p

1
2 s).

The left Γ̃0(4)-coset decomposition of Γ̃0(4)K̃sΓ̃0(4) is explicitly given by Zhu-
ravlev [21]. For the sake of simplicity, we put

X0(p) = Γ̃0(4)(p14, 1)Γ̃0(4) , X1(p) = Γ̃0(4)K̃1Γ̃0(4) , X2(p) = Γ̃0(4)K̃2Γ̃0(4).

We take a left Γ̃0(4)-coset decomposition

Xs(p) =
⋃
v

Γ̃0(4)M̃v.

where M̃v = (Mv, φv(τ )) ∈ ˜GSp+(2,R), We define an action of M̃v =

(Mv, φv(τ )) ∈ ˜GSp+(2,R) on F ∈Mk−1/2(Γ0(4), ψl) by

F |k− 1
2 ,ψ

lM̃v = n(Mv)k−
7
2ψ(Mv)lφv(τ )−2k+1F (Mvτ ),

and an action of Xs(p) by F |Xs(p) =
∑
v

F |k− 1
2 ,ψ

lM̃v. By abuse of language,

we denote these operators also by Xs(p) which are double cosets originally.
Let Lp be a Hecke ring generated by operators X0(p)±1, X1(p), X2(p).

According to [22], this Lp is isomorphic to a certain ring of W2-invariant poly-
nomials CW2 [x±1

0 , x±1
1 , x±1

2 ], where W2 is the automorphism group generated
by the following elements :

σ : x0 → x0, x1 → x2, x2 → x1,

σi : x0 → x0xi, xi → x−1
i , xj → xj (i = 1, 2, i �= j),

σ′ : x0 → −x0, x1 → x1, x2 → x2.

By using Proposition 4.1 and Lemma 3.2 in [22], we see there is an isomorphism
φ : Lp → CW2 [x±1

0 , x±1
1 , x±1

2 ] such that

φ(X0(p)) = p−3x2
0x1x2,

φ(X1(p)) = p−1x2
0(x1 + x2)(1 + x1x2),

φ(X2(p)) = x2
0

(
1 + x2

1 + x2
2 + (1 − p−2)x1x2 + x2

1x
2
2

)
.
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Define a polynomial γ(z) of z by γ(z) =
2∏
i=1

(1 − xiz)(1 − x−1
i z), and write its

expansion as γ(z) =
4∑
j=0

(−1)j Rj zj . By using the above three relations, the

inverse image φ−1(Rj) of Rj is given:

φ−1(R0) = φ−1(R4) = 1,
φ−1(R1) = φ−1(R3) = p−2X0(p)−1X1(p),
φ−1(R2) = p−3X0(p)−1X2(p) + (1 + p−2).

We say that F ∈ Mk−1/2(Γ0(4), ψl) is a Hecke eigen form, if F is a common
eigen function for the action of X1(p), X2(p) for all odd prime p. For a Hecke
eigen form F ∈ Mk−1/2(Γ0(4), ψl), we denote by βj,p (j = 0, . . . , 4) the Hecke

eigen value of F of φ−1(Rj). Then, there exists α±
1,p, α

±
2,p which satisfy

4∑
j=0

βj,pz
j

=
2∏
i=1

(1 − αi,pz)(1 − α−1
i,p z). The L-function of F is defined in Zhuravlev [22]

by

L(s, F ) =
∏
p

2∏
i=1

(1 − ψ(p)l αi,p p−s+k−3/2)−1(1 − ψ(p)l α−1
i,p p

−s+k−3/2)−1.

We rewrite this by eigen values. We denote by λ(p) or ω(p) the Hecke eigen
values of F of X1(p) or X2(p), respectively. Then, we have

L(s, F ) =
∏
p

(
1 − λ∗(p)p−s + (p ω(p) + p2k−5(1 + p2))p−2s

−λ∗(p)p2k−3−3s + p4k−6−4s
)−1

,

where we put λ∗(p) = λ(p)
(

−1
p

)l
p−k+7/2. In the above product, at moment

we defined Euler p factors only for odd primes, but an Euler 2 factor will be
defined for elements of plus subspace later.

Next, we explain how to get eigen values by using Fourier coefficients of
Hecke eigen forms. First, we prepare some notations. For i, j ∈ {0, 1, 2}, i+ j

≤ 2, we put di,j =


 12−i−j

p1i
p21j


 ∈ M2(Z). We denote by Ml,m(pδ)
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a complete set of representatives of matrices of Ml,m(Z) modulo pδ, and put

Rs,i,j =


B =


02−i−j 0 0

0 A pB1

0 tB1 B2


 ;

A ∈Mi,i(p), B1 ∈Mi,j(p), B2 ∈Mj,j(p2),
A =t A, B2 =t B2, and rankp(A) = i− 2 + s


 .

