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Let Sg = {Z ∈ M(g ,C) | tZ = Z, ImZ > 0} be the Siegel upper half plane of
degree g , Γg = Sp (g ,Z) the Siegel modular group of degree g and

Γ ∗
g =
{(
A B

C D

)
∈ Γg

∣∣∣∣ diagonal elements of A tB, C tD are even

}
.

If M =
(
A B

C D

)
, we denote (AZ + B)(CZ + D)−1 by M 〈Z〉. Let e(z) = exp(2πiz)

and for Z ∈ Sg put

θ(Z) =
∑
η∈Zg

e
(

1

2
t ηZη

)
.

If M belongs to Γ ∗
g , θ(M 〈Z〉)/θ(Z) is holomorphic on Sg . Let α =

(
2 · 1g O

O 1g

)
and

let Θ(Z) = θ(2Z) = θ(α 〈Z〉). Let

Γ
g

0 (4) =
{(
A B

C D

)
∈ Γg

∣∣∣∣ C ≡ O (mod 4)

}
.

Then Γ αg := α−1Γ ∗
g α ∩ Γg contains Γ g

0 (4). Hence if M belongs to Γ g
0 (4) or more gener-

ally if M belongs to Γ αg , then

J (M,Z) := Θ(M 〈Z〉)/Θ(Z)
is holomorphic on Sg and satisfies the equality:

J (M,Z)2 = det(CZ +D)ψ(detD) ,

whereψ : 1+2Z → {±1} is the non-trivial Dirichlet character modulo 4 (cf. §1). J (M,Z)
is called the automorphy factor of weight 1/2.

Letμ : GL(g ,C) → GL(r,C) be an irreducible holomorphic representation. μ(CZ+
D) is also an automorphy factor (with respect to Γg ) and so is J (M,Z)2k+1 μ(CZ + D)

(with respect to Γ g
0 (4)). Let Γ be a subgroup of Γ g

0 (4) of finite index. A holomorphic
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70 R. TSUSHIMA

mapping f : Sg → Cr is called a Siegel modular form of half integral weight with
respect to Γ, if f satisfies the following equality for anyM ∈ Γ and Z ∈ Sg :

f (M 〈Z〉) = J (M,Z)2k+1μ(CZ +D) f (Z) .

(We have to assume “the holomorphy at cusps” if g = 1.) We denote by Mμ,k+1/2(Γ )

the C-vector space of all such mappings. An element f ∈ Mμ,k+1/2(Γ ) is called a cusp
form if f belongs to the kernels of the Φ-operators. We denote the space of cusp forms by
Sμ,k+1/2(Γ ). Namely, f belongs to Sμ,k+1/2(Γ ) if and only if

Φf (Z1) := lim
ImZ2→∞ f | [ξ ]μ,k+1/2 (Z) = 0

for any ξ ∈ G̃g such that p(ξ) ∈ Γg , where Z =
(
Z1 o
to Z2

)
, Z1 ∈ Sg−1 and Z2 ∈

S1 (cf. Definition 1.5 and Definition 1.7). If μ is the trivial representation, we denote
Mμ,k+1/2(Γ ) and Sμ,k+1/2(Γ ) by Mk+1/2(Γ ) and Sk+1/2(Γ ), respectively. It is known
that Mμ,k+1/2(Γ ) is finite-dimensional.

Let χ be a character of Γ whose kernel is a subgroup of Γ of finite index. We denote
by Mμ,k+1/2(Γ, χ) the C-vector space of the holomorphic mappings of Sg to Cr which
satisfy

f (M 〈Z〉) = J (M,Z)2k+1 χ(M)μ(CZ +D) f (Z)

for anyM ∈ Γ and Z ∈ Sg . We also denote by Sμ,k+1/2(Γ, χ) its subspace of cusp forms.
Now we assume that g = 2 and μ is the symmetric tensor representation of degree

j which we denote by Symj . We denote Mμ,k+1/2(Γ ) and Sμ,k+1/2(Γ ) by Mj,k+1/2(Γ )

and Sj,k+1/2(Γ ), respectively. Let ψ be as before. We define a character ofM ∈ Γ 2
0 (4) by

ψ(detD) whereD is the lower right 2 × 2 matrix ofM . If j is odd, thenMj,k+1/2(Γ
2

0 (4))

and Mj,k+1/2(Γ
2

0 (4), ψ) are {0} since −14 ∈ Γ 2
0 (4) and Symj (−12) = −1j+1. There-

fore we assume that j is even. The purpose of this paper is to compute the dimension
of S2j,k+1/2(Γ

