Dimension Formula for the Spaces of Siegel Cusp Forms of Half Integral Weight and Degree Two

by
Ryuji Tsushima

(Received November 18, 2002)
(Revised February 24, 2003)
Let $\mathfrak{S}_{g}=\left\{Z \in M(g, \mathbf{C}) \mid{ }^{t} Z=Z\right.$, $\left.\operatorname{Im} Z>0\right\}$ be the Siegel upper half plane of degree $g, \Gamma_{g}=S p(g, \mathbf{Z})$ the Siegel modular group of degree g and

$$
\Gamma_{g}^{*}=\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{g} \right\rvert\, \text { diagonal elements of } A^{t} B, C^{t} D \text { are even }\right\} .
$$

If $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, we denote $(A Z+B)(C Z+D)^{-1}$ by $M\langle Z\rangle$. Let $\mathbf{e}(z)=\exp (2 \pi i z)$ and for $Z \in \mathfrak{S}_{g}$ put

$$
\theta(Z)=\sum_{\eta \in \mathbf{Z}^{g}} \mathbf{e}\left(\frac{1}{2}^{t} \eta Z_{\eta}\right)
$$

If M belongs to $\Gamma_{g}^{*}, \theta(M\langle Z\rangle) / \theta(Z)$ is holomorphic on \mathfrak{S}_{g}. Let $\alpha=\left(\begin{array}{cc}2 \cdot 1_{g} & O \\ O & 1_{g}\end{array}\right)$ and let $\Theta(Z)=\theta(2 Z)=\theta(\alpha\langle Z\rangle)$. Let

$$
\Gamma_{0}^{g}(4)=\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{g} \right\rvert\, C \equiv O(\bmod 4)\right\}
$$

Then $\Gamma_{g}^{\alpha}:=\alpha^{-1} \Gamma_{g}^{*} \alpha \cap \Gamma_{g}$ contains Γ_{0}^{g} (4). Hence if M belongs to Γ_{0}^{g} (4) or more generally if M belongs to Γ_{g}^{α}, then

$$
J(M, Z):=\Theta(M\langle Z\rangle) / \Theta(Z)
$$

is holomorphic on \mathfrak{S}_{g} and satisfies the equality:

$$
J(M, Z)^{2}=\operatorname{det}(C Z+D) \psi(\operatorname{det} D),
$$

where $\psi: 1+2 \mathbf{Z} \rightarrow\{ \pm 1\}$ is the non-trivial Dirichlet character modulo 4 (cf. §1). $J(M, Z)$ is called the automorphy factor of weight $1 / 2$.

Let $\mu: G L(g, \mathbf{C}) \rightarrow G L(r, \mathbf{C})$ be an irreducible holomorphic representation. $\mu(C Z+$ D) is also an automorphy factor (with respect to Γ_{g}) and so is $J(M, Z)^{2 k+1} \mu(C Z+D)$ (with respect to $\Gamma_{0}^{g}(4)$). Let Γ be a subgroup of Γ_{0}^{g} (4) of finite index. A holomorphic
mapping $f: \mathfrak{S}_{g} \rightarrow \mathbf{C}^{r}$ is called a Siegel modular form of half integral weight with respect to Γ, if f satisfies the following equality for any $M \in \Gamma$ and $Z \in \mathfrak{S}_{g}$:

$$
f(M\langle Z\rangle)=J(M, Z)^{2 k+1} \mu(C Z+D) f(Z)
$$

(We have to assume "the holomorphy at cusps" if $g=1$.) We denote by $M_{\mu, k+1 / 2}(\Gamma)$ the \mathbf{C}-vector space of all such mappings. An element $f \in M_{\mu, k+1 / 2}(\Gamma)$ is called a cusp form if f belongs to the kernels of the Φ-operators. We denote the space of cusp forms by $S_{\mu, k+1 / 2}(\Gamma)$. Namely, f belongs to $S_{\mu, k+1 / 2}(\Gamma)$ if and only if

$$
\Phi f\left(Z_{1}\right):=\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f \mid[\xi]_{\mu, k+1 / 2}(Z)=0
$$

for any $\xi \in \widetilde{G}_{g}$ such that $p(\xi) \in \Gamma_{g}$, where $Z=\left(\begin{array}{cc}Z_{1} & \boldsymbol{o} \\ t_{\boldsymbol{o}} & Z_{2}\end{array}\right), Z_{1} \in \mathfrak{S}_{g-1}$ and $Z_{2} \in$ \mathfrak{S}_{1} (cf. Definition 1.5 and Definition 1.7). If μ is the trivial representation, we denote $M_{\mu, k+1 / 2}(\Gamma)$ and $S_{\mu, k+1 / 2}(\Gamma)$ by $M_{k+1 / 2}(\Gamma)$ and $S_{k+1 / 2}(\Gamma)$, respectively. It is known that $M_{\mu, k+1 / 2}(\Gamma)$ is finite-dimensional.

Let χ be a character of Γ whose kernel is a subgroup of Γ of finite index. We denote by $M_{\mu, k+1 / 2}(\Gamma, \chi)$ the \mathbf{C}-vector space of the holomorphic mappings of \mathfrak{S}_{g} to \mathbf{C}^{r} which satisfy

$$
f(M\langle Z\rangle)=J(M, Z)^{2 k+1} \chi(M) \mu(C Z+D) f(Z)
$$

for any $M \in \Gamma$ and $Z \in \mathfrak{S}_{g}$. We also denote by $S_{\mu, k+1 / 2}(\Gamma, \chi)$ its subspace of cusp forms.
Now we assume that $g=2$ and μ is the symmetric tensor representation of degree j which we denote by Sym^{j}. We denote $M_{\mu, k+1 / 2}(\Gamma)$ and $S_{\mu, k+1 / 2}(\Gamma)$ by $M_{j, k+1 / 2}(\Gamma)$ and $S_{j, k+1 / 2}(\Gamma)$, respectively. Let ψ be as before. We define a character of $M \in \Gamma_{0}^{2}$ (4) by $\psi(\operatorname{det} D)$ where D is the lower right 2×2 matrix of M. If j is odd, then $M_{j, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and $M_{j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ are $\{0\}$ since $-1_{4} \in \Gamma_{0}^{2}(4)$ and $\operatorname{Sym}^{j}\left(-1_{2}\right)=-1_{j+1}$. Therefore we assume that j is even. The purpose of this paper is to compute the dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ (Theorem 4.4 and Theorem 4.5). From these results we can prove that $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ are free modules of rank one over the graded ring of the automorphic forms of integral weights (Proposition 5.2 and Proposition 5.3). Their structures were explicitly determined by T. Ibukiyama ([Ib]). By using a similar method in [Sto], we can also determine the structure of the module $\bigoplus_{k=0}^{\infty} M_{2, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ ([T6]).

More generally we can express the dimension of $S_{j, k+1 / 2}(\Gamma, \chi)$ by a finite sum for general Γ and χ (Theorem 3.2). Especially we will be able to compute the dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4 p), \chi\right)$, where p is an odd prime and χ is a Dirichlet character modulo $4 p$ (cf. [T5] for the case of integral weight). But this will be an exhausting job.

1. Transformation formula of $\Theta(Z)$ and the line bundle \bar{H}_{g}

In this section we recall the transformation formula of $\Theta(Z)$ (Theorem 1.4, cf. [Si] or [Smi]). Next we prove that the line bundle of the modular forms of half integral weight is extendable onto the Satake compactification of the Siegel space.

Definition 1.1. Let $A \in M(g, \mathbf{C})$ be a symmetric matrix with $\operatorname{Re}(A)>0$. Then there exists $T \in G L(g, \mathbf{R})$ such that

$$
{ }^{t} T A T=\left(\begin{array}{ccc}
1+i d_{1} & & \\
& \ddots & \\
& & 1+i d_{g}
\end{array}\right)
$$

We define $(\operatorname{det} A)^{1 / 2}=|\operatorname{det} T|^{-1} \prod_{j=1}^{g}\left(1+i d_{j}\right)^{1 / 2}$, where we choose $z^{1 / 2}$ so that $-\pi / 2<$ $\arg \left(z^{1 / 2}\right) \leq \pi / 2$ for $z \in \mathbf{C}$.

REMARK 1.2. If $g=2,(\operatorname{det} A)^{1 / 2}$ is uniquely determined by the condition $-\pi / 2<$ $\arg (\operatorname{det} A)^{1 / 2}<\pi / 2$, because $-\pi / 4<\arg \left(1+i d_{j}\right)^{1 / 2}<\pi / 4(j=1,2)$.

Lemma 1.3. Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{g}$ and let $m=\operatorname{rank} C$. Then there exist M^{\prime}, $M_{1}, M_{2} \in \Gamma_{g}$ such that

$$
\begin{gathered}
M=M_{1} M^{\prime} M_{2}, \quad M_{1}=\left(\begin{array}{cc}
A_{1} & B_{1} \\
O & D_{1}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
A_{2} & O \\
O & D_{2}
\end{array}\right), \\
M^{\prime}=\left(\begin{array}{cccc}
A_{0} & O & B_{0} & O \\
O & 1_{g-m} & O & O \\
C_{0} & O & D_{0} & O \\
O & O & O & 1_{g-m}
\end{array}\right), \quad \text { where }\left(\begin{array}{cc}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right) \in \Gamma_{m} \text { and } \operatorname{det} C_{0} \neq 0 .
\end{gathered}
$$

(If $m=0$, we suppose $M^{\prime}=1_{2 g}$.) Moreover we can choose C_{0} so that

$$
C_{0}=\left(\begin{array}{ccc}
c_{1} & & \\
& \ddots & \\
& & c_{m}
\end{array}\right), \quad c_{i} \mid c_{i+1} \quad(1 \leq i \leq m-1) .
$$

Proof. The assertion is easily proved ([Smi], Theorem 8.1). But we give a proof here because we use the process of the proof later. There exist $U, V \in G L(g, \mathbf{Z})$ such that $U C V=\left(\begin{array}{ll}C_{0} & O \\ O & O\end{array}\right)$, where C_{0} has the above form. Let $U D^{t} V^{-1}=\left(\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right)$ $\left(D_{11} \in M(m, \mathbf{Z})\right.$). Then since $C^{t} D=D^{t} C$, we have

$$
\left(\begin{array}{cc}
C_{0} & O \\
O & O
\end{array}\right)^{t}\left(\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right)^{t}\left(\begin{array}{cc}
C_{0} & O \\
O & O
\end{array}\right)
$$

and $D_{21}{ }^{t} C_{0}=O$. Hence $D_{21}=O$, since $\operatorname{det} C_{0} \neq 0$. On the other hand $\left(\begin{array}{cccc}C_{0} & O & D_{11} & D_{12} \\ O & O & O & D_{22}\end{array}\right)$ is primitive. This means that $D_{22} \in G L(g-m, \mathbf{Z})$. Let

$$
U_{1}=\left(\begin{array}{cc}
1_{m} & -D_{12} D_{22}^{-1} \\
O & D_{22}^{-1}
\end{array}\right)
$$

and $D_{0}=D_{11}$. Replacing U with $U_{1} U$ we can assume that $U C V=\left(\begin{array}{cc}C_{0} & O \\ O & O\end{array}\right)$ and $U D^{t} V^{-1}=\left(\begin{array}{cc}D_{0} & O \\ O & 1_{g-m}\end{array}\right)$. Since $C_{0}{ }^{t} D_{0}=D_{0}{ }^{t} C_{0}$, there exists $M_{0} \in \Gamma_{m}$ such that $M_{0}=\left(\begin{array}{ll}A_{0} & B_{0} \\ C_{0} & D_{0}\end{array}\right)$. We define M^{\prime} by using M_{0} as above. Let

$$
M^{\prime \prime}=\left(\begin{array}{cc}
{ }^{t} U^{-1} & O \\
O & U
\end{array}\right) M\left(\begin{array}{cc}
V & O \\
O & { }^{t} V^{-1}
\end{array}\right)
$$

Then $M^{\prime} M^{\prime \prime-1}$ has the form $\left(\begin{array}{cc}1_{g} & S \\ O & 1_{g}\end{array}\right)\left({ }^{t} S=S\right)$. So $M_{1}=\left(\begin{array}{cc}t & -{ }^{t} U S \\ O & U^{-1}\end{array}\right)$ and $M_{2}=$ $\left(\begin{array}{cc}V^{-1} & O \\ O & { }^{t} V\end{array}\right)$ satisfy the condition.

Now for $Z \in \mathfrak{S}_{g}$, we put

$$
M^{\prime} M_{2}(Z)=\left(\begin{array}{cc}
Z_{1} & Z_{2} \\
{ }^{t} Z_{2} & Z_{3}
\end{array}\right), \quad \text { where } Z_{1} \in \mathfrak{S}_{m} \text { and } Z_{3} \in \mathfrak{S}_{g-m}, \text { if } m>0
$$

and

$$
j(M, Z)= \begin{cases}\left|\operatorname{det} C_{0}\right|^{1 / 2} \operatorname{det}\left(-i\left(Z_{1}-A_{0} C_{0}^{-1}\right)\right)^{1 / 2}, & \text { if } m>0 \\ 1, & \text { if } m=0\end{cases}
$$

Next we put

$$
\lambda(M)= \begin{cases}\left|\operatorname{det}\left(C_{0} / 2\right)\right|^{-1 / 2} \sum_{\eta \in \mathbf{Z}^{g} /\left({ }^{t} C_{0} / 2\right) \mathbf{Z}^{g}} \mathbf{e}\left(-^{t} \eta\left(C_{0}^{-1} D_{0}\right) \eta\right), & \text { if } m>0 \\ 1, & \text { if } m=0\end{cases}
$$

Then we have
Theorem 1.4. Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{g}$ (4) and let $j(M, Z)$ and $\lambda(M)$ be as above. Let $J(M, Z)=j(M, Z)^{-1} \lambda(M)^{-1}$. Then it holds that

$$
\Theta(M\langle Z\rangle)=J(M, Z) \Theta(Z)
$$

and

$$
J(M, Z)^{2}=\operatorname{det}(C Z+D) \psi(\operatorname{det} D) .
$$

DEFINITION 1.5. Let 1_{g} be the unit matrix of degree g and $J_{g}=\left(\begin{array}{cc}O & 1_{g} \\ -1_{g} & O\end{array}\right)$. Let

$$
G_{g}=\left\{\left.M \in G L(2 g, \mathbf{R})\right|^{t} M J_{g} M=v(M) J_{g}, \text { with some } \nu(M)>0\right\}
$$

be the symplectic group of degree g with similitudes. Let $\mathbf{T}=\{z \in \mathbf{C}| | z \mid=1\}$. We define a group \widetilde{G}_{g} which consists of the pairs $\xi=(M, \phi(Z))$, where $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in G_{g}$ and $\phi(Z)$ is a non-zero holomorphic function on \mathfrak{S}_{g} such that

$$
\phi(Z)^{2}=t(\xi) \nu(M)^{-1 / 2} \operatorname{det}(C Z+D)
$$

for any $Z \in \mathfrak{S}_{g}$ with some $t(\xi) \in \mathbf{T}$. The multiplicative law is defined as follows:

$$
\left(M_{1}, \phi_{1}(Z)\right)\left(M_{2}, \phi_{2}(Z)\right)=\left(M_{1} M_{2}, \phi_{1}\left(M_{2}\langle Z\rangle\right) \phi_{2}(Z)\right) .
$$

We denote the natural projection of \widetilde{G}_{g} to G_{g} by p. By definition, if $p(\xi)=1_{2 g}$, then $\xi=\left(1_{2 g}, t\right)$ where t is a constant.

Corollary 1.6. We have an injective homomorphism ι of $\Gamma_{0}^{g}(4)$ to \widetilde{G}_{g} :

$$
\iota(M)=(M, J(M, Z)) .
$$

DEFINITION 1.7. For any holomorphic mapping $f: \mathfrak{S}_{g} \rightarrow \mathbf{C}^{r}$ and $\xi=(M, \phi(Z)) \in$ \widetilde{G}_{g}, we put

$$
f \mid[\xi]_{\mu, k+1 / 2}(Z)=\phi(Z)^{-(2 k+1)} \mu(C Z+D)^{-1} f(M\langle Z\rangle) .
$$

Then we have

$$
f\left|[\xi \eta]_{\mu, k+1 / 2}(Z)=\left(f \mid[\xi]_{\mu, k+1 / 2}\right)\right|[\eta]_{\mu, k+1 / 2}(Z)
$$

for any ξ and $\eta \in \widetilde{G}_{g}$. Such a mapping f belongs to $M_{\mu, k+1 / 2}\left(\Gamma_{0}^{g}(4)\right)$ if and only if $f \mid[\iota(M)]_{\mu, k+1 / 2}(Z)=f(Z)$ for any $M \in \Gamma_{0}^{g}(4)$.

Let $\Gamma_{g}(N)$ be the principal congruence subgroup of level N of Γ_{g}. Namely,

$$
\Gamma_{g}(N)=\left\{M \in \Gamma_{g} \mid M \equiv 1_{2 g}(\bmod N)\right\}
$$

$\Gamma_{g}(N)$ is a normal subgroup of Γ_{g}. If $N \geq 3, \Gamma_{g}(N)$ acts on \mathfrak{S}_{g} without fixed points and the quotient space $X_{g}(N):=\Gamma_{g}(N) \backslash \mathfrak{S}_{g}$ is a (non-compact) manifold. $X_{g}(N)$ is a open subspace of a projective variety $\bar{X}_{g}(N)$ which was constructed by I. Satake ([Sta], Satake compactification). If $g \geq 2, \bar{X}_{g}(N)$ has singularities along its cusps: $\bar{X}_{g}(N)-X_{g}(N)$. Cusps of $\bar{X}_{g}(N)$ is (as a set) a disjoint union of copies of $X_{g^{\prime}}(N)$'s $\left(0 \leq g^{\prime}<g\right)$. A desingularization $\widetilde{X}_{g}(N)$ of $\bar{X}_{g}(N)$ was constructed by J.-I. Igusa ([Ig2]) and Y. Namikawa ([N]) $(g=2,3,4)$ and more generally by D. Mumford and others ([AMRT], Toroidal compactification).

Let $\mu: G L(g, \mathbf{C}) \rightarrow G L(r, \mathbf{C})$ be a holomorphic representation and let \mathcal{V}_{μ} be $\mathfrak{S}_{g} \times$ \mathbf{C}^{r}, on which $\Gamma_{g}(N)$ acts as follows:

$$
M(Z, v)=(M\langle Z\rangle, \mu(C Z+D) v)
$$

If $N \geq 3, V_{\mu}:=\Gamma_{g}(N) \backslash \mathcal{V}_{\mu}$ is non-singular and is a holomorphic vector bundle over $X_{g}(N) . V_{\mu}$ is extended to a holomorphic vector bundle \widetilde{V}_{μ} on $\widetilde{X}_{g}(N)$ ([Mu]). In the
 respectively.

Let \mathcal{H}_{g} be $\mathfrak{S}_{g} \times \mathbf{C}$. The group $\Gamma_{g}(4 N)$ acts on \mathcal{H}_{g} as follows:

$$
M(Z, v)=(M\langle Z\rangle, J(M, Z) v)
$$

Then, $H_{g}:=\Gamma_{g}(4 N) \backslash \mathcal{H}_{g}$ is a holomorphic line bundle over $X_{g}(4 N)$. We have
THEOREM 1.8. The line bundle H_{g} is extendable to an ample line bundle \bar{H}_{g} over the Satake compactification $\bar{X}_{g}(4 N)$.

Proof. Let f be a (local) section of $H_{g}^{\otimes(2 k+1)}$. Then f is identified with a (local) modular form of weight $k+1 / 2$ with respect to $\Gamma_{g}(4 N)$. We denote $\phi(Z)^{-(2 k+1)} f(P\langle Z\rangle)$ by $f \mid[\xi]_{k+1 / 2}(Z)$ for $\xi=(P, \phi(Z)) \in \widetilde{G}_{g}$. We prove that

$$
f\left|[\xi]_{k+1 / 2}(Z+S)=f\right|[\xi]_{k+1 / 2}(Z)
$$

for any $\xi \in p^{-1}\left(\Gamma_{g}\right)$ and any integral symmetric matrix S whose entries are divisible by $4 N$. Then $f \mid[\xi]_{k+1 / 2}(Z)$ is expanded to a Fourier series:

$$
f \mid[\xi]_{k+1 / 2}(Z)=\sum_{T \geq 0} a(T) \mathbf{e}(\operatorname{tr}(T Z) / 4 N),
$$

where T is over all half-integral semi-positive symmetric matrices and from this fact it is proved that H_{g} is extendable onto $\bar{X}_{g}(4 N)$ similarly as in [Sta]. $\bar{H}_{g}^{\otimes 2}$ is isomorphic to the line bundle \bar{L}_{g} which is defined by the automorphy factor $\operatorname{det}(C Z+D)$. Since \bar{L}_{g} is ample ([B]), \bar{H}_{g} is also ample.