For a matrix B =


02−i−j 0 0

0 A pB1

0 tB1 B2


 ∈ Rs,i,j and for a fixed γ = i− 2 + s,

we define a function κ(B) by κ(B) = 1 or εγp
(

(−1)γ detA1
p

)
for γ = 0 or γ > 0,

respectively, where εp = 1 or
√−1 if p ≡ 1 or 3 mod 4, A1 is any matrix of size

γ such that A ≡ tM
(
A1 0
0 0

)
M mod p for some M ∈ Mi,i(p) ∩ SL(i,Z), and(

∗
p

)
means the Legendre symbol. We write the Fourier expansion of F (τ ) ∈

Mk−1/2(Γ0(4), ψl) as F (τ ) =
∑
N≥0

C(N)e(tr(Nτ )). We define αs,i,j(T ) by

αs,i,j(T ) = p(s+2−i−2j)(k− 1
2 )−3s ψ(pi+2j)l

×
∑
U,B

C

(
1
p2
di,jUT

tUdi,j

)
e

(
1
p2

tr
(
UT tUdi,jB

))
κ(B)−2k+1.

where the matrix B runs over all elements of Rs,i,j , U runs over a complete
set of representatives of

(
d−1
i,j SL(2,Z)di,j ∩ SL(2,Z)

) \SL(2,Z), and we regard
C(M) = 0 if M is not a half integral matrix.

Now let F be a Hecke eigen form and we assume that C(T ) �= 0 for some
semi-positive definite T =

(
a b/2
b/2 c

)
. By using [21, Proposition 7.1], we have

λ∗(p) = C(T )−1
∑
i,j

1≤i≤i+j≤2

α1,i,j(T ), ω(p) = C(T )−1
∑
i,j

0≤i≤i+j≤2

α2,i,j(T ).

Now for any prime p, we put

R(p) =
{
( 1 x

0 1 ) ,
(

0 1−1 0

)
; x mod p

}
,

R(p2) =
{
( 1 x

0 1 ) ,
(
py 1
−1 0

)
; x mod p2 , y mod p

}
.

Then we can calculate each αs,i,j(T ) for odd p explicitly as follows.
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α1,1,0(T ) = p2k−4
∑

U∈R(p)

C

((
p−1

1

)
UT tU

(
p−1

1

))
,

α1,1,1(T ) =
∑

U∈R(p)

C

((
1

p

)
UT tU

(
1

p

))
,

α1,2,0(T ) =




(
(−1)k+l−1a

p

)
pk−2C(T ) if p � a and p | det 2T,

(
(−1)k+l−1c

p

)
pk−2C(T ) if p | a and p | det 2T,

0 otherwise,

α2,0,0(T ) = p4k−8 C

(
1
p2
T

)
,

α2,0,1(T ) = p2k−5
∑

U∈R(p2)

C

((
p−1

p

)
UT tU

(
p−1

p

))
,

α2,0,2(T ) = C(p2T ),

α2,1,0(T ) = p3k−7
∑

U∈R(p)

(
(−1)k+l−1cU

p

)
C

((
p−1

1

)
UT tU

(
p−1

1

))
,

where
( ∗ ∗

∗ cU

)
= UT tU,

α2,1,1(T ) = pk−3
∑

U∈R(p)

(
(−1)k+l−1aU

p

)
C

((
1

p

)
UT tU

(
1

p

))
,

where
(
aU ∗
∗ ∗

)
= UT tU,

α2,2,0(T ) =




− p2k−6 C(T ) if p � det 2T,

(p− 1)p2k−6 C(T ) if p | det 2T.

3.3. Hecke theory on plus space at two
Although 2 is a bad prime for Γ0(4), it is a good prime for the plus sub-

space, since it is isomorphic to the space of Jacobi forms of “level” one. Namely
we know that for odd primes the Hecke theory of Jacobi forms and Siegel mod-
ular forms of half integral weight corresponds well (cf. [9], [3], also see the
correction at the end of this paper.), and for F ∈ M+

k−1/2(Γ0(4), ψl) and for
every odd prime p, we can interpret X∗

1 (p) = ψ(p)lp−k+7/2X1(p) or X2(p) as
a pull back of a Hecke operator on Jacobi forms. Now we can define operators
X∗

1 (2) and X2(2) on M+
k−1/2(Γ0(4), ψl) as the pull backs of the same Hecke
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operators at two on Jacobi forms. Hence we say that F is a common eigen
form if the image of F in Jacobi forms of index one is a common eigen form
of all the Hecke operators on Jacobi forms, including those at two. For F we
can define λ∗(2) and ω(2) in the same way by using X∗

1 (2) and X2(2), and also
the Euler 2 factor is defined in the same formula as in the case of odd primes.
Hence L(s, F ) is defined as the product of Euler factors at all primes p by the
formula in the previous section.

The formula for λ∗(2) and ω(2) using the Fourier coefficients is almost the
same as in the odd case. Here we explain the necessary modification of the
formula in the previous section. Let C(T ) be the Fourier coefficient of F as
before. If C(T ) �= 0 for T =

(
a b/2
b/2 c

)
, then since F belongs to the plus space,

we get

a = (−1)k+l−1λ2
1 + 4α,

b = (−1)k+l−12λ1λ2 + 4β,
c = (−1)k+l−1λ2

2 + 4γ,

where (λ1, λ2) = (1, 1), (1, 0), (0, 1) or (0, 0) and α, β, γ are integers. So, we
get

det(T ) = 4(4αγ − β2) + 4(−1)k+l−1(αλ2
2 + γλ2

1 − βλ1λ2),

and hence det(T ) ≡ 0 mod 4. The condition that p| det(2T ) or p � det(2T )
in the previous formula should be replaced by the condition that 8| det(T ) or
8 � det(T ), respectively. The Legendre symbol

(
x
p

)
for odd p in the formula

before is now interpreted as follows. First of all, we can easily show that
each x which appears in the Legendre symbol, namely each of x = (−1)k+l−1a,
(−1)k+l−1c, (−1)k+l−1aU or (−1)k+l−1cU for p = 2 satisfies the condition x ≡ 0
or 1 mod 4. So, we define

(
x

p

)
=




0 if x ≡ 0 mod 4,
1 if x ≡ 1 mod 8,

− 1 if x ≡ 5 mod 8.