2
0 (4)) and S2j,k+1/2(Γ

2
0 (4), ψ) (Theorem 4.4 and Theorem 4.5). From these

results we can prove that
⊕∞

k=0Mk+1/2(Γ
2

0 (4)) and
⊕∞

k=0Mk+1/2(Γ
2

0 (4), ψ) are free mod-
ules of rank one over the graded ring of the automorphic forms of integral weights (Proposi-
tion 5.2 and Proposition 5.3). Their structures were explicitly determined by T. Ibukiyama
([Ib]). By using a similar method in [Sto], we can also determine the structure of the module⊕∞

k=0M2,k+1/2(Γ
2

0 (4)) ([T6]).
More generally we can express the dimension of Sj,k+1/2(Γ, χ) by a finite sum for

general Γ and χ (Theorem 3.2). Especially we will be able to compute the dimension of

S2j,k+1/2(Γ
2

0 (4p), χ), where p is an odd prime and χ is a Dirichlet character modulo 4p
(cf. [T5] for the case of integral weight). But this will be an exhausting job.
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1. Transformation formula of Θ(Z) and the line bundle H g

In this section we recall the transformation formula ofΘ(Z) (Theorem 1.4, cf. [Si] or
[Smi]). Next we prove that the line bundle of the modular forms of half integral weight is
extendable onto the Satake compactification of the Siegel space.

DEFINITION 1.1. Let A ∈ M(g ,C) be a symmetric matrix with Re (A) > 0. Then
there exists T ∈ GL(g ,R) such that

t T AT =
⎛
⎜⎝

1 + id1
. . .

1 + idg

⎞
⎟⎠ .

We define (detA)1/2 = | detT |−1∏g
j=1(1+ idj)1/2,where we choose z1/2 so that −π/2 <

arg(z1/2) ≤ π/2 for z ∈ C.

REMARK 1.2. If g = 2, (detA)1/2 is uniquely determined by the condition −π/2 <
arg(detA)1/2 < π/2, because −π/4 < arg(1 + idj )

1/2 < π/4 (j = 1, 2).

LEMMA 1.3. Let M =
(
A B

C D

)
∈ Γg and let m = rankC. Then there exist M ′,

M1, M2 ∈ Γg such that

M = M1M
′M2 , M1 =

(
A1 B1

O D1

)
, M2 =

(
A2 O

O D2

)
,

M ′ =

⎛
⎜⎜⎜⎝
A0 O B0 O

O 1g−m O O

C0 O D0 O

O O O 1g−m

⎞
⎟⎟⎟⎠ , where

(
A0 B0

C0 D0

)
∈ Γm and detC0 �= 0 .

(If m = 0, we supposeM ′ = 12g .) Moreover we can choose C0 so that

C0 =
⎛
⎜⎝
c1

. . .

cm

⎞
⎟⎠ , ci | ci+1 (1 ≤ i ≤ m− 1) .

Proof. The assertion is easily proved ([Smi], Theorem 8.1). But we give a proof
here because we use the process of the proof later. There exist U, V ∈ GL(g ,Z) such

that UCV =
(
C0 O

O O

)
, where C0 has the above form. Let UD tV −1 =

(
D11 D12

D21 D22

)

(D11 ∈ M(m,Z)). Then since C tD = D tC, we have(
C0 O

O O

)t(
D11 D12

D21 D22

)
=
(
D11 D12

D21 D22

)t(
C0 O

O O

)
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and D21
tC0 = O . Hence D21 = O, since detC0 �= 0. On the other hand(

C0 O D11 D12

O O O D22

)
is primitive. This means that D22 ∈ GL(g −m,Z). Let

U1 =
(

1m −D12D
−1
22

O D−1
22

)

and D0 = D11. Replacing U with U1U we can assume that UCV =
(
C0 O

O O

)
and

UD tV −1 =
(
D0 O

O 1g−m

)
. Since C0

tD0 = D0
tC0, there exists M0 ∈ Γm such that

M0 =
(
A0 B0

C0 D0

)
. We define M ′ by usingM0 as above. Let

M ′′ =
(
tU−1 O

O U

)
M

(
V O

O tV−1

)
.

Then M ′M ′′−1 has the form

(
1g S

O 1g

)
(tS = S). So M1 =

(
tU −tUS

O U−1

)
and M2 =

(
V −1 O

O tV

)
satisfy the condition. �

Now for Z ∈ Sg , we put

M ′M2(Z) =
(
Z1 Z2
tZ2 Z3

)
, where Z1 ∈ Sm and Z3 ∈ Sg−m, if m > 0 ,

and

j (M,Z) =
{ | detC0|1/2 det(−i(Z1 − A0C

−1
0 ))1/2 , if m > 0 ,

1 , if m = 0 .

Next we put

λ(M) =

⎧⎪⎨
⎪⎩

| det(C0/2)|−1/2
∑

η∈Zg /(tC0/2)Zg

e(−t η(C−1
0 D0)η) , if m > 0 ,

1, if m = 0 .

