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Abstract. In this paper we investigate the ring of Siegel modular forms of genus two and
level 3. We determine the structure of this ring. It is generated by 10 modular forms (5 of
weight 1 and 5 of weight 3) and there are 20 relations (5 in weight 5 and 15 in weight 6).
The proof consists of two steps. In a first step we prove that the Satake compactification of
the modular variety of genus 2 and level 3 is the normalization of the dual of the Burkhardt
quartic. The second part consists in the normalization of the Burkhardt dual. Our basic tool
is the representation theory of the Burkhardt group G = G25 920, which acts on our varieties.

1. Introduction

In this paper we investigate the ring of Siegel modular forms of genus 2 and level 3.
We determine the structure of this ring. It is generated by 10 modular forms (5 of weight
1 and 5 of weight 3) and there are 20 relations (5 in weight 5 and 15 in weight 6). The
proof consists of two steps. In a first step we prove that the Satake compactification
of the modular variety of genus 2 and level 3 is the normalization of the dual of the
Burkhardt quartic.

This is a hypersurface of degree 18 which we describe explicitly. We give also a
description of the normalization map and we prove that it is bijective.

The second part consists of the normalization of the Burkhardt dual. Our basic tool
is the Burkhardt group G = G25 920, which acts on our varieties. The representation
theory of the Burkhardt group was a strong leading guide.

In fact, we first construct an element in the normalization; then using the action of
G, we are able to construct other elements, and at the end we get a ring contained in
the field of fractions that satisfies Serre’s criterion of normality. This ring will also be
Gorenstein.

Several complicated polynomial identities will occur. It is easy to verify them using
a computer, but it is very tedious to verify them by hand. But we want to point out
that in principle this is possible because no really expensive algorithms such as Gröbner
bases have to be used. (We used them to find identities, but after one has them they
can be easily verified.) Similarly, for representation-theoretic questions and polynomial
computations, respectively, we used the computer algebra systems GAP, cf. [Ga] and
SINGULAR, cf. [Si]. As before it would be possible to manage the calculations by hand
with the help of the known character tables ATLAS, see [At].
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We did not reproduce any program in this paper. A reader, who does not rely on
our statements could write his own programs or can consult [Fr3].

The ring of modular forms with respect to the group Γ0[3] has been determined by
Ibukiyama, cf. [Ib]. His ring is a subring of our ring. We do not need results from
Ibukiyama’s paper and can reprove his main results. But we want to point out that his
paper was extremely useful for us.

2. A five-dimensional space of Siegel modular forms of
genus 2, weight 1, and level 3

Let Γn = Sp(2n,Z) be the full Siegel modular group of genus n. We denote by

Γn[q] = Kernel (Sp(2n,Z) → Sp(2n,Z/qZ))

the principal congruence group of level q and by

Γn,0[q] :=
{
M ∈ Γn |M ≡

[
A B
0 D

]
mod q

}
(1)

the subgroup of Γn defined by C ≡ 0 mod q. The group

Γ2/Γ2[3] ∼= Sp(4,Z/3Z)

contains the negative unit matrix −E in its center. The so-called Burkhardt group

G := Sp(4,Z/3Z)/{±E}
is the finite simple group of order 25, 920.

For a subgroup of finite index Γ ⊂ Γn, an integer r and a character χ, we consider the
space of modular forms [Γ, r, χ]. Its elements are holomorphic functions on the Siegel
upper half plane

Hn = {Z ∈Mn(Z) | Z = Z ′, Im(Z) > 0}
with the property

f(MZ) = χ(M) det(CZ +D)rf(Z), where MZ = (AZ +B)(CZ +D)−1.

Here M is divided into four n × n-blocks as usual. In the case n = 1 the standard
regularity condition at the cusps has to be added.

We write [Γ , r] if the character is trivial.
Let Γ0 ⊂ Γ be a normal subgroup of finite index. The group Γ acts on [Γ0, r] by

f �→ f |M, (f |M)(Z) := det(CZ +D)−rf(MZ),

and this action factors through Γ/Γ0.
We notice that for even n the negative unit-matrix acts trivially.
We consider the graded algebra

A(Γ) :=
⊕

r∈Z
[Γ, r],
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which is related to the Satake compactification

X(Γ) := Hn/Γ ∼= Proj(A(Γ)).

Here we use the fundamental theorem of Baily, see [BB], which states that A(Γ) is
finitely generated and that its associated projective variety is biholomorphic equivalent
to the complex space X(Γ).

We are interested in the ring A(Γ2[3]). The Burkhardt group G acts on this ring as
well as on X(Γ2[3]). We recall that set theoretically we have

X(Γ2[3]) = H2/Γ2[3] ∪ ⋃40
i=1 Ci ∪

⋃40
i=1 Pi. (2)

Here the union is disjoint and we denote with Ci, Pi, respectively, the 1-dimensional
and the 0-dimensional cusps. We recall that each Ci is biholomorphic to H1/Γ1[3]
and we have a (40 , 40)4 relation among the cusps. This means that each copy of
Ci

∼= X(Γ1[3]) ∼= P
1 contains 4 cusps Pi and each Pi is contained in 4 copies of X(Γ1[3]).

We introduce the group

Γ1,1[3] :=
{
M ∈ Γ2 |M ≡



∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗


 mod 3

}
. (3)

Both are subgroups of index 40 in Γ2 and we have that the 0-dimensional cusps are
stabilized by subgroups conjugate to Γ2,0[3] and the 1-dimensional cusps are stabilized
by subgroups conjugate to Γ1,1[3].

We want to introduce certain theta series with respect to the root lattice A2. We use
the Gram matrix

S :=
[
2 1
1 2

]
.

Next we introduce 5 characteristics

P1 =
[
0 0
0 0

]
, P2 =

[
0 1
0 1

]
, P3 =

[
1 0
1 0

]
, P4 =

[
1 1
1 1

]
, P5 =

[
1 −1
1 −1

]
.

They are isotropic in the sense SP ≡ 0 mod 3. We define the theta series

ϑi(Z) :=
∑

G integral

e (tr(S[G+ Pi/3]Z)) (4)

(using the notations S[P ] = P ′SP and e(t) = exp(πi t)). Easily, from [An, p. 24], we
deduce the following.

Proposition 1. The theta series ϑ1, . . . , ϑ5 are contained in [Γ2[3], 1]. They span a five-
dimensional space V which is invariant under the Burkhardt group and with irreducible
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action. The action is given by the following 4 matrices which generate Γ2:

I =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , S0 =




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

S1 =



1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1


 , S2 =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


 .

These four matrices act on the ϑi by the following 5× 5-matrices in the same ordering:

Ĩ :=




−1/3 −2/3 −2/3 −2/3 −2/3
−1/3 1/3 −2/3 1/3 1/3
−1/3 −2/3 1/3 1/3 1/3
−1/3 1/3 1/3 1/3 −2/3
−1/3 1/3 1/3 −2/3 1/3



, S̃0 =




1 0 0 0 0
0 ω 0 0 0
0 0 1 0 0
0 0 0 ω 0
0 0 0 0 ω



,

S̃1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ω2 0
0 0 0 0 ω



, S̃2 =




1 0 0 0 0
0 1 0 0 0
0 0 ω 0 0
0 0 0 ω 0
0 0 0 0 ω




with ω := exp(2πi/3).

The four tilde-matrices generate G̃ ⊂ GL(5,C), a copy of the Burkardt group. We
mention that this group acts on V from the right: Applying an element g ∈ G̃ to
α1ϑ1 + . . . + α5ϑ5 ∈ V is the same as multiplying the row (α1, . . . , α5) from the right
with g.

We mention some simple properties of G̃. Complex conjugation defines an outer
automorphism of G̃. It transforms a representation into its dual representation. We
need the formula

g −→ ḡ′−1 = TgT−1 for g ∈ G̃, T = diag [2, 1, 1, 1, 1].