Let $M=\left(\begin{array}{cc}1_{g} & S \\ O & 1_{g}\end{array}\right) \in \Gamma_{g}(4 N)$ and $\xi=(P, \phi(Z)) \in p^{-1}\left(\Gamma_{g}\right)$. Then $P M P^{-1}$ belongs to $\Gamma_{g}(4 N)$ since $\Gamma_{g}(4 N)$ is a normal subgroup of Γ_{g}. We prove that

$$
\xi \iota(M) \xi^{-1}=\iota\left(P M P^{-1}\right) .
$$

Then we have

$$
f\left|\left[\xi \iota(M) \xi^{-1}\right]_{k+1 / 2}(Z)=f\right|\left[\iota\left(P M P^{-1}\right)\right]_{k+1 / 2}(Z)=f(Z)
$$

from the assumption that f is a (local) modular form with respect to $\Gamma_{g}(4 N)$. Hence it follows that

$$
f\left|[\xi]_{k+1 / 2}(Z+S)=f\right|[\xi \iota(M)]_{k+1 / 2}(Z)=f \mid[\xi]_{k+1 / 2}(Z)
$$

Now we prove our assertion. Since $\xi^{-1}=\left(P^{-1}, \phi\left(P^{-1}\langle Z\rangle\right)^{-1}\right)$, we have

$$
\iota\left(P M P^{-1}\right)\left(\xi \iota(M) \xi^{-1}\right)^{-1}=\iota\left(P M P^{-1}\right) \xi \iota\left(M^{-1}\right) \xi^{-1}=\left(1_{2 g}, t\right)
$$

where

$$
t=J\left(P M P^{-1}, P M^{-1} P^{-1}\langle Z\rangle\right) \phi\left(M^{-1} P^{-1}\langle Z\rangle\right) J\left(M^{-1}, P^{-1}\langle Z\rangle\right) \phi\left(P^{-1}\langle Z\rangle\right)^{-1}
$$

is a constant. We prove that $t=1$. Let $Z=P\left\langle Z^{\prime}+S\right\rangle$. Since $J\left(M^{-1}, P^{-1}\langle Z\rangle\right)=1, t$ is equal to

$$
\frac{\Theta(Z)}{\Theta\left(P M^{-1} P^{-1}\langle Z\rangle\right)} \cdot \frac{\phi\left(M^{-1} P^{-1}\langle Z\rangle\right)}{\phi\left(P^{-1}\langle Z\rangle\right)}=\frac{\Theta\left(P\left\langle Z^{\prime}+S\right\rangle\right)}{\Theta\left(P\left\langle Z^{\prime}\right\rangle\right)} \cdot \frac{\phi\left(Z^{\prime}\right)}{\phi\left(Z^{\prime}+S\right)}
$$

Let $P=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. Then by definition we have

$$
\frac{\phi\left(Z^{\prime}\right)}{\phi\left(Z^{\prime}+S\right)}=\frac{\sqrt{\operatorname{det}\left(C Z^{\prime}+D\right)}}{\sqrt{\operatorname{det}\left(C\left(Z^{\prime}+S\right)+D\right)}}
$$

Since $\sqrt{\operatorname{det}\left(C Z^{\prime}+D\right)}$ is a non-zero function on the simply connected space \mathfrak{S}_{g}, the sign of $\sqrt{\operatorname{det}\left(C\left(Z^{\prime}+S\right)+D\right)}$ is uniquely determined by the sign of $\sqrt{\operatorname{det}\left(C Z^{\prime}+D\right)}$ and we have

$$
\lim _{\operatorname{Im} Z^{\prime} \rightarrow \infty} \frac{\phi\left(Z^{\prime}\right)}{\phi\left(Z^{\prime}+S\right)}=1
$$

Hence the assertion is equivalent to

$$
\lim _{\operatorname{Im} Z^{\prime} \rightarrow \infty} J\left(P M P^{-1}, P\left\langle Z^{\prime}\right\rangle\right)=\lim _{\operatorname{Im} Z^{\prime} \rightarrow \infty} \frac{\Theta\left(P\left\langle Z^{\prime}+S\right\rangle\right)}{\Theta\left(P\left\langle Z^{\prime}\right\rangle\right)}=1
$$

We fix P and assume that

$$
\lim _{Z \rightarrow \infty} J\left(P M P^{-1}, P\langle Z\rangle\right)=1
$$

for any $M=\left(\begin{array}{cc}1_{g} & S \\ O & 1_{g}\end{array}\right) \in \Gamma_{g}(4 N)$. Let $Q \in \Gamma_{0}^{g}$ (4). Then we have

$$
J\left(Q P M P^{-1} Q^{-1}, Q P\langle Z\rangle\right)=J(Q, P M\langle Z\rangle) J\left(P M P^{-1}, P\langle Z\rangle\right) J\left(Q^{-1}, Q P\langle Z\rangle\right)
$$

Since

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J(Q, P M\langle Z\rangle) J\left(Q^{-1}, Q P\langle Z\rangle\right)=\lim _{\operatorname{Im} Z \rightarrow \infty} \frac{J(Q, P\langle Z+S\rangle)}{J(Q, P\langle Z\rangle)}=1,
$$

it follows that

$$
\lim _{Z \rightarrow \infty} J\left(Q P M P^{-1} Q^{-1}, Q P\langle Z\rangle\right)=1
$$

from the assumption.
Next let $N\left(B_{0}, \Gamma_{g}\right)$ be the subgroup of Γ_{g} consisting of the elements of the form:

$$
\left(\begin{array}{cc}
U & T^{t} U^{-1} \\
O & { }^{t} U^{-1}
\end{array}\right), \quad U \in G L(g, \mathbf{Z}), \quad T \in M(g, \mathbf{Z}), \quad{ }^{t} T=T
$$

Let $R \in N\left(B_{0}, \Gamma_{g}\right)$ be an element of the above form. Then

$$
J\left(P R M R^{-1} P^{-1}, P R\langle Z\rangle\right)=J\left(P M_{1} P^{-1}, P\left\langle U Z^{t} U+T\right\rangle\right)
$$

where

$$
M_{1}=\left(\begin{array}{cc}
1_{g} & U S^{t} U \\
O & 1_{g}
\end{array}\right)
$$

Hence it follows that

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P R M R^{-1} P^{-1}, P R\langle Z\rangle\right)=1
$$

from the assumption.
Therefore it suffices to prove the assertion for the representatives of the double cosets in $\Gamma_{0}^{g}(4) \backslash \Gamma_{g} / N\left(B_{0}, \Gamma_{g}\right)$. Let $P=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{g}$. Let $\bar{C}=\left(c_{i j}\right)$ be the matrix such that $\bar{C} \equiv C(\bmod 4)$ and $-1 \leq c_{i j} \leq 2(1 \leq i, j \leq g)$. There exists $P^{\prime}=\left(\begin{array}{ll}A^{\prime} & B^{\prime} \\ \bar{C} & D^{\prime}\end{array}\right) \in \Gamma_{g}$ such that $P \equiv P^{\prime}(\bmod 4)($ cf. [Ig3], Chap. V, Lemma 25). Notice that we can apply the proof of this lemma without changing η^{\prime} which is the first row of \bar{C}. Then $P^{\prime} P^{-1} \in$ $\Gamma_{g}(4) \subset \Gamma_{0}^{g}(4)$. Hence we can replace P with P^{\prime}. Let $m=\operatorname{rank} \bar{C}$ and represent P^{\prime} as $M_{1} M^{\prime} M_{2}$ in Lemma 1.3. We can replace P^{\prime} with M^{\prime}. So we assume that

$$
P=\left(\begin{array}{cccc}
A_{0} & O & B_{0} & O \\
O & 1_{g-m} & O & O \\
C_{0} & O & D_{0} & O \\
O & O & O & 1_{g-m}
\end{array}\right), \quad\left(\begin{array}{cc}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right) \in \Gamma_{m}, \operatorname{det} C_{0} \neq 0
$$

and

$$
C_{0}=\left(\begin{array}{ccc}
c_{1} & & \\
& \ddots & \\
& & c_{m}
\end{array}\right), \quad c_{i}=1 \text { or } 2(1 \leq i \leq m) .
$$

It suffices to prove the case when $N=1$. Let $E_{i j}=\left(a_{k l}\right)$ be the matrix such that $a_{i j}=1$ and $a_{k l}=0$, otherwise. Let $M_{1}=\left(\begin{array}{cc}1_{g} & S_{1} \\ O & 1_{g}\end{array}\right), M_{2}=\left(\begin{array}{cc}1_{g} & S_{2} \\ O & 1_{g}\end{array}\right) \in \Gamma_{g}(4)$. Then we have

$$
\begin{aligned}
& \lim _{Z \rightarrow \infty} J\left(P M_{1} M_{2} P^{-1}, P\langle Z\rangle\right) \\
& \quad=\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P M_{1} P^{-1}, P\langle Z\rangle\right) \lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P M_{2} P^{-1}, P\langle Z\rangle\right)
\end{aligned}
$$

Hence it suffices to prove the assertion for the case when $S=4 E_{i i}$ or $S=4 E_{i j}+4 E_{j i}$ ($i \neq j$). First we prove the case when $S=4 E_{i i}$. Let $V_{i j}$ be the matrix corresponding to the transposition (ij). Namely, $V_{i j}=1_{g}-E_{i i}-E_{j j}+E_{i j}+E_{j i}$. Let $\sigma=(1 i)$ and $V^{\sigma}=\left(\begin{array}{cc}V_{1 i} & O \\ O & V_{1 i}\end{array}\right)$. As we showed before, we have

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P M P^{-1}, P\langle Z\rangle\right)=\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} Z V_{1 i}\right\rangle\right)
$$

where $P^{\sigma}=V^{\sigma} P V^{\sigma}$ and $M^{\sigma}=V^{\sigma} M V^{\sigma}=\left(\begin{array}{cc}1_{g} & 4 E_{11} \\ O & 1_{g}\end{array}\right)$. Let $P^{\sigma}=\left(\begin{array}{ll}A^{\sigma} & B^{\sigma} \\ C^{\sigma} & D^{\sigma}\end{array}\right)$. Then

$$
P^{\sigma} M^{\sigma} P^{\sigma-1}=\left(\begin{array}{cc}
1_{g}-4 A^{\sigma} E_{11}{ }^{t} C^{\sigma} & 4 A^{\sigma} E_{11}{ }^{t} A^{\sigma} \\
-4 C^{\sigma} E_{11}{ }^{t} C^{\sigma} & 1_{g}+4 C^{\sigma} E_{11}{ }^{t} A^{\sigma}
\end{array}\right) .
$$

If $i>m$, then the assertion is trivial because $-4 C^{\sigma} E_{11}{ }^{t} C^{\sigma}=O$. So we assume that $i \leq m$. Then

$$
\begin{aligned}
& -4 C^{\sigma} E_{11}{ }^{t} C^{\sigma}=\left(\begin{array}{cc}
-4 c_{i}^{2} & { }^{t} \boldsymbol{o} \\
\boldsymbol{o} & O
\end{array}\right), \quad 1_{g}+4 C^{\sigma} E_{11}{ }^{t} A^{\sigma}=\left(\begin{array}{cc}
1+4 a_{i i} c_{i} & * \\
\boldsymbol{o} & 1_{g-1}
\end{array}\right), \\
& 1_{g}-4 A^{\sigma} E_{11}{ }^{t} C^{\sigma}=\left(\begin{array}{cc}
1-4 a_{i i} c_{i} & { }^{t} \boldsymbol{o} \\
* & 1_{g-1}
\end{array}\right), \quad 4 A^{\sigma} E_{11}{ }^{t} A^{\sigma}=\left(\begin{array}{cc}
4 a_{i i}^{2} & * \\
* & *
\end{array}\right) .
\end{aligned}
$$

Hence $P^{\sigma} M^{\sigma} P^{\sigma-1}$ is represented as $M_{1} M^{\prime} M_{2}$ where $M_{2}=1_{2 g}$ and

$$
M^{\prime}=\left(\begin{array}{cccc}
1-4 a_{i i} c_{i} & { }^{t} \boldsymbol{o} & 4 a_{i i}^{2} & { }^{t} \boldsymbol{o} \\
\boldsymbol{o} & 1_{g-1} & \boldsymbol{o} & O \\
-4 c_{i}^{2} & { }^{t} \boldsymbol{o} & 1+4 a_{i i} c_{i} & { }^{t} \boldsymbol{o} \\
\boldsymbol{o} & O & \boldsymbol{o} & 1_{g-1}
\end{array}\right)
$$

Let $P^{\sigma}\left\langle V_{1 i} Z V_{1 i}\right\rangle=\left(\begin{array}{cc}W_{1} & W_{2} \\ { }^{t} W_{2} & W_{3}\end{array}\right)\left(W_{1} \in \mathfrak{S}_{1}\right)$. Then

$$
\begin{gathered}
\lim _{\operatorname{Im} Z \rightarrow \infty} W_{1}=\frac{a_{i i}}{c_{i}} . \\
M_{0}=\left(\begin{array}{cc}
1-4 a_{i i} c_{i} & 4 a_{i i}^{2} \\
-4 c_{i}^{2} & 1+4 a_{i i} c_{i}
\end{array}\right) \text { fixes } \frac{a_{i i}}{c_{i}} . \text { Hence we have } \\
\\
\lim _{\operatorname{Im} Z \rightarrow \infty} j\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} Z V_{1 i}\right\rangle\right)=\frac{1-i}{\sqrt{2}} .
\end{gathered}
$$

On the other hand from Lemma 1.9 exhibited just after this proof we have

$$
\lambda\left(P^{\sigma} M^{\sigma} P^{\sigma-1}\right)=\frac{1}{\sqrt{2} c_{i}} \sum_{x=0}^{2 c_{i}^{2}-1} \mathbf{e}\left(\frac{\left(1+4 a_{i i} c_{i}\right) x^{2}}{4 c_{i}^{2}}\right)=\frac{1+i}{\sqrt{2}}
$$

Therefore it follows that

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} Z V_{1 i}\right\rangle\right)=1
$$

Next we prove the case when $S=4 E_{i j}+4 E_{j i}(i \neq j)$. Let $\sigma=(1 i)(2 j)$ and $V^{\sigma}=\left(\begin{array}{cc}V_{1 i} V_{2 j} & O \\ O & V_{1 i} V_{2 j}\end{array}\right)$. As we showed before, we have

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P M P^{-1}, P\langle Z\rangle\right)=\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} V_{2 j} Z V_{2 j} V_{1 i}\right\rangle\right),
$$

where $P^{\sigma}=V^{\sigma} P V^{\sigma}=\left(\begin{array}{ll}A^{\sigma} & B^{\sigma} \\ C^{\sigma} & D^{\sigma}\end{array}\right)$ and $M^{\sigma}=V^{\sigma} M V^{\sigma}=\left(\begin{array}{cc}1 g & 4 E_{12}+4 E_{21} \\ O & 1_{g}\end{array}\right)$.
Then

$$
P^{\sigma} M^{\sigma} P^{\sigma-1}=\left(\begin{array}{cc}
1_{g}-4 A^{\sigma}\left(E_{12}+E_{21}\right)^{t} C^{\sigma} & 4 A^{\sigma}\left(E_{12}+E_{21}\right)^{t} A^{\sigma} \\
-4 C^{\sigma}\left(E_{12}+E_{21}\right)^{t} C^{\sigma} & 1_{g}+4 C^{\sigma}\left(E_{12}+E_{21}\right)^{t} A^{\sigma}
\end{array}\right) .
$$

If $i>m$ or $j>m$, then the assertion is trivial. So we assume that $i, j \leq m$. Then

$$
\begin{aligned}
-4 C^{\sigma}\left(E_{12}+E_{21}\right)^{t} C^{\sigma} & =\left(\begin{array}{ccc}
0 & -4 c_{i} c_{j} & { }^{t} \boldsymbol{o} \\
-4 c_{i} c_{j} & 0 & { }^{t} \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & O
\end{array}\right), \\
1_{g}+4 C^{\sigma}\left(E_{12}+E_{21}\right)^{t} A^{\sigma} & =\left(\begin{array}{ccc}
1+4 a_{i j} c_{i} & 4 a_{j j} c_{i} & * \\
4 a_{i i} c_{j} & 1+4 a_{j i} c_{j} & * \\
\boldsymbol{o} & \boldsymbol{o} & 1_{g-2}
\end{array}\right), \\
1_{g}-4 A^{\sigma}\left(E_{12}+E_{21}\right)^{t} C^{\sigma} & =\left(\begin{array}{ccc}
1-4 a_{i j} c_{i} & -4 a_{i i} c_{j} & { }^{t} \boldsymbol{o} \\
-4 a_{j j} c_{i} & 1-4 a_{j i} c_{j} & { }^{t} \boldsymbol{o} \\
* & * & 1_{g-2}
\end{array}\right), \\
4 A^{\sigma}\left(E_{12}+E_{21}\right)^{t} A^{\sigma} & =\left(\begin{array}{ccc}
8 a_{i i} a_{i j} & 4 a_{i i} a_{j j}+4 a_{i j} a_{j i} & * \\
4 a_{i i} a_{j j}+4 a_{i j} a_{j i} & 8 a_{j j} a_{j i} & * \\
* & * & *
\end{array}\right) .
\end{aligned}
$$

Since $A^{\sigma t} C^{\sigma}=C^{\sigma t} A^{\sigma}$, we have $a_{i j} c_{i}=a_{j i} c_{j}$. Hence $P^{\sigma} M^{\sigma} P^{\sigma-1}$ is represented as $M_{1} M^{\prime} M_{2}$ where $M_{2}=1_{2 g}$ and

$$
M^{\prime}=\left(\begin{array}{cccccc}
1-4 a_{i j} c_{i} & -4 a_{i i} c_{j} & { }^{t} \boldsymbol{o} & 8 a_{i i} a_{i j} & 4 a_{i i} a_{j j}+4 a_{i j} a_{j i} & { }^{\boldsymbol{t}} \boldsymbol{o} \\
-4 a_{j j} c_{i} & 1-4 a_{j i} c_{j} & { }^{t} \boldsymbol{o} & 4 a_{i i} a_{j j}+4 a_{i j} a_{j i} & 8 a_{j j} a_{j i} & { }^{t} \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & 1_{g-2} & \boldsymbol{o} & \boldsymbol{o} & O \\
0 & -4 c_{i} c_{j} & { }^{t} \boldsymbol{o} & 1+4 a_{i j} c_{i} & 4 a_{j j} c_{i} & { }^{t} \boldsymbol{o} \\
-4 c_{i} c_{j} & 0 & { }^{t} \boldsymbol{o} & 4 a_{i i} c_{j} & 1+4 a_{j i} c_{j} & { }^{t_{\boldsymbol{t}}} \\
\boldsymbol{o} & \boldsymbol{o} & O & \boldsymbol{o} & \boldsymbol{o} & 1_{g-2}
\end{array}\right) .
$$

Let $P^{\sigma}\left\langle V_{1 i} V_{2 j} Z V_{2 j} V_{1 i}\right\rangle=\left(\begin{array}{cc}W_{1} & W_{2} \\ { }^{t} W_{2} & W_{3}\end{array}\right)\left(W_{1} \in \mathfrak{S}_{2}\right)$. Then

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} W_{1}=\frac{1}{c_{i} c_{j}}\left(\begin{array}{ll}
a_{i i} c_{j} & a_{i j} c_{i} \\
a_{j i} c_{j} & a_{j j} c_{i}
\end{array}\right)
$$

which is fixed by

$$
M_{0}=\left(\begin{array}{cccc}
1-4 a_{i j} c_{i} & -4 a_{i i} c_{j} & 8 a_{i i} a_{i j} & 4 a_{i i} a_{j j}+4 a_{i j} a_{j i} \\
-4 a_{j j} c_{i} & 1-4 a_{j i} c_{j} & 4 a_{i i} a_{j j}+4 a_{i j} a_{j i} & 8 a_{j j} a_{j i} \\
0 & -4 c_{i} c_{j} & 1+4 a_{i j} c_{i} & 4 a_{j j} c_{i} \\
-4 c_{i} c_{j} & 0 & 4 a_{i i} c_{j} & 1+4 a_{j i} c_{j}
\end{array}\right)
$$

Hence we have

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} j\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} V_{2 j} Z V_{2 j} V_{1 i}\right\rangle\right)=1
$$

On the other hand from Lemma 1.9 we have

$$
\lambda\left(P^{\sigma} M^{\sigma} P^{\sigma-1}\right)=\frac{1}{2 c_{i} c_{j}} \sum_{x, y=0}^{2 c_{i} c_{j}-1} \mathbf{e}\left(\frac{4 a_{i i} c_{j} x^{2}+2\left(1+4 a_{i j} c_{i}\right) x y+4 a_{j j} c_{i} y^{2}}{4 c_{i} c_{j}}\right)=1
$$

Therefore it follows that

$$
\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P^{\sigma} M^{\sigma} P^{\sigma-1}, P^{\sigma}\left\langle V_{1 i} V_{2 j} Z V_{2 j} V_{1 i}\right\rangle\right)=1
$$

Now the proof of Theorem 1.8 was completed.
Lemma 1.9. (1) If $\left(c_{i}, a_{i i}\right)=(1,0),(2,0)$ or $(2,1)$, then

$$
\sum_{x=0}^{2 c_{i}^{2}-1} \mathbf{e}\left(\frac{\left(1+4 a_{i i} c_{i}\right) x^{2}}{4 c_{i}^{2}}\right)=(1+i) c_{i}
$$

(2) If $\left(c_{i}, c_{j}, a_{i i}, a_{i j}, a_{j i}, a_{j j}\right)=(1,1,0,0,0,0),(1,2,0,0,0,0),(1,2,0,0,0,1)$, $(2,2,0,0,0,0),(2,2,1,0,0,0),(2,2,0,0,0,1)$ or $(2,2,1,0,0,1)$, then

$$
\sum_{x, y=0}^{2 c_{i} c_{j}-1} \mathbf{e}\left(\frac{4 a_{i i} c_{j} x^{2}+2\left(1+4 a_{i j} c_{i}\right) x y+4 a_{j j} c_{i} y^{2}}{4 c_{i} c_{j}}\right)=2 c_{i} c_{j}
$$

Proof. Directly proved by computation.
REmARK 1.10. There are some cases such that S is not divisible by $4, P M P^{-1} \in$ $\Gamma_{0}^{g}(4)$ and $\lim _{\operatorname{Im} Z \rightarrow \infty} J\left(P M P^{-1}, P\langle Z\rangle\right)=i^{a}(a \not \equiv 0(\bmod 4))$ (cf. Theorem 3.9 (15) $\left.\Phi_{15 c}\right)$. Hence H_{g} is not extendable onto the Satake compactification $\overline{\Gamma \backslash \mathfrak{S}_{g}}$ for general Γ. Actually H_{g} is not extendable onto $\overline{\Gamma_{0}^{g}(4) \backslash \mathfrak{S}_{g}}$.

Notation 1.11. Let \bar{H}_{g} and \bar{L}_{g} be as above. Then we denote by \widetilde{H}_{g} and \widetilde{L}_{g} the pullbacks of \bar{H}_{g} and \bar{L}_{g} by the natural morphism of $\widetilde{X}_{g}(4 N)$ to $\bar{X}_{g}(4 N)$, respectively.