Then we have

THEOREM 1.4. Let M =
(
A B

C D

)
∈ Γ

g
0 (4) and let j (M,Z) and λ(M) be as

above. Let J (M,Z) = j (M,Z)−1λ(M)−1. Then it holds that

Θ(M 〈Z〉) = J (M,Z)Θ(Z)

and
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J (M,Z)2 = det(CZ +D)ψ(detD) .

DEFINITION 1.5. Let 1g be the unit matrix of degree g and Jg =
(
O 1g

−1g O

)
. Let

Gg = {M ∈ GL(2g ,R) | tMJgM = ν(M)Jg , with some ν(M) > 0}
be the symplectic group of degree g with similitudes. Let T = {z ∈ C | |z| = 1}. We define

a group G̃g which consists of the pairs ξ = (M, φ(Z)), where M =
(
A B

C D

)
∈ Gg and

φ(Z) is a non-zero holomorphic function on Sg such that

φ(Z)2 = t (ξ)ν(M)−1/2 det(CZ +D)

for any Z ∈ Sg with some t (ξ) ∈ T. The multiplicative law is defined as follows:

(M1, φ1(Z))(M2, φ2(Z)) = (M1M2, φ1(M2 〈Z〉)φ2(Z)) .

We denote the natural projection of G̃g to Gg by p. By definition, if p(ξ) = 12g , then
ξ = (12g , t) where t is a constant.

COROLLARY 1.6. We have an injective homomorphism ι of Γ g
0 (4) to G̃g :

ι(M) = (M, J (M,Z)) .

DEFINITION 1.7. For any holomorphic mapping f :Sg →Cr and ξ = (M, φ(Z))∈
G̃g , we put

f | [ξ ]μ,k+1/2 (Z) = φ(Z)−(2k+1)μ(CZ +D)−1f (M 〈Z〉) .
Then we have

f | [ξ η]μ,k+1/2 (Z) = (f | [ξ ]μ,k+1/2) | [η]μ,k+1/2 (Z)

for any ξ and η ∈ G̃g . Such a mapping f belongs to Mμ,k+1/2(Γ
g

0 (4)) if and only if

f | [ι(M)]μ,k+1/2 (Z) = f (Z) for any M ∈ Γ g
0 (4).

Let Γg (N) be the principal congruence subgroup of level N of Γg . Namely,

Γg (N) = {M ∈ Γg | M ≡ 12g (mod N)} .
Γg (N) is a normal subgroup of Γg . If N ≥ 3, Γg (N) acts on Sg without fixed points and
the quotient space Xg (N) := Γg (N)\Sg is a (non-compact) manifold. Xg (N) is a open

subspace of a projective variety Xg (N) which was constructed by I. Satake ([Sta], Satake

compactification). If g ≥ 2, Xg (N) has singularities along its cusps: Xg (N) − Xg (N).

Cusps of Xg (N) is (as a set) a disjoint union of copies of Xg ′(N)’s (0 ≤ g ′ < g ). A

desingularization X̃g (N) ofXg (N) was constructed by J.-I. Igusa ([Ig2]) and Y. Namikawa
([N]) (g = 2, 3, 4) and more generally by D. Mumford and others ([AMRT], Toroidal
compactification).

Let μ : GL(g ,C) → GL(r,C) be a holomorphic representation and let Vμ be Sg ×
Cr , on which Γg (N) acts as follows:
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M(Z, v) = (M 〈Z〉 , μ(CZ +D)v) .

If N ≥ 3, Vμ := Γg (N)\Vμ is non-singular and is a holomorphic vector bundle over

Xg (N). Vμ is extended to a holomorphic vector bundle Ṽμ on X̃g (N) ([Mu]). In the

case when g = 2 and μ = Symj , we denote Vμ and Ṽμ by Symj (V ) and Symj (Ṽ ),

respectively.
Let Hg be Sg × C. The group Γg (4N) acts on Hg as follows:

M(Z, v) = (M 〈Z〉 , J (M,Z)v) .
Then,Hg := Γg (4N)\Hg is a holomorphic line bundle over Xg (4N). We have

THEOREM 1.8. The line bundle Hg is extendable to an ample line bundle H g over

the Satake compactificationXg (4N).

Proof. Let f be a (local) section of H⊗(2k+1)
g . Then f is identified with a (local)

modular form of weight k+1/2 with respect to Γg (4N). We denote φ(Z)−(2k+1)f (P 〈Z〉)
by f | [ξ ]k+1/2(Z) for ξ = (P, φ(Z)) ∈ G̃g . We prove that

f | [ξ ]k+1/2(Z + S) = f | [ξ ]k+1/2(Z)

for any ξ ∈ p−1(Γg ) and any integral symmetric matrix S whose entries are divisible by
4N . Then f | [ξ ]k+1/2(Z) is expanded to a Fourier series:

f | [ξ ]k+1/2(Z) =
∑
T≥0

a(T ) e(tr(T Z)/4N) ,

where T is over all half-integral semi-positive symmetric matrices and from this fact it is

proved that Hg is extendable onto Xg (4N) similarly as in [Sta]. H
⊗2
g is isomorphic to the

line bundleLg which is defined by the automorphy factor det(CZ+D). Since Lg is ample

([B]), H g is also ample.