3.4. Proof of Theorem 3.1
For any prime p including p = 2 and any eigen form F ∈ M+

k−1/2(Γ0(4)),
we take the operators X1(p), X2(p) such that F |X1(p) = pk−7/2λ∗(p)F and
F |X2(p) = ω(p)F as before. First, we calculate Fourier coefficients of
Φ(F |X1(p)) and Φ(F |X2(p)) .

If a Siegel modular form F has the Fourier expansion

F (τ ) =
∑
T≥0

C (T ) e(tr(Tτ )),

then we have Φ(F )(z) =
∑
m≥0

c(m)e(mz), where we put c(m) = C

(
m 0
0 0

)
.

For s = 1, 2, we write Φ(F |Xs(p))(z) =
∑
m≥0

as(m)e(mz). Then we get as(m)
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=
∑

2−s≤i≤i+j≤2

αs,i,j

(
m 0
0 0

)
, where αs,i,j(T ) is the same notation as in the

previous section. By straightforward calculation, we have:

a1(m) = c(m/p2)p2k−3 + c(p2m) + c(m)
(
p2k−4 + p+

(
(−1)k−1m

p

)
pk−2

)
,

a2(m) = c(m/p2)(p4k−8 + p2k−3) + c(p2m)(p2k−5 + 1)

+c(m)
(
p3k−7

(
(−1)k−1m

p

)
+ pk−2

(
(−1)k−1m

p

)
+ p2k−6(p2 − 1)

)
,

where the symbol
(
x
p

)
for p = 2 is defined as before. Let f be a modular

form of weight k − 1/2 of degree 1 in the plus-subspace and take its Fourier
expansion f(z) =

∑
m≥0

b(m)e(mz). Then for any prime p including p = 2, the

Hecke operator T1(p2) is defined by

(f |T1(p2))(z) =
∑
m≥0

(
b(p2m) + p2k−3b(m/p2)

+
(

(−1)k−1m

p

)
pk−2b(m)

)
e(mz).

Therefore we have

Φ(F |p−k+7/2X1(p)) = Φ(F )|T1(p2) + (p+ p2k−4)Φ(F ),
Φ(F |X2(p)) = (p2k−5 + 1)(Φ(F )|T1(p2)) + (p2k−4 − p2k−6)Φ(F ).

If Φ(F ) �= 0, then by the above relation, it is obvious that Φ(F ) is also an
eigenform of T1(p2). If we put

Φ(F )|T1(p2) = µ(p2)Φ(F ),

then we get

λ∗(p) = µ(p2) + p+ p2k−4,

ω(p) = (p2k−5 + 1)µ(p2) + p2k−4 − p2k−6.

so we have,

L(s, F ) =
∏
p

(
(1 − µ(p2)p−s + p2k−3−2s)(1 − p1−s)(1 − p2k−4−s)

)−1

= L(s,Φ(F ))ζ(s− 1)ζ(s− 2k + 4)
= L(s,Φ(F ))L(s− 1, E2k−4).

This completes the proof of Theorem 3.1.
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3.5. Numerical examples of Euler factors
In this section, we give some examples of Euler factors of forms in the plus

space. The dimensions of the plus space and the space of elliptic modular forms
are given in the following table for small weights.

k 0 ∼ 6 7 8 9 10 11 12 13 14 15
dim S+

k−1/2(Γ0(4)) 0 0 0 0 1 1 1 2 2 2
dim S2k−2(SL(2,Z)) 0 1 0 1 1 1 1 2 1 2
dim S2k−4(SL(2,Z)) 0 0 1 0 1 1 1 1 2 1

k 16 17 18 19 20 21 22 23 24 25
dim S+

k−1/2(Γ0(4)) 4 4 4 6 6 7 9 9 10 13
dim S2k−2(SL(2,Z)) 2 2 2 3 2 3 3 3 3 4
dim S2k−4(SL(2,Z)) 2 2 2 2 3 2 3 3 3 3

For any Hecke eigen form F ∈ S+
k−1/2(Γ0(4), ψl), we define the Hecke polyno-

mial Hp(T, F ) at p by

Hp(T, F ) = 1 − λ∗(p)T + (p ω(p) + p2k−5(1 + p2)))T 2

− λ∗(p)p2k−3T 3 + p4k−6T 4.

The dimension of cusp forms of plus space of weight 19/2 is 1. So P19/2(2τ )
is a Hecke eigen form, since the plus space is closed under the action of Hecke
operators. Some of Fourier coefficients of P19/2(2τ ) are given as follows:

wt 19/2 (3, 3, 2) (24, 3, 0) (11, 8, 8) (19, 4, 4) (27, 27, 18)
P19/2(2τ ) 1 −5022 −861 −3423 23088645

where (a, c, b) means the Fourier coefficient at
(

a b/2
b/2 c

)
.