3. The Burkhardt–Coble invariants

We consider the polynomial ring C[A1, . . . , A5] in five indeterminates. We define the
action of the Burkhardt group such that the natural homomorphism

C[A1, . . . , A5] −→ C[ϑ1, . . . , ϑ5], Ai �→ ϑi,

is equivariant. The ring of invariants C[A1, . . . , A5]G has been determined by Burkhardt.
We use Coble’s construction for these invariants, cf. [Co]. The form ϑ1 belongs to
[Γ2,0[3] , 1 , χS]. Here χS is the real Dirichlet character associated to the quadratic form
S; we recall, see [An, p. 26], that χ2

S = 1 and χS = 1 if we restrict to Γ2[3]. This means
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that the variable A1 is “quasi-invariant” under the image of B ⊂ G of Γ2,0[3]. Following
Coble, we define the invariants gm ∈ C[A1, . . . , A5] by

gm = γm

∑
g∈B\G

(Am
1 ) | g, m = 2, 4, 6, . . . .

The normalizing constants used here have the effect that the constant Fourier coefficients
of the corresponding modular forms are 1 if they are different from 0. (Otherwise we
need no normalizing constant).

The invariants g4, g6, g10, g12, g18 are algebraically independent. They are the
so-called primary invariants, i.e., the full ring of invariants is a finitely generated free
module over C[g4, g6, g10, g12, g18]. We are interested in the corresponding modular forms
G4, G6, G10, G12, G18. With some patience or the aid of a computer, some Fourier
coefficients can be computed. We write the Fourier coefficient of a modular form as

f(Z) =
∑
T

af (T )e(tr(TZ)).

Here T runs through a certain lattice of rational symmetric matrices. In the case of
the full modular group or Γ2,0[3] this lattice consists of all integral matrices with even
diagonal (called even matrices). Recall that a(T ) vanishes if T is not semi-positive.

We start with a list of Fourier coefficients of the thetas ϑi, 1 ≤ i ≤ 5. Here the
matrices T have the property that 3T is even. For the following table we define

ai(T ) = aϑi(T/3), T even.

The following Fourier coefficients are in the range

3t0 ≤ 12, t2 ≤ 6, T =
[
t0 t1
t1 t2

]
.

Fourier coefficients in this range vanish when they do not occur in the following list:

a1([ 0 0
0 0 ]) = 1, a1([ 0 0

0 6 ]) = 6, a1([ 6 0
0 0 ]) = 6, a1([ 6 −6−6 6 ]) = 6,

a1([ 6 −3−3 6 ]) = 12, a1([ 6 3
3 6 ]) = 12, a1([ 6 6

6 6 ]) = 6.

a2([ 0 0
0 2 ]) = 3, a2([ 6 −3−3 2 ]) = 6, a2([ 6 0

0 2 ]) = 6, a2([ 6 3
3 2 ]) = 6.

a3([ 2 0
0 0 ]) = 3, a3([ 2 −3−3 6 ]) = 6, a3([ 2 0

0 6 ]) = 6, a3([ 2 3
3 6 ]) = 6,

a3([ 8 0
0 0 ]) = 3, a3([ 8 −6−6 6 ]) = 6, a3([ 8 0

0 6 ]) = 6, a3([ 8 6
6 6 ]) = 6.

a4([ 2 −1−1 2 ]) = 6, a4([ 2 2
2 2 ]) = 3, a4([ 8 −4−4 2 ]) = 3, a4([ 8 2

2 6 ]) = 6.

a5([ 2 −2−2 2 ]) = 3, a5([ 2 1
1 2 ]) = 6, a5([ 8 −2−2 2 ]) = 6, a5([ 8 4

4 2 ]) = 3.

This table can be used to compute some Fourier coefficients agi(T ) of the invariants:
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T [ 0 0
0 0 ] [ 0 0

0 2 ] [ 2 −1−1 2 ] [ 2 0
0 2 ] [ 4 0

0 0 ] [ 4 −1−1 2 ]

G4 1 240 13440 30240 2160 138240

G6 1 −504 44352 166320 −16632 2128896

G10 1 −264 −26304
13

965520
13 −135432 92233728

13

G12 1
16272

61
16873344

2501
199422432

2501
11599632

61
20120196096

2501

G18 1
16632
205 −105153984

224065
1446026256

224065 −26449416
205 −60302112768

44813

4. The Burkhardt dual

The Fourier coefficients of G4 and G6 are integral. Actually they are Eisenstein
series. Inspection of the Fourier coefficients shows that the forms G4G6, G10 as well
as G3

4, G
2
6, G12 are linearly independent. By a well-known theorem of Igusa, see [Ig]

or [Fr2], the ring of even-weight modular forms of genus two with respect to the full
modular group is generated by the forms of weight 4,6,10,12. This means that this
ring is contained in C[ϑ1, . . . , ϑ5]. As a consequence the ring A(Γ2[3]) is integral over
C[ϑ1, . . . , ϑ5]. We claim that both rings have the same field of fractions. It is sufficient
to show that they have the same homogeneous field of fractions (=the field generated
by quotients of homogeneous elements of the same degree). The homogeneous field of
fractions K(Γ) of A(Γ) is nothing but the field of modular functions. We have the
inclusions

K(Γ2) ⊂ K(ϑi/ϑj) ⊂ K(Γ2[3]).

It is known that the degree of K(Γ2[3]) over K(Γ2) equals the index of Γ2[3] in Γ2

which is the order of the Burkhardt group (25,920). The Burkhardt group also acts
nontrivially on K(ϑi/ϑj) and this action is faithful because the Burkhardt group is
simple. We obtain that the degree of K(ϑi/ϑj) over K(Γ2) is greater or equal to
25, 920. This implies the claimed equality. We have proved:

Proposition 2. The graded algebra A(Γ2[3]) is the normalization of the algebra

C[ϑ1, . . . , ϑ5].

We want to construct this normalization. The first task in this direction is to deter-
mine the kernel of

ψ : C[A1, . . . , A5] −→ C[ϑ1, . . . , ϑ5]. (5)

This is a principal ideal. The modular form G18 must be expressible as a polynomial in
the forms G4, G6, G10, G12. This gives a nontrivial relation and there is no relation of
smaller degree. Using the Fourier coefficients above one can compute this relation and
obtain:

Proposition 3. The kernel of the natural homomorphism

ψ : C[A1, . . . , A5] −→ C[ϑ1, . . . , ϑ5]

is generated by the following polynomial of degree 18:

716696985600P18 := 173650375g18 − 67489485g6g12
−205937433g2

4g10 + 4148960g3
6 + 95627583g3

4g6.
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This polynomial is normalized such that it has integral coprime coefficients.

This will turn out to be a very interesting polynomial, a good reason to write it in
expanded form:

P18(A1, . . . , A5) = 2A3
4A9

5A6
3 − 2A3

1A9
4A6

2 − 2A3
1A6

5A9
4 − 18A1A2

5A8
4A5

2A2
3

− 18A1A5
2A8

5A2
4A2

3 + 2A3
3A9

4A6
2 + A12

5 A6
2 + A12

2 A6
4 + 2A3

2A9
4A6

3 − 2A3
1A9

5A6
4

− 6A2
1A10

4 A5A4
2A3 − 2A3

1A6
2A9

5 − 2A9
5A9

4 − 2A3
2A3

5A12
3 − 6A6

5A6
2A6

3 + 2A3
5A6

4A9
3

+ 2A6
2A3

5A9
3 + 2A3

2A9
5A6

3 + 2A3
5A9

4A6
3 + 8A3

1A3
2A9

5A3
3 + 4A3

5A3
4A9

1A3
3

− 18A5
2A2

5A2
4A8

3A1 − 10A3
5A3

4A6
1A6

3 + A6
1A6

4A6
5 + 12A1A2

4A2
5A11

2 A2
3 − 2A3

5A3
4A12

3

− 6A6
4A6

5A6
3 − 6A6

2A6
5A6

4 + 2A6
5A3

4A9
3 − 8A3

3A3
2A6

4A6
5 − 6A2

1A4A5A10
2 A4

3

− 10A3
2A3

5A6
1A6

3 − 2A3
3A3

5A12
4 + 4A3

2A3
5A9

1A3
3 + 2A3

3A9
5A6

4 + 8A3
2A3

5A9
3A3

1

− 12A2
1A2A4

5A7
4A4

3 − 108A4
1A5

4A2
5A5

2A2
3 + 8A3

5A3
4A9

3A3
1 − 12A2

1A7
5A4A4

2A4
3

− 18A1A8
2A5

5A2
4A2

3 − 12A5A4
2A7

4A2
1A4

3 + 18A7
1A2

2A2
4A5

5A2
3 + 72A5

5A5
4A2

2A5
3A1

− 2A9
5A6

3A3
1 − 12A2

1A4A4
5A7

2A4
3 + 2A3

3A9
2A6

5 + 168A3
5A6

4A3
2A3

1A3
3 − 8A6

5A3
4A3

2A6
3

− 8A3
4A3

5A6
2A6

3 − 8A3
5A6

4A3
2A6

3 − 6A6
2A6

4A6
3 + 168A6

5A3
4A3

2A3
1A3

3 + 168A3
4A3

5A6
2A3

1A3
3

+ A6
5A12

3 − 2A9
2A3

1A6
3 − 18A2

4A2
5A8

2A1A5
3 − 18A2

4A2
2A8

5A5
3A1 + 72A2

4A5
5A5

2A5
3A1

− 315A4
4A4

5A4
2A2

1A4
3 − 108A4

1A5
5A5

4A2
2A2

3 − 2A6
4A3

1A9
3 + 8A3

3A9
4A3

2A3
5 − 8A3

3A6
4A3

5A6
2

+ A6
4A6

1A6
3 − 2A3

3A3
2A12

5 − 6A4A2
1A10

2 A4
5A3 + 2A3

5A9
2A6

3 − 2A9
4A9

3 − 2A3
2A3

4A12
3

+ 12A1A11
4 A2

5A2
2A2

3 + A12
2 A6

3 + A6
4A12

3 + A12
4 A6

3 + 8A9
2A3

5A3
4A3

3 − 18A2
2A1A8

4A5
5A2

3

− 2A3
3A12

2 A3
5 + 24A2A2

1A7
5A7

4A3 − 12A2
1A4

4A4
5A7

2A3 − 108A5
2A2

5A2
4A4

1A5
3

+ 90A5
1A4

4A4
5A4

2A3 − 4A6
5A6

2A3
1A3

3 − 6A2
1A5A10

2 A4
4A3 + 24A2

1A4A7
2A7

5A3

− 6A4
4A2A5A10

3 A2
1 + 8A3

2A9
4A3

1A3
3 − 6A4

2A4A5A8
1A4

3 + 72A5
4A2

5A5
2A5

3A1

+ 8A3
1A9

5A3
4A3

2 + 12A4
4A2A5A5

1A7
3 + 12A1A11

5 A2
4A2

2A2
3 + 2A6

5A3
2A9

3

+ 4A9
1A3

2A3
4A3

5 + 12A5
1A5A4

2A7
4A3 + 2A3

4A9
5A6

2 − 4A6
2A6

4A3
1A3

3 − 27A4
1A2

4A2
5A8

2A2
3

− 27A4
1A2

4A2
2A8

5A2
3 − 108A4

1A2
4A5

5A5
2A2

3 + 8A3
1A9

4A3
2A3

5 + 2A6
4A3

2A9
3 − 2A3

2A12
4 A3

3

− 2A9
5A9

3 − 2A9
2A9

3 + A6
2A6

1A6
3 + 8A3

3A9
5A3

4A3
2 − 2A6

5A9
3A3

1 + A12
5 A6

3

+ 8A3
1A3

2A3
4A9

3 + 18A7
1A5

2A2
5A2

4A2
3 − 18A1A2

2A5
4A8

5A2
3 + 8A3

4A9
2A3

1A3
3

− 12A2
1A7

5A4
4A4

2A3−10A3
2A3

4A6
1A6

3−6A8
1A4

2A4A4
5A3+8A3

2A3
4A3

5A9
3−18A2

3A2
5A8

2A5
4A1

+ A6
5A12

4 − 6A4A2A10
5 A2

1A4
3 + 12A5

1A4A4
5A7

2A3 + 12A5
1A7

5A4A2A4
3

+ 90A5
1A4

2A4A4
5A4

3 + 12A5
1A7

5A4A4
2A3 + 90A5

1A4
5A4

4A2A4
3 + 2A3

5A9
4A6

2 − 2A3
5A12

4 A3
2

− 6A8
1A4

5A4
4A2A3 + A6

1A6
2A6

4 − 2A12
5 A3

4A3
3 − 4A3

1A6
5A3

4A6
3 + 12A5

1A2A4
5A7

4A3

+ 2A9
2A6

5A3
4 + 24A5A2

1A7
2A7

4A3 + 2A3
3A9

2A6
4 − 6A2

1A3A2A10
4 A4

5 − 10A6
1A6

2A3
4A3

3

+ 18A7
1A5

4A2
5A2

2A2
3 − 10A6

1A3
5A6

4A3
3 + 12A5

1A4
4A5A7

2A3 + 12A5
1A2A4

4A7
5A3

+ 12A5
1A7

2A5A4
3A4−2A3

1A9
2A6

4−3A10
1 A2

5A2
2A2

4A2
3−6A8

1A4
4A4

2A5A3−6A2
1A10

5 A4
2A4A3

− 27A4
1A2

5A2
2A2

4A8
3 − 6A8

1A4
5A2A4A4

3 + 2A9
2A3

5A6
4 − 4A6

5A3
2A6

3A3
1 − 12A4

5A4
4A2A7

3A2
1

+ A6
5A6

1A6
3 − 4A6

2A3
5A6

3A3
1 − 2A9

4A6
3A3

1 + 18A2
5A2

2A2
4A7

1A5
3 − 4A3

5A6
4A3

1A6
3 + A6

2A12
3

+ 8A3
1A9

2A3
5A3

4 − 8A6
2A6

5A3
4A3

3 − 10A6
1A6

5A3
4A3

3 − 2A12
2 A3

4A3
3 + 8A3

1A3
5A9

2A3
3

+ 24A7
2A5A7

3A4A2
1 − 18A2

2A2
5A8

4A5
3A1 − 12A2A4

4A7
5A2

1A4
3 − 6A2A5A10

4 A2
1A4

3

+ 12A4
5A2A4A5

1A7
3 + 12A4

2A4A5A5
1A7

3 − 18A5
5A2

2A2
4A8

3A1 − 10A6
1A6

2A3
5A3

3

+ 24A7
4A5A2A7

3A2
1 − 4A6

4A3
2A6

3A3
1 + 24A7

5A4A2A7
3A2

1 − 12A4
2A4A4

5A7
3A2

1 + 2A6
5A9

4A3
3

− 6A4
2A4A5A10

3 A2
1−18A5

4A2
5A2

2A1A8
3 − 108A5

4A2
5A2

2A4
1A5

3 − 6A4
5A2A4A2

1A10
3

+ 168A3
2A3

4A3
5A3

1A6
3 − 10A6

1A6
5A3

2A3
3 − 12A4

4A4
2A5A2

1A7
3 + 90A4

4A4
2A5A5

1A4
3

− 10A6
1A6

4A3
2A3

3 + 4A9
1A3

2A3
4A3

3 − 4A6
2A3

4A6
3A3

1 + A6
5A12

2 + A6
1A6

5A6
2 + 8A3

1A3
5A9

4A3
3

− 12A4
4A5A7

2A2
1A4

3 − 108A4
1A5

5A2
2A2

4A5
3 + 12A2

5A2
2A2

4A11
3 A1 + 12A5

1A7
4A5A2A4

3

− 2A3
4A3

5A12
2 − 4A3

1A6
4A3

5A6
2 − 2A9

2A9
5 − 4A3

1A3
2A6

4A6
5 + A12

4 A6
2 − 2A9

2A9
4 + A12

5 A6
4

− 4A3
1A3

4A6
2A6

5 − 4A3
1A6

4A6
5A3

3 + 2A3
2A9

4A6
5 + 2A9

5A6
4A3

2 − 2A3
1A9

2A6
5 − 2A3

4A12
5 A3

2

− 10A6
1A3

4A3
5A6

2−10A6
1A6

5A3
4A3

2−10A6
1A3

5A6
4A3

2−6A2
1A3A2A10

5 A4
4−96A6

1A3
2A3

4A3
5A3

3
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+ 2A6
2A3

4A9
3 + 2A3

3A6
2A9

5 − 27A4
1A2

2A2
5A8

4A2
3 − 2A3

1A6
2A9

3 − 6A8
1A4

4A2A5A4
3

+ 8A3
1A3

4A9
5A3

3 + 2A3
4A9

2A6
3 + 72A1A5

2A5
5A5

4A2
3 − 12A2

1A3A4
2A7

4A4
5.