Let M =
(

1g S

O 1g

)
∈ Γg (4N) and ξ = (P, φ(Z)) ∈ p−1(Γg ). Then PMP−1

belongs to Γg (4N) since Γg (4N) is a normal subgroup of Γg . We prove that

ξ ι(M) ξ−1 = ι(PMP−1) .

Then we have

f | [ξ ι(M) ξ−1]k+1/2(Z) = f | [ι(PMP−1)]k+1/2(Z) = f (Z)

from the assumption that f is a (local) modular form with respect to Γg (4N). Hence it
follows that

f | [ξ ]k+1/2(Z + S) = f | [ξ ι(M)]k+1/2(Z) = f | [ξ ]k+1/2(Z) .

Now we prove our assertion. Since ξ−1 = (P−1, φ(P−1 〈Z〉)−1), we have

ι(PMP−1)(ξ ι(M) ξ−1)−1 = ι(PMP−1) ξ ι(M−1) ξ−1 = (12g , t) ,
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where

t = J (PMP−1, PM−1P−1 〈Z〉) φ(M−1P−1 〈Z〉) J (M−1, P−1〈Z〉) φ(P−1 〈Z〉)−1

is a constant. We prove that t = 1. Let Z = P 〈Z′ + S〉. Since J (M−1, P−1 〈Z〉) = 1, t is
equal to

Θ(Z)

Θ(PM−1P−1 〈Z〉) · φ(M
−1P−1 〈Z〉)

φ(P−1 〈Z〉) = Θ(P 〈Z′ + S〉)
Θ(P 〈Z′〉) · φ(Z′)

φ(Z′ + S)
.

Let P =
(
A B

C D

)
. Then by definition we have

φ(Z′)
φ(Z′ + S)

=
√

det(CZ′ +D)√
det(C(Z′ + S)+D)

.

Since
√

det(CZ′ +D) is a non-zero function on the simply connected space Sg , the sign

of
√

det(C(Z′ + S)+D) is uniquely determined by the sign of
√

det(CZ′ +D) and we
have

lim
ImZ′→∞

φ(Z′)
φ(Z′ + S)

= 1 .

Hence the assertion is equivalent to

lim
ImZ′→∞

J (PMP−1, P 〈Z′〉) = lim
ImZ′→∞

Θ(P 〈Z′ + S〉)
Θ(P 〈Z′〉) = 1 .

We fix P and assume that

lim
ImZ→∞ J (PMP

−1, P 〈Z〉) = 1

for anyM =
(

1g S

O 1g

)
∈ Γg (4N). Let Q ∈ Γ g

0 (4). Then we have

J (QPMP−1Q−1,QP 〈Z〉) = J (Q,PM 〈Z〉)J (PMP−1, P 〈Z〉)J (Q−1,QP 〈Z〉) .
Since

lim
ImZ→∞ J (Q,PM 〈Z〉)J (Q−1,QP 〈Z〉) = lim

ImZ→∞
J (Q,P 〈Z + S〉)
J (Q,P 〈Z〉) = 1 ,

it follows that

lim
ImZ→∞ J (QPMP

−1Q−1,QP 〈Z〉) = 1 ,

from the assumption.
Next let N(B0, Γg ) be the subgroup of Γg consisting of the elements of the form:(

U T tU−1

O tU−1

)
, U ∈ GL(g ,Z) , T ∈ M(g ,Z) , tT = T .

Let R ∈ N(B0, Γg ) be an element of the above form. Then
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J (PRMR−1P−1, PR 〈Z〉) = J (PM1P
−1, P 〈UZ tU + T 〉) ,

where

M1 =
(

1g US tU

O 1g

)
.