Next we calculate eigen values λ∗(3) and ω(3) of P19/2(2τ ). We put

C(a, c, b) = C

(
a b/2
b/2 c

)
, then we have:

λ∗(3) = C(24, 3, 0) × 2 + C(11, 8, 8) + C(19, 4, 4)
= −14328,

ω(3) = C(3, 3, 2) × 2 × 315 + C(27, 27, 18)
+ (C(11, 8, 8) − C(19, 4, 4))× 37 + C(3, 3, 2) × (−314)

= 52606584.

Then the Euler factor of P19/2(2τ ) at p = 3 is given by H3(3−s, P19/2(2τ )),
where

H3(T, P19/2(2τ )) = 1 + 14328T + 301308822T 2 + 1850320255464T 3 + 334 T 4

= (1 + 10044T + 317 T 2)(1 + 4284T + 317 T 2) .
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We denote by ∆16 or ∆18 the normalized Hecke eigen form belonging to
SL(2,Z) of weight 16 or 18, respectively. For any common eigen form f ∈
Sk(SL(2,Z)), we denote by λ(p, f) the eigen value of the Hecke operator T (p)
on f at prime p. We denote by Lp(s, f) the Euler p - factor of the L function
of f . We see

λ(3,∆16) = −3348 ,λ(3,∆18) = −4284.

So, we get

H3(3−s, P19/2(2τ )) = L3(s,∆18)L3(s− 1,∆16).

By similar calculation, we get λ∗(2) = −96 and ω(2) = −64896 for P19/2(2τ ).
On the other hand, we see λ(2,∆16) = 216, λ(2,∆18) = −528, so we get

H2(2−s, P19/2(2τ )) = L2(s,∆18)L2(s− 1,∆16).

Let ∆k (k = 20, 22, 26) be the normalized cusp forms of weight k in the
one dimensional space Sk(SL(2,Z)), and ∆+

24, ∆−
24 be a Hecke eigen basis of

S24(SL(2,Z)). The Euler factors of Hecke eigen forms in the plus space of
weight 21/2, 23/2, 25/2, 27/2, 29/2, 31/2, 33/2, and 35/2 are given as follows.

weight 21/2.
We have dimS+

21/2(Γ0(4)) = 1 and this space S+
21/2(Γ0(4)) is generated by

χ10(4τ )P1/2(2τ ), which is of course a Hecke eigen form. We have

H2(T, χ10(4τ )P1/2(2τ )) = (1 + 1056T + 219 T 2) (1 − 456T + 219 T 2),

H3(T, χ10(4τ )P1/2(2τ )) = (1 + 12852T + 319 T 2) (1 − 50652T + 319 T 2),

and we also have

λ(2,∆18) = −528, λ(2,∆20) = 456,
λ(3,∆18) = −4284, λ(3,∆20) = 50652.

So we get

H2(2−s, χ10(4τ )P1/2(2τ )) = L2(s− 1,∆18)L2(s,∆20),

H3(3−s, χ10(4τ )P1/2(2τ )) = L3(s− 1,∆18)L3(s,∆20).

weight 23/2.
We have dimS+

23/2(Γ0(4)) = 1 and P23/2(2τ ) ∈ S+
23/2(Γ0(4)) is a Hecke

eigen form. We have

H2(T, P23/2(2τ )) = (1 − 912T + 221 T 2) (1 + 288T + 221 T 2),

H3(T, P23/2(2τ )) = (1 − 151956T + 321 T 2)(1 + 128844T + 321 T 2),

and we also have

λ(2,∆20) = 456, λ(2,∆22) = −288,
λ(3,∆20) = 50652, λ(3,∆22) = −128844 .
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So we get

H2(2−s, P23/2(2τ )) = L2(s− 1,∆20)L2(s,∆22),

H3(3−s, P23/2(2τ )) = L3(s− 1,∆20)L3(s,∆22).

weight 25/2.
We have dimS+

25/2(Γ0(4)) = 2. We put

χ+
25/2 =

(
119 −

√
144169

)
χ12(4τ )P1/2(2τ ) + P25/2(2τ ),

χ−
25/2 =

(
119 +

√
144169

)
χ12(4τ )P1/2(2τ ) + P25/2(2τ ).

Then χ(±)
25/2 ∈ S+

25/2(Γ0(4)) and these are Hecke eigen forms. The Euler 2-factor
and 3-factor of these forms are given by

H2(T, χ
(±)
25/2) =

(
1 + 576T + 223 T 2

)
×

(
1 −

(
540 ∓ 12

√
144169

)
T + 223 T 2

)
,

H3(T, χ
(±)
25/2) =

(
1 + 386532T + 323 T 2

)
×

(
1 −

(
169740 ± 576

√
144169

)
T + 323 T 2

)
.

The eigen values of ∆22 and ∆(±)
24 at 2 and 3 are given by

λ(2,∆22) = −288, λ(2,∆(±)
24 ) = 540 ∓ 12

√
144169 ,

λ(3,∆22) = −128844, λ(3,∆(±)
24 ) = 169740 ± 576

√
144169.

So we get

H2(2−s, χ
(±)
25/2) = L2(s− 1,∆22)L2(s,∆

(±)
24 ),

H3(3−s, χ
(±)
25/2) = L3(s− 1,∆22)L3(s,∆

(±)
24 ).

weight 27/2.
We have dimS+

27/2(Γ0(4)) = 2. We put

χ
(±)
27/2 =

(
−427 ±

√
144169

)
χ10(4τ )P7/2(2τ ) + 9E4(4τ )P19/2(2τ ).