There is a much better description of the polynomial P18. It is connected with the
famous Burkhardt quartic polynomial

g4 = A4
1 + 8A1A

3
2 + 8A1A

3
3 + 8A1A

3
4 + 8A1A

3
5 + 48A2A3A4A5 (6)

defining the Burkhardt quartic B. We recall that this variety has 45 double points, and
it is rational and birational to X(Γ2[3]); for these and other data we refer to [Ba], [Hu],
and [Ge].

The polynomial P18 is essentially the dual of the quartic. Recall that the dual Q of
an irreducible homogeneous polynomial P (X1, . . . , Xn) is defined by

Q(gradP ) ≡ 0 modP.

Geometrically it describes the set of all tangent hyperplanes. Up to some exceptional
cases, the dual of a polynomial is unique up to a constant factor, and the dual of the dual
is the polynomial itself. The dual of g4 is also an invariant polynomial, but invariant
under the dual representation, i.e., invariant under the group of all (g′)−1, g ∈ G. It is
a real polynomial. Therefore it is also invariant under all ḡ′−1. But as we mentioned,
this group is conjugate to G, where the conjugation map is given by doubling the first
variable A1.

Proposition 4. If one takes the dual polynomial of Burkhardt’s quartic polynomial g4
and replaces A1 by 2A1 one obtains (up to a constant factor) the polynomial P18.

Proof. The proof is done by straightforward calculation. �
We set

A := C[A1, . . . , A5]/(P18) (7)

and we shall denote the projective variety defined by the vanishing of P18 with B∨ and
call it the Burkhardt dual,

B∨ := Proj(A). (8)

Hunt [Hu] predicted, using general results of invariant theory, that the degree of the
dual of the Burkhardt quartic is 18. He also made some comments about the singular
locus of the dual. Actually this singular locus can be determined completely.

5. The singular locus of the Burkhardt dual

We denote by ∆ the diagonal in H2, i.e.,

∆ :=
{
Z ∈ H2; Z =

[
τ1 0
0 τ2

] }
.

For a subgroup Γ ⊂ Γ2 of finite index denote the natural projection by
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πΓ : H2 −→ H2/Γ.

The image πΓ(∆) is an irreducible subvariety of H2/Γ. We use also the notations

∆[3] := πΓ2[3](∆) and ∆0[3] := πΓ2,0[3](∆).

We are interested in

G∆[3] =
⋃
g∈G

g(∆[3])

and in its closure G∆[3].
We have to determine the normalizer of ∆[3] in G. This normalizer NG(∆[3]) con-

tains the direct product of two copies of SL(2Z/3Z/{±E}. The whole normalizer is an
extension of index two of the direct product of the two copies. This shows that

[G : NG(∆[3])] = 45.

Therefore G∆[3] ⊂ X(Γ2[3]) has 45 irreducible components. They are therefore disjoint.
We denote by H the image of Γ1,1[3] in G. The subgroups NG(∆[3]), B,H are

maximal in G; their orders are respectively 576, 648, 648 and they have been extensi-
vely studied by Burkhardt, see [Bu].

We recall that ∆[3] contains [NG(∆[3]) : (NG(∆[3])∩H)] = 8 boundary components
of the type Ci, and vice versa each Ci is contained in [H : (NG(∆[3])∩H)] = 9 irreducible
boundary components. Similarly, ∆[3] contains [NG(∆[3]) : (NG(∆[3]) ∩B)] = 16, and
vice versa each cusp Pi is contained in B : (NG(∆[3]) ∩ B)] = 18 irreducible boundary
components.

We know that the intersection of two closed components of the diagonal locus consists
either of two of the 45 P1 or of the four intersection points of two boundary components.
(There are no intersection points away from the boundary.)

Proposition 5. The singular locus of the Burkhardt dual has 45 irreducible compo-
nents. Each of them has codimension one. The Burkhardt group permutes the compo-
nents transitively. One of the components is defined (as set) by the zeros of the ideal

p := (A5 −A4, A1A4 −A2A3) ⊂ A. (9)

This component equals the closure of the image of the diagonal under the natural maps

H2 −→ X(Γ2[3]) −→ Proj(A).

The whole singular locus can be described also (as set) as the zero locus of the principal
ideal

(P10) ⊂ A, where P10 := 13(g4g6 − g10)/777600.

The normalizing constant has been chosen such that the Fourier coefficient of the cor-

responding modular form with respect to
[
21
12

]
is 1.
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Proof. By a classical result, cf. [Ig1] or [Fr1], the modular form χ10, corresponding to P10,
vanishes at the 45 diagonal components and has no other zeros. Under the normalization
map

φ : X(Γ2[3]) −→ Proj(A) (10)

the 45 diagonal components map to 45 different irreducible subvarieties in the variety
Proj(A). This follows from the maximality of B in the Burkhardt group. (The only
alternative that all 45 collapse to one can be excluded easily).

A direct computation shows that P10 and P18 are contained in the ideal p and,
consequently, also in the 45 conjugate ideals. They all are prime ideals. Hence they
define in A the minimal prime ideals containing P10. Another direct computation shows
that the squares of the partial derivatives of P18 are contained in the ideal (P18 , P10)
and finally that P 3

10 is contained in the ideal generated by P18 and the first of the partial
derivatives. This proves the proposition. �

The proof showed that the first partial derivative of P18 has the same zero sets (but
possibly with different multiplicities) as P10 (considered in A). We will use this later.

So the map φ is therefore be biholomorphic outside the locus in the variety Proj(A)
defined by P10 = 0. We want to study in detail the map along this locus.

The maximality of the subgroups NG(∆[3]), B,H and the G-equivariance of the map
φ imply that the singular locus of the Burkhardt dual not only has 45 irreducible com-
ponents, but it also has 40 one-dimensional subvarieties corresponding to the boundary
components Ci and 40 points corresponding to the cusps Pi (also in these cases, the
only alternatives would be that all components collapse to one, but this can be excluded
easily).

In a first step we claim that the restriction of φ to one of the 45 irreducible components
is injective. For example, we restrict to ∆[3], the closure of the image of the diagonal
in the Satake compactification.

For an accurate description of the map φ, we need to recall some facts about modular
forms of genus 1. We introduce 2 characteristics:

v1 =
[
0
0

]
v2 =

[
1
1

]

and we define the theta series of genus 1 to be

θi(τ) :=
∑

G integral

e (tr(S[(G+ vi)/3]τ)) .

We recall that θ1 and θ2 generate the ring of modular forms A(Γ1[3]). This is a conse-
quence of the dimension formula given, for example, in [Mi, p. 60]. If we denote by φ̃
the restriction of φ to ∆[3], we get that

φ̃ : ∆[3] −→ P
1 × P

1 −→ P
4, (11)

(τ1, τ2) �→ (θ1(τ1)θ1(τ2), θ1(τ1)θ2(τ2), θ2(τ1)θ1(τ2), θ2(τ1)θ2)(τ2), θ2(τ1)θ2)(τ2))

is bijective.
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We have proved now that ∆[3] maps bijectively to the zero locus of p in the Burkhardt
dual. To get the bijectivity we need some information about their intersection behavior.