2. Classification of the fixed points (sets)

Let Γ be a subgroup of $\Gamma_{0}^{g}(4)$ of finite index. If $g \geq 2, \Gamma$ contains $\Gamma_{g}(4 N)$ for some N ([BLS], [Me]). In the following we assume that $g=2$ and μ is Sym^{j}. The space of

Siegel modular forms $M_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$ is canonically identified with the space

$$
\Gamma\left(\widetilde{X}_{2}(4 N), \mathcal{O}\left(\operatorname{Sym}^{j}(\widetilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)}\right)\right),
$$

which is the space of the global holomorphic sections of $\operatorname{Sym}^{j}(\widetilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)}$. The divisor at infinity $D:=\widetilde{X}_{2}(4 N)-X_{2}(4 N)$ is a divisor with simple normal crossings. The space of cusp forms $S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$ is canonically identified with the space

$$
\Gamma\left(\tilde{X}_{2}(4 N), \mathcal{O}\left(\operatorname{Sym}^{j}(\tilde{V}) \otimes \tilde{H}_{2}^{\otimes(2 k+1)}-D\right)\right)
$$

Here $\mathcal{O}\left(\operatorname{Sym}^{j}(\tilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)}-D\right)$ is the sheaf of germs of holomorphic sections which vanish along D and this is isomorphic to $\mathcal{O}\left(\operatorname{Sym}^{j}(\widetilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)} \otimes[D]^{\otimes(-1)}\right)$ where [D] is the holomorphic line bundle which is associated with D.

Let χ be a character of Γ whose kernel is a subgroup of Γ of finite index. We may assume that the kernel of χ contains $\Gamma_{2}(4 N)$. Let $f \in S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$ and $M \in \Gamma$. We define an action of M on $S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$ as follows:

$$
M f(M\langle Z\rangle)=J(M, Z)^{2 k+1} \chi(M) \operatorname{Sym}^{j}(C Z+D) f(Z)
$$

Since $\Gamma_{2}(4 N)$ acts trivially on $S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$, this action induces an action of the factor group $\Gamma / \Gamma_{2}(4 N)$ on $S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$ and $S_{j, k+1 / 2}(\Gamma, \chi)$ is identified with the invariant subspace of $S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)$. Thus we have

$$
S_{j, k+1 / 2}(\Gamma, \chi)=S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)^{\Gamma / \Gamma_{2}(4 N)}
$$

Therefore the dimension of $S_{j, k+1 / 2}(\Gamma, \chi)$ is computed by applying the holomorphic Lefschetz fixed point formula ([AS]) and the vanishing theorem (Theorem 4.1) to the above situation.

To use the holomorphic Lefschetz fixed point formula we have to classify the fixed points (sets) of Γ_{2} and $\Gamma_{2} / \Gamma_{2}(4 N)$ acting on $\widetilde{X}_{2}(4 N)$. We classify (the irreducible components of) the fixed points (sets) of Γ_{2} in the following sense. Let Φ and Φ^{\prime} be the fixed points (sets). Φ and Φ^{\prime} are called equivalent if there is an element of Γ_{2} which maps Φ biholomorphically to Φ^{\prime}. The fixed points in the quotient space $X_{2}(4 N)$ were classified in [G]. The fixed points in the divisor at infinity are classified easily. In total there are 25 kinds of fixed points (sets).

LEMMA 2.1. Among the 25 kinds of fixed points (sets) the following 10 fixed points (sets) are not fixed by the elements of Γ_{2} which are conjugate to elements of $\Gamma_{0}^{2}(4)$, where $\rho=\mathbf{e}(1 / 3), \omega=\mathbf{e}(1 / 5), \eta=(1+2 \sqrt{-2}) / 3$ and $Z \in \mathfrak{S}_{1}$. To represent the fixed points (sets) we use the same notations $\Phi_{7}, \Phi_{8}, \cdots, \Phi_{21}$ as in [T2].
$\Phi_{7}:\left\{\left(\begin{array}{cc}i & 0 \\ 0 & Z\end{array}\right)\right\}, \quad \Phi_{8}:\left\{\left(\begin{array}{cc}\rho & 0 \\ 0 & Z\end{array}\right)\right\}, \quad \Phi_{9}:\left(\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right), \quad \Phi_{11}:\left(\begin{array}{cc}\rho & 0 \\ 0 & i\end{array}\right)$,
$\Phi_{13}:\left(\begin{array}{cc}\eta & (\eta-1) / 2 \\ (\eta-1) / 2 & \eta\end{array}\right), \quad \Phi_{14}:\left(\begin{array}{cc}\omega & \omega+\omega^{3} \\ \omega+\omega^{3} & -\omega^{4}\end{array}\right), \quad \Phi_{18}:\left(\begin{array}{cc}i & 0 \\ 0 & \infty\end{array}\right)$,
$\Phi_{19}:\left(\begin{array}{cc}i & (i+1) / 2 \\ (i+1) / 2 & \infty\end{array}\right), \quad \Phi_{20}:\left(\begin{array}{cc}\rho & 0 \\ 0 & \infty\end{array}\right), \quad \Phi_{21}:\left(\begin{array}{cc}\rho & (\rho+2) / 3 \\ (\rho+2) / 3 & \infty\end{array}\right)$.
Proof. If M belongs to $\Gamma_{0}^{2}(4)$, we have

$$
M \equiv\left(\begin{array}{cc}
U & V \\
O & { }^{t} U^{-1}
\end{array}\right)(\bmod 4)
$$

where $U \in G L(2, \mathbf{Z})$. Since $(\operatorname{det} U)^{2} \equiv 1$ and $\operatorname{det}\left(x 1_{2}-{ }^{t} U^{-1}\right) \equiv \operatorname{det}\left(x 1_{2}-U^{-1}\right)$. $(\operatorname{det} U)^{2} \equiv \operatorname{det}\left(x U-1_{2}\right) \cdot \operatorname{det} U(\bmod 4)$, the characteristic polynomial $P_{M}(x)$ of M is equivalent to one of the following polynomials modulo 4:

$$
\begin{aligned}
& \left(x^{2}+1\right)^{2},\left(x^{2}+x+1\right)^{2},\left(x^{2}+x-1\right)\left(x^{2}-x-1\right),\left(x^{2}+2 x+1\right)^{2}, \\
& \left(x^{2}-1\right)^{2},\left(x^{2}-x+1\right)^{2},\left(x^{2}-x-1\right)\left(x^{2}+x-1\right),\left(x^{2}+2 x-1\right)\left(x^{2}-2 x-1\right) .
\end{aligned}
$$

Therefore if $M \in \Gamma_{2}$ is conjugate to an element of $\Gamma_{0}^{2}(4)$, then the characteristic polynomial $P_{M}(x)$ of M is equivalent to one of the following three polynomials modulo 4:

$$
x^{4}+2 x^{2}+1, \quad x^{4}+2 x^{3}+3 x^{2}+2 x+1, \quad x^{4}+x^{2}+1
$$

From this fact we can show that the above points (sets) except Φ_{9} are not fixed by the elements of Γ_{2} which are conjugate to elements of $\Gamma_{0}^{2}(4)$. Since the characteristic polynomial of P_{2} (cf. Proposition 2.5) which fixes Φ_{9} is $\left(x^{2}+1\right)^{2}$, the above argument is not valid in this case. In this case we have to check more carefully and the assertion is proved in Theorem 2.8 (9).

REMARK 2.2. Although we represented Φ_{7} by $\left\{\left(\begin{array}{ll}i & 0 \\ 0 & Z\end{array}\right)\right\} \subset \mathfrak{S}_{2}$ symbolically, Φ_{7} means the image of $\left\{\left(\begin{array}{cc}i & 0 \\ 0 & Z\end{array}\right)\right\}$ to $\widetilde{X}_{2}(4 N)$. The same applies to Φ_{8} and also to the following cases.

The remaining 15 fixed points (sets) have the contributions to the dimension formula. But since the automorphic factor $J(M, Z)$ is defined with respect to $\Gamma_{0}^{2}(4)$, we have to classify the remaining 15 fixed points (sets) with respect to $\Gamma_{0}^{2}(4)$. Let Φ be one of the following 15 fixed points (sets):

$$
\begin{aligned}
& \Phi_{1}:\left\{\left(\begin{array}{cc}
Z_{1} & Z_{12} \\
Z_{12} & Z_{2}
\end{array}\right)\right\}, \quad \Phi_{2}:\left\{\left(\begin{array}{cc}
Z_{1} & 0 \\
0 & Z_{2}
\end{array}\right)\right\}, \quad \Phi_{3}:\left\{\left(\begin{array}{cc}
Z_{1} & 1 / 2 \\
1 / 2 & Z_{2}
\end{array}\right)\right\} \\
& \Phi_{4}:\left\{\left(\begin{array}{ll}
Z & 0 \\
0 & Z
\end{array}\right)\right\}, \quad \Phi_{5}:\left\{\left(\begin{array}{cc}
Z & 1 / 2 \\
1 / 2 & Z
\end{array}\right)\right\}, \quad \Phi_{6}:\left\{\left(\begin{array}{cc}
Z & Z / 2 \\
Z / 2 & Z
\end{array}\right)\right\} \\
& \Phi_{10}:\left(\begin{array}{ll}
\rho & 0 \\
0 & \rho
\end{array}\right), \quad \Phi_{12}: \frac{\sqrt{-3}}{3}\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right), \quad \Phi_{15}:\left\{\left(\begin{array}{cc}
Z & W \\
W & \infty
\end{array}\right)\right\} \\
& \Phi_{16}:\left\{\left(\begin{array}{cc}
Z & 0 \\
0 & \infty
\end{array}\right)\right\}, \quad \Phi_{17}:\left\{\left(\begin{array}{cc}
Z & 1 / 2 \\
1 / 2 & \infty
\end{array}\right)\right\}, \quad \Phi_{22}:\left\{\left(\begin{array}{cc}
\infty & W \\
W & \infty
\end{array}\right)\right\} \\
& \Phi_{23}:\left(\begin{array}{cc}
\infty & 0 \\
0 & \infty
\end{array}\right), \quad \Phi_{24}:\left(\begin{array}{cc}
\infty & 1 / 2 \\
1 / 2 & \infty
\end{array}\right), \quad \Phi_{25}:\left(\begin{array}{cc}
\infty & \infty \\
\infty & \infty
\end{array}\right)
\end{aligned}
$$

where $\left(\begin{array}{cc}Z_{1} & Z_{12} \\ Z_{12} & Z_{2}\end{array}\right) \in \mathfrak{S}_{2}, Z, Z_{1}, Z_{2} \in \mathfrak{S}_{1}$ and $W \in \mathbf{C}$. Strictly speaking Φ_{17} should be represented as

$$
\begin{aligned}
& \left\{\left(\begin{array}{cc}
Z & 1 / 2 \\
1 / 2 & \infty
\end{array}\right)\right\} \cup\left\{\left(\begin{array}{cc}
Z & 2 N+1 / 2 \\
2 N+1 / 2 & \infty
\end{array}\right)\right\} \\
& \cup\left\{\left(\begin{array}{cc}
Z & 2 N Z+1 / 2 \\
2 N Z+1 / 2 & \infty
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{cc}
Z & 2 N(Z+1)+1 / 2 \\
2 N(Z+1)+1 / 2 & \infty
\end{array}\right.\right.
\end{aligned}
$$

This appears as a boundary of Φ_{3} and is a four fold cover of a one-dimensional cusp.
DEFINITION 2.3. Let us denote by $\operatorname{Fix}(M)$ the fixed points in $\tilde{X}_{2}(4 N)$ of M and let $C(\Phi)=\left\{M \in \Gamma_{2} / \Gamma_{2}(4 N) \mid M\langle Z\rangle=Z\right.$ for any $\left.Z \in \Phi\right\}$, $C^{p}(\Phi)=\{M \in C(\Phi) \mid \Phi$ is an irreducible component of $\operatorname{Fix}(M)\}$,

$$
C\left(\Phi, \Gamma_{2}\right)=\left\{M \in \Gamma_{2} \mid M\langle Z\rangle=Z \text { for any } Z \in \Phi\right\}
$$

$$
C^{p}\left(\Phi, \Gamma_{2}\right)=\left\{M \in C\left(\Phi, \Gamma_{2}\right) \mid \Phi \text { is an irreducible component of } \operatorname{Fix}(M)\right\}
$$

$$
N\left(\Phi, \Gamma_{2}\right)=\left\{M \in \Gamma_{2} \mid M \operatorname{maps} \Phi \text { into } \Phi\right\}
$$

We call $C^{p}(\Phi)$ and $C^{p}\left(\Phi, \Gamma_{2}\right)$ the sets of proper elements in $C(\Phi)$ and in $C\left(\Phi, \Gamma_{2}\right)$, respectively.

What we have to do is to classify the double cosets in $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right)$. Since Γ_{2} is an infinite group, it is not an easy task to classify $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right)$. But since $\Gamma_{0}^{2}(4)$ contains $\Gamma_{2}(4)$ which is a normal subgroup of Γ_{2}, we can take the quotient by Γ_{2} (4) and reduce the problem to a task in the finite group $\Gamma_{2} / \Gamma_{2}(4) \simeq S p(2, \mathbf{Z} / 4 \mathbf{Z})$ and we can use a computer. So first we classify $\Gamma_{0}^{2}(4) \backslash \Gamma_{2}$ which consists of 120 cosets and next classify these cosets with respect to the action of $N\left(\Phi, \Gamma_{2}\right)$ from the right. We have to execute this computation many times in the following.

Let $P_{1}, P_{2}, \cdots, P_{n}$ be the representatives of $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right)$. Next we have to check $P_{i} C^{p}\left(\Phi, \Gamma_{2}\right) P_{i}^{-1} \cap \Gamma_{0}^{2}(4)(i=1,2, \cdots, n)$ is empty or not. Let

$$
P_{i} \Phi=\left\{P_{i}\langle Z\rangle \mid Z \in \Phi\right\} .
$$

The following assertion is trivial.
Lemma 2.4. If $P_{i} C^{p}\left(\Phi, \Gamma_{2}\right) P_{i}^{-1} \cap \Gamma_{0}^{2}(4)$ is empty, then $P_{i} \Phi$ is not fixed by the elements of $\Gamma_{0}^{2}(4)$.

Before we classify the fixed points (sets), we classify the rational boundary components of \mathfrak{S}_{2} with respect to $\Gamma_{0}^{2}(4)$ and determine the configuration of the cusps of the Satake compactification $\overline{\Gamma_{0}^{2}(4) \backslash \mathfrak{S}_{2}}$ of $\Gamma_{0}^{2}(4) \backslash \mathfrak{S}_{2}$. Let B_{1} be the one-dimensional boundary component of \mathfrak{S}_{2} which is defined by $\operatorname{Im} Z_{2}=\infty$. Let $N\left(B_{1}, \Gamma_{2}\right)$ be the stabilizer in Γ_{2} of B_{1}. The elements of $N\left(B_{1}, \Gamma_{2}\right)$ have the following form:

$$
\left(\begin{array}{llll}
* & 0 & * & * \\
* & * & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) .
$$

The one-dimensional cusps of the Satake compactification correspond bijectively to the double cosets in $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(B_{1}, \Gamma_{2}\right)$. Similarly as above we classify the double cosets by a computer. We have

Proposition 2.5. $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(B_{1}, \Gamma_{2}\right)$ consists of four double cosets. The representatives are P_{1}, P_{2}, P_{3} and P_{4}, where $P_{1}=1_{4}$ and

$$
P_{2}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right), \quad P_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right) .
$$

Let

$$
M=\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & 1 & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The submatrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in M acts on the one-dimensional rational boundary component at infinity and $P_{i} M P_{i}^{-1}(i=1,2,3,4)$ belongs to $\Gamma_{0}^{2}(4)$ if and only if

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

belongs to $\Gamma_{0}^{1}(4)$, respectively. Hence each one-dimensional cusps of the Satake compactification is biholomorphic to $\overline{\Gamma_{0}^{1}(4) \backslash \mathfrak{S}_{1}} . \Gamma_{0}^{1}(4) \backslash \mathfrak{S}_{1}$ is a rational curve with three holes.

Let B_{0} be the zero-dimensional boundary component of \mathfrak{S}_{2} which is defined by $\operatorname{Im} Z_{1}=\operatorname{Im} Z_{2}=\infty$. Let $N\left(B_{0}, \Gamma_{2}\right)$ be the stabilizer in Γ_{2} of B_{0}. The elements of
$N\left(B_{0}, \Gamma_{2}\right)$ have the following form:

$$
\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right) .
$$

The zero-dimensional cusps of the Satake compactification correspond bijectively to the double cosets in $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(B_{0}, \Gamma_{2}\right)$. We have

Proposition 2.6. $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(B_{0}, \Gamma_{2}\right)$ consists of seven double cosets. The representatives are $P_{1}, P_{2}, \cdots, P_{7}$, where

$$
P_{5}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad P_{6}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad P_{7}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right)
$$

Let C_{i} be the one-dimensional cusp corresponding to the double coset $\Gamma_{0}^{2}(4) P_{i} N\left(B_{1}, \Gamma_{2}\right)(i=1,2,3,4)$, respectively and let Q_{i} be the zero-dimensional cusp corresponding to the double coset $\Gamma_{0}^{2}(4) P_{i} N\left(B_{0}, \Gamma_{2}\right)(i=1,2, \cdots, 7)$, respectively. Then the cusps of the Satake compactification look like as follows.

Cusps of $\overline{\Gamma_{0}^{2}(4) \backslash \mathfrak{S}_{2}}$:

This is proved as follows. The cusps Q_{1}, Q_{2}, Q_{3} and Q_{4} are on C_{1}, C_{2}, C_{3} and C_{4}, respectively. Since

$$
\begin{aligned}
& \Gamma_{0}^{2}(4) P_{5} N\left(B_{1}, \Gamma_{2}\right)=\Gamma_{0}^{2}(4) P_{1} N\left(B_{1}, \Gamma_{2}\right), \\
& \Gamma_{0}^{2}(4) P_{6} N\left(B_{1}, \Gamma_{2}\right)=\Gamma_{0}^{2}(4) P_{3} N\left(B_{1}, \Gamma_{2}\right), \\
& \Gamma_{0}^{2}(4) P_{7} N\left(B_{1}, \Gamma_{2}\right)=\Gamma_{0}^{2}(4) P_{3} N\left(B_{1}, \Gamma_{2}\right),
\end{aligned}
$$

Q_{5}, Q_{6} and Q_{7} are on C_{1}, C_{3} and C_{3}, respectively. Let P_{11} be as in Theorem 2.8. Since

$$
\begin{aligned}
& \Gamma_{0}^{2}(4) P_{5} N\left(B_{0}, \Gamma_{2}\right)=\Gamma_{0}^{2}(4) P_{11} N\left(B_{0}, \Gamma_{2}\right), \\
& \Gamma_{0}^{2}(4) P_{11} N\left(B_{1}, \Gamma_{2}\right)=\Gamma_{0}^{2}(4) P_{4} N\left(B_{1}, \Gamma_{2}\right),
\end{aligned}
$$

Q_{5} is also on C_{4}. Similarly we can prove that Q_{5} and Q_{6} are also on C_{2}, Q_{3} is also on C_{1} and Q_{7} is also on C_{4}.

Proposition 2.7. We have $\left[\Gamma_{g}^{\alpha}: \Gamma_{0}^{g}(4)\right]=2^{g(g-1) / 2}$. Especially $\left[\Gamma_{2}^{\alpha}: \Gamma_{0}^{2}(4)\right]=$ 2 and $\Gamma_{0}^{2}(4)$ is a normal subgroup of Γ_{2}^{α}.

Proof. We have

$$
\begin{aligned}
\alpha \Gamma_{g}^{\alpha} \alpha^{-1} & =\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{g} \right\rvert\, B \equiv O(\bmod 2), \text { diagonal elements of } C^{t} D \text { are even }\right\}, \\
\alpha \Gamma_{0}^{g}(4) \alpha^{-1} & =\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{g} \right\rvert\, B \equiv C \equiv O(\bmod 2)\right\} .
\end{aligned}
$$

We map them into $S p\left(g, \mathbf{F}_{2}\right)$. Namely,

$$
\begin{aligned}
& \alpha \Gamma_{g}^{\alpha} \alpha^{-1} / \Gamma_{g}(2)=\left\{\left.\left(\begin{array}{cc}
A & O \\
T A & { }^{t} A^{-1}
\end{array}\right) \right\rvert\, A \in G L\left(g, \mathbf{F}_{2}\right),{ }^{t} T=T,\right. \\
&\text { diagonal elements of } T \text { are } 0\}, \\
& \alpha \Gamma_{0}^{g}(4) \alpha^{-1} / \Gamma_{g}(2)=\left\{\left.\left(\begin{array}{cc}
A & O \\
O & { }^{t} A^{-1}
\end{array}\right) \right\rvert\, A \in G L\left(g, \mathbf{F}_{2}\right)\right\} .
\end{aligned}
$$

Hence $\left[\alpha \Gamma_{g}^{\alpha} \alpha^{-1}: \Gamma_{g}(2)\right]=2^{g(g-1) / 2}\left|G L\left(g, \mathbf{F}_{2}\right)\right|$ and $\left[\alpha \Gamma_{0}^{g}(4) \alpha^{-1}: \Gamma_{g}(2)\right]=$ $\left|G L\left(g, \mathbf{F}_{2}\right)\right|$. Therefore $\left[\Gamma_{g}^{\alpha}: \Gamma_{0}^{g}(4)\right]=\left[\alpha \Gamma_{g}^{\alpha} \alpha^{-1}: \alpha \Gamma_{0}^{g}(4) \alpha^{-1}\right]=2^{g(g-1) / 2}$.

As a matter of fact we classify the fixed points (sets) with respect to Γ_{2}^{α} instead of $\Gamma_{0}^{2}(4)$ (cf. Remark 3.6). In the following theorem we represent the representatives with respect to $\Gamma_{0}^{2}(4)$ as $\Phi_{a}, \Phi_{a^{\prime}}, \Phi_{b}, \Phi_{c}$. These notations mean that Φ_{a} and $\Phi_{a^{\prime}}$ are equivalent with respect to Γ_{2}^{α} and Φ_{a}, Φ_{b} and Φ_{c} are not equivalent with respect to Γ_{2}^{α}.