Then χ(±)
27/2 ∈ S+

27/2(Γ0(4)) and these are Hecke eigen forms. We have

H2(T, χ
(±)
27/2) =

(
1 −

(
1080 ∓ 24

√
144169

)
T + 225 T 2

)
(1 + 48T + 225 T 2),

H3(T, χ
(±)
27/2) =

(
1 −

(
509220 ± 1728

√
144169

)
T + 325 T 2

)
(
1 + 195804T + 325 T 2

)
.



�

�

�

�

�

�

�

�

522 Shuichi Hayashida and Tomoyoshi Ibukiyama

We also have

λ(2,∆±
24) = 540 ∓ 12

√
144169, λ(2,∆26) = −48,

λ(3,∆(±)
24 ) = 169740 ± 576

√
144169, λ(3,∆26) = −195804.

So we get

H2(2−s, χ±
27/2) = L2(s− 1,∆±

24)L2(s,∆26),

H3(3−s, χ±
27/2) = L3(s− 1,∆±

24)L3(s,∆26).

weight 29/2.
We have dimS+

29/2(Γ0(4)) = 2. We put

χ
(±)
29/2 =

(
47 ±

√
18409

)
E4(4τ )χ10(4τ )P1/2(2τ ) + 81P29/2(2τ ).

Then χ(±)
29/2 ∈ S+

29/2(Γ0(4)) and these are Hecke eigen forms. We have

H2(T, χ
(±)
29/2) = (1 + 96T + 227 T 2) (1 + (4140 ∓ 108

√
18209)T + 227 T 2),

H3(T, χ
(±)
29/2) = (1 + 587412T + 327 T 2)

(1 + (643140 ∓ 20736
√

18209)T + 327 T 2).

We also have

λ(2,∆26) = −48, λ(2,∆±
28) = −4140 ± 108

√
18209,

λ(3,∆26) = −195804, λ(3,∆±
28) = −643140 ± 20736

√
18209.

So we get

H2(2−s, χ±
29/2) = L2(s− 1,∆26)L2(s,∆±

28),

H3(3−s, χ±
29/2) = L3(s− 1,∆26)L3(s,∆±

28).

weight 31/2.
We have dimS+

31/2(Γ0(4)) = 4. For ε1 = ±1 and ε2 = ±1, we put

χε1, ε231/2 =

2(1087273 + 19401 ε1
√

18209 − ε2
√

51349(6889 + 33 ε1
√

18209))

× χ12(4τ )P7/2(2τ ) + 10(−661583 − 3855 ε1
√

18209

+ ε2
√

51349(2327 − 27 ε1
√

18209))χ10(4τ )P11/2(2τ )

+ (−11759 + 517 ε2
√

51349 − ε1
√

18209(283 + ε2
√

51349))E6(4τ )P19/2(2τ )
+ 100590E4(4τ )P23/2(2τ ).
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These are in S+
31/2(Γ0(4)) and Hecke eigen forms. Then we have

H2(T, χ
ε1, ε2
31/2 ) = (1 + (8280 − 216 ε1

√
18209)T + 229 T 2)

×(1 − (4320 − 96 ε2
√

51349)T + 229 T 2),

H3(T, χ
ε1, ε2
31/2 ) = (1 + (1929420 − 62208 ε1

√
18209)T + 329 T 2)

×(1 + (2483820 − 52992 ε2
√

51349)T + 329 T 2).

We also have

λ(2,∆±
28) = −4140 ± 108

√
18209,

λ(2,∆±
30) = 4320 ∓ 96

√
51349,

λ(3,∆±
28) = − 643140 ± 20736

√
18209,

λ(3,∆±
30) = − 2483820 ± 52992

√
51349.

So we get

H2(2−s, χ
±, ±
31/2 ) = L2(s− 1,∆±

28)L2(s,∆±
30),

H3(3−s, χ
±, ±
31/2 ) = L3(s− 1,∆±

28)L3(s,∆±
30).

weight 33/2.
We have dimS+

31/2(Γ0(4)) = 4. For ε1 = ±1 and ε2 = ±1, we put

χε1, ε233/2 =

(−198304 + 10027ε1
√

51349 − 128ε2
√

18295489

− ε1ε2
√

51349
√

18295489)E6(4τ )χ10(4τ )P1/2(2τ )

+ 189(1131 + 4ε1
√

51349 + ε2
√

18295489)E4(4τ )χ12(4τ )P1/2(2τ )

− 13608
(
8 + ε1

√
51349

)
χ10(4τ )P13/2(2τ ) + 189E4(4τ )P25/2(2τ ).

Then χ±, ±
33/2 ∈ S+

33/2(Γ0(4)) and these are Hecke eigen forms. We have

H2(T, χ
ε1, ε2
33/2 ) =

(
1 −

(
8640 + 192 ε1

√
51349

)
T + 231 T 2

)
×

(
1 −

(
19980 + 12 ε2

√
18295489

)
T + 231 T 2

)
,

H3(T, χ
ε1, ε2
33/2 ) =

(
1 + 108(68995 + 1472 ε1

√
51349)T + 331 T 2

)
×

(
1 − 324(26795 + 16 ε2

√
18295489)T + 331 T 2

)
.