Let us consider the standard 1-dimensional boundary component C, which contains

lim
y→∞

[
τ 0
0 iy

]
;

we have the equation of its image is A3 = A4 = A5 = 0.
Moreover, the equation of the image of the so-called cusp

∞ := lim
y→∞

[
iy 0
0 iy

]

is A2 = A3 = A4 = A5 = 0.
We have to prove that the 45 components of the singular locus of the Burkhardt dual

have the same intersection behavior as the corresponding components in the Satake
compactification. It is easy to compute the 45 ideals conjugate to p and to verify the
intersection behavior since the images of the boundary components in the Burkhardt
dual are given by linear equations. We will not reproduce this calculation here. We
only recall that the polynomial P18 is already contained in (A4 −A5, A1A4 − A2A3) ⊂
C[A1, . . . , A5]. Hence the calculations have to be performed in the polynomial ring
C[A1, . . . , A5] (and not in the factor ring A).

Theorem 1. The normalization map φ : X(Γ2[3]) −→ Proj(A) is bijective.

6. A basic modular form of weight 3

We have to investigate the action of B in the Burkhardt group G on the 45 diagonal
components. From the results of the previous section, it does not make a difference
whether we consider it in Proj(A) or in the normalization.

Proposition 6. The set of the 45 components of G∆[3] decomposes into two orbits un-
der B. The orbit B∆[3] contains 18 components. Consequently the other orbit contains
27 components.

Proof. This is an immediate consequence of the following well-known facts:

G = B ·NG(∆[3] ∪B · I ·NG(∆[3], and [B : NG(∆[3]) ∩B] = 18.

Thus B∆[3] contains 18 components and the other orbit contains 27 components. �
We now consider the polynomial of degree 17:

∂P18

∂A1
∈ C[A1, . . . , A5].

This is a B-invariant polynomial. As we mentioned after the proof of Proposition 5 this
polynomial has the same zero set as P10. This leads us to consider

F :=
P 2

10

∂P18/∂A1

(in the field of fractions of A). What we found is an element of the normalization!
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Theorem 2. One has the following integral equations in A:

F 2 = P6, F 3 = P9

with the following polynomials:

P6(A1, . . . , A5) := 2−43−18(
A6

1−2A3
1A3

2+A6
2−2A3

1A3
3−A3

2A
3
3+A6

3−2A3
1A3

4−A3
2A

3
4

− A3
3A3

4 + A6
4 + 9A2

1A2A3A4A5 − 2A3
1A3

5 − A3
2A3

5 − A3
3A3

5 − A3
4A3

5 + A6
5

)
,

P9(A1, . . . , A5) := −2−73−27(
2A9

1 − 6A6
1A3

2 + 6A3
1A6

2 − 2A9
2 − 6A6

1A3
3 + 3A3

1A3
2A3

3

+ 3A6
2A3

3 +6A3
1A6

3 +3A3
2A6

3 − 2A9
3 − 6A6

1A3
4 +3A3

1A3
2A3

4 +3A6
2A3

4 +3A3
1A3

3A3
4

− 12A3
2A3

3A3
4 + 3A6

3A3
4 + 6A3

1A6
4 + 3A3

2A6
4 + 3A3

3A6
4 − 2A9

4 + 27A5
1A2A3A4A5

− 27A2
1A4

2A3A4A5 − 27A2
1A2A4

3A4A5 − 27A2
1A2A3A4

4A5 + 81A1A2
2A2

3A
2
4A2

5

− 6A6
1A3

5 + 3A3
1A3

2A3
5 + 3A6

2A3
5 + 3A3

1A3
3A

3
5 − 12A3

2A3
3A

3
5 + 3A6

3A3
5

+ 3A3
1A3

4A3
5 − 12A3

2A3
4A3

5 − 12A3
3A3

4A3
5 + 3A6

4A3
5 − 27A2

1A2A3A4A4
5 + 6A3

1A6
5

+ 3A3
2A6

5 + 3A3
3A6

5 + 3A3
4A6

5 − 2A9
5

)
.

There is another representation of F with the G-invariant denominator P10, namely
F = P13/P10, where

P13(A1, . . . , A5) := 2−33−13(
A7

1A3
2A3

3 − 2A4
1A6

2A3
3 + A1A

9
2A3

3 − 2A4
1A3

2A6
3

− 4A1A6
2A

6
3 + A1A3

2A
9
3 + A7

1A3
2A3

4 − 2A4
1A6

2A3
4 + A1A9

2A3
4 + A7

1A
3
3A3

4

− 15A4
1A3

2A3
3A3

4 + 2A1A6
2A3

3A3
4 − 2A4

1A6
3A3

4 + 2A1A3
2A

6
3A3

4 + A1A
9
3A3

4

− 2A4
1A3

2A
6
4 − 4A1A6

2A6
4 − 2A4

1A3
3A6

4 + 2A1A3
2A3

3A6
4 − 4A1A6

3A6
4 + A1A

3
2A9

4

+ A1A3
3A9

4−A9
1A2A3A4A5+3A3

1A7
2A3A4A5−2A10

2 A3A4A5+33A3
1A4

2A4
3A4A5

+ 3A7
2A4

3A4A5 + 3A3
1A2A

7
3A4A5 + 3A4

2A7
3A4A5 − 2A2A10

3 A4A5

+ 33A3
1A4

2A3A4
4A5 + 3A7

2A3A4
4A5 + 33A3

1A2A4
3A4

4A5 − 12A4
2A4

3A
4
4A5

+ 3A2A7
3A

4
4A5 + 3A3

1A2A3A7
4A5 + 3A4

2A3A7
4A5 + 3A2A4

3A
7
4A5

− 2A2A3A
10
4 A5 − 54A2

1A5
2A2

3A2
4A2

5 − 54A2
1A2

2A5
3A2

4A2
5 − 54A2

1A2
2A2

3A
5
4A2

5

+ A7
1A3

2A3
5 − 2A4

1A6
2A3

5 + A1A9
2A3

5 + A7
1A3

3A3
5 − 15A4

1A3
2A

3
3A3

5 + 2A1A6
2A

3
3A3

5

− 2A4
1A6

3A
3
5 + 2A1A3

2A6
3A

3
5 + A1A

9
3A3

5 + A7
1A

3
4A3

5

− 15A4
1A3

2A3
4A3

5 + 2A1A6
2A

3
4A3

5 − 15A4
1A3

3A
3
4A3

5 + 93A1A3
2A3

3A
3
4A3

5

+ 2A1A6
3A

3
4A3

5 − 2A4
1A6

4A3
5 + 2A1A3

2A6
4A3

5 + 2A1A3
3A6

4A3
5 + A1A

9
4A3

5

+ 33A3
1A4

2A3A4A
4
5 + 3A7

2A3A4A
4
5 + 33A3

1A2A4
3A4A4

5 − 12A4
2A4

3A4A4
5

+ 3A2A7
3A4A4

5 + 33A3
1A2A3A4

4A4
5 − 12A4

2A3A4
4A4

5 − 12A2A4
3A

4
4A4

5

+ 3A2A3A
7
4A4

5 − 54A2
1A2

2A2
3A2

4A5
5 − 2A4

1A3
2A6

5 − 4A1A6
2A

6
5 − 2A4

1A3
3A6

5

+ 2A1A3
2A

3
3A6

5 − 4A1A6
3A6

5 − 2A4
1A3

4A6
5 + 2A1A3

2A3
4A6

5 + 2A1A3
3A

3
4A6

5

− 4A1A6
4A

6
5 + 3A3

1A2A3A4A7
5 + 3A4

2A3A4A7
5 + 3A2A4

3A4A
7
5 + 3A2A3A

4
4A7

5

+ A1A3
2A9

5 + A1A
3
3A9

5 + A1A3
4A9

5 − 2A2A3A4A10
5

)
.