Theorem 2.8. Let

$$
\begin{aligned}
& P_{8}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad P_{9}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right), \quad P_{10}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right), \\
& P_{11}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 \\
-1 & 2 & 0 & 0
\end{array}\right), \quad P_{12}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
2 & 2 & 0 & 1
\end{array}\right), \quad P_{13}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 1 & 0 & 0
\end{array}\right) \text {, } \\
& P_{14}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 \\
-1 & 1 & 2 & 0
\end{array}\right), \quad P_{15}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right), \quad P_{16}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 1 & 1 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& P_{17}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 \\
2 & 2 & 0 & 1
\end{array}\right), \quad P_{18}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad P_{19}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 2
\end{array}\right), \\
& P_{20}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 1 & 2 \\
0 & -1 & 2 & 0
\end{array}\right), \quad P_{21}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 1 & 2 \\
0 & -1 & 2 & 2
\end{array}\right), \quad P_{22}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \\
& P_{23}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 2 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right), \quad P_{24}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & -1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right), \quad P_{25}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & -1 & 0 & 1
\end{array}\right), \\
& P_{26}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right), \quad P_{27}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad P_{28}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -1 & 2 \\
0 & -1 & 2 & 0
\end{array}\right), \\
& P_{29}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right), \quad P_{30}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 \\
-1 & 2 & 2 & 0
\end{array}\right), \quad P_{31}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 2 & 1 \\
-1 & 2 & 2 & 0
\end{array}\right), \\
& P_{32}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 \\
-1 & 1 & 0 & 0
\end{array}\right), \quad P_{33}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 \\
-1 & -1 & 0 & 0
\end{array}\right), \quad P_{34}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 2 \\
0 & -1 & 2 & 0
\end{array}\right) .
\end{aligned}
$$

Then fixed points (sets) of $\Gamma_{0}^{2}(4)$ are classified as follows.
(1) $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{1}, \Gamma_{2}\right)$ consists of one double coset. The representative is $P_{1} . \Phi_{1 a}:=$ $P_{1} \Phi_{1}$ is the total space $\widetilde{X}_{2}(4 N)$.
(2) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{2}, \Gamma_{2}\right)$ consists of three double cosets. The representatives are P_{1}, P_{4} and P_{8}. Only $\Phi_{2 a}:=P_{1} \Phi_{2}$ and $\Phi_{2 a^{\prime}}:=P_{4} \Phi_{2}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(3) $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{3}, \Gamma_{2}\right)$ consists of five double cosets. The representatives are P_{1}, P_{2}, P_{5}, P_{6} and P_{7}. Only $\Phi_{3 a}:=P_{1} \Phi_{3}, \Phi_{3 b}:=P_{5} \Phi_{3}$ and $\Phi_{3 c}:=P_{7} \Phi_{3}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(4) $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{4}, \Gamma_{2}\right)$ consists of eleven double cosets. The representatives are P_{1}, $P_{3}, P_{4}, P_{5}, P_{8}, P_{9}, P_{10}, P_{11}, P_{12}, P_{13}$ and P_{14}. Only $\Phi_{4 a}:=P_{1} \Phi_{4}$ and $\Phi_{4 a^{\prime}}:=P_{4} \Phi_{4}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(5) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{5}, \Gamma_{2}\right)$ consists of eight double cosets. The representatives are P_{1}, $P_{2}, P_{6}, P_{7}, P_{10}, P_{13}, P_{15}$ and P_{16}. Only $\Phi_{5 a}:=P_{1} \Phi_{5}$ and $\Phi_{5 b}:=P_{7} \Phi_{5}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(6) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{6}, \Gamma_{2}\right)$ consists of six double cosets. The representatives are P_{1}, P_{3}, P_{5}, P_{10}, P_{14} and P_{16}. Only $\Phi_{6 a}:=P_{1} \Phi_{6}$ is fixed by elements of $\Gamma_{0}^{2}(4)$.
(9) Φ_{9} is not fixed by the elements of Γ_{2} which are conjugate to elements of Γ_{0}^{2} (4).
(10) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{10}, \Gamma_{2}\right)$ consists of ten double cosets. The representatives are P_{1}, $P_{3}, P_{4}, P_{7}, P_{8}, P_{9}, P_{12}, P_{13}, P_{14}$ and P_{17}. Only $\Phi_{10 a}:=P_{14} \Phi_{10}$ is fixed by elements of $\Gamma_{0}^{2}(4)$.
(12) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{12}, \Gamma_{2}\right)$ consists of twenty four double cosets. The representatives are $P_{1}, P_{3}, P_{4}, P_{7}, P_{9}, P_{10}, P_{13}, P_{14}, P_{15}, P_{18}, P_{19}, P_{20}, P_{21}, P_{22}, P_{23}, P_{24}, P_{27}, P_{28}$, $P_{29}, P_{30}, P_{31}, P_{32}$ and P_{33}. Only $\Phi_{12 a}:=P_{24} \Phi_{12}$ and $\Phi_{12 a^{\prime}}:=P_{29} \Phi_{12}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(15) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{15}, \Gamma_{2}\right)$ consists of four double cosets. The representatives are P_{1}, P_{2}, P_{3} and P_{4}. Let $\Phi_{15 a}:=P_{1} \Phi_{15}, \Phi_{15 a^{\prime}}:=P_{4} \Phi_{15}, \Phi_{15 b}:=P_{2} \Phi_{15}$ and $\Phi_{15 c}:=$ $P_{3} \Phi_{15}$. All of them are fixed by elements of $\Gamma_{0}^{2}(4)$.
(16) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{16}, \Gamma_{2}\right)$ consists of seven double cosets. The representatives are P_{1}, $P_{2}, P_{3}, P_{4}, P_{8}, P_{12}$ and P_{34}. Only $\Phi_{16 a}:=P_{1} \Phi_{16}, \Phi_{16 a^{\prime}}:=P_{4} \Phi_{16}, \Phi_{16 b}:=P_{2} \Phi_{16}$, $\Phi_{16 c}:=P_{3} \Phi_{16}, \Phi_{16 d}:=P_{12} \Phi_{16}$ and $\Phi_{16 e}:=P_{34} \Phi_{16}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(17) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{17}, \Gamma_{2}\right)$ consists of ten double cosets. The representatives are P_{1}, $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{11}, P_{13}$ and P_{14}. Only $\Phi_{17 a}:=P_{1} \Phi_{17}, \Phi_{17 a^{\prime}}:=P_{4} \Phi_{17}$, $\Phi_{17 b}:=P_{3} \Phi_{17}, \Phi_{17 c}:=P_{5} \Phi_{17}, \Phi_{17 c^{\prime}}:=P_{11} \Phi_{17}, \Phi_{17 d}:=P_{7} \Phi_{17}$ and $\Phi_{17 e}:=$ $P_{14} \Phi_{17}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(22) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{22}, \Gamma_{2}\right)$ consists of twelve double cosets. The representatives are P_{1}, $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{11}, P_{12}, P_{13}, P_{17}$ and P_{32}. Let $\Phi_{22 a}:=P_{1} \Phi_{22}, \Phi_{22 a^{\prime}}:=P_{4} \Phi_{22}$, $\Phi_{22 b}:=P_{2} \Phi_{22}, \Phi_{22 c}:=P_{7} \Phi_{22}, \Phi_{22 c^{\prime}}:=P_{17} \Phi_{22}, \Phi_{22 d}:=P_{13} \Phi_{22}, \Phi_{22 e}:=P_{32} \Phi_{22}$, $\Phi_{22 f}:=P_{5} \Phi_{22}, \Phi_{22 f^{\prime}}:=P_{11} \Phi_{22}, \Phi_{22 g}:=P_{6} \Phi_{22}, \Phi_{22 h}:=P_{3} \Phi_{22}$ and $\Phi_{22 h^{\prime}}:=$ $P_{12} \Phi_{22}$. All of them are fixed by elements of $\Gamma_{0}^{2}(4)$.
(23) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{23}, \Gamma_{2}\right)$ consists of fifteen double cosets. The representatives are P_{1}, $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}, P_{11}, P_{12}, P_{13}, P_{17}, P_{31}, P_{32}$ and P_{34}. Only $\Phi_{23 a}:=P_{1} \Phi_{23}$, $\Phi_{23 a^{\prime}}:=P_{4} \Phi_{23}, \Phi_{23 b}:=P_{2} \Phi_{23}, \Phi_{23 b^{\prime}}:=P_{34} \Phi_{23}, \Phi_{23 c}:=P_{3} \Phi_{23}, \Phi_{23 c^{\prime}}:=P_{12} \Phi_{23}$, $\Phi_{23 d}:=P_{5} \Phi_{23}, \Phi_{23 d^{\prime}}:=P_{11} \Phi_{23}, \Phi_{23 e}:=P_{6} \Phi_{23}, \Phi_{23 e^{\prime}}:=P_{31} \Phi_{23}, \Phi_{23 f}:=P_{7} \Phi_{23}$, $\Phi_{23 f^{\prime}}:=P_{17} \Phi_{23}$, and $\Phi_{23 g}:=P_{32} \Phi_{23}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(24) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{24}, \Gamma_{2}\right)$ consists of thirteen double cosets. The representatives are $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{11}, P_{12}, P_{13}, P_{17}, P_{32}$ and P_{34}. Only $\Phi_{24 a}:=P_{1} \Phi_{24}$, $\Phi_{24 a^{\prime}}:=P_{4} \Phi_{24}, \Phi_{24 b}:=P_{3} \Phi_{24}, \Phi_{24 b^{\prime}}:=P_{12} \Phi_{24}, \Phi_{24 c}:=P_{5} \Phi_{24}, \Phi_{24 c^{\prime}}:=P_{11} \Phi_{24}$, $\Phi_{24 d}:=P_{7} \Phi_{24}, \Phi_{24 d^{\prime}}:=P_{17} \Phi_{24}$, and $\Phi_{24 e}:=P_{32} \Phi_{24}$ are fixed by elements of $\Gamma_{0}^{2}(4)$.
(25) $\quad \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{25}, \Gamma_{2}\right)$ consists of eight double cosets. The representatives are P_{1}, $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}$ and P_{11}. Let $\Phi_{25 a}:=P_{1} \Phi_{25}, \Phi_{25 a^{\prime}}:=P_{4} \Phi_{25}, \Phi_{25 b}:=P_{2} \Phi_{25}$, $\Phi_{25 c}:=P_{3} \Phi_{25}, \Phi_{25 d}:=P_{5} \Phi_{25}, \Phi_{25 d^{\prime}}:=P_{11} \Phi_{25}, \Phi_{25 e}:=P_{6} \Phi_{25}$ and $\Phi_{25 f}:=$ $P_{7} \Phi_{25}$. All of them are fixed by elements of $\Gamma_{0}^{2}(4)$.

Proof. We prove only (9). Other cases are similarly proved. $C^{p}\left(\Phi_{9}, \Gamma_{2}\right)$ has ten elements. It consists of $\pm P_{2}, \pm P_{5}, \pm P_{5}^{-1}$ and other four elements. Other four elements are conjugate to $\pm P_{5}$ or $\pm P_{5}^{-1}$. Since the characteristic polynomials of $\pm P_{5}$ and $\pm P_{5}^{-1}$ are $x^{4}+1$, they are not conjugate to elements of Γ_{0}^{2} (4) (cf. Proof of Lemma 2.1). $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{9}, \Gamma_{2}\right)$ consists of eighteen double cosets. The representatives are P_{1}, P_{3}, $P_{4}, P_{7}, P_{8}, P_{9}, P_{10}, P_{12}, P_{17}, P_{18}, P_{19}, P_{20}, P_{21}, P_{22}, P_{23}, P_{24}, P_{25}$ and $P_{26} . P_{i} P_{2} P_{i}^{-1}$ $(i=1,3,4,7,8,9,10,12,17, \cdots, 26)$ does not belong to $\Gamma_{0}^{2}(4)$. Hence Φ_{9} is not fixed by the elements of Γ_{2} which are conjugate to elements of $\Gamma_{0}^{2}(4)$ (cf. Lemma 2.4).

3. Detailed data

In this section we list the data which we use to compute the dimension formula. First we recall the holomorphic Lefschetz fixed point formula. Let X be a compact complex manifold and V a holomorphic vector bundle on X, and let G be a finite group of automorphisms of the pair (X, V). For $g \in G$ let X^{g} be the set of fixed points of g. Then, X^{g} is a disjoint union of submanifolds of X. Let

$$
X^{g}=\sum_{\alpha} X_{\alpha}^{g}
$$

be the irreducible decomposition of X^{g}, and let

$$
N_{\alpha}^{g}=\sum_{\theta} N_{\alpha}^{g}(\theta)
$$

denote the normal bundle of X_{α}^{g} decomposed according to the eigenvalues $e^{i \theta}$ of g. We put

$$
\mathcal{U}^{\theta}\left(N_{\alpha}^{g}(\theta)\right)=\prod_{\beta}\left(\frac{1-e^{-x_{\beta}-i \theta}}{1-e^{-i \theta}}\right)^{-1}
$$

where the Chern class of $N_{\alpha}^{g}(\theta)$ is

$$
c\left(N_{\alpha}^{g}(\theta)\right)=\prod_{\beta}\left(1+x_{\beta}\right) .
$$

Let $\mathcal{T}\left(X_{\alpha}^{g}\right)$ be the Todd class of X_{α}^{g}. Let $V \mid X_{\alpha}^{g}$ be the restriction of V to X_{α}^{g} and $\operatorname{ch}\left(V \mid X_{\alpha}^{g}\right)(g)$ the Chern character of $V \mid X_{\alpha}^{g}$ with g-action ([AS]). Put

$$
\tau\left(g, X_{\alpha}^{g}\right)=\left\{\frac{\operatorname{ch}\left(V \mid X_{\alpha}^{g}\right)(g) \cdot \prod_{\theta} \mathcal{U}^{\theta}\left(N_{\alpha}^{g}(\theta)\right) \cdot \mathcal{T}\left(X_{\alpha}^{g}\right)}{\operatorname{det}\left(1-g \mid\left(N_{\alpha}^{g}\right)^{*}\right)}\right\}\left[X_{\alpha}^{g}\right]
$$

and

$$
\tau(g)=\sum_{\alpha} \tau\left(g, X_{\alpha}^{g}\right)
$$

We have
THEOREM 3.1 ([AS]).

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{Tr}\left(g \mid H^{i}(X, \mathcal{O}(V))\right)=\tau(g) .
$$

Let Γ be a subgroup of $\Gamma_{0}^{2}(4)$ of finite index and χ a character of Γ whose kernel is a subgroup of Γ of finite index. The kernel of χ contains $\Gamma_{2}(4 N)$ for some N. In our case X, V and G are $\tilde{X}_{2}(4 N), \operatorname{Sym}^{j}(\widetilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)} \otimes[D]^{\otimes(-1)}$ and $\Gamma / \Gamma_{2}(4 N)$, respectively. But in the following we assume that V is $\operatorname{Sym}^{j}(\tilde{V}) \otimes \tilde{H}_{2}^{\otimes k} \otimes[D]^{\otimes(-1)}$ for the sake of simplicity. When we apply the data, we replace k with $2 k+1$.

Applying the holomorphic Lefschetz theorem we have the dimension formula. We state the general dimension formula (cf. [T5], Theorem 1.6). Let $g \in \Gamma / \Gamma_{2}(4 N)$. We denote the centralizer of g in $\Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)$ and in $\Gamma / \Gamma_{2}(4 N)$ by $C\left(g, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$ and $C\left(g, \Gamma / \Gamma_{2}(4 N)\right)$, respectively. Let

$$
N\left(\Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)=\left\{M \in \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N) \mid M \text { maps } \Phi \text { into } \Phi\right\}
$$

THEOREM 3.2. Under the assumption that the higher cohomology groups vanish, the dimension of $S_{j, k+1 / 2}(\Gamma, \chi)$ is expressed as

$$
\sum_{\Phi} \sum_{P} \sum_{M} \frac{\tau\left(P M P^{-1}, P \Phi\right)}{\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|}\left(\sum_{g} \frac{\left|C\left(g, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|}{\left|C\left(g, \Gamma / \Gamma_{2}(4 N)\right)\right|} \cdot \chi(g)\right) .
$$

Here Φ is over the 15 fixed points (sets) in §2, P is over the representatives of $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right)$ and M is over $C^{p}(\Phi) \cap P^{-1} \Gamma_{0}^{2}(4) P$. Let $\operatorname{Conj}\left(\Gamma / \Gamma_{2}(4 N)\right)$ be the set of the representatives of the conjugacy classes of $\Gamma / \Gamma_{2}(4 N)$. Moreover g runs over $\operatorname{Conj}\left(\Gamma / \Gamma_{2}(4 N)\right)$ such that g is conjugate to $P M P^{-1}$ in $\Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)$.

Let Φ be an irreducible component of fixed points sets and let $M \in C^{p}(\Phi)$. The Chern character with M-action $c h: W \mapsto \operatorname{ch}(W)(M)$ is also a ring homomorphism of the ring of the holomorphic vector bundles to the cohomology ring as in the case of the usual Chern character. Hence we have

$$
\begin{aligned}
\operatorname{ch}(V \mid \Phi)(M) & =\operatorname{ch}\left(\operatorname{Sym}^{j}(\widetilde{V}) \otimes \widetilde{H}_{2}^{\otimes k} \otimes[D]^{\otimes(-1)} \mid \Phi\right)(M) \\
& =\operatorname{ch}\left(\operatorname{Sym}^{j}(\widetilde{V}) \mid \Phi\right)(M) \otimes \operatorname{ch}\left(\widetilde{H}_{2}^{\otimes k} \mid \Phi\right)(M) \otimes \operatorname{ch}\left([D]^{\otimes(-1)} \mid \Phi\right)(M)
\end{aligned}
$$

Let $Z \in \Phi$. Then by definition we have

$$
\operatorname{ch}\left(\widetilde{H}_{2}^{\otimes k} \mid \Phi\right)(M)=J(M, Z)^{k} \operatorname{ch}\left(\widetilde{H}_{2}^{\otimes k} \mid \Phi\right)
$$

Let

$$
\operatorname{ch}_{0}(V \mid \Phi)(M)=\operatorname{ch}\left(\operatorname{Sym}^{j}(\tilde{V}) \mid \Phi\right)(M) \otimes \operatorname{ch}\left(\tilde{H}_{2}^{\otimes k} \mid \Phi\right) \otimes \operatorname{ch}\left([D]^{\otimes(-1)} \mid \Phi\right)(M)
$$

and let

$$
\tau_{0}(M, \Phi)=\left\{\frac{\operatorname{ch}_{0}(V \mid \Phi)(M) \cdot \prod_{\theta} \mathcal{U}^{\theta}\left(N^{M}(\theta)\right) \cdot \mathcal{T}(\Phi)}{\operatorname{det}\left(1-M \mid\left(N^{M}\right)^{*}\right)}\right\}[\Phi] .
$$

Then we have

$$
\operatorname{ch}(V \mid \Phi)(M)=J(M, Z)^{k} \operatorname{ch}_{0}(V \mid \Phi)(M)
$$

and

$$
\tau(M, \Phi)=J(M, Z)^{k} \tau_{0}(M, \Phi)
$$

Let \bar{L}_{2} and \widetilde{L}_{2} be as in Notation 1.11. We have $\widetilde{H}_{2}^{\otimes 2} \simeq \widetilde{L}_{2}$ and

$$
\begin{aligned}
\operatorname{ch}\left(\widetilde{H}_{2}\right) & =1+c_{1}\left(\widetilde{H}_{2}\right)+\frac{1}{2} c_{1}\left(\widetilde{H}_{2}\right)^{2}+\frac{1}{6} c_{1}\left(\widetilde{H}_{2}\right)^{3} \\
& =1+\frac{1}{2} c_{1}\left(\widetilde{L}_{2}\right)+\frac{1}{8} c_{1}\left(\widetilde{L}_{2}\right)^{2}+\frac{1}{48} c_{1}\left(\widetilde{L}_{2}\right)^{3}
\end{aligned}
$$

Since $\operatorname{Sym}^{j}(\tilde{V})$ and \widetilde{L}_{2} correspond to the automorphy factors (which are defined with respect to $\left.\Gamma_{2}\right) \operatorname{Sym}^{j}(C Z+D)$ and $\operatorname{det}(C Z+D)$, respectively and the divisor D is invariant with respect to Γ_{2}, the terms in $\tau_{0}(M, \Phi)$ are invariant with respect to Γ_{2}. Namely, we have

Proposition 3.3. Let $M \in C^{p}\left(\Phi, \Gamma_{2}\right)$ and $P \in \Gamma_{2}$. If M and $P M P^{-1}$ belong to $\Gamma_{0}^{2}(4)$, then

$$
\tau_{0}\left(P M P^{-1}, P \Phi\right)=\tau_{0}(M, \Phi)
$$

Hence the only term in $\tau(M, \Phi)$ which depends on $\Gamma_{0}^{2}(4)$ is $J(M, Z)$. What we have to do to get the dimension formula is to compute $\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|$ and $\tau\left(P M P^{-1}, P \Phi\right)$ for every $P \in \Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right)$ and $M \in C^{p}(\Phi) \cap P^{-1} \Gamma_{0}^{2}(4) P$. From the above observation it suffices to compute $\tau_{0}(M, \Phi),\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|$ and $J\left(P M P^{-1}, P\langle Z\rangle\right)(Z \in \Phi)$. We list $\tau_{0}(M, \Phi)$ in Theorem 3.4, $\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|$ in Theorem 3.8 and $J\left(P M P^{-1}, P\langle Z\rangle\right)(Z \in \Phi)$ in Theorem 3.9, respectively.

In the following theorem we assume that j is even. Hence we replace j with $2 j$ and assume G is $\Gamma_{0}^{2}(4) / \pm \Gamma_{2}(4 N)$. The notations $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{25}(6, r, s, t) \in \Gamma_{2} / \pm \Gamma_{2}(4 N)$ are same as in [T2]. We do not show them explicitly here. If one does not know them, he can obtain the dimension formula from the data in Theorem 3.4, Theorem 3.8 and Theorem 3.9. The elements in $C^{p}\left(\Phi_{10}\right)$ except $\varphi_{10}(i)(i=1,2,4,5)$ are not conjugate to the elements in $\Gamma_{0}^{2}(4)$.