We also have

λ(2,∆±
30) = 4320 ± 96

√
51349,

λ(2,∆±
32) = 19980 ± 12

√
18295489,

λ(3,∆±
30) = −36(68995 ± 1472

√
51349),

λ(3,∆±
32) = 324(26795 ± 16

√
18295489).
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So we get

H2(2−s, χ
±, ±
33/2 ) = L2(s− 1,∆±

30)L2(s,∆±
32),

H3(3−s, χ
±, ±
33/2 ) = L3(s− 1,∆±

30)L3(s,∆±
32).

weight 35/2.
We have dimS+

35/2(Γ0(4)) = 4. For ε1 = ±1 and ε2 = ±1, we put

χε1, ε235/2 =

80(−447232006969 + 489062419 ε2
√

2356201

+ ε1
√

18295489(−34677047 + 89597 ε2
√

2356201))E4(4τ )χ10(4τ )P7/2(2τ )

+ 800(34455469783 − 39825301 ε2
√

2356201

+ ε1
√

18295489(−588847 + 1453 ε2
√

2356201))χ12(4τ )P11/2(2τ )

+ 3(−121215233603 − 79606447 ε2
√

2356201 + 137801891 ε1
√

18295489

− 83441( ε1
√

18295489)( ε2
√

2356201))E4(4τ )2P19/2(2τ )
+ 9492701472E6(4τ )P23/2(2τ ).

Then χε1, ε235/2 ∈ S+
35/2(Γ0(4)) and these are Hecke eigen forms. We have

H2(T, χ
ε1, ε2
35/2 ) =

(
1 −

(
39960 + 24 ε1

√
18295489

)
T + 233 T 2

)
×

(
1 +

(
60840 + 72 ε2

√
2356201

)
T + 233 T 2

)
,

H3(T, χ
ε1, ε2
35/2 ) =

(
1 −

(
26044740 + 15552 ε1

√
18295489

)
T + 333 T 2

)
×

(
1 −

(
18959940 + 22464 ε2

√
2356201

)
T + 333 T 2

)
.

We also have

λ(2,∆±
32) = 19980 ± 12

√
18295489,

λ(2,∆±
34) = −60840 ∓ 72

√
2356201,

λ(3,∆±
32) = 8681580 ± 5184

√
18295489,

λ(3,∆±
34) = 18959940 ± 22464

√
2356201.

So we get

H2(2−s, χ
±, ±
35/2 ) = L2(s− 1,∆±

32)L2(s,∆±
34),

H3(3−s, χ
±, ±
35/2 ) = L3(s− 1,∆±

32)L3(s,∆±
34).

Finally we give examples of Siegel modular forms of weight 41/2 and 47/2
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which cannot be obtained by this kind of lifting. We put

χ41/2 =

(738592E2
4(4τ )χ12(4τ ) + 545630E4(4τ )E6(4τ )χ10(4τ )

+ 65820297600χ10(τ )2 )P1/2(2τ ) − 395994E4(4τ )χ10(4τ )P13/2(2τ )

− 838926χ12(4τ )P17/2(2τ ) + 3E4(4τ )2 P25/2(2τ )
− 191004E6(4τ )P29/2(2τ ).

Then χ41/2 is a Hecke eigen form in S+
41/2(Γ0(4)). The Hecke polynomial of

χ41/2 at two is given by

H2(T, χ41/2) = 1 − 105600T − 723412582400T 2

− 58054213946572800T 3 + 278 T 4,

which is irreducible over Q. We also put

χ47/2 =

(−946246E4(4τ )2 χ12(4τ ) + 2194570E4(4τ )E6(4τ )χ10(4τ )
− 1553434778880χ10(4τ )2) × P7/2(2τ ) + (−1747462E4(4τ )2 χ10(4τ )

− 580106E6(4τ )χ12(4τ ))P11/2(2τ ) + (−27675E4(4τ )2E6(4τ )

+ 323725375872E4(4τ )χ10(4τ ))P19/2(2τ ) + (38788E4(4τ )3 − 8377E6(4τ )2

+ 26731596672χ12(4τ ))P23/2(2τ ).

Then χ47/2 is a Hecke eigen form in S+
47/2(Γ0(4)). The Hecke polynomial of

χ47/2 at 2 is given by

H2(T, χ47/2) = 1 − 3048960T − 21597142384640T 2

−107275743123965214720T 3 + 290 T 4,

which is irreducible over Q.

4. Appendix

In this appendix, we give data of Fourier coefficients of forms in
S+
k−1/2(Γ0(4)) used in the numerical examples of liftings in the previous section.

In the table below, (a, c, b) means the Fourier coefficient at
(

a b/2
b/2 c

)
.

wt 19/2 , 23/2 P19/2(2τ) P23/2(2τ)

(3, 3, 2) 1 1
(8, 4, 0) 144 −1008
(11, 3, 2) 8 1328
(11, 8, 8) −861 64827
(12, 12, 8) −79232 1752832
(19, 4, 4) −3423 188649
(24, 3, 0) −5022 −115182

(27, 27, 18) 23088645 −2926756395

wt 21/2 χ10(4τ) P1/2(2τ)

(4, 4, 4) 1
(12, 4, 0) −200

(12, 12, 12) 13959
(16, 16, 16) 21376
(28, 4, 4) 1386

(36, 36, 36) 14006520
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wt 25/2, 29/2 χ12(4τ) P1/2(2τ) P25/2(2τ) E4(4τ) χ10(4τ) P1/2(2τ) P29/2(2τ)