An easy computation tells us the following.

Proposition 7. The zero locus of F consists of the B-orbit of 27 diagonal components.
The multiplicities — counted in H2 — are one.

Proof. Since we have only two possibilities, it is enough to check that the zero locus of F
does not contain the point (1, 0, . . . , 0). This is easily verified taking the representation
F = P9/P6. �
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We obtain more elements of the normalization when we apply the Burkhardt group to
F (and we will show that they generate the normalization). Because F is invariant under
B, it is one of 40 conjugate elements. It can be shown that they are linearly independent.
Computations of this type can be easily managed using of a list of special points of the
Burkhardt dual. Such a list can be constructed using the classical unirationalization of
the Burkhardt quartic (zero locus of g4), see [Co],

y1 = 3x1x2x3x4

y2 = x1(x3
2 + x3

3 − x3
4)

y3 = −x2(x3
1 + x3

3 + x3
4) (12)

y4 = x3(−x3
1 + x3

2 + x3
4)

y5 = x4(x3
1 + x3

2 − x3
3).

The partial derivatives of g4 evaluated at points (2y1, y2, y3, y4, y5) define points of
the Burkhardt dual (zero locus of P18). It is not difficult to compute the values of the
40 conjugate forms at such special points. It is possible to find 40 different points such
that the corresponding 40× 40-matrix is non-singular. Hence the conjugates of F span
a 40-dimensional space which is invariant under G. But this representation is not irre-
ducible. Its character can be computed, and it turns out that it contains a 5-dimensional
subrepresentation. Both 5-dimensional representations of the Burkhardt group contain
a B-invariant element. This element defines a modular form in [Γ2,0[3], 3, χS]. It is
known that the space of these forms has dimension 3. Fortunately we have already such
three forms, namely ψ1 := F (ϑ1, . . . , ϑ5), ϑ3

1 and ϑ3
2 + ϑ3

3 + ϑ3
4 + ϑ3

5.
What we have seen is that there exist constants α, β such that the 40 conjugate forms

of

F + αA3
1 + β(A3

2 +A4
3 +A3

4 +A3
5)

span a five-dimensional space. A numerical calculation shows that there is exactly one
pair of numbers α, β with this property. In this way we obtain:

Proposition 8. The element

C1 := −2539F − 7A3
1 + 4(A3

2 +A3
3 +A3

4 +A3
5) (13)

is contained in a five-dimensional representation space of G. It is the unique (up to a
constant factor) B-invariant element of this space.

Here are some Fourier coefficients of C1(ϑ1, . . . , ϑ5):

T [ 0 0
0 0 ] [ 0 0

0 2 ]
[

2 −1−1 2

]
[ 2 0
0 2 ] [ 4 0

0 0 ]
[

4 −1−1 2

]

C1 1 −90 3060 2160 −216 4320

We conclude this section observing that we can express the above modular forms as
linear combinations of theta series. In fact we can consider the theta series related to
the lattices E6 and E∗

6 (3). Looking at the Fourier coefficients we get

ϑE6 = ϑ3
1 + 2(ϑ3

2 + ϑ3
3 + ϑ3

4 + ϑ3
5)

and
27ϑE∗

6 (3) = 25ϑ3
1 + 2C1(ϑ1, . . . , ϑ5) − 10(ϑ3

2 + ϑ3
3 + ϑ3

4 + ϑ3
5).
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7. A five-dimensional space of modular forms of weight 3

We already mentioned that G has two 5-dimensional representations, and they are
dual. Hence the five-dimensional space, which contains C1, could be isomorphic to the
space generated by the A-s or isomorphic to its dual. One computes that the first case
happens and obtains:

Proposition 9. The element C1 is part of a tuple (C1, . . . , C5) with the same transfor-
mation law as the elements (A1, . . . , A5). This defines C2, . . . , C5.

We derive an explicit representation for the Ci as linear combinations of transformed
F . Using the notation of the above theorem, we introduce 5 elements of the Burkhardt
group

g1 = unit matrix, g2 = Ĩ , g3 = ĨS̃0, g4 = ĨS̃1, g5 = ĨS̃2.

We use

C :=



C1

...
C5


 , G =



Cg1

1
...

Cg5
1


 .

Finally we introduce the matrix

T =




1 0 0 0 0
−1/2 1/2ω − 1/2 0 −1 − 1/2ω 0
−1/2 1/2ω − 1/2 −1 − 1/2ω 0 0

1/2 + 1/2ω 1 + 1/2ω 1/2 + ω 1/2 + ω −1/2 − ω
−1/2ω −3/2 − 3/2ω −1/2ω+ 1/2 −1/2ω+ 1/2 1/2 + ω



.

Remark. One has
C = T ·G. (14)

8. Relations

We have to treat the relations between A1, . . . , C5. There must be a B- invariant
relation in weight 5 as follows from the dimension formula dim[Γ2,0[3], 5, χS] = 4.

This relation can be computed by means of the technique of special points and it
can be transformed under the Burkhardt group. It turns out that it generates a five-
dimensional G-invariant space of relations.

Here is a basis:

Proposition 10. The space of relations in weight 5 is generated by



A2
1 2A2

2 2A2
3 2A2

4 2A2
5

A2
2 2A1A2 2A4A5 2A3A5 2A3A4

A2
3 2A4A5 2A1A3 2A2A5 2A2A4

A2
4 2A3A5 2A2A5 2A1A4 2A2A3

A2
5 2A3A4 2A2A4 2A2A3 2A1A5







C1

C2

C3

C4

C5
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=




A5
1 + 120A1A2A3A4A5 − 10A2

1A
3
2 − 10A2

1A
3
3 − 10A2

1A
3
4 − 10A2

1A
3
5

−4A5
2 − 5A3

1A
2
2 + 20A2

2A
3
3 + 20A2

2A
3
5 + 20A2

2A
3
4 + 30A2

1A3A4A5

−4A5
3 − 5A3

1A
2
3 + 20A2

3A
3
4 + 20A2

3A
3
5 + 20A3

2A
2
3 + 30A2

1A2A4A5

−4A5
4 − 5A3

1A
2
4 + 20A3

3A
2
4 + 20A3

2A
2
4 + 20A2

4A
3
5 + 30A2

1A2A3A5

−5A3
1A

2
5 + 20A3

3A
2
5 + 20A3

2A
2
5 + 20A3

4A
2
5 − 4A5

5 + 30A2
1A2A3A4



. (15)

It is worthwhile to mention that the determinant of the above matrix up to a con-
stant equals P10. This is another explanation for the formula F = P13/P10 from Sec-
tion 6. We remark that if we express C1, . . . , C5 as rational function in the A-s, using
(13) and F = P13/P10, the above equality gives an identity in the polynomial ring
C[A1, A2, A3, A4, A5] and not for A alone.