Hence it follows that

lim
ImZ→∞ J (PRMR

−1P−1, PR 〈Z〉) = 1

from the assumption.
Therefore it suffices to prove the assertion for the representatives of the double cosets

in Γ g
0 (4)\Γg /N(B0, Γg ). Let P =

(
A B

C D

)
∈ Γg . Let C = (cij ) be the matrix such that

C ≡ C (mod 4) and −1 ≤ cij ≤ 2 (1 ≤ i, j ≤ g ). There exists P ′ =
(
A′ B ′

C D′

)
∈ Γg

such that P ≡ P ′ (mod 4) (cf. [Ig3], Chap. V, Lemma 25). Notice that we can apply

the proof of this lemma without changing η′ which is the first row of C. Then P ′P−1 ∈
Γg (4) ⊂ Γ

g
0 (4). Hence we can replace P with P ′. Let m = rankC and represent P ′ as

M1M
′M2 in Lemma 1.3. We can replace P ′ with M ′. So we assume that

P =

⎛
⎜⎜⎜⎝
A0 O B0 O

O 1g−m O O

C0 O D0 O

O O O 1g−m

⎞
⎟⎟⎟⎠ ,

(
A0 B0

C0 D0

)
∈ Γm, detC0 �= 0

and

C0 =
⎛
⎜⎝
c1

. . .

cm

⎞
⎟⎠ , ci = 1 or 2 (1 ≤ i ≤ m) .

It suffices to prove the case when N = 1. Let Eij = (akl) be the matrix such that

aij = 1 and akl = 0, otherwise. Let M1 =
(

1g S1

O 1g

)
, M2 =

(
1g S2

O 1g

)
∈ Γg (4). Then

we have

lim
ImZ→∞ J (PM1M2P

−1, P 〈Z〉)
= lim

ImZ→∞ J (PM1P
−1, P 〈Z〉) lim

ImZ→∞ J (PM2P
−1, P 〈Z〉) .

Hence it suffices to prove the assertion for the case when S = 4Eii or S = 4Eij + 4Eji
(i �= j). First we prove the case when S = 4Eii . Let Vij be the matrix corresponding to
the transposition (ij). Namely, Vij = 1g − Eii − Ejj + Eij + Eji . Let σ = (1i) and

V σ =
(
V1i O

O V1i

)
. As we showed before, we have
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lim
ImZ→∞ J (PMP

−1, P 〈Z〉) = lim
ImZ→∞J (P

σMσPσ
−1
, P σ 〈V1iZV1i〉) ,

where Pσ = V σPV σ and Mσ = V σMV σ =
(

1g 4E11

O 1g

)
. Let Pσ =

(
Aσ Bσ

Cσ Dσ

)
.

Then

PσMσPσ
−1 =

(
1g − 4AσE11

tCσ 4AσE11
tAσ

−4CσE11
tCσ 1g + 4CσE11

tAσ

)
.

If i > m, then the assertion is trivial because −4CσE11
tCσ = O . So we assume that

i ≤ m. Then

− 4CσE11
tCσ =

(
−4c2

i
to

o O

)
, 1g + 4CσE11

tAσ =
(

1 + 4aiici ∗
o 1g−1

)
,

1g − 4AσE11
tCσ =

(
1 − 4aiici to

∗ 1g−1

)
, 4AσE11

tAσ =
(

4a2
ii ∗

∗ ∗

)
.

Hence PσMσPσ
−1 is represented as M1M

′M2 where M2 = 12g and

M ′ =

⎛
⎜⎜⎜⎝

1 − 4aiici
to 4a2

ii
to

o 1g−1 o O

−4c2
i

to 1 + 4aiici to
o O o 1g−1

⎞
⎟⎟⎟⎠ .

Let Pσ 〈V1iZV1i〉 =
(
W1 W2
tW2 W3

)
(W1 ∈ S1). Then

lim
ImZ→∞W1 = aii

ci
.

M0 =
(

1 − 4aiici 4a2
ii

−4c2
i 1 + 4aiici

)
fixes

aii

ci
. Hence we have

lim
ImZ→∞ j (P

σMσPσ
−1
, P σ 〈V1iZV1i〉) = 1 − i√

2
.

On the other hand from Lemma 1.9 exhibited just after this proof we have

λ(PσMσPσ
−1
) = 1√

2ci

2c2
i −1∑
x=0

e

(
(1 + 4aiici )x2

4c2
i

)
= 1 + i√

2
.

Therefore it follows that

lim
ImZ→∞ J (P

σMσPσ
−1
, P σ 〈V1iZV1i〉) = 1 .
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Next we prove the case when S = 4Eij + 4Eji (i �= j). Let σ = (1i)(2j) and

V σ =
(
V1iV2j O

O V1iV2j

)
. As we showed before, we have

lim
ImZ→∞ J (PMP

−1, P 〈Z〉) = lim
ImZ→∞ J (P

σMσPσ−1, P σ 〈V1iV2jZ V2jV1i〉) ,

where Pσ = V σPV σ =
(
Aσ Bσ

Cσ Dσ

)
and Mσ = V σMV σ =

(
1g 4E12 + 4E21

O 1g

)
.

Then

PσMσPσ
−1 =

(
1g − 4Aσ (E12 + E21)

tCσ 4Aσ(E12 + E21)
tAσ

−4Cσ(E12 + E21)
tCσ 1g + 4Cσ(E12 + E21)

tAσ

)
.