(4, 1, 0) 0 1 0 0
(4, 4, 0) 10 28 −2 0
(4, 4, 4) 1 2 1 1
(5, 4, 4) 2 −20 2 0
(8, 8, 0) 17072 −508128 −18064 −43200
(12, 4, 0) 472 519056 3160 4096

(12, 12, 12) 63 28377342 1372599 2025783
(16, 4, 0) −1408 3839744 8192 0
(16, 16, 0) 6818304 1830706176 −201236736 2073600
(16, 16, 16) 3620608 −2025854464 66649216 66514432
(20, 8, 8) −838986 −238148508 1142610 −1689600
(28, 4, 4) −154566 −34637580 −521334 −559350
(36, 4, 0) −595758 −138350004 −886650 −2457600
(36, 36, 0) 156778877538 84717349291692 −2797068474522 2440370073600
(36, 36, 36) 35411540472 15764814302832 2136037038840 2091081836664

wt 27/2 χ10(4τ)P7/2(2τ) E4(4τ)P19/2(2τ)

(3, 3, 2) 0 1
(4, 4, 0) −2 −20
(4, 4, 4) 1 14
(8, 4, 0) −216 −4656
(8, 8, 0) 2048 −161920
(11, 3, 2) 0 −232
(11, 8, 8) −7872 −993261
(12, 12, 8) 5184 7658368
(12, 12, 12) 462195 −1345014
(16, 4, 0) −10144 71360
(16, 16, 0) −16337152 −167288320
(19, 4, 4) 23424 525297
(24, 3, 0) 0 759618

(27, 27, 18) 4528944576 281757016485
(28, 4, 4) −45822 5392092

(36, 36, 36) 164646611496 4840269943536

wt 31/2 χ12(4τ)P7/2(2τ) χ10(4τ)P11/2(2τ) E6(4τ)P19/2(2τ) E4(4τ)P23/2(2τ)
(3, 3, 2) 0 0 1 1
(4, 3, 0) 0 0 −6 18
(4, 4, 0) 10 −2 −20 164
(4, 4, 4) 1 1 14 18
(7, 7, 2) 16688 −4048 220288 −5184
(8, 4, 0) 1128 696 10224 38352
(8, 8, 0) 68000 −116128 −2232256 5083072
(11, 3, 2) 0 0 −11584 −21952
(11, 8, 8) 129408 198528 −4073685 −3187413
(12, 4, 0) −8336 2896 259616 116064
(12, 12, 8) −11090304 −5284224 24024064 −162364928
(12, 12, 12) 7042059 3786507 181538010 358763526
(16, 3, 0) 0 0 −485376 −223488
(16, 4, 0) 10784 −86944 292544 −187328
(16, 7, 4) 2973936 1380720 101693652 −92752956
(16, 12, 0) −214834944 −145991424 −4721147904 −4407211008
(16, 16, 0) 1684279808 −1956802048 −62392864768 1386465280
(16, 16, 16) 141109504 337852672 1405675520 −10388302848
(19, 4, 4) 155136 −38400 −279111 2516409
(20, 8, 8) 2779566 29706666 436331172 377782668
(24, 3, 0) 0 0 3614706 6144498
(27, 4, 0) 2505504 51744 −9970860 82405764

(27, 27, 18) 1202110035840 172113144192 6472654435701 11781463880565
(28, 4, 4) 4249362 1795602 24906300 82405764
(36, 3, 0) 0 0 108990846 82853766
(36, 4, 0) 18430266 12121230 434457996 900033156
(36, 27, 0) 7987676467968 9536425747200 −235559672754480 637455917157264
(36, 36, 0) 242566342473618 94742289886230 6077098262322396 7656574058280180
(36, 36, 36) 51224741006760 16520031298728 826849235895408 1546543276410384
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wt 33/2 E6(4τ) χ10(4τ) P1/2(2τ) E4(4τ) χ12(4τ) P1/2(2τ) χ10(4τ) P13/2(2τ) E4(4τ) P25/2(2τ)

(4, 1, 0) 0 0 0 1
(4, 4, 0) −2 10 −2 28
(4, 4, 4) 1 1 1 2
(5, 4, 0) −4 20 0 70
(5, 4, 4) 2 2 0 −20
(8, 8, 0) −276016 292592 −184048 8302752
(9, 9, 2) −374384 796240 −592800 −55430560
(12, 4, 0) 16936 −4808 20008 4534736
(13, 5, 2) 12760 −54056 0 −23593328
(16, 1, 0) 0 0 0 13888
(16, 4, 0) −184960 −62848 −192384 164198144
(16, 5, 0) −463188 −159060 0 530612040
(16, 16, 0) −11449555968 5034906624 −10981181440 −114429609984
(16, 16, 16) 1296672256 −178237952 1174703104 167786771456
(20, 1, 0) 0 0 0 52110
(20, 4, 0) 198884 111500 80100 2164310920
(20, 8, 8) 68436450 92066454 51856866 96214121892
(20, 16, 0) −18886241024 −5455811840 −8077728000 4168864371200
(20, 16, 16) 1354989568 −1115420672 266576896 2413351972864
(36, 4, 0) 62755254 −1611918 58306998 232075659276
(36, 36, 0) 1619966262888774 2512774604319138 1902755390009670 −4910744231383634388

wt 35/2 E4(4τ)χ10(4τ)P7/2(2τ) χ12(4τ)P11/2(2τ) E4(4τ)2P19/2(2τ) E6(4τ)P23/2(2τ)