We describe now relations in weight 6. The relation F 2 = P6 is one. If we apply
the Burkhardt group to this relation, we obtain 40 linearly independent relations. The
40-dimensional space generated by these relations splits into a 25-dimensional and an
irreducible 15-dimensional G-invariant space of relations. Multiplying the 5 relations
in weight 5 with A1, . . . , A5, we obtain 25 relations. Actually they span the mentioned
25-dimensional space. We mention that this 25-dimensional representation contains the
trivial representation and a 24-dimensional irreducible one. We describe the remaining
15-dimensional space:

Proposition 11. There are 15 relations of the form

CiCj = Q
(ij)
1 C1 +Q

(ij)
2 C2 +Q

(ij)
3 C3 +Q

(ij)
4 C4 +Q

(ij)
5 C5 +Q(ij), 1 ≤ i ≤ j ≤ 5

with polynomials Q(ij)
k of degree three and Q(ij) of degree six. They are given explicitly

in the following tables:

Q(11)= 32A6
5 + 5A6

1 + 32A6
4 + 32A6

2 + 32A6
3 + 8A3

1A3
5 + 64A3

2A3
5 + 8A3

1A3
2

+ 64A3
5A3

4 + 8A3
1A3

3 + 64A3
3A3

4 + 8A3
1A3

4 + 64A3
2A3

4 + 64A3
2A3

3

+ 64A3
3A3

5 − 144A2
1A2A4A5A3,

Q(12)= 288A2
3A2

4A2
5−24A3

5A2
1A2−24A3

4A2
1A2−3A5

1A2+48A2
1A4

2−24A3
3A2

1A2

+ 144A3A4A5A1A2
2,

Q(13)= 48A4
3A2

1+288A2
4A2

5A2
2−24A3A3

5A
2
1−24A3A2

1A3
2−24A3A3

4A2
1−3A3A5

1

+ 144A2
3A4A5A1A2,

Q(14)= −24A4A3
5A2

1 − 24A4A2
1A3

2 − 24A3
3A4A2

1 + 288A2
3A2

5A
2
2 − 3A4A5

1

+ 48A4
4A2

1 + 144A3A2
4A5A1A2,

Q(15)= 48A4
5A2

1−3A5A5
1−24A3

4A5A2
1−24A5A2

1A3
2−24A3

3A5A
2
1+288A2

3A2
4A2

2

+ 144A3A4A
2
5A1A2,

Q(22)= 21A4
1A2

2+96A3A4
5A4+96A3A4

4A5+24A3
4A1A

2
2+24A3

5A1A2
2+24A1A5

2

+ 48A3A4A5A3
1 − 48A3A4A5A3

2 + 96A4
3A4A5 + 24A3

3A1A2
2,

Q(23)= −24A3A1A4
2 − 3A3A4

1A2 + 72A2
4A2

5A2
1 − 24A4

3A1A2 + 120A3A3
4A1A2

+ 120A3A3
5A1A2 + 144A2

3A4A5A2
2,

Q(24)= −24A4A1A4
2 − 3A4A4

1A2 + 72A2
3A2

5A2
1 − 24A4

4A1A2 + 120A4A3
5A1A2

+ 120A3
3A4A1A2 + 144A3A2

4A5A2
2,
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Q(25)= −24A5A1A4
2 + 72A2

3A2
4A2

1 − 24A4
5A1A2 − 3A5A4

1A2 + 120A3
4A5A1A2

+ 120A3
3A5A1A2 + 144A3A4A2

5A2
2,

Q(33)= 21A2
3A4

1+96A4
4A5A2+24A2

3A3
4A1+96A4A4

5A2+96A4A5A4
2+24A5

3A1

− 48A3
3A4A5A2 + 24A2

3A3
5A1 + 24A2

3A1A3
2 + 48A4A5A3

1A2,

Q(34)= −24A4
3A4A1 − 3A3A4A4

1 + 72A2
5A2

1A
2
2 − 24A3A4

4A1 + 120A3A4A1A3
2

+ 120A4A3
5A3A1 + 144A2

3A2
4A5A2,

Q(35)= −3A3A5A4
1+72A2

4A2
1A2

2−24A3A4
5A1+120A3A5A1A3

2+120A3
4A5A3A1

+ 144A2
3A4A

2
5A2 − 24A4

3A5A1,

Q(44)= 21A2
4A4

1+96A3A4
5A2+24A2

4A1A3
2+24A3

3A2
4A1+96A3A5A4

2+24A5
4A1

− 48A3
4A5A3A2 + 96A4

3A5A2 + 24A2
4A3

5A1 + 48A3A5A3
1A2,

Q(45)= 72A2
3A2

1A2
2−3A4A5A4

1−24A4
4A5A1+120A4A5A1A3

2+144A2
4A2

5A3A2

+ 120A3
3A4A5A1 − 24A4A4

5A1,

Q(55)= 24A5
5A1 + 21A2

5A4
1 + 24A2

5A1A3
2 + 96A3A4A4

2 + 24A3
4A2

5A1

+ 96A3A4
4A2 +96A4

3A4A2 +24A3
3A2

5A1−48A4A3
5A3A2 +48A3A4A3

1A2.

The polynomials Q(ij)
k are given in the same ordering in the following table:

4A3
2−4A3

1+4A3
4

+4A3
3+4A3

5

12A1A2
2−24A3A4A5

12A1A2
3−24A2A4A5

12A1A2
4−24A2A3A5

12A1A2
5−24A2A3A4

3A2
1A2

−4A3
3−4A3

4−4A3
5

+A3
1+8A3

2
−12A2A2

3 −12A2A2
4 −12A2A2

5

3A2
1A3 −12A2

2A3
−4A3

5−4A3
2−4A3

4
+A3

1+8A3
3

−12A3A2
4 −12A3A2

5

3A2
1A4 −12A2

2A4 −12A2
3A4

−4A3
5−4A3

3−4A3
2

+A3
1+8A3

4
−12A4A2

5

3A2
1A5 −12A2

2A5 −12A2
3A5 −12A2

4A5
−4A3

2−4A3
3−4A3

4
+A3

1+8A3
5

−12A3A4A5
+6A1A2

2
6A2

1A2 −12A1A4A5 −12A1A3A5 −12A1A3A4

−6A1A2A3 −3A2
1A3 −3A2

1A2 −12A4A2
5 −12A2

4A5

−6A1A2A4 −3A2
1A4 −12A3A2

5 −3A2
1A2 −12A2

3A5

−6A1A2A5 −3A2
1A5 −12A3A2

4 −12A2
3A4 −3A2

1A2

6A1A2
3−12A2A4A5

−12A1A4A5 6A2
1A3 −12A1A2A5 −12A1A2A4

−6A1A3A4 −12A2A2
5 −3A2

1A4 −3A2
1A3 −12A2

2A5

−6A1A3A5 −12A2A2
4 −3A2

1A5 −12A2
2A4 −3A2

1A3

6A1A2
4−12A2A3A5

−12A1A3A5 −12A1A2A5 6A2
1A4 −12A1A2A3

−6A1A4A5 −12A2A2
3 −12A2

2A3 −3A2
1A5 −3A2

1A4

6A1A2
5−12A2A3A4

−12A1A3A4 −12A1A2A4 −12A1A2A3 6A2
1A5

We shall need a certain relation of weight 8, which is a consequence of the relations
of weight 5 and 6. One obtains this relation if one multiplies the first of the 5 relations
in weight 5 by C1 and the replaces all the occurring C1Ci by linear functions in the C-s
(relations of weight 6). The result is



THE BURKHARDT GROUP AND MODULAR FORMS 41

Proposition 12. The polynomial

R6:= 5C1A5
1 − 5A8

1 − 20C1A2
1A3

2 − 20C1A2
1A3

3 − 20C1A2
1A3

4 − 20C1A2
1A3

5

− 14A3
1A2

2C2 − 14A3
1A2

3C3 − 14A3
1A2

5C5 − 14A3
1A2

4C4 + 32A2
1A3

2A3
5

+ 32A2
1A3

5A3
4 + 32A2

1A3
3A3

4 + 32A2
1A3

2A3
4 + 32A2

1A3
2A3

3 + 32A2
1A3

3A3
5

+ 32A3
2A2

5C5 + 32A3
2A2

3C3 + 32A3
2A2

4C4 + 32A2
2A3

3C2 + 32A2
2A3

4C2

+ 32A2
2A3

5C2 + 32A2
3A3

5C3 + 32A3
3A2

5C5 + 32A2
3A3

4C3 + 32A3
3A2

4C4

+ 32A2
4A3

5C4 + 32A3
4A2

5C5 − 128A2
1A6

5 + 120C1A1A2A3A4A5 − 128A2
1A6

4

− 128A2
1A6

2 − 128A2
1A6

3 − 2A5
1A3

5 − 2A5
1A3

2 − 2A5
1A3

3 − 2A5
1A3

4

− 16A5
3C3 − 16A5

4C4 − 16A5
5C5 + 24A2

1A2A4A5C3 + 144A4
1A2A4A5A3

+ 24A2
1A2A3A5C4 +24A2

1A2A3A4C5 +24A2
1A3A4A5C2−2304A2

2A2
3A

2
4A2

5

− 288A4
2A3A4A5A1 − 288A4

3A4A5A1A2 − 288A4
4A3A5A1A2 − 16A5

2C2

− 288A4
5A3A4A1A2

is contained in the ideal generated by the relations of weight 5 and 6.