If i > m or j > m, then the assertion is trivial. So we assume that i, j ≤ m. Then

−4Cσ(E12 + E21)
tCσ =

⎛
⎜⎝

0 −4cicj to
−4cicj 0 to

o o O

⎞
⎟⎠ ,

1g + 4Cσ (E12 + E21)
tAσ =

⎛
⎜⎝

1 + 4aij ci 4ajjci ∗
4aiicj 1 + 4ajicj ∗

o o 1g−2

⎞
⎟⎠ ,

1g − 4Aσ(E12 + E21)
tCσ =

⎛
⎜⎝

1 − 4aij ci −4aiicj to
−4ajjci 1 − 4ajicj to

∗ ∗ 1g−2

⎞
⎟⎠ ,

4Aσ(E12 + E21)
tAσ =

⎛
⎜⎝

8aiiaij 4aiiajj + 4aij aji ∗
4aiiajj + 4aij aji 8ajjaji ∗

∗ ∗ ∗

⎞
⎟⎠ .

Since Aσ tCσ = Cσ tAσ , we have aij ci = ajicj . Hence PσMσPσ
−1 is represented as

M1M
′M2 whereM2 = 12g and

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 4aij ci −4aiicj
to 8aiiaij 4aiiajj + 4aij aji

to
−4ajjci 1 − 4ajicj to 4aiiajj + 4aij aji 8ajjaji to

o o 1g−2 o o O

0 −4cicj to 1 + 4aij ci 4ajjci to
−4cicj 0 to 4aiicj 1 + 4ajicj to

o o O o o 1g−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Pσ 〈V1iV2jZ V2jV1i〉 =
(
W1 W2
tW2 W3

)
(W1 ∈ S2). Then

lim
ImZ→∞W1 = 1

cicj

(
aiicj aij ci

ajicj ajjci

)
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which is fixed by

M0 =

⎛
⎜⎜⎜⎝

1 − 4aij ci −4aiicj 8aiiaij 4aiiajj + 4aij aji
−4ajjci 1 − 4ajicj 4aiiajj + 4aij aji 8ajjaji

0 −4cicj 1 + 4aij ci 4ajjci
−4cicj 0 4aiicj 1 + 4ajicj

⎞
⎟⎟⎟⎠ .

Hence we have

lim
ImZ→∞ j (P

σMσPσ
−1
, P σ 〈V1iV2jZ V2jV1i〉) = 1 .

On the other hand from Lemma 1.9 we have

λ(PσMσPσ
−1
) = 1

2cicj

2cicj−1∑
x, y=0

e

(
4aiicj x2 + 2(1 + 4aij ci)xy + 4ajjciy2

4cicj

)
= 1 .

Therefore it follows that

lim
ImZ→∞ J (P

σMσPσ−1, P σ 〈V1iV2jZ V2jV1i〉) = 1 .

Now the proof of Theorem 1.8 was completed. �

LEMMA 1.9. (1) If (ci, aii) = (1, 0), (2, 0) or (2, 1), then

2c2
i −1∑
x=0

e

(
(1 + 4aiici)x2

4c2
i

)
= (1 + i)ci .

(2) If (ci, cj , aii , aij , aji, ajj ) = (1, 1, 0, 0, 0, 0), (1, 2, 0, 0, 0, 0), (1, 2, 0, 0, 0, 1),
(2, 2, 0, 0, 0, 0), (2, 2, 1, 0, 0, 0), (2, 2, 0, 0, 0, 1) or (2, 2, 1, 0, 0, 1), then

2cicj−1∑
x, y=0

e

(
4aiicj x2 + 2(1 + 4aij ci)xy + 4ajjciy2

4cicj

)
= 2cicj .

Proof. Directly proved by computation. �

REMARK 1.10. There are some cases such that S is not divisible by 4, PMP−1 ∈
Γ

g
0 (4) and lim ImZ→∞J (PMP−1, P 〈Z〉) = ia (a �≡ 0 (mod 4)) (cf. Theorem 3.9 (15)

Φ15c). Hence Hg is not extendable onto the Satake compactification Γ \Sg for general Γ .

Actually Hg is not extendable onto Γ g
0 (4)\Sg .

NOTATION 1.11. Let H g and Lg be as above. Then we denote by H̃g and L̃g the

pullbacks of H g and Lg by the natural morphism of X̃g (4N) to Xg (4N), respectively.