(3, 3, 2) 0 0 1 1
(4, 3, 0) 0 0 −6 18
(4, 4, 0) −2 10 −20 164
(4, 4, 4) 1 1 14 18
(7, 7, 2) −1456 43472 192496 319536
(8, 4, 0) −696 −3432 −9456 −83664
(8, 8, 0) −135232 820160 −2625280 30012928
(11, 3, 2) 0 0 57128 38120
(11, 8, 8) 1027008 145728 3140739 −12035709
(12, 4, 0) −53408 −30944 −1169728 −2215872
(12, 12, 8) 44800704 −34981056 6847216768 3814468480
(12, 12, 12) 54130275 73539171 2708246826 2513884086
(16, 3, 0) 0 0 −986352 −820080
(16, 4, 0) 170336 281888 −12301120 −5300672
(16, 7, 4) −2835504 −6920496 −276347628 577071108
(16, 12, 0) 2103486336 2581070976 −23181552384 2609240832
(16, 16, 0) −21290651392 19967907584 −1185467722240 49881418240
(16, 16, 16) 3339448960 396575104 66876720896 232574683392
(19, 4, 4) −809856 −2116224 −38862783 −87666111
(24, 3, 0) 0 0 12929058 25930530
(27, 4, 0) −27288864 −20860704 −1142226828 −749346012

(27, 27, 18) −32384503422144 −27722365577280 −114447493042875 −355161384812475
(28, 4, 4) 15561378 21989538 −285221988 −749346012
(28, 8, 8) 34009722 23805342 −2892760380 −4687859988
(36, 3, 0) 0 0 373316526 1464979446
(36, 4, 0) 26318718 226282122 −6270772500 −1534580316
(36, 27, 0) −1039178537612928 −1327808930988672 −41328190976162544 27915068810095056
(36, 36, 0) −1637127809425674 24532811136719154 20113692992657820 434756523224983860
(36, 36, 36) 2036597796248616 2709582596303400 9374314429341936 −46503207364243824

wt 39/2 E4(4τ)χ12(4τ)P7/2(2τ) E6(4τ)χ10(4τ)P7/2(2τ) E4(4τ)χ10(4τ)P11/2(2τ)

(3, 3, 2) 0 0 0
(4, 3, 0) 0 0 0
(4, 4, 4) 1 1 1
(4, 4, 0) 10 −2 −2
(7, 4, 0) 560 −112 176
(7, 7, 2) 16688 −1456 −4048
(8, 4, 0) 3528 792 216
(8, 4, 4) 278 −394 −106
(8, 8, 0) 938720 −24160 184352
(11, 3, 2) 0 0 0
(11, 11, 6) 247495808 192665984 87688832
(12, 4, 0) 283984 144880 165616
(12, 12, 8) 735837696 824117760 1057556736
(16, 3, 0) 0 0 0
(16, 12, 0) 6965769216 5218139136 9307900416
(16, 4, 0) 513824 2441312 2098016
(16, 7, 0) −55173216 25406304 1145760
(16, 16, 0) 853418006528 271104100352 417542423552
(16, 16, 16) 116461149184 77180695552 69248553472
(28, 4, 0) 18287584 193226656 293768608
(28, 7, 4) −8121890560 1192126208 −1149009664
(28, 16, 0) 102085925255168 27995367827456 13757140745216
(28, 28, 8) −7189200652320768 −5864058898563072 −5809348678508544
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wt 39/2 E4(4τ)E6(4τ)P19/2(2τ) χ10(4τ)P19/2(2τ) E4(4τ)2P23/2(2τ)

(3, 3, 2) 1 0 1
(4, 3, 0) −6 0 18
(4, 4, 0) −20 0 164
(4, 4, 4) 14 0 18
(7, 4, 0) 1820 0 7660
(7, 7, 2) 17248 −1 102816
(8, 4, 0) 5424 0 77712
(8, 4, 4) −3820 0 7660
(8, 8, 0) 2446784 68 28935232
(11, 3, 2) −132784 0 12368
(11, 11, 6) 4730629568 −2216 1443375040
(12, 4, 0) 2670176 0 9674784
(12, 12, 8) 47171325184 −5656 49424250112
(16, 3, 0) 19134624 0 15099552
(16, 4, 0) 84549824 0 111610432
(16, 7, 0) −2710680000 6482 5438462400
(16, 12, 0) −140332967424 −19120 1175375596032
(16, 16, 0) −3997818293248 −2364512 7610050155520
(16, 16, 16) 5058824092160 651984 6534551112192
(28, 4, 0) 135962176 0 2851862720
(28, 7, 4) 317666936320 114320 −1124037987840
(28, 16, 0) 3457494645251072 −1003899936 3570785990425600
(28, 28, 8) − 754120391288610816 −54289682176 −670354007327760384

Correction
[9] p. 114 Theorem 2 line 5, p−2kn−j/2 in LHS should read p−(2k+1)n−j/2.
[9] p. 123 line 1, (Z/pZ)n should read (Z/p2Z)n.
[9] p. 123 line 10, the LHS should be multiplied by p−n.
[3] p. 208 Theorem 2 line 3, p−2kn−s/2 in LHS should read p−(2k+1)n−s/2.
[3] p. 216 Lemma 7 line 4, p2kn in RHS should read p(2k+1)n.
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