THEOREM 3.4. Let V be $\operatorname{Sym}^{2 j}(\tilde{V}) \otimes \widetilde{H}_{2}^{\otimes k} \otimes[D]^{\otimes(-1)}$. Let $\zeta=\mathbf{e}(1 / 4 N)$ and $\rho=\mathbf{e}(1 / 3)$. We have the following results. There p in \prod is over the odd prime numbers which divide N, while Tr_{ρ} means the trace map $\mathbf{Q}(\rho) \rightarrow \mathbf{Q}$.
(1) $\tau_{0}\left(\varphi_{1}, \Phi_{1}\right)=2^{3} 3^{-1}(2 j+1)\left(2(k-4)(4 j+k-2)(2 j+k-3) N^{10}\right.$

$$
\left.-30(2 j+k-3) N^{8}+45 N^{7}\right) \prod\left(1-p^{-2}\right)\left(1-p^{-4}\right)
$$

(2) $\quad \tau_{0}\left(\varphi_{2}, \Phi_{2}\right)=2^{-1}\left((k-4)(4 j+k-2) N^{6}\right.$

$$
\left.-6(2 j+k-3) N^{5}+36 N^{4}\right) \prod\left(1-p^{-2}\right)^{2}
$$

(3) $\quad \tau_{0}\left(\varphi_{3}, \Phi_{3}\right)=2^{2}\left((k-4)(4 j+k-2) N^{6}\right.$

$$
\left.-3(2 j+k-3) N^{5}+3 N^{4}\right) \Pi\left(1-p^{-2}\right)^{2}
$$

(4) $\quad \tau_{0}\left(\varphi_{4}, \Phi_{4}\right)=2^{-1}(-1)^{j}\left((2 j+k-3) N^{3}-3 N^{2}\right) \Pi\left(1-p^{-2}\right)$
(5) $\quad \tau_{0}\left(\varphi_{5}, \Phi_{5}\right)=2^{-1} 3(-1)^{j}\left((2 j+k-3) N^{3}-2 N^{2}\right) \Pi\left(1-p^{-2}\right)$
(6) $\quad \tau_{0}\left(\varphi_{6}, \Phi_{6}\right)=\operatorname{Tr}_{\rho}\left(\rho^{j}(1-\rho)\right)\left((2 j+2 k-3) N^{3}-9 N^{2}\right)$

$$
\times \begin{cases}2^{-1} 3^{-3} \prod\left(1-p^{-2}\right), & \text { if } 3 \nmid N \\ 2^{-3} 3^{-2} \prod\left(1-p^{-2}\right), & \text { if } 3 \mid N\end{cases}
$$

$\tau_{0}\left(\varphi_{6}^{-1}, \Phi_{6}\right)=\tau_{0}\left(\varphi_{6}, \Phi_{6}\right)$
(10) $\quad \tau_{0}\left(\varphi_{10}(1), \Phi_{10}\right)=3^{-2}(\rho)^{j}(2 \rho+1)(2 j+1)$
$\tau_{0}\left(\varphi_{10}(2), \Phi_{10}\right)=3^{-2}\left(\rho^{2}\right)^{j}\left(2 \rho^{2}+1\right)(2 j+1)$
$\tau_{0}\left(\varphi_{10}(4), \Phi_{10}\right)=3^{-1}(\rho)^{j}$
$\tau_{0}\left(\varphi_{10}(5), \Phi_{10}\right)=3^{-1}\left(\rho^{2}\right)^{j}$
(12) $\quad \tau_{0}\left(\varphi_{12}, \Phi_{12}\right)=2^{-1} 3^{-1} \operatorname{Tr}_{\rho}\left((\rho)^{j}\left(-\rho^{2}\right)\right)$
(15) $\quad \tau_{0}\left(\varphi_{15}(r), \Phi_{15}\right)=2^{-3} 3^{-1}(2 j+1) N^{3} \Pi\left(1-p^{-2}\right)$

$$
\times\left(\frac{9-(2 j+2 k-3) N}{\left(1-\zeta^{r}\right)}+\frac{(2 j+2 k-3) N-6}{\left(1-\zeta^{r}\right)^{2}}-\frac{4}{\left(1-\zeta^{r}\right)^{3}}\right)
$$

(16) $\quad \tau_{0}\left(\varphi_{16}(r), \Phi_{16}\right)=2^{-5} 3^{-1}\left(\frac{12-(2 j+2 k-3) N}{\left(1-\zeta^{r}\right)}\right) N^{3} \Pi\left(1-p^{-2}\right)$
(17) $\quad \tau_{0}\left(\varphi_{17}(r), \Phi_{17}\right)=\left(\frac{8-(2 j+2 k-3) N}{\left(1-\zeta^{r}\right)}+\frac{4}{\left(1-\zeta^{r}\right)^{2}}\right) N^{3} \Pi\left(1-p^{-2}\right)$
(22) $\quad \tau_{0}\left(\varphi_{22}(1, r, t), \Phi_{22}\right)=\frac{(2 j+1)}{\left(\zeta^{r}-1\right)\left(\zeta^{t}-1\right)}\left(\frac{2}{\left(\zeta^{r}-1\right)}+\frac{2}{\left(\zeta^{t}-1\right)}+3\right)$
$\tau_{0}\left(\varphi_{22}(3, r, t), \Phi_{22}\right)=\frac{1}{\left(\zeta^{r+t}-1\right)}\left(\frac{4}{\left(\zeta^{r+t}-1\right)}+3\right)$
(23) $\quad \tau_{0}\left(\varphi_{23}(2, r, t), \Phi_{23}\right)=2^{-1}(-1)^{j}\left(\zeta^{r+t}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{23}(4, r, t), \Phi_{23}\right)=2^{-1}\left(\zeta^{r}-1\right)^{-1}\left(\zeta^{t}-1\right)^{-1}$
(24) $\quad \tau_{0}\left(\varphi_{24}(2, r, t), \Phi_{24}\right)=2^{-1}(-1)^{j}\left(\zeta^{r+t}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{24}(4, r, t), \Phi_{24}\right)=2^{-1}\left(\zeta^{r}-1\right)^{-1}\left(\zeta^{t}-1\right)^{-1}$
(25) $\quad \tau_{0}\left(\varphi_{25}(1, r, s, t), \Phi_{25}\right)=(2 j+1)\left(\zeta^{r+s}-1\right)^{-1}\left(\zeta^{s+t}-1\right)^{-1}\left(\zeta^{-s}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{25}(2, r, s, t), \Phi_{25}\right)=3^{-1} \operatorname{Tr}_{\rho}\left(\rho^{j}(1-\rho)\right)\left(\zeta^{s+r+t}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{25}(3, r, s, t), \Phi_{25}\right)=3^{-1} \operatorname{Tr}_{\rho}\left(\rho^{j}(1-\rho)\right)\left(\zeta^{s+r+t}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{25}(4, r, s, t), \Phi_{25}\right)=\left(\zeta^{r+2 s+t}-1\right)^{-1}\left(\zeta^{-s}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{25}(5, r, s, t), \Phi_{25}\right)=\left(\zeta^{s+t}-1\right)^{-1}\left(\zeta^{r}-1\right)^{-1}$
$\tau_{0}\left(\varphi_{25}(6, r, s, t), \Phi_{25}\right)=\left(\zeta^{r+s}-1\right)^{-1}\left(\zeta^{t}-1\right)^{-1}$
Proof. Due to [T5], Theorem 3.2 which is the result in the case of weight k and level N. It suffices to remove $\operatorname{det}(C Z+D)^{k}$ of $\tau(\varphi, \Phi)$ in [T5], Theorem 3.2 and replace k and N with $k / 2$ and $4 N$, respectively.

Let Γ_{2}^{α} be as above. We have the following
Proposition 3.5. If $\Gamma_{2}^{\alpha} P N\left(\Phi, \Gamma_{2}\right)=\Gamma_{2}^{\alpha} P^{\prime} N\left(\Phi, \Gamma_{2}\right)$, then

$$
\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|=\left|N\left(P^{\prime} \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right| .
$$

Proof. From the assumption we have elements $\gamma \in \Gamma_{2}^{\alpha}$ and $n \in N\left(\Phi, \Gamma_{2}\right)$ such that $P^{\prime}=\gamma P n . N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$ is isomorphic to $\left(N\left(P \Phi, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right) /(N(P \Phi$, $\left.\Gamma_{2}\right) \cap \Gamma_{2}(4 N)$. Since $\Gamma_{0}^{2}(4)$ is a normal subgroup of Γ_{2}^{α} and $\Gamma_{2}(4 N)$ is a normal subgroup of Γ_{2}, we have

$$
\begin{aligned}
\gamma\left(N\left(P \Phi, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right) \gamma^{-1} & =N\left(P^{\prime} \Phi, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4), \\
\gamma\left(N\left(P \Phi, \Gamma_{2}\right) \cap \Gamma_{2}(4 N)\right) \gamma^{-1} & =N\left(P^{\prime} \Phi, \Gamma_{2}\right) \cap \Gamma_{2}(4 N) .
\end{aligned}
$$

The assertion is proved from these relations.
Let

$$
C\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)=\left\{M \in \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N) \mid M\langle Z\rangle=Z \text { for any } Z \in P \Phi\right\}
$$

and let $C^{p}\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$ be the set of proper elements.
REMARK 3.6. Let $P \Phi, P^{\prime} \Phi$ and γ be as in the above proposition. It is obvious that $C^{p}\left(P^{\prime} \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)=\gamma C^{p}\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right) \gamma^{-1}$. Since the automorphy factor $J(M, Z)$ is defined with respect to Γ_{2}^{α}, we have

$$
J\left(\gamma M \gamma^{-1}, \gamma\langle Z\rangle\right)=J(M, Z)
$$

for $M \in C^{p}\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$ and $Z \in P \Phi$. From the above proposition and this observation it follows that the contributions of $P \Phi$ and $P^{\prime} \Phi$ to the dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ are same.

Next we prove that the contributions of $P \Phi$ and $P^{\prime} \Phi$ are the same also in the case of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$. It suffices to prove the following

LEMMA 3.7. Let $M=\left(\begin{array}{cc}A & B \\ 4 C & D\end{array}\right) \in \Gamma_{0}^{2}(4)$ and $\gamma \in \Gamma_{2}^{\alpha} . \operatorname{Put} \tilde{\psi}(M)=\psi(\operatorname{det} D)$. Then $\tilde{\psi}(M)=\widetilde{\psi}\left(\gamma M \gamma^{-1}\right)$.

Proof. It suffices to prove that $\tilde{\psi}$ is extendable to a character of Γ_{2}^{α}. Let P_{4} be as in Proposition 2.5. Then $\Gamma_{2}^{\alpha}=\Gamma_{0}^{2}(4) \cup \Gamma_{0}^{2}(4) P_{4}$. Let $M=\left(\begin{array}{cc}A & B \\ 4 C & D\end{array}\right), M^{\prime}=$ $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ 4 C^{\prime} & D^{\prime}\end{array}\right) \in \Gamma_{0}^{2}(4)$ and $F=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then

$$
M P_{4}=\left(\begin{array}{cc}
A+2 B F & B \\
4 C+2 D F & D
\end{array}\right)
$$

Put $\tilde{\psi}\left(M P_{4}\right)=\psi(\operatorname{det} D)$. We have to prove that $\widetilde{\psi}\left(M M^{\prime} P_{4}\right)=\widetilde{\psi}(M) \widetilde{\psi}\left(M^{\prime} P_{4}\right)$, $\widetilde{\psi}\left(M P_{4} M^{\prime}\right)=\widetilde{\psi}\left(M P_{4}\right) \widetilde{\psi}\left(M^{\prime}\right)$ and $\tilde{\psi}\left(M P_{4} M^{\prime} P_{4}\right)=\widetilde{\psi}\left(M P_{4}\right) \tilde{\psi}\left(M^{\prime} P_{4}\right)$ for any $M, M^{\prime} \in$ $\Gamma_{0}^{2}(4)$. The first case is trivial. We prove only the second case. The third case is similarly proved. The lower right 2×2 matrix of $M P_{4} M^{\prime}$ is $(4 C+2 D F) B^{\prime}+D D^{\prime}$. Let $D=\left(\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right), B^{\prime}=\left(\begin{array}{ll}b_{11}^{\prime} & b_{12}^{\prime} \\ b_{21}^{\prime} & b_{22}^{\prime}\end{array}\right)$ and $D^{\prime}=\left(\begin{array}{ll}d_{11}^{\prime} & d_{12}^{\prime} \\ d_{21}^{\prime} & d_{22}^{\prime}\end{array}\right)$. Then

$$
\begin{aligned}
& \operatorname{det}\left((4 C+2 D F) B^{\prime}+D D^{\prime}\right)-(\operatorname{det} D)\left(\operatorname{det} D^{\prime}\right) \\
& \quad \equiv 2\left(d_{11} d_{22}+d_{12} d_{21}\right)\left(b_{11}^{\prime} d_{12}^{\prime}+b_{21}^{\prime} d_{22}^{\prime}-b_{12}^{\prime} d_{11}^{\prime}-b_{22}^{\prime} d_{21}^{\prime}\right) \quad(\bmod 4)
\end{aligned}
$$

On the other hand we have

$$
b_{11}^{\prime} d_{12}^{\prime}+b_{21}^{\prime} d_{22}^{\prime}=b_{12}^{\prime} d_{11}^{\prime}+b_{22}^{\prime} d_{21}^{\prime}
$$

because it holds that ${ }^{t} B^{\prime} D^{\prime}={ }^{t} D^{\prime} B^{\prime}$. Hence it follows that

$$
\operatorname{det}\left((4 C+2 D F) B^{\prime}+D D^{\prime}\right) \equiv(\operatorname{det} D)\left(\operatorname{det} D^{\prime}\right) \quad(\bmod 4)
$$

This proves the assertion.
In the following theorem we list $\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|$. If $P \Phi$ and $P^{\prime} \Phi$ are not equivalent with respect to $\Gamma_{0}^{2}(4)$ but equivalent with respect to Γ_{2}^{α}, we list only one of them and we mark the notations of the fixed points (sets) by $*$. We also list the order of $C\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$. We list $P \Phi,\left|C\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|$ and $\mid N\left(P \Phi, \Gamma_{0}^{2}(4) /\right.$ $\left.\Gamma_{2}(4 N)\right) \mid$ in this order. Similarly as before p in Π is over the odd prime numbers which divide N.

THEOREM 3.8. The orders of the isotropy groups and the stabilizer groups of the fixed points (sets) of $\Gamma_{0}^{2}(4)$ are as follows.

$$
\begin{gather*}
\Phi_{1 a} \tag{1}\\
\Phi_{2 a}^{*} \tag{2}\\
\Phi_{3 a}
\end{gather*}
$$

$$
2
$$

$$
2^{11} 3 N^{10} \Pi\left(1-p^{-2}\right)\left(1-p^{-4}\right)
$$

$$
4
$$

$$
2^{7} N^{6} \Pi\left(1-p^{-2}\right)^{2}
$$

$$
\begin{equation*}
2^{10} N^{6} \Pi\left(1-p^{-2}\right)^{2} \tag{3}
\end{equation*}
$$

	$\Phi_{3 b}$	4	$2^{8} N^{6} \Pi\left(1-p^{-2}\right)^{2}$
	$\Phi_{3 c}$	4	$2^{10} 3 N^{6} \Pi\left(1-p^{-2}\right)^{2}$
(4)	$\Phi_{4 a}{ }^{*}$	8	$2^{5} N^{3} \Pi\left(1-p^{-2}\right)$
(5)	$\Phi_{5 a}$	8	$2^{5} 3 N^{3} \Pi\left(1-p^{-2}\right)$
	$\Phi_{5 b}$	8	$2^{5} 3 N^{3} \Pi\left(1-p^{-2}\right)$
(6)	$\Phi_{6 a}$	12	$\begin{cases}2^{5} 3 N^{3} \Pi\left(1-p^{-2}\right), & \text { if } 3 \nmid N \\ 2^{3} 3^{2} N^{3} \prod\left(1-p^{-2}\right), & \text { if } 3 \mid N\end{cases}$
(10)	$\Phi_{10 a}$	12	12
(12)	$\Phi_{12 a}{ }^{*}$	24	24
(15)	$\Phi_{15 a}{ }^{*}$	$8 N$	$2^{10} N^{6} \prod\left(1-p^{-2}\right)$
	$\Phi_{15 b}$	$2 N$	$2^{6} N^{6} \Pi\left(1-p^{-2}\right)$
	$\Phi_{15 c}$	$8 N$	$2^{9} N^{6} \Pi\left(1-p^{-2}\right)$
(16)	$\Phi_{16 a}{ }^{*}$	16 N	$2^{6} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{16 b}$	$4 N$	$2^{4} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{16 c}$	16 N	$2^{6} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{16 d}$	$16 N$	$2^{6} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{16 e}$	$4 N$	$2^{4} N^{4} \Pi\left(1-p^{-2}\right)$
(17)	$\Phi_{17 a}{ }^{*}$	16 N	$2^{8} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{17 b}$	16 N	$2^{8} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{17 c}{ }^{*}$	16 N	$2^{7} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{17 d}$	16N	$2^{8} N^{4} \Pi\left(1-p^{-2}\right)$
	$\Phi_{17 e}$	$4 N$	$2^{5} N^{4} \Pi\left(1-p^{-2}\right)$
(22)	$\Phi_{22 a}{ }^{*}$	$2^{6} N^{2}$	$2^{9} N^{3}$
	$\Phi_{22 b}$	$2^{2} N^{2}$	$2^{3} N^{3}$
	$\Phi_{22 c}{ }^{*}$	$2^{6} N^{2}$	$2^{9} N^{3}$
	$\Phi_{22 d}$	$2^{4} N^{2}$	$2^{6} N^{3}$

$\Phi_{22 e}$	$2^{3} N^{2}$	$2^{6} N^{3}$
$\Phi_{22 f^{*}}$	$2^{3} N^{2}$	$2^{6} N^{3}$
$\Phi_{22 g}$	$2^{3} N^{2}$	$2^{5} N^{3}$
$\Phi_{22 h}{ }^{*}$	$2^{5} N^{2}$	$2^{8} N^{3}$
$\Phi_{23 a}{ }^{*}$	$2^{7} N^{2}$	$2^{7} N^{2}$
$\Phi_{23 b^{*}}$	$2^{3} N^{2}$	$2^{3} N^{2}$
$\Phi_{23 c}{ }^{*}$	$2^{6} N^{2}$	$2^{6} N^{2}$
$\Phi_{23 d}{ }^{*}$	$2^{4} N^{2}$	$2^{4} N^{2}$
$\Phi_{23 e^{*}}$	$2^{4} N^{2}$	$2^{4} N^{2}$
$\Phi_{23 f^{*}}$	$2^{7} N^{2}$	$2^{7} N^{2}$
$\Phi_{23 g}$	$2^{4} N^{2}$	$2^{4} N^{2}$
$\Phi_{24 a}{ }^{*}$	$2^{7} N^{2}$	$2^{7} N^{2}$
$\Phi_{24 b}{ }^{*}$	$2^{6} N^{2}$	$2^{6} N^{2}$
$\Phi_{24 c}{ }^{*}$	$2^{4} N^{2}$	$2^{4} N^{2}$
$\Phi_{24 d}{ }^{*}$	$2^{7} N^{2}$	$2^{7} N^{2}$
$\Phi_{24 e}$	$2^{4} N^{2}$	$2^{4} N^{2}$
$\Phi_{25 a}{ }^{*}$	$2^{8} 3 N^{3}$	$2^{8} 3 N^{3}$
$\Phi_{25 b}$	$2^{2} 3 N^{3}$	$2^{2} 3 N^{3}$
$\Phi_{25 c}$	$2^{8} N^{3}$	$2^{8} N^{3}$
$\Phi_{25 d}{ }^{*}$	$2^{6} N^{3}$	$2^{6} N^{3}$
$\Phi_{25 e}$	$2^{5} N^{3}$	$2^{5} N^{3}$
$\Phi_{25 f}$	$2^{8} N^{3}$	$2^{8} N^{3}$
	V^{2}	

Proof. We prove only the cases of $\Phi_{3 b}=P_{5} \Phi_{3}$ and $\Phi_{3 c}=P_{7} \Phi_{3}$. Other cases are proved easily. $N\left(P \Phi_{3}, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)$ is isomorphic to $\left(N\left(P \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right) /$ $\left(N\left(P \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{2}(4 N)\right)$. From [T2], Theorem 2.2 we have

$$
\begin{aligned}
{\left[N\left(P \Phi_{3}, \Gamma_{2}\right): N\left(P \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{2}(4 N)\right] } & =\left[P N\left(\Phi_{3}, \Gamma_{2}\right) P^{-1}: P N\left(\Phi_{3}, \Gamma_{2}\right) P^{-1} \cap \Gamma_{2}(4 N)\right] \\
& =\left[N\left(\Phi_{3}, \Gamma_{2}\right): N\left(\Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{2}(4 N)\right] \\
& =2^{11} 3 N^{6} \prod\left(1-p^{-2}\right)^{2} .
\end{aligned}
$$

So it suffices to determine $\left[N\left(P \Phi_{3}, \Gamma_{2}\right): N\left(P \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right]$. Let ε, δ and γ be

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 \\
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right)
$$

respectively. Let

Then $N\left(\Phi_{3}, \Gamma_{2}\right)=\varepsilon N_{1} \varepsilon^{-1} \cup \delta \varepsilon N_{1} \varepsilon^{-1}([\mathrm{~T} 2]$, Theorem 2.6). Let l be a natural number and let $N_{1}(2 l)$ be the subgroup of N_{1} consisting of the elements such that $\left(\begin{array}{ll}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right) \equiv$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(\bmod 2 l)(i=1,2) . N_{1}(2 l)$ is a normal subgroup of N_{1} which is isomorphic to $\Gamma_{1}(2 l) \times \Gamma_{1}(2 l)$ and we have $\left[N_{1}: N_{1}(2)\right]=6$.