2. Classification of the fixed points (sets)

Let Γ be a subgroup of Γ g
0 (4) of finite index. If g ≥ 2, Γ contains Γg (4N) for some

N ([BLS], [Me]). In the following we assume that g = 2 and μ is Symj . The space of
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Siegel modular formsMj,k+1/2(Γ2(4N)) is canonically identified with the space

Γ (X̃2(4N),O(Symj (Ṽ )⊗ H̃
⊗(2k+1)
2 )) ,

which is the space of the global holomorphic sections of Symj (Ṽ )⊗H̃⊗(2k+1)
2 . The divisor

at infinity D := X̃2(4N) − X2(4N) is a divisor with simple normal crossings. The space
of cusp forms Sj,k+1/2(Γ2(4N)) is canonically identified with the space

Γ (X̃2(4N),O(Symj (Ṽ )⊗ H̃
⊗(2k+1)
2 −D)) .

Here O(Symj (Ṽ ) ⊗ H̃
⊗(2k+1)
2 −D) is the sheaf of germs of holomorphic sections which

vanish alongD and this is isomorphic to O(Symj (Ṽ )⊗ H̃
⊗(2k+1)
2 ⊗ [D]⊗(−1)) where [D]

is the holomorphic line bundle which is associated with D.
Let χ be a character of Γ whose kernel is a subgroup of Γ of finite index. We may

assume that the kernel of χ contains Γ2(4N). Let f ∈ Sj,k+1/2(Γ2(4N)) and M ∈ Γ . We
define an action of M on Sj,k+1/2(Γ2(4N)) as follows:

Mf (M 〈Z〉) = J (M,Z)2k+1 χ(M) Symj (CZ +D) f (Z) .

Since Γ2(4N) acts trivially on Sj,k+1/2(Γ2(4N)), this action induces an action of the factor
group Γ/Γ2(4N) on Sj,k+1/2(Γ2(4N)) and Sj,k+1/2(Γ, χ) is identified with the invariant
subspace of Sj,k+1/2(Γ2(4N)). Thus we have

Sj,k+1/2(Γ, χ) = Sj,k+1/2(Γ2(4N))
Γ/Γ2(4N) .

Therefore the dimension of Sj,k+1/2(Γ, χ) is computed by applying the holomorphic Lef-
schetz fixed point formula ([AS]) and the vanishing theorem (Theorem 4.1) to the above
situation.

To use the holomorphic Lefschetz fixed point formula we have to classify the fixed
points (sets) of Γ2 and Γ2/Γ2(4N) acting on X̃2(4N). We classify (the irreducible com-
ponents of) the fixed points (sets) of Γ2 in the following sense. Let Φ and Φ ′ be the fixed
points (sets). Φ and Φ ′ are called equivalent if there is an element of Γ2 which maps Φ
biholomorphically to Φ ′. The fixed points in the quotient space X2(4N) were classified
in [G]. The fixed points in the divisor at infinity are classified easily. In total there are 25
kinds of fixed points (sets).

LEMMA 2.1. Among the 25 kinds of fixed points (sets) the following 10 fixed points

(sets) are not fixed by the elements of Γ2 which are conjugate to elements of Γ 2
0 (4), where

ρ = e(1/3), ω = e(1/5), η = (1 + 2
√−2)/3 and Z ∈ S1. To represent the fixed points

(sets) we use the same notationsΦ7, Φ8, · · · , Φ21 as in [T2].
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Φ7 :
{(
i 0
0 Z

)}
, Φ8 :

{(
ρ 0
0 Z

)}
, Φ9 :

(
i 0
0 i

)
, Φ11 :

(
ρ 0
0 i

)
,

Φ13 :
(

η (η − 1)/2
(η − 1)/2 η

)
, Φ14 :

(
ω ω + ω3

ω + ω3 −ω4

)
, Φ18 :

(
i 0
0 ∞

)
,

Φ19 :
(

i (i + 1)/2
(i + 1)/2 ∞

)
, Φ20 :

(
ρ 0
0 ∞

)
, Φ21 :

(
ρ (ρ + 2)/3

(ρ + 2)/3 ∞
)
.

Proof. If M belongs to Γ 2
0 (4), we have

M ≡
(
U V

O tU−1

)
(mod 4) ,

where U ∈ GL(2,Z). Since (detU)2 ≡ 1 and det(x12 − tU−1) ≡ det(x12 − U−1) ·
(detU)2 ≡ det(xU − 12) · detU (mod 4), the characteristic polynomial PM(x) of M is
equivalent to one of the following polynomials modulo 4:

(x2 + 1)2, (x2 + x + 1)2, (x2 + x − 1)(x2 − x − 1), (x2 + 2x + 1)2,

(x2 − 1)2, (x2 − x + 1)2, (x2 − x − 1)(x2 + x − 1), (x2 + 2x − 1)(x2 − 2x − 1) .

Therefore ifM ∈ Γ2 is conjugate to an element of Γ 2
0 (4), then the characteristic polynomial

PM(x) of M is equivalent to one of the following three polynomials modulo 4:

x4 + 2x2 + 1 , x4 + 2x3 + 3x2 + 2x + 1 , x4 + x2 + 1 .