9. The ring of modular forms

In this section we will see that the elements and relations constructed in the previous
sections are enough to describe the ring of modular forms; in fact, in several steps we
shall prove:

Theorem 3. The graded algebra A(Γ2[3]) is generated by the forms A1, . . . , A5 of weight
one and forms C1, . . . , C5 of weight three.

Both span five-dimensional irreducible representations of the Burkhardt group. There
are 5 relations in weight 5 and 15 relations in weight 6. These relations generate the
ideal of all relations. The Hilbert function is

∞∑
r=0

dim[Γ2(3), r]tr =
(1 + t+ t2 + 6t3 + 6t4 + t5 + t6 + t7)

(1 − t)4

= 1 + 5t+ 15t2 + 40t3 + 95t4 + 196t5 + 360t6 + 605t7 + 949t8 + 1410t9 + . . . .

Proof. We take A1, . . . , C5 as 10 independent variables and consider the polynomial ring

C[A1, . . . , A5, C1, . . . , C5].

Let I be the ideal generated by the 20 relations. We denote the factor ring by

R := C[A1, . . . , A5, C1, . . . , C5]/I.

The relations of weight 5 are polynomials of degree ≤ 1 in the C-s. We denote them by
R1, . . . , R5. Recall that there is an additional relation R6 of weight 8.

We also consider the polynomial ring

C[A1, . . . , A5]

and its free module of rank 6
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F := C[A1, . . . , A5] ⊕ C[A1, . . . , A5]C1 + . . .+ C[A1, . . . , A5]C5
∼= C[A1, . . . , A5]6.

We consider the free submodule

G = C[A1, . . . , A5] · R1 ⊕ . . .⊕ C[A1, . . . , A5] ·R6
∼= C[A1, . . . , A5]6 ⊂ F ,

where R1, . . . , R6 are embedded into F in an obvious way.

Proposition 13. The sequence

0 −→ G −→ F −→ R −→ 0 (16)

is exact.

Proof. The map F → R is surjective because of the relations of weight 6. The module
G is in the kernel of this map. We have to show that it is the full kernel. For this reason
it is convenient to equip F with a ring structure. We can consider F as the factor ring
of C[A1, . . . , C5] by the ideal which is generated by the relations of weight 6. Then the
map F → R is a ring homomorphism and the kernel is generated by G as an ideal. All
we have to show is that G is an ideal (and not only a module over C[A1, . . . , A5]). To
prove this, one has to consider the 30 products CiRj , i = 1, . . . , 5, j = 1, . . . , 6. After
replacing the occurring CiCj by means of the relations of degree 6, one gets elements
of F . One has to prove that these are contained in R · G. This is done by explicit
calculations which we will not reproduce here. �

This proposition shows that R has a free resolution of length one; thus the “Auslan-
der–Buchsbaum formula” implies that it is a Cohen–Macaulay module over the ring
C[A1, . . . , A5], cf. [BH]1.

A well-known criterion, cf. [Ei], states: Let A → B a homomorphism of noetherian
rings such that B is a finitely generated A-module and let M be a finitely generated B-
module. Then M is a Cohen–Macaulay B-module if and only if it is a Cohen–Macaulay
A-module. If especially B is a Cohen–MacaulayA-module, then B is a Cohen–Macaulay
ring (i.e., a Cohen-Macaulay B-module). We obtain the following.

Corollary 1. The ring R = C[A1, . . . , A5, C1, . . . , C5]/I is a Cohen–Macaulay ring.

An important consequence of this fact and of Theorem 1 is that the map

Proj(R) −→ Proj(A)

is a bijective, and thus we obtain:

The variety Proj(R) is irreducible (but possibly not reduced).

This argument shows even more. The localizations of the rings A and R by the
multiplicative set generated by P10 are isomorphic. Especially we obtain:

The variety Proj(R) is nonsingular outside the locus of the ideal P10 · R.

We know that the locus P10 = 0 considered in Proj(A(Γ2[3]) consists of 45 irreducible
components. We obtain that the locus of the ideal P10 ·R in Proj(R) also consists of 45
irreducible components. They are transitively permuted under the Burkhardt group.

1A finitely generated module M over a noetherian ring R is called a Cohen–Macaulay
module if Mp is a Cohen–Macaulay module for all prime ideals p in R in the sense of [Se].
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Lemma 4. The point [0, 0, 0, 1, 1,−16, 0, 0, 0, 0] is in the zero set of the ideal I. More-
over it is in the locus of P10 · R. It is a regular point of Proj(R).

It is easy to check the equations for the point, and for an individual point it is easy
to check that it is regular. We omit the computations.

It follows from the above lemma that the singular locus of Proj(R) has codimension
≥ 2. The same then is true for Spec(R). From Serre’s normality criterion, [Se], now it
follows that R is a normal ring (and especially an integral domain).

The dimension formula is an easy consequence of the exact sequence
0 → G → F → R → 0 .

We mention that our dimension formula agrees with the formulas obtained by means
of the Trace formula or by the Riemann–Roch (for r big enough), cf. [Ch1], [Ch2]
(there is a numerical error even in the second corrected form), [Ha], [Ya]. Moreover,
independently, Gunji has found the same expression for the Hilbert function, see [Gu],
studying in great detail the low dimensional cases. This completes the proof of the
theorem. �

The nature of the singular locus can be described in more detail:

Proposition 14. Let Ap be the homogeneous localization (local ring of the variety
Proj(A) at the generic point of p ⊂ A). There is an isomorphism of its formal comple-
tion

Âp
∼= K[[X2, X3, . . . ]].

Here K denotes the field of rational functions of the zero locus of p.

Proof. We denote by q the prime ideal of the corresponding locus in Proj(R). We know
that R is regular at the generic point of q. Hence

R̂q ∼= K[[X,X2, X3, . . . ]]

is isomorphic to the ring of formal power series. As variable X we can take a suitable
conjugate F ′ of F . (The latter does not vanish along the diagonal but only along
conjugates of the diagonal). We know that F 2 and F 3 are in A. The same is true for
F ′. Hence K[[X2, X3, . . . ]] is contained in Âp. Equality must hold because this ring is
not regular. �

We recall that a Cohen–Macaulay graded algebra A is said to be Gorenstein if its
canonical module is isomorphic to A. As an immediate consequence of the results of
[St] we have:

Corollary 2. The ring A(Γ2[3]) is a Gorenstein ring.

10. Final remark

The central role in our picture plays the dual of the Burkhardt quartic. In the usual
algebro-geometric approaches the quartic itself plays a central role. Classically it is
known that the modular variety H2/Γ2[3] is birational equivalent to the Burkhardt
quartic. This is in accordance with our result since a hypersurface and its dual always
are birational equivalent.
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Nevertheless one may ask whether the classical birational map is visible in our picture.
The answer is yes.

There is a modular form X5 of weight 5 with respect to the full modular group
but which picks up the nontrivial character of this group. From the zero locus it is
clear that B1 := X5/F is a holomorphic modular form of weight two. It can be shown
that this form is contained in a five-dimensional G-invariant space of modular forms on
Γ2[3], but all with the same nontrivial character. This five-dimensional space defines
a Burkhardt quartic and yields the classical birational map between the moduli space
and the Burkhardt quartic.

The modular form B1 can be expressed by means of theta nullwerte and also as
additive lift in the sense of Borcherds. We intend to come back to this subject in a
separate paper.
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