Let N_{2} be the subgroup of N_{1} consisting of the elements such that $c_{2} \equiv 0(\bmod 4)$ and $b_{1} \equiv c_{2}(\bmod 8)$. Then

$$
P_{5} N\left(\Phi_{3}, \Gamma_{2}\right) P_{5}^{-1} \cap \Gamma_{0}^{2}(4)=P_{5}\left(\varepsilon N_{2} \varepsilon^{-1}\right) P_{5}^{-1} \cup P_{5}\left(\delta \varepsilon \gamma N_{2} \varepsilon^{-1}\right) P_{5}^{-1}
$$

and

$$
\left[P_{5} N\left(\Phi_{3}, \Gamma_{2}\right) P_{5}^{-1}: P_{5} N\left(\Phi_{3}, \Gamma_{2}\right) P_{5}^{-1} \cap \Gamma_{0}^{2}(4)\right]=\left[N_{1}: N_{2}\right]
$$

On the other hand

$$
\left[N_{1}: N_{1}(8)\right]=6 \cdot\left[N_{1}(2): N_{1}(8)\right]=6 \cdot\left[\Gamma_{1}(2): \Gamma_{1}(8)\right]^{2}=3 \cdot 2^{13}
$$

and $\left[N_{2}: N_{1}(8)\right]=2^{10}$ because $N_{2} / N_{1}(8)$ is isomorphic to a subgroup of $S L(2, \mathbf{Z} / 8 \mathbf{Z}) \times$ $S L(2, \mathbf{Z} / 8 \mathbf{Z})$ of order 2^{10}. Hence we have $\left[N\left(P_{5} \Phi_{3}, \Gamma_{2}\right): N\left(P_{5} \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right]=24$. This proves the case of $\Phi_{3 b}$.

Let N_{3} be the subgroup of N_{1} consisting of the elements such that $a_{1}+c_{1}-d_{1} \equiv$ $c_{1}+c_{2} \equiv 0(\bmod 2)$. Then

$$
P_{7} N\left(\Phi_{3}, \Gamma_{2}\right) P_{7}^{-1} \cap \Gamma_{0}^{2}(4)=P_{7}\left(\varepsilon N_{3} \varepsilon^{-1}\right) P_{7}^{-1} \cup P_{7}\left(\delta \varepsilon N_{3} \varepsilon^{-1}\right) P_{7}^{-1}
$$

and

$$
\left[P_{7} N\left(\Phi_{3}, \Gamma_{2}\right) P_{7}^{-1}: P_{7} N\left(\Phi_{3}, \Gamma_{2}\right) P_{7}^{-1} \cap \Gamma_{0}^{2}(4)\right]=\left[N_{1}: N_{3}\right]
$$

Since $\left[N_{3}: N_{1}(2)\right]=3$, we have $\left[N\left(P_{7} \Phi_{3}, \Gamma_{2}\right): N\left(P_{7} \Phi_{3}, \Gamma_{2}\right) \cap \Gamma_{0}^{2}(4)\right]=2$. This proves the case of $\Phi_{3 c}$.

In the following theorem we list $J\left(P \varphi P^{-1}, P\langle Z\rangle\right)$ and $\psi(\operatorname{det} D)$, where φ is an element of $C^{p}\left(\Phi, \Gamma_{2} / \Gamma_{2}(4 N)\right)$ such that $P \varphi P^{-1} \in C^{p}\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right), Z \in \Phi$ and D is the lower right 2×2 matrix of $P \varphi P^{-1}$. We list $P \Phi, \varphi, J\left(P \varphi P^{-1}, P\langle Z\rangle\right)$ and $\psi(\operatorname{det} D)$ in this order. In the case where Φ is in the divisor at infinity, $J\left(P \varphi P^{-1}, P\langle Z\rangle\right)$ means the limit of $J\left(P \varphi P^{-1}, P\langle Z\rangle\right)$ when Z tends to Φ.

THEOREM 3.9. The proper elements of the isotropy groups of the fixed points (sets) of $\Gamma_{0}^{2}(4)$ and the values of the automorphy factor of weight $1 / 2$ and the character ψ are as follows. We assume that $r+t \equiv 0(\bmod 4)$ for the elements whose notations are marked by $* 1)$ and assume that $r-t \equiv 0(\bmod 2)$ for the elements whose notations are marked by $* 2$). The meaning of the mark $*$ of Φ is the same as in the above theorem.

(1)	$\Phi_{1 a}$	φ_{1}	1	1
(2)	$\Phi_{2 a}{ }^{*}$	φ_{2}	1	- 1
(3)	$\Phi_{3 a}$	φ_{3}	1	- 1
	$\Phi_{3 b}$	φ_{3}	-1	- 1
	$\Phi_{3 c}$	φ_{3}	1	-1
(4)	$\Phi_{4 a}{ }^{*}$	φ_{4}	1	1
(5)	$\Phi_{5 a}$	φ_{5}	1	1
	$\Phi_{5 b}$	φ_{5}	-1	1
(6)	$\Phi_{6 a}$	φ_{6}	1	1
		φ_{6}^{-1}	1	1
(10)	$\Phi_{10 a}$	$\varphi_{10}(1)$	ρ^{2}	1
		$\varphi_{10}(2)$	ρ	1
		$\varphi_{10}(4)$	$-\rho^{2}$	-1
		$\varphi_{10}(5)$	$-\rho$	-1
(12)	$\Phi_{12 a}{ }^{*}$	φ_{12}	- 1	- 1
		φ_{12}^{-1}	- 1	- 1
(15)	$\Phi_{15 a}{ }^{*}$	$\varphi_{15}(r)$	1	1
	$\Phi_{15 b}$	$\varphi_{15}(4 r)$	1	1
	$\Phi_{15 c}$	$\varphi_{15}(r)$	$(i)^{r}$	$(-1)^{r}$
(16)	$\Phi_{16 a}{ }^{*}$	$\varphi_{16}(r)$	1	-1

R. TSUSHIMA

	$\Phi_{16 b}$	$\varphi_{16}(4 r)$	1	- 1
	$\Phi_{16 c}$	$\varphi_{16}(r)$	$(i)^{r}$	$(-1)^{r+1}$
	$\Phi_{16 d}$	$\varphi_{16}(r)$	$(i)^{r}$	$(-1)^{r+1}$
	$\Phi_{16 e}$	$\varphi_{16}(4 r)$	1	-1
(17)	$\Phi_{17 a}{ }^{*}$	$\varphi_{17}(r)$	1	- 1
	$\Phi_{17 b}$	$\varphi_{17}(r)$	$(i)^{r}$	$(-1)^{r+1}$
	$\Phi_{17 c}{ }^{*}$	$\varphi_{17}(r)$	1	-1
	$\Phi_{17 d}$	$\varphi_{17}(r)$	$-(i)^{r}$	$(-1)^{r+1}$
	$\Phi_{17 e}$	$\varphi_{17}(4 r)$	1	-1
(22)	$\Phi_{22 a}{ }^{*}$	$\varphi_{22}(1, r, t)$	1	1
		$\varphi_{22}(3, r, t)$	1	-1
	$\Phi_{22 b}$	$\varphi_{22}(1,4 r, 4 t)$	1	1
		$\varphi_{22}(3,4 r, 4 t)$	1	-1
	$\Phi_{22}{ }^{*}$	$\varphi_{22}(1, r, t)$	$(i)^{r+t}$	$(-1)^{r+t}$
		$\varphi_{22}(3, r, t)$	$(i){ }^{r+t}$	$(-1)^{r+t+1}$
	$\Phi_{22 d}$	$\varphi_{22}(1, r, t)^{* 1)}$	1	1
		$\varphi_{22}(3, r, t)^{* 1)}$	1	-1
	$\Phi_{22 e}$	$\varphi_{22}(1,2 r, 2 t)^{* 2)}$	$(-1)^{t}$	1
		$\varphi_{22}(3,2 r, 2 t)^{* 2)}$	$(-1)^{t}$	-1
	$\Phi_{22 f}{ }^{*}$	$\varphi_{22}(1,4 r, t)$	1	1
	$\Phi_{22 g}$	$\varphi_{22}(1,4 r, t)$	$(i)^{t}$	$(-1)^{t}$
	$\Phi_{22 h}{ }^{*}$	$\varphi_{22}(1, r, t)$	$(i)^{t}$	$(-1)^{t}$
(23)	$\Phi_{23 a}{ }^{*}$	$\varphi_{23}(2, r, t)$	1	1
		$\varphi_{23}(4, r, t)$	1	-1
	$\Phi_{23 b}{ }^{*}$	$\varphi_{23}(2,4 r, 4 t)$	1	1
		$\varphi_{23}(4,4 r, 4 t)$	1	- 1
	$\Phi_{23 c}{ }^{*}$	$\varphi_{23}(4, r, t)$	$(i)^{t}$	$(-1)^{t+1}$
	$\Phi_{23 d}{ }^{*}$	$\varphi_{23}(4,4 r, t)$	1	-1
	$\Phi_{23 e}{ }^{*}$	$\varphi_{23}(4,4 r, t)$	$(i)^{t}$	$(-1)^{t+1}$

	$\Phi_{23 f^{*}}$	$\varphi_{23}(2, r, t)$	$(i)^{r+t}$	$(-1)^{r+t}$
		$\varphi_{23}(4, r, t)$	$(i)^{r+t}$	$(-1)^{r+t+1}$
	$\Phi_{23 g}$	$\varphi_{23}(2,2 r+1,2 t+1)^{* 2)}$	$i(-1)^{t}$	-1
		$\varphi_{23}(4,2 r+1,2 t+1)^{* 2)}$	$i(-1)^{t}$	1
(24)	$\Phi_{24 a}{ }^{*}$	$\varphi_{24}(2, r, t)$	1	1
		$\varphi_{24}(4, r, t)$	1	- 1
	$\Phi_{24 b}{ }^{*}$	$\varphi_{24}(4, r, t)$	$(i)^{t}$	$(-1)^{t+1}$
	$\Phi_{24 c}{ }^{*}$	$\varphi_{24}(4,4 r, t)$	1	-1
	$\Phi_{24 d}{ }^{*}$	$\varphi_{24}(2, r, t)$	$-(i)^{r+t}$	$(-1)^{r+t}$
		$\varphi_{24}(4, r, t)$	- (i) ${ }^{r+t}$	$(-1)^{r+t+1}$
	$\Phi_{24 e}$	$\varphi_{24}(2,2 r, 2 t)^{* 2)}$	$(-1)^{t}$	1
		$\varphi_{24}(4,2 r, 2 t)^{* 2)}$	$(-1)^{t}$	-1
(25)	$\Phi_{25 a}{ }^{*}$	$\varphi_{25}(1, r, s, t)$	1	1
		$\varphi_{25}(2, r, s, t)$	1	1
		$\varphi_{25}(3, r, s, t)$	1	1
		$\varphi_{25}(4, r, s, t)$	1	- 1
		$\varphi_{25}(5, r, s, t)$	1	- 1
		$\varphi_{25}(6, r, s, t)$	1	- 1
	$\Phi_{25 b}$	$\varphi_{25}(1,4 r, 4 s, 4 t)$	1	1
		$\varphi_{25}(2,4 r, 4 s, 4 t)$	1	1
		$\varphi_{25}(3,4 r, 4 s, 4 t)$	1	1
		$\varphi_{25}(4,4 r, 4 s, 4 t)$	1	-1
		$\varphi_{25}(5,4 r, 4 s, 4 t)$	1	-1
		$\varphi_{25}(6,4 r, 4 s, 4 t)$	1	-1
	$\Phi_{25 c}$	$\varphi_{25}(1, r, s, t)$	$(i)^{t}$	$(-1)^{t}$
		$\varphi_{25}(6, r, s, t)$	$(i){ }^{t}$	$(-1)^{t+1}$
	$\Phi_{25 d}{ }^{*}$	$\varphi_{25}(1,4 r, s, t)$	1	1
		$\varphi_{25}(5,4 r, s, t)$	1	-1
	$\Phi_{25 e}$	$\varphi_{25}(1,4 r, 2 s, t)$	$(i){ }^{t}$	$(-1)^{t}$
		$\varphi_{25}(5,4 r, 2 s, t)$	$(i)^{t}$	$(-1)^{t+1}$

$$
\begin{array}{lll}
\Phi_{25 f} & \varphi_{25}(1, r, s, t) & (i)^{r+2 s+t} \\
& \varphi_{25}(4, r, s, t) & (i)^{r+2 s+t} \\
& (-1)^{r+t}
\end{array}
$$

Proof. Due to the transformation formula of $\Theta(Z)$ (Theorem 1.4). When Φ is in the divisor at infinity, φ includes parameters (for example " r " of $\varphi_{15}(r)$). In such cases we have a problem to evaluate the Gaussian sum $\lambda\left(P \varphi P^{-1}\right)$. But we skip this problem as follows. Since $\varphi_{15}(r)=\varphi_{15}(1)^{r}$, we have

$$
\lim _{Z \rightarrow \Phi_{15}} J\left(P \varphi_{15}(r) P^{-1}, P\langle Z\rangle\right)=\lim _{Z \rightarrow \Phi_{15}} J\left(P \varphi_{15}(1) P^{-1}, P\langle Z\rangle\right)^{r} .
$$

Hence it suffices to compute $J\left(P \varphi P^{-1}, P\langle Z\rangle\right)$ for the generators of $C\left(P \Phi, \Gamma_{0}^{2}(4) /\right.$ $\Gamma_{2}(4 N)$).

4. The dimension formula

In this section we present the explicit dimension formulas and also prove $M_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)=S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$. We can prove the following vanishing theorem similarly as in [T5], Theorem 6.1 by using the vanishing theorem of KawamataViehweg ([Ka], [V]).

THEOREM 4.1. If $j=0$ and $k \geq 3$ or if $j \geq 1$ and $k \geq 4$, then

$$
H^{i}\left(\tilde{X}_{2}(4 N), \mathcal{O}\left(\operatorname{Sym}^{j}(\tilde{V}) \otimes \widetilde{H}_{2}^{\otimes(2 k+1)} \otimes[D]^{\otimes(-1)}\right)\right) \simeq\{0\}
$$

for $i>0$.
By using this theorem and the theorem of Riemann-Roch-Hirzebruch we have
THEOREM 4.2. If $j=0$ and $k \geq 3$ or if $j \geq 1$ and $k \geq 4$, then

$$
\begin{aligned}
S_{j, k+1 / 2}\left(\Gamma_{2}(4 N)\right)= & 2^{3} 3^{-1}(j+1)\left(2(2 k-3)(2 j+2 k-1)(j+2 k-2) N^{10}\right. \\
& \left.-30(j+2 k-2) N^{8}+45 N^{7}\right) \times \prod\left(1-p^{-2}\right)\left(1-p^{-4}\right),
\end{aligned}
$$

where p is over odd prime numbers which divide N.
Proof. It suffices to replace k and N in the formula of the dimension of $S_{j, k}\left(\Gamma_{2}(N)\right)$ ([T3]) with $k+1 / 2$ and $4 N$, respectively.

To evaluate the sums which appear in the computation of Theorem 4.4 and Theorem 4.5 we use the following

Lemma 4.3. Let $\zeta=\mathbf{e}(1 / 4 N)$. Then we have

$$
\sum_{r=1}^{4 N-1} \frac{(i)^{k r}}{\left(1-\zeta^{r}\right)}= \begin{cases}-\frac{1-4 N}{2}, & \text { if } k \equiv 0 \tag{1}\\ -\frac{1+2 N}{2}, & \text { if } k \equiv 1 \quad(\bmod 4) \\ -\frac{1}{2}, & \text { if } k \equiv 2 \\ (\bmod 4) \\ -\frac{1-2 N}{2}, & \text { if } k \equiv 3\end{cases}
$$

$\sum_{r=1}^{4 N-1} \frac{(i)^{k r}}{\left(1-\zeta^{r}\right)^{2}}= \begin{cases}\frac{-16 N^{2}+24 N-5}{12}, & \text { if } k \equiv 0 \quad(\bmod 4), \\ \frac{2 N^{2}-12 N-5}{12}, & \text { if } k \equiv 1 \quad(\bmod 4), \\ \frac{8 N^{2}-5}{12}, & \text { if } k \equiv 2 \quad(\bmod 4), \\ \frac{2 N^{2}+12 N-5}{12}, & \text { if } k \equiv 3 \quad(\bmod 4) .\end{cases}$
(3) $\sum_{r=1}^{4 N-1} \frac{(i)^{k r}}{\left(1-\zeta^{r}\right)^{3}}= \begin{cases}\frac{-16 N^{2}+16 N-3}{8}, & \text { if } k \equiv 0 \quad(\bmod 4), \\ \frac{4 N^{3}+2 N^{2}-8 N-3}{8}, & \text { if } k \equiv 1 \quad(\bmod 4), \\ \frac{8 N^{2}-3}{8}, & \text { if } k \equiv 2 \quad(\bmod 4), \\ \frac{-4 N^{3}+2 N^{2}+8 N-3}{8}, & \text { if } k \equiv 3 \quad(\bmod 4) .\end{cases}$

The dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ is calculated as

$$
\sum_{\Phi} \sum_{P} \sum_{M} J\left(P M P^{-1}, P\langle Z\rangle\right)^{2 k+1} \frac{\tau_{0}(M, \Phi)}{\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|}
$$

where Φ is over the 15 fixed points (sets) in $\S 2, P$ is over the representatives of $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi, \Gamma_{2}\right), M$ is over $C^{p}(\Phi) \cap P^{-1} \Gamma_{0}^{2}(4) P$ and $Z \in \Phi$. We have

THEOREM 4.4. If $j=0$ and $k \geq 3$ or if $j \geq 1$ and $k \geq 4$, the dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ is given by the following Mathematica function:

```
SiegelHalf[j_,k_]:=Block[{a,ljk},
    mod[x_, Y_] :=Mod [x,y]+1;
```



```
    a=a+(2*j+1)*If[Mod[k,2]==0,19-22*k-22*j, 25-22*k-22*j]/2^6/3;
    a=a+3* (2*j+1)*If [Mod [k, 2]==0, -1, 1]/2^6;
```

```
(* contribution of }\mp@subsup{\varphi}{1}{**)
(* contribution of }\mp@subsup{\varphi}{15}{(5) *)
(* contribution of \varphi \varphi 22(1,r,t) *)
(* contribution of \varphi \varphi 25(1,r,s,t) *)
a=a+(4*j+2*k-1)* (2*k-3)/2^6;
a=a+If [Mod[k,2]==0,17-12*k-12*j,49-20*k-20*j]/2^6;
(* contribution of \varphi }\mp@subsup{2}{2}{*}\mathrm{ )
(* contribution of \varphi \varphi16(r) *)
(* contribution of \varphi \varphi 23(4,r,t) *)
a=a+7* (4*j+2*k-1)* (2*k-3)/2^6/3;
a=a+(35-48*k-48*j)/2^5/3;
a=a-13/2^4/3;
a=a+If [Mod[k,2]==0,7,15]/2^6;
a=a+If [Mod[k,2] ==0,2,3]/2^2;
(* contribution of \varphi \varphi *)
(* contribution of \varphi \varphi (7 (r) *)
(* contribution of \varphi \varphi 22(3,r,t) *)
(* contribution of \varphi \varphi (4,r,t) *)
(* contribution of \varphi \varphi (i, r,s,t) (i=4,5,6) *)
ljk={1,-1};
a=a+(j+k-1)*ljk[[mod[j,2]]]/2^3;
a=a-If[Mod[k,2]==0,3,5]*ljk[[mod[j,2]]]/2^4;
(* contribution of }\mp@subsup{\varphi}{4}{**)
(* contribution of \varphi \varphi 23 (2,r,t) *)
a=a-If[Mod[k,2]==0,3,1]*ljk[[mod[j, 2]]]/2^4;
(* contribution of \varphi5 *)
(* contribution of \varphi \varphi (2,r,t) *)
ljk={1,0,-1};
a=a+2*ljk[[mod[j,3]]]*(j+k-1)/3^2;
a=a-ljk[[mod[j,3]]]/2;
(* contribution of }\mp@subsup{\varphi}{6}{*}\mathrm{ *)
(* contribution of \varphi \varphi (2,r,s,t) and \varphi \varphi 25(3,r,s,t) *)
ljk=(2*j+1)*{{1,0,-1},{0,-1,1},{-1,1,0}};
a=a+ljk[[mod[j,3],\operatorname{mod}[k,3]]]/2/3^2;
(* contribution of }\mp@subsup{\varphi}{10}{(1)}\mathrm{ and }\mp@subsup{\varphi}{10}{(2) *)
ljk={{1,-2,1},{-2,1,1},{1,1,-2}};
a=a+ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of \varphi \varphi10(4) and \varphi \varphi (5) *)
ljk={1,-2,1};
a=a-ljk[[mod[j,3]]]/2/3^2;
```

```
(* contribution of \varphi }\mp@subsup{\varphi}{12}{*}\mathrm{ *)
Return[a];
```

]

The dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ is calculated as

$$
\sum_{\Phi} \sum_{P} \sum_{M} J\left(P M P^{-1}, P\langle Z\rangle\right)^{2 k+1} \psi(\operatorname{det} D) \frac{\tau_{0}(M, \Phi)}{\left|N\left(P \Phi, \Gamma_{0}^{2}(4) / \Gamma_{2}(4 N)\right)\right|}
$$

where D is the lower right 2×2 matrix of $P M P^{-1}$. We have
THEOREM 4.5. If $j=0$ and $k \geq 3$ or if $j \geq 1$ and $k \geq 4$, then the dimension of $S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ is given by the following Mathematica function:

```
SiegelHalfpsi[j_,k_]:=Block[{a,ljk},
    mod[x_,y_]:=Mod[x,y]+1;
    a=(2*j+1)* (4*j+2*k-1)*(j+k-1)* (2*k-3)/\mp@subsup{2}{}{\wedge}5/\mp@subsup{3}{}{^}2;
    a=a+(2*j+1)*If [Mod[k,2]==0,25-22*k-22*j,19-22*k-22*j]/2^6/3;
    a=a-3* (2*j+1) *If [Mod [k,2]==0,-1,1]/2^6;
    (* contribution of }\mp@subsup{\varphi}{1}{*}\mathrm{ *)
    (* contribution of \varphi (5)r) *)
    (* contribution of }\mp@subsup{\varphi}{22}{(}(1,r,t) *
    (* contribution of \varphi \varphi 25(1,r,s,t) *)
    a=a-(4*j+2*k-1) * (2*k-3)/2^6;
    a=a-If[Mod[k,2]==0,49-20*k-20*j,17-12*k-12*j]/2^6;
    (* contribution of }\mp@subsup{\varphi}{2}{* *)
    (* contribution of \varphi }\mp@subsup{\varphi}{16}{(r) *)
    (* contribution of \varphi \varphi 23 (4,r,t) *)
    a=a-7* (4*j+2*k-1) * (2*k-3)/2^6/3;
    a=a-(35-48*k-48*j)/2^5/3;
    a=a+13/2^4/3;
    a=a-If [Mod[k,2]==0,15,7]/2^6;
    a=a-If[Mod[k,2]==0,3,2]/2^2;
    (* contribution of }\mp@subsup{\varphi}{3}{*}\mathrm{ *)
    (* contribution of \varphi \varphi (7) *)
    (* contribution of \varphi \varphi 22 (3,r,t) *)
    (* contribution of \varphi \varphi 24(4,r,t) *)
    (* contribution of \varphi \varphi (i,r,s,t) (i=4,5,6) *)
    ljk={1,-1};
    a=a+(j+k-1)*ljk[[mod[j,2]]]/2^3;
    a=a-If[Mod[k,2]==0,5,3]*ljk[[mod[j, 2]]]/2^4;
    (* contribution of }\mp@subsup{\varphi}{4}{**)
```

```
    (* contribution of \varphi \varphi 23 (2,r,t) *)
a=a-If[Mod[k,2]==0,1,3]*ljk[[mod[j,2]]]/2^4;
    (* contribution of \varphi5 *)
(* contribution of \varphi \varphi (2,r,t) *)
ljk={1,0,-1};
a=a+2*ljk[[mod[j,3]]]*(j+k-1)/3^2;
a=a-ljk[[mod[j,3]]]/2;
(* contribution of \varphi6 *)
(* contribution of \varphi \varphi 25 (2,r,s,t) and \varphi \varphi 25 (3,r,s,t) *)
ljk=(2*j+1) *{{1,0,-1},{0,-1,1},{-1,1,0}};
a=a+ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of \varphi \varphi (1) and \varphi ب10(2) *)
ljk={{1,-2,1},{-2,1,1},{1,1,-2}};
a=a-ljk[[mod[j,3],\operatorname{mod}[k,3]]]/2/3^2;
(* contribution of }\mp@subsup{\varphi}{10}{(4)}\mathrm{ and }\mp@subsup{\varphi}{10}{(5) *)
ljk={1,-2,1};
a=a+ljk[[mod[j,3]]]/2/3^2;
(* contribution of \varphi }\mp@subsup{\varphi}{12 *)}{
Return[a];
]
```

Now we prove
Theorem 4.6.

$$
M_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)=S_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)
$$

Proof. Let $Z=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$ and $f \in M_{2 j, k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$. We have to prove that
(*)

$$
\lim _{\operatorname{Im}_{2} \rightarrow \infty} f \mid[\xi]_{2 j, k+1 / 2}(Z)=0
$$

for any $\xi \in p^{-1}\left(\Gamma_{2}\right)$. Let $P_{i}(i=1,2,3,4)$ be the matrices which correspond to the representatives of one-dimensional cusps as before and let us recall that

$$
\varphi_{2}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

To prove the assertion, it suffices to prove $(*)$ for $\xi=(P, \phi(Z))$ such that P is P_{1}, P_{2}, P_{3} or P_{4}. Let Z be as above. From $\varphi_{2}\langle Z\rangle=Z$, we have

$$
P\langle Z\rangle=P \varphi_{2}\langle Z\rangle=\left(P \varphi_{2} P^{-1}\right) P\langle Z\rangle
$$

for any P. Let $i=1,2$ or 3 . Then $P_{i} \varphi_{2} P_{i}^{-1}=\varphi_{2}$. Hence we have

$$
\begin{aligned}
f\left(P_{i}\langle Z\rangle\right) & =f\left(\left(P_{i} \varphi_{2} P_{i}^{-1}\right) P_{i}\langle Z\rangle\right) \\
& =J\left(\varphi_{2}, P_{i}\langle Z\rangle\right)^{2 k+1} \psi(-1) f\left(P_{i}\langle Z\rangle\right) \\
& =-f\left(P_{i}\langle Z\rangle\right) .
\end{aligned}
$$

Therefore $f\left(P_{i}\langle Z\rangle\right)=0$. Next let $i=4$. Then we have

$$
P_{4} \varphi_{2} P_{4}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
4 & 0 & 0 & -1
\end{array}\right)
$$

and $J\left(P_{4} \varphi_{2} P_{4}^{-1}, P_{4}\langle Z\rangle\right)$ is identically equal to 1 . Therefore similarly as above we have $f\left(P_{4}\langle Z\rangle\right)=0$.

Remark 4.7. Note that $f\left(P_{i}\langle Z\rangle\right)(i=1,2,3,4)$ is identically zero for $Z=$ $\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$. So it may be natural to ask whether for any $P \in \Gamma_{2}, f(P\langle Z\rangle)$ is identically zero or not. But this is not true in general. Let us recall that Φ_{2} is $\left\{\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)\right\}$ and let P_{8} be as before. Then P_{1}, P_{4} and P_{8} are the representatives of $\Gamma_{0}^{2}(4) \backslash \Gamma_{2} / N\left(\Phi_{2}, \Gamma_{2}\right)$.

$$
P_{8} \varphi_{2} P_{8}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
2 & 0 & 0 & -1
\end{array}\right)
$$

does not belong to $\Gamma_{0}^{2}(4)$ but belongs to Γ_{2}^{α} and $J\left(P_{8} \varphi_{2} P_{8}^{-1}, P_{8}\langle Z\rangle\right)$ is identically equal to 1 . Therefore if $f(Z)$ belongs to $M_{2 j, k+1 / 2}\left(\Gamma_{2}^{\alpha}, \psi\right)$, it holds that $f(P\langle Z\rangle)=0$ for any $P \in \Gamma_{2}$ and $Z=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right) .\left(\psi\right.$ is extendable to a character of Γ_{2}^{α} (cf. Lemma 3.7).)

5. The case $j=0$

In this section we prove $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ are modules of rank one over the graded ring of the modular forms of integral weights.

Proposition 5.1.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \operatorname{dim} S_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right) t^{k} & =\sum_{k=0}^{\infty} \text { SiegelHalf }[0, \mathrm{k}] t^{k}+t^{2} \\
& =\frac{2 t^{5}+2 t^{6}-t^{7}-2 t^{8}-t^{9}+t^{10}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}
\end{aligned}
$$

Proof. If $f(Z) \in S_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$, then $f(Z) \Theta(Z)^{2} \in S_{k+3 / 2}\left(\Gamma_{0}^{2}(4)\right)$. Since $\operatorname{dim} S_{7 / 2}\left(\Gamma_{0}^{2}(4)\right)$ is equal to SiegelHalf $[0,3]=0$, we have $S_{5 / 2}\left(\Gamma_{0}^{2}(4)\right) \simeq$ $S_{3 / 2}\left(\Gamma_{0}^{2}(4)\right) \simeq S_{1 / 2}\left(\Gamma_{0}^{2}(4)\right) \simeq\{0\}$. But since SiegelHalf $[0,2]=-1$, SiegelHalf $[0,1]=0$ and SiegelHalf $[0,0]=0$, we have the equality of the first line.

Now we have
Theorem 5.2.
$\sum_{k=0}^{\infty} \operatorname{dim} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right) t^{k}$

$$
=\sum_{k=0}^{\infty} \operatorname{dim} S_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right) t^{k}+3 \sum_{k=0}^{\infty} \operatorname{dim} S_{k+1 / 2}\left(\Gamma_{0}^{1}(4)\right) t^{k}+4 \sum_{k=0}^{\infty} t^{k}-\left(3+3 t+t^{2}\right)
$$

$$
=\frac{2 t^{5}+2 t^{6}-t^{7}-2 t^{8}-t^{9}+t^{10}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}+\frac{3\left(t^{4}+t^{5}\right)}{\left(1-t^{2}\right)^{2}}+\frac{4}{(1-t)}-\left(3+3 t+t^{2}\right)
$$

$$
=\frac{1}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}
$$

Proof. Recall that

$$
\varphi_{15}(r)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & r \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and put $Z=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$. From Theorem 3.9 (15) $\Phi_{15 c}$ we have

$$
\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} J\left(P_{3} \varphi_{15}(r) P_{3}^{-1}, P_{3}\langle Z\rangle\right)=(i)^{r},
$$

where $i=\sqrt{-1}$. Hence if $f \in M_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and r is an odd integer, then we have

$$
\begin{aligned}
\lim _{Z_{2} \rightarrow \infty} f\left(P_{3}\langle Z\rangle\right) & =\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f\left(P_{3}\left\langle\varphi_{15}(r)\langle Z\rangle\right)\right. \\
& =\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f\left(\left(P_{3} \varphi_{15}(r) P_{3}^{-1}\right) P_{3}\langle Z\rangle\right) \\
& =\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} J\left(P_{3} \varphi_{15}(r) P_{3}^{-1}, P_{3}\langle Z\rangle\right)^{2 k+1} f\left(P_{3}\langle Z\rangle\right) \\
& =(i)^{r(2 k+1)} \lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f\left(P_{3}\langle Z\rangle\right)
\end{aligned}
$$

Therefore $\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f\left(P_{3}\langle Z\rangle\right)$ and $\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} f \mid[\xi]_{k+1 / 2}(Z)$ are identically 0 where $\xi=\left(P_{3}, \phi(Z)\right)$. Namely, the Φ-operators to the one-dimensional cusp C_{3} and to the zerodimensional cusps Q_{3}, Q_{6} and Q_{7} are 0-maps.

Next we prove the surjectivity of the Φ-operators to other cusps. In general the Eisenstein series of Klingen type of degree g attached to a cusp form of degree r and weight k
converges if $k>g+r+1$ ([K1]). We define Eisenstein series of half integral weight in the following. In case k is a half integer, their convergence is also proved similarly as in the case of integral weight.

Let $N\left(B_{0}, \Gamma_{2}\right)$ and $N\left(B_{1}, \Gamma_{2}\right)$ be as in $\S 2$ and let $P_{i}(i=1,2,4,5)$ be as in $\S 2$. Let $\xi_{i}=\left(P_{i}, \phi_{i}(Z)\right) \in \widetilde{G}_{2}(i=1,2,4,5)$. We assume that $\xi_{1}=\left(1_{4}, 1\right)$ and $\xi_{4}=\iota\left(P_{4}\right)=$ $\left(P_{4}, J\left(P_{4}, Z\right)\right)$ since $P_{4} \in \Gamma_{2}^{\alpha}$. First we prove the case of zero-dimensional cusps. Let 1 be the function on \mathfrak{S}_{2} which is identically 1. Let

$$
E_{i}(Z)=\sum_{\gamma} 1 \mid\left[\xi_{i}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z),
$$

where γ is over $\left(P_{i} N\left(B_{0}, \Gamma_{2}\right) P_{i}^{-1} \cap \Gamma_{0}^{2}(4)\right) \backslash \Gamma_{0}^{2}(4)$. Let $M \in N\left(B_{0}, \Gamma_{2}\right)$ and assume that $P_{i} M P_{i}^{-1} \in \Gamma_{0}^{2}(4)$. We prove $\xi_{i} \iota(M) \xi_{i}^{-1}=\iota\left(P_{i} M P_{i}^{-1}\right)(i=1,2,4,5)$. Then

$$
\begin{aligned}
1 \mid\left[\xi_{i}^{-1} \iota\left(P_{i} M P_{i}^{-1} \gamma\right)\right]_{k+1 / 2}(Z) & =\left(1 \mid[\iota(M)]_{k+1 / 2}\right)\left[\xi_{i}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z) \\
& =1 \mid\left[\xi_{i}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z)
\end{aligned}
$$

Therefore $1 \mid\left[\xi_{i}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z)$ is independent of the choice of γ.
We prove our assertion. The case of $i=1$ or $i=4$ is trivial. Similarly as in the proof of Theorem 1.8, we have

$$
\iota\left(P_{i} M P_{i}^{-1}\right)\left(\xi_{i} \iota(M) \xi_{i}^{-1}\right)^{-1}=\iota\left(P_{i} M P_{i}^{-1}\right) \xi_{i} \iota\left(M^{-1}\right) \xi_{i}^{-1}=\left(1_{4}, t\right)
$$

where

$$
t=J\left(P_{i} M P_{i}^{-1}, P_{i} M^{-1} P_{i}^{-1}\langle Z\rangle\right) \phi_{i}\left(M^{-1} P_{i}^{-1}\langle Z\rangle\right) J\left(M^{-1}, P_{i}^{-1}\langle Z\rangle\right) \phi_{i}\left(P_{i}^{-1}\langle Z\rangle\right)^{-1}
$$

is a constant. We prove that $t=1$. Let $Z=P_{i} M\left\langle Z^{\prime}\right\rangle$. Since $J\left(M^{-1}, P_{i}^{-1}\langle Z\rangle\right)=1, t$ is equal to

$$
J\left(P_{i} M P_{i}^{-1}, P_{i}\left\langle Z^{\prime}\right\rangle\right) \phi_{i}\left(Z^{\prime}\right) \phi_{i}\left(M\left\langle Z^{\prime}\right\rangle\right)^{-1}
$$

Let

$$
M_{1}=\left(\begin{array}{cc}
1_{2} & S \\
O & 1_{2}
\end{array}\right), S \in M(2, \mathbf{Z}), S={ }^{t} S \text { and } M_{2}=\left(\begin{array}{cc}
U & O \\
O & { }^{t} U^{-1}
\end{array}\right), U \in G L(2, \mathbf{Z})
$$

Let $S=\left(\begin{array}{ll}r & s \\ s & t\end{array}\right)$ and $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Elements of $N\left(B_{0}, \Gamma_{2}\right)$ have the form of $M_{1} M_{2}$.
Let $i=2$. Then $P_{2} M_{1} M_{2} P_{2}^{-1}$ belongs to $\Gamma_{0}^{2}(4)$ if and only if r, s and t are divisible by 4. Since $\lim _{\operatorname{Im} Z^{\prime} \rightarrow \infty} \phi_{2}\left(Z^{\prime}\right) \phi_{2}\left(M_{1}\left\langle Z^{\prime}\right\rangle\right)^{-1}=1$ (cf. Proof of Theorem 1.8), the assertion for M_{1} follows from Theorem 3.9 (25) $\Phi_{25 b} \varphi_{25}(1,4 r, 4 s, 4 t)$. Since $P_{2} M_{2} P_{2}^{-1} \in$ $N\left(B_{0}, \Gamma_{2}\right)$, we have $J\left(P_{2} M_{2} P_{2}^{-1}, P_{2}\langle Z\rangle\right)=1$. On the other hand we have

$$
\frac{\phi_{2}\left(Z^{\prime}\right)}{\phi_{2}\left(M_{2}\left\langle Z^{\prime}\right\rangle\right)}=\frac{\sqrt{\operatorname{det}\left(-Z^{\prime}\right)}}{\sqrt{\operatorname{det}\left(-U Z^{\prime t} U\right)}}=1
$$

(It suffices to check in the case Z is diagonal and U is over the generators of $G L(2, \mathbf{Z})$.) So the assertion for M_{2} was proved.

Let $i=5 . P_{5} M_{1} M_{2} P_{5}^{-1}$ belongs to $\Gamma_{0}^{2}(4)$ if and only if r and b are divisible by 4. Since $\lim _{\operatorname{Im} Z^{\prime} \rightarrow \infty} \phi_{5}\left(Z^{\prime}\right) \phi_{5}\left(M_{1}\left\langle Z^{\prime}\right\rangle\right)^{-1}=1$, the assertion for M_{1} is due to Theorem 3.9 (25) $\Phi_{25 d}{ }^{*} \varphi_{25}(1,4 r, s, t)$. Let

$$
\widetilde{\Gamma}^{1,0}(4)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbf{Z}) \right\rvert\, b \equiv 0(\bmod 4)\right\} .
$$

$U_{1}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right), U_{2}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $U_{3}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ are the generators of $\widetilde{\Gamma}^{1,0}(4) /\left(\pm 1_{2}\right)$. It suffices to prove the assertion for them. If $U=U_{2}$ or $U=U_{3}$, the assertion is trivial since $\phi_{5}\left(Z^{\prime}\right)=\phi_{5}\left(M_{2}\left\langle Z^{\prime}\right\rangle\right)$ and $P_{5} M_{2} P_{5}^{-1} \in N\left(B_{0}, \Gamma_{2}\right)$. Let $U=U_{1}$ and $Z=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$. Then

$$
\frac{\phi_{5}(Z)}{\phi_{5}\left(M_{2}\langle Z\rangle\right)}=\frac{\sqrt{Z_{1}}}{\sqrt{Z_{1}+16 Z_{2}}} .
$$

We assume $\arg \sqrt{Z_{1}}$ is in $(0, \pi / 2)$. Since Z and $U Z^{t} U$ are connected by the path

$$
\left(\begin{array}{cc}
Z_{1}+t^{2} Z_{2} & t Z_{2} \\
t Z_{2} & Z_{2}
\end{array}\right) \quad(0 \leq t \leq 4)
$$

which is on $\mathfrak{S}_{2}, \arg \sqrt{Z_{1}+16 Z_{2}}$ is also in $(0, \pi / 2)$. On the other hand

$$
P_{5} M_{2} P_{5}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
-4 & 0 & 0 & 1
\end{array}\right) .
$$

From the transformation formula of $\Theta(Z)$ we have

$$
J\left(P_{5} M_{2} P_{5}^{-1}, P_{5}\langle Z\rangle\right)=\sqrt{\frac{Z_{1}+16 Z_{2}}{Z_{1}}} .
$$

Its argument is in $(-\pi / 2, \pi / 2)$ (cf. Remark 1.2). Hence the assrtion was proved.
If $k \geq 3$, the series of $E_{i}(Z)(i=1,2,4,5)$ converges and $E_{i}(Z) \in S_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$. Similarly as in the case of integral weight we can prove that $\lim _{\operatorname{Im} Z \rightarrow \infty} E_{i} \mid\left[\xi_{i}\right]_{k+1 / 2}(Z)=$ 1 and $\lim _{\operatorname{Im} Z \rightarrow \infty} E_{i} \mid\left[\xi_{j}\right]_{k+1 / 2}(Z)=0(i \neq j)$. Hence Φ-operators to the zerodimensional cusps $Q_{1}, Q_{2}, Q_{4}, Q_{5}$ are surjective if $k \geq 3$.

Next we construct Eisenstein series of Klingen type and prove the case of one-dimensional cusps. $M \in N\left(B_{1}, \Gamma_{2}\right)$ has the following form.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a & 0 & b & a n-b m \\
m u & u & n u & r u \\
c & 0 & d & c n-d m \\
0 & 0 & 0 & u
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & 1 & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & n \\
m & 1 & n & 0 \\
0 & 0 & 1 & -m \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & u & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & u
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & r \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

where $M_{0}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{2}, m, n, r \in \mathbf{Z}$ and $u= \pm 1$. We denote the matrices of the right hand side by $M_{1}, M_{2}, M_{3}, M_{4}$, respectively. Let $Z=\left(\begin{array}{cc}Z_{1} & Z_{12} \\ Z_{12} & Z_{2}\end{array}\right)$. It is easily seen that

$$
J(M, Z)=J\left(M_{0}, Z_{1}\right)
$$

Let $\xi_{i}(i=1,2,4)$ be as before. Let $f \in S_{k+1 / 2}\left(\Gamma_{0}^{1}(4)\right)$. Since $S_{k+1 / 2}\left(\Gamma_{0}^{1}(4)\right) \simeq\{0\}$ ($k \leq 3$), we can assume that $k \geq 4$. Let $M\langle Z\rangle_{1}$ be the upper-left entry of $M\langle Z\rangle$. We have $M\langle Z\rangle_{1}=M_{0}\left\langle Z_{1}\right\rangle$. We put $\tilde{f}(Z)=f\left(Z_{1}\right)$. Then

$$
\begin{aligned}
\tilde{f} \mid[\iota(M)]_{k+1 / 2}(Z) & =\tilde{f}(M\langle Z\rangle) J(M, Z)^{-2 k-1}=f\left(M\langle Z\rangle_{1}\right) J\left(M_{0}, Z_{1}\right)^{-2 k-1} \\
& =f\left(M_{0}\left\langle Z_{1}\right\rangle\right) J\left(M_{0}, Z_{1}\right)^{-2 k-1}=f\left(Z_{1}\right)=\tilde{f}(Z)
\end{aligned}
$$

Let $i=1$ or 4 and define

$$
E_{i, f}(Z)=\sum_{\gamma} \tilde{f} \mid\left[\iota\left(P_{i}^{-1} \gamma\right)\right]_{k+1 / 2}(Z)
$$

where γ is over $\left(P_{i} N\left(B_{1}, \Gamma_{2}\right) P_{i}^{-1} \cap \Gamma_{0}^{2}(4)\right) \backslash \Gamma_{0}^{2}(4) . \tilde{f} \mid\left[\iota\left(P_{i}^{-1} \gamma\right)\right]_{k+1 / 2}(Z)$ is independent of the choice of γ from the above observation.