From this fact we can show that the above points (sets) except Φ9 are not fixed by the ele-

ments of Γ2 which are conjugate to elements of Γ 2
0 (4). Since the characteristic polynomial

of P2 (cf. Proposition 2.5) which fixes Φ9 is (x2 + 1)2, the above argument is not valid
in this case. In this case we have to check more carefully and the assertion is proved in
Theorem 2.8 (9). �

REMARK 2.2. Although we represented Φ7 by

{(
i 0
0 Z

)}
⊂ S2 symbolically,

Φ7 means the image of

{(
i 0
0 Z

)}
to X̃2(4N). The same applies to Φ8 and also to the

following cases.

The remaining 15 fixed points (sets) have the contributions to the dimension formula.

But since the automorphic factor J (M,Z) is defined with respect to Γ 2
0 (4), we have to

classify the remaining 15 fixed points (sets) with respect to Γ 2
0 (4). Let Φ be one of the

following 15 fixed points (sets):
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Φ1 :
{(

Z1 Z12
Z12 Z2

)}
, Φ2 :

{(
Z1 0
0 Z2

)}
, Φ3 :

{(
Z1 1/2
1/2 Z2

)}
,

Φ4 :
{(
Z 0
0 Z

)}
, Φ5 :

{(
Z 1/2

1/2 Z

)}
, Φ6 :

{(
Z Z/2
Z/2 Z

)}
,

Φ10 :
(
ρ 0
0 ρ

)
, Φ12 :

√−3

3

(
2 1
1 2

)
, Φ15 :

{(
Z W

W ∞
)}

,

Φ16 :
{(
Z 0
0 ∞

)}
, Φ17 :

{(
Z 1/2

1/2 ∞
)}

, Φ22 :
{(∞ W

W ∞
)}

,

Φ23 :
(∞ 0

0 ∞
)
, Φ24 :

(∞ 1/2
1/2 ∞

)
, Φ25 :

(∞ ∞
∞ ∞

)
,

where

(
Z1 Z12
Z12 Z2

)
∈ S2, Z, Z1, Z2 ∈ S1 and W ∈ C. Strictly speaking Φ17 should be

represented as{(
Z 1/2

1/2 ∞
)}⋃{( Z 2N + 1/2

2N + 1/2 ∞
)}

⋃{( Z 2NZ + 1/2
2NZ + 1/2 ∞

)}⋃{( Z 2N(Z + 1)+ 1/2
2N(Z + 1)+ 1/2 ∞

)}
.

This appears as a boundary of Φ3 and is a four fold cover of a one-dimensional cusp.

DEFINITION 2.3. Let us denote by Fix(M) the fixed points in X̃2(4N) ofM and let

C(Φ) = {M ∈ Γ2/Γ2(4N) | M 〈Z〉 = Z for any Z ∈ Φ} ,
Cp(Φ) = {M ∈ C(Φ) | Φ is an irreducible component of Fix(M)} ,

C(Φ,Γ2) = {M ∈ Γ2 | M 〈Z〉 = Z for any Z ∈ Φ} ,
Cp(Φ,Γ2) = {M ∈ C(Φ,Γ2) | Φ is an irreducible component of Fix(M)} ,
N(Φ,Γ2) = {M ∈ Γ2 | M maps Φ into Φ} .

We call Cp(Φ) and Cp(Φ,Γ2) the sets of proper elements in C(Φ) and in C(Φ,Γ2),

respectively.

What we have to do is to classify the double cosets in Γ 2
0 (4)\Γ2/N(Φ,Γ2). Since Γ2

is an infinite group, it is not an easy task to classify Γ 2
0 (4)\Γ2/N(Φ,Γ2). But since Γ 2

0 (4)
contains Γ2(4) which is a normal subgroup of Γ2, we can take the quotient by Γ2(4) and
reduce the problem to a task in the finite group Γ2/Γ2(4) � Sp (2,Z/4Z) and we can use
a computer. So first we classify Γ 2

0 (4)\Γ2 which consists of 120 cosets and next classify
these cosets with respect to the action of N(Φ,Γ2) from the right. We have to execute this
computation many times in the following.

Let P1, P2, · · · , Pn be the representatives of Γ 2
0 (4)\Γ2/N(Φ,Γ2). Next we have to

check Pi Cp(Φ,Γ2)P
−1
i ∩ Γ 2

0 (4) (i = 1, 2, · · · , n) is empty or not. Let
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Pi Φ = {Pi 〈Z〉 | Z ∈ Φ}.
The following assertion is trivial.

LEMMA 2.4. If Pi C
p(Φ,Γ2)P

−1
i ∩ Γ 2

0 (4) is empty, then Pi Φ is not fixed by the

elements of Γ 2
0 (4).

Before we classify the