We return to the general case of degree g. Let

$$
\Gamma^{g, 0}(4):=\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{g} \right\rvert\, B \equiv O(\bmod 4)\right\} .
$$

Then $\alpha \Gamma_{g}^{*} \alpha^{-1} \cap \Gamma_{g}$ contains $\Gamma^{g, 0}(4)$. Let $\Theta^{0}(Z)=\theta(Z / 2)$. If M belongs to $\Gamma^{g, 0}(4)$, then

$$
J^{0}(M, Z):=\Theta^{0}(M\langle Z\rangle) / \Theta^{0}(Z)
$$

is holomorphic on \mathfrak{S}_{g}. By using $J^{0}(M, Z)$ we define the space $S_{k+1 / 2}\left(\Gamma^{g, 0}(4)\right)$ similarly as before. Let $Q_{g}=\left(\begin{array}{cc}4 \cdot 1_{g} & O \\ O & 1_{g}\end{array}\right)$ and $\lambda_{g}=\left(Q_{g}, 1\right) \in \widetilde{G}_{g}$. Let $M \in \Gamma^{g, 0}(4)$ and $\iota^{0}(M)=\left(M, J^{0}(M, Z)\right)$. By definition we have $Q_{g}^{-1} \Gamma^{g, 0}(4) Q_{g}=\Gamma_{0}^{g}(4)$ and $J\left(Q_{g}^{-1} M Q_{g}, Q_{g}^{-1}\langle Z\rangle\right)=J^{0}(M, Z)$. Hence it follows $\lambda_{g}^{-1} \iota^{0}(M) \lambda_{g}=\iota\left(Q_{g}^{-1} M Q_{g}\right)$. If $f \in S_{k+1 / 2}\left(\Gamma_{0}^{g}(4)\right)$, then

$$
\begin{aligned}
\left(f \mid\left[\lambda_{g}^{-1}\right]_{k+1 / 2}\right) \mid\left[\iota^{0}(M)\right]_{k+1 / 2}(Z) & =\left(f \mid\left[\lambda_{g}^{-1} \iota^{0}(M) \lambda_{g}\right]_{k+1 / 2}\right) \mid\left[\lambda_{g}^{-1}\right]_{k+1 / 2}(Z) \\
& =f \mid\left[\lambda_{g}^{-1}\right]_{k+1 / 2}(Z)
\end{aligned}
$$

Therefore $f \mapsto f \mid\left[\lambda_{g}^{-1}\right]_{k+1 / 2}$ is an isomorohism of $S_{k+1 / 2}\left(\Gamma_{0}^{g}(4)\right)$ to $S_{k+1 / 2}\left(\Gamma^{g, 0}(4)\right)$.
Let $f \in S_{k+1 / 2}\left(\Gamma_{0}^{1}(4)\right)$ and $f^{0}=f \mid\left[\lambda_{1}^{-1}\right]_{k+1 / 2} \in S_{k+1 / 2}\left(\Gamma^{1,0}(4)\right)$. We put $\widetilde{f^{0}}(Z)=f^{0}\left(Z_{1}\right)$ for $Z \in \mathfrak{S}_{2}$. We have $P_{2} \Gamma^{2,0}(4) P_{2}^{-1}=\Gamma_{0}^{2}(4)$. Let

$$
E_{2, f}(Z)=\sum_{\gamma} \widetilde{f^{0}} \mid\left[\xi_{2}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z)
$$

where γ is over $\left(P_{2} N\left(B_{1}, \Gamma_{2}\right) P_{2}^{-1} \cap \Gamma_{0}^{2}(4)\right) \backslash \Gamma_{0}^{2}(4) . M \in N\left(B_{1}, \Gamma_{2}\right)$ is decomposed to a product $M_{1} M_{2} M_{3} M_{4}$ as before. We assume M belongs to $\Gamma^{2,0}(\underset{\sim}{(4)}$. Namely, b, n and r are divisible by 4. We prove $\xi_{2} \iota^{0}(M) \xi_{2}^{-1}=\iota\left(P_{2} M P_{2}^{-1}\right)$. Then $\widetilde{f^{0}} \mid\left[\xi_{2}^{-1} \iota(\gamma)\right]_{k+1 / 2}(Z)$ is independent of the choice of γ since $\widetilde{f^{0}} \mid\left[\iota^{0}(M)\right]_{k+1 / 2}(Z)=\widetilde{f^{0}}(Z)$.

Let $Z=P M\left\langle Z^{\prime}\right\rangle$. Then

$$
\iota\left(P_{2} M P_{2}^{-1}\right)\left(\xi_{2} \iota^{0}(M) \xi_{2}^{-1}\right)^{-1}=\iota\left(P_{2} M P_{2}^{-1}\right) \xi_{2} \iota^{0}\left(M^{-1}\right) \xi_{2}^{-1}=\left(1_{4}, t\right)
$$

where

$$
t=J\left(P_{2} M P_{2}^{-1}, P_{2}\left\langle Z^{\prime}\right\rangle\right) \phi_{2}\left(Z^{\prime}\right) J^{0}\left(M, Z^{\prime}\right)^{-1} \phi_{2}\left(M\left\langle Z^{\prime}\right\rangle\right)^{-1}
$$

is a constant. We prove that $t=1$. Let $Z^{\prime}=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$. Then the case of M_{3} is trivial. Since $J^{0}\left(M_{4}, Z^{\prime}\right)=1$ and $\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} \phi_{2}\left(Z^{\prime}\right) \phi_{2}\left(M_{4}\left\langle Z^{\prime}\right\rangle\right)^{-1}=1$, the assertion for M_{4} is due to Theorem 3.9 (15) $\Phi_{15 b}$. The case of M_{2} is easily proved if $m=1$ and $n=0$. Let $m=0$ and $n=4$. Then $J^{0}\left(M_{2}, Z^{\prime}\right)=1$. When W moves on the segment from $Z^{\prime}=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$ to $M_{2}\left\langle Z^{\prime}\right\rangle=\left(\begin{array}{cc}Z_{1} & 4 \\ 4 & Z_{2}\end{array}\right)$, $\operatorname{det} W$ moves on the segment from $Z_{1} Z_{2}$ to $Z_{1} Z_{2}-16$. Hence the argument of

$$
\frac{\phi_{2}\left(Z^{\prime}\right)}{\phi_{2}\left(M_{2}\left\langle Z^{\prime}\right\rangle\right)}=\frac{\sqrt{Z_{1} Z_{2}}}{\sqrt{Z_{1} Z_{2}-16}}
$$

is in $(-\pi / 2, \pi / 2)$. On the other hand

$$
P_{2} M_{2} P_{2}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
-4 & 0 & 0 & 1
\end{array}\right) .
$$

From the transformation formula of $\Theta(Z)$ we have

$$
J\left(P_{2} M_{2} P_{2}^{-1}, P_{2}\left\langle Z^{\prime}\right\rangle\right)=\sqrt{\frac{Z_{1} Z_{2}-16}{Z_{1} Z_{2}}} .
$$

Its argument is in $(-\pi / 2, \pi / 2)$. Hence the assrtion was proved. Now we prove the case of M_{1}. Since $\Gamma^{1,0}(4) /\left(\pm 1_{2}\right)$ is generated by $\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, it suffices to prove the assertion for them. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$. Then $J^{0}\left(M_{1}, Z^{\prime}\right)=1$,

$$
\frac{\phi_{2}\left(Z^{\prime}\right)}{\phi_{2}\left(M_{1}\left\langle Z^{\prime}\right\rangle\right)}=\frac{\sqrt{Z_{1} Z_{2}}}{\sqrt{\left(Z_{1}+4\right) Z_{2}}} \quad \text { and } \quad P_{2} M_{1} P_{2}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-4 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

From the transformation formula of $\Theta(Z)$ we have

$$
J\left(P_{2} M_{1} P_{2}^{-1}, P_{2}\left\langle Z^{\prime}\right\rangle\right)=\sqrt{\frac{Z_{1}+4}{Z_{1}}} .
$$

Hence the assrtion is similarly proved as before. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then since $P_{2} M_{1} P_{2}^{-1} \in N\left(B_{0}, \Gamma_{2}\right), J\left(P_{2} M_{1} P_{2}^{-1}, P_{2}\left\langle Z^{\prime}\right\rangle\right)=1$.

$$
\frac{\phi_{2}\left(Z^{\prime}\right)}{\phi_{2}\left(M_{1}\left\langle Z^{\prime}\right\rangle\right)}=\frac{\sqrt{Z_{1} Z_{2}}}{\sqrt{Z_{1} Z_{2} /\left(Z_{1}+1\right)}}
$$

and

$$
J^{0}\left(M, Z^{\prime}\right)=J^{0}\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), Z_{1}\right)=J\left(\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right), \frac{Z_{1}}{4}\right) .
$$

This is calculated by the transformation formula and equal to $\sqrt{Z_{1}+1}$. Hence the assrtion is similarly proved as before.

Since $k \geq 4$, the series of $E_{i, f}(Z)(i=1,2,4)$ converges and $E_{i, f}(Z) \in$ $S_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$. Similarly as in the case of integral weight we can prove that $\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} E_{i, f}\left|\left[\xi_{i}\right]_{k+1 / 2}(Z)=f\left(Z_{1}\right)(i=1,4), \lim _{\operatorname{Im} Z_{2} \rightarrow \infty} E_{2, f}\right|\left[\xi_{2}\right]_{k+1 / 2}(Z)=$ $f^{0}\left(Z_{2}\right)$ and $\lim _{\operatorname{Im} Z_{2} \rightarrow \infty} E_{i, f} \mid\left[\xi_{j}\right]_{k+1 / 2}(Z)=0(i \neq j)$. Hence Φ-operators to the onedimensional cusps C_{1}, C_{2} and C_{4} are surjective. Now the theorem was proved for $k \geq 3$.

We show that $\operatorname{dim} M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right)=1, \operatorname{dim} M_{3 / 2}\left(\Gamma_{0}^{2}(4)\right)=1$ and $\operatorname{dim} M_{5 / 2}\left(\Gamma_{0}^{2}(4)\right)=$ 3. Then the first equality of the theorem is proved. Since $\Theta(Z) \in M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right)$, $\operatorname{dim} M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right) \geq 1$. We have the product map:

$$
M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right) \times M_{21 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \rightarrow M_{11}\left(\Gamma_{0}^{2}(4)\right) .
$$

Since $\operatorname{dim} M_{21 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)=\operatorname{dim} M_{11}\left(\Gamma_{0}^{2}(4)\right)=1$ (cf. Proposition 5.3, and Proposition 5.4), $\operatorname{dim} M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right)=1$. Similarly we have $\Theta(Z)^{3} \in M_{3 / 2}\left(\Gamma_{0}^{2}(4)\right)$ and the product map:

$$
M_{3 / 2}\left(\Gamma_{0}^{2}(4)\right) \times M_{21 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \rightarrow M_{12}\left(\Gamma_{0}^{2}(4), \psi\right) .
$$

Since $\operatorname{dim} M_{12}\left(\Gamma_{0}^{2}(4), \psi\right)=1$, we have $\operatorname{dim} M_{3 / 2}\left(\Gamma_{0}^{2}(4)\right)=1$. Similarly we have the product maps:

$$
\begin{aligned}
& M_{5 / 2}\left(\Gamma_{0}^{2}(4)\right) \times M_{21 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \rightarrow M_{13}\left(\Gamma_{0}^{2}(4)\right), \\
& M_{1 / 2}\left(\Gamma_{0}^{2}(4)\right) \times M_{2}\left(\Gamma_{0}^{2}(4)\right) \rightarrow M_{5 / 2}\left(\Gamma_{0}^{2}(4)\right)
\end{aligned}
$$

Since $\operatorname{dim} M_{13}\left(\Gamma_{0}^{2}(4)\right)=3$, we have $\operatorname{dim} M_{5 / 2}\left(\Gamma_{0}^{2}(4)\right) \leq 3$ and since $\operatorname{dim} M_{2}\left(\Gamma_{0}^{2}(4)\right)=$ 3, we have $\operatorname{dim} M_{5 / 2}\left(\Gamma_{0}^{2}(4)\right) \geq 3$. Thus we have completed the proof of Theorem 5.2.

Proposition 5.3.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \operatorname{dim} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) t^{k} & =\sum_{k=0}^{\infty} \text { SiegelHalfpsi }[0, \mathrm{k}] t^{k}+\left(3+t+t^{2}\right) \\
& =\frac{t^{10}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)}
\end{aligned}
$$

Proof. From Theorem 4.6, we have $\operatorname{dim} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)=\operatorname{dim} S_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$. Since we have $\operatorname{dim} S_{7 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)=$ SiegelHalfpsi $[0,3]=0$, it follows that $S_{5 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \simeq S_{3 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \simeq S_{1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right) \simeq\{0\}$. But since we have SiegelHalfpsi[0,2] $=-1$, SiegelHalfpsi[0,1] $=-1$ and SiegelHal $\mathrm{fpsi}[0,0]=-3$, we have the equality of the first line.

Let $M\left(\Gamma_{0}^{2}(4)\right), \quad M\left(\Gamma_{0}^{2}(4), \psi\right)$ and $A\left(\Gamma_{0}^{2}(4), \psi\right)$ be $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4)\right)$, $\bigoplus_{k=0}^{\infty} M_{k+1 / 2}\left(\Gamma_{0}^{2}(4), \psi\right)$ and $\bigoplus_{k=0}^{\infty} M_{k}\left(\Gamma_{0}^{2}(4), \psi^{k}\right)$, respectively. Then $A\left(\Gamma_{0}^{2}(4), \psi\right)$ is a graded ring and since it holds $J(M, Z)^{2}=\operatorname{det}(C Z+D) \psi(\operatorname{det} D), M\left(\Gamma_{0}^{2}(4)\right)$ and $M\left(\Gamma_{0}^{2}(4), \psi\right)$ are $A\left(\Gamma_{0}^{2}(4), \psi\right)$-modules. From the result of J.-I. Igusa ([Ig1]), we have the following proposition. (We can also prove them by dimension formula.)

Proposition 5.4.

$$
\begin{aligned}
\sum_{k=0}^{\infty} \operatorname{dim} M_{k}\left(\Gamma_{0}^{2}(4)\right) t^{k} & =\frac{1+t^{4}+t^{11}+t^{15}}{\left(1-t^{2}\right)^{3}\left(1-t^{6}\right)} \\
\sum_{k=0}^{\infty} \operatorname{dim} M_{k}\left(\Gamma_{0}^{2}(4), \psi\right) t^{k} & =\frac{t+t^{3}+t^{12}+t^{14}}{\left(1-t^{2}\right)^{3}\left(1-t^{6}\right)} \\
\sum_{k=0}^{\infty} \operatorname{dim} M_{k}\left(\Gamma_{0}^{2}(4), \psi^{k}\right) t^{k} & =\frac{1+t+t^{3}+t^{4}}{\left(1-t^{2}\right)^{3}\left(1-t^{6}\right)}=\frac{1}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)} .
\end{aligned}
$$

From this, Theorem 5.2 and Proposition 5.3, we have
Corollary 5.5. $M\left(\Gamma_{0}^{2}(4)\right)$ and $M\left(\Gamma_{0}^{2}(4), \psi\right)$ are free $A\left(\Gamma_{0}^{2}(4), \psi\right)$-modules of rank one.

A generator of $M\left(\Gamma_{0}^{2}(4)\right)$ as $A\left(\Gamma_{0}^{2}(4), \psi\right)$-module is given by $\Theta(Z)$. Let $f_{21 / 2}(Z)$ be a generator of $M\left(\Gamma_{0}^{2}(4), \psi\right)$. Then $f_{21 / 2}(Z) \Theta(Z)$ is an automorphic form with respect to $J(M, Z)^{22} \psi(\operatorname{det} D)=\operatorname{det}(C Z+D)^{11}$. Hence this belongs to $M_{11}\left(\Gamma_{0}^{2}(4)\right)$. Let $f_{11}(Z)$ be the base of one-dimensional space $M_{11}\left(\Gamma_{0}^{2}(4)\right)$. Then $f_{11}(Z) / \Theta(Z)$ is holomorphic and we may take $f_{21 / 2}(Z)=f_{11}(Z) / \Theta(Z)$. Since $A\left(\Gamma_{0}^{2}(4), \psi\right)$ is contained in $\bigoplus_{k=0}^{\infty} M_{k}\left(\Gamma_{2}(4)\right)$ and $\bigoplus_{k=0}^{\infty} M_{k}\left(\Gamma_{2}(4)\right)$ is contained in the ring of theta constants ([Ig1]), every elements of $M\left(\Gamma_{0}^{2}(4)\right)$ and $M\left(\Gamma_{0}^{2}(4), \psi\right)$ are representable by theta constants.

REMARK 5.6. T. Ibukiyama represented the generators of $A\left(\Gamma_{0}^{2}(4), \psi\right)$ and $f_{21 / 2}(Z)$ explicitly by theta constants ([Ib]). Especially $A\left(\Gamma_{0}^{2}(4), \psi\right)$ is generated by algebraically independent modular forms f_{1}, X, g_{2} and f_{3} whose weights are $1,2,2$ and 3 , respectively. $f_{21 / 2}(Z)$ is divisible by nine theta constants and not divisible by one theta constant. Let $Z \in \mathfrak{S}_{2}$. Then there exists $M \in \Gamma_{2}$ such that $M\langle Z\rangle=\left(\begin{array}{cc}Z_{1} & 0 \\ 0 & Z_{2}\end{array}\right)$, if and only if one of ten theta constants vanishes at Z (J.-I. Igusa, $[\mathrm{H}]$). Hence $f_{21 / 2}(Z)$ does not belong to $S_{21 / 2}\left(\Gamma_{2}^{\alpha}, \psi\right)$ (cf. Remark 4.7).

Appendix. The generating functions

We list here the generating functions of SiegelHalf $[j, k]$ and SiegelHalfpsi[j,k].

TABLE A.1. $\sum_{j, k=0}^{\infty}$ SiegelHalf $[j, \mathrm{k}] s^{j} t^{k}$ is a rational function of s and t whose denominator is

$$
\left(1-s^{2}\right)^{2}\left(1-s^{3}\right)^{2}(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right) .
$$

The coefficients of $s^{j} t^{k}(0 \leq j \leq 9,0 \leq k \leq 7)$ in the numerator are given by the following matrix.

0	0	-3	-6	-6	-3	4	3	-3	-4
0	0	1	1	1	3	3	1	1	1
-1	-1	7	17	20	8	-12	-8	8	10
1	1	2	7	7	-2	-9	-4	1	2
2	3	-2	-12	-20	-9	8	4	-8	-8
1	3	-5	-21	-23	-5	12	6	-7	-9
0	0	-1	-1	2	2	1	3	4	2
-2	-3	4	14	13	0	-8	-2	7	7

TABLE A.2. $\quad \sum_{j, k=0}^{\infty}$ SiegelHalfpsi $[j, k] s^{j} t^{k}$ is a rational function of s and t whose denominator is

$$
\left(1-s^{2}\right)^{2}\left(1-s^{3}\right)^{2}(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)
$$

The coefficients of $s^{j} t^{k}(0 \leq j \leq 9,0 \leq k \leq 7)$ in the numerator are given by the following matrix.

-3	0	6	6	-6	-21	-11	3	6	2
2	0	-4	-5	1	12	10	1	-3	-2
6	0	-12	-11	17	47	23	-6	-12	-4
0	0	0	5	10	4	-5	-6	-3	1
-5	0	13	15	-12	-41	-25	-1	9	5
-6	1	15	9	-21	-46	-24	6	14	4
3	2	-6	-12	-3	13	14	6	-2	-3
4	0	-9	-8	8	26	17	0	-6	-2

References

[AMRT] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth Compactification of Locally Symmetric Varieties (Lie Groups: History, Frontiers and Applications, Vol. 4), Math. Sci. Press, Brookline MA, 1975.
[AS] M. F. Atiyah and I. M. Singer, The index of elliptic operator. III, Ann. of Math., 87 (1968), 540-608. [B] W. L. Baily, Jr., On Satake's compactification of V_{n}, Amer. J. Math., 80 (1958), 348-364.
[BLS] H. Bass, M. Lazard and J.-P. Serre, Sous-groupes d'indice fini dans $S L(n, \mathbf{Z})$, Bull. Amer. Math. Soc., 70 (1964), 385-392.
[G] E. Gottschling, Die Uniformisierbarkeit der Fixpunkte eigentlich diskontinuierlicher Gruppen von biholomorphen Abbildungen, Math. Ann., 169 (1967), 26-54.
[H] W. F. Hammond, On the graded ring of Siegel modular forms of genus two, Amer. J. Math., 87 (1965), 502-506.
[Ib] T. Ibukiyama, On Siegel modular forms of half integral weight of $\Gamma_{0}(4)$ of degree two, (in preparation).
[Ig1] J.-I. Igusa, On Siegel modular forms of genus two. II, Amer. J. Math., 86 (1964), 392-412.
[Ig2] J.-I. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann., 168 (1967), 228-260.
[Ig3] J.-I. Igusa, Theta Functions, Grundlehren Math. Wiss., 194, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[Ka] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46.
[Kl] H. Klingen, Introductory Lectures on Modular Forms, Cambridge Stud. Adv. Math. 20, Cambridge Univ. Press, Cambridge, 1990.
[Me] J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann., 143 (1961), 115-129.
$[\mathrm{Mu}] \quad$ D. Mumford, Hirzebruch's proportionality theorem in the noncompact case, Invent. Math., 42 (1977), 239-272.
[N] Y. Namikawa, A new compactification of the Siegel space and degeneration of abelian varieties. I, II, Math. Ann., 221 (1976), 97-141, 201-241.
[Sta] I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc., 20 (1956), 259-281.
[Sto] T. Satoh, On certain vector valued Siegel modular forms of degree two, Math. Ann., 274 (1986), 335352.
[Smi] H. Shimizu, Automorphic Functions, (in Japanese), Iwanami-koza Kiso-sugaku, Iwanami-shoten, Tokyo, 1977.
[Smu] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440-481.
[Sn] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya J. Math., $\mathbf{5 8}$ (1975), 83-126.
[Si] C. L. Siegel, On the theory of indefinite quadratic forms, Ann. of Math., 45 (1944), 577-622.
[T1] R. Tsushima, A formula for the dimension of spaces of Siegel cusp forms of degree three, Amer. J. Math., 102 (1980), 937-977.
[T2] R. Tsushima, On the spaces of Siegel cusp forms of degree two, Amer. J. Math., 104 (1982), 843-885.
[T3] R. Tsushima, An explicit dimension formula for the spaces of generalized automorphic forms with respect to $\operatorname{Sp}(2, \mathbf{Z})$, Proc. Japan Acad. Ser. A, 59 (1983), 139-142.
[T4] R. Tsushima, On dimension formula for Siegel modular forms, Adv. Stud. Pure Math. 15, Academic Press, Boston MA, 1989, pp. 41-64.
[T5] R. Tsushima, Dimension formula for the spaces of Siegel cusp forms and a certain exponential sum, Mem. Inst. Sci. Tech. Meiji Univ., 36 (1997), 1-56. http://www.math.meiji.ac.jp/ ~tsushima
[T6] R. Tsushima, Certain vector valued Siegel modular forms of half integral weight and degree two, (to appear).
[T7] R. Tsushima, Dimension formula for the spaces of Jacobi forms of degree two, (to appear).
[V] E. Viehweg, Vanishing theorems, J. Reine Angew. Math., 335 (1982), 1-8.

Department of Mathematics School of Science and Technology Meiji University Kawasaki, 214-8571 Japan
e-mail: tsushima@math.meiji.ac.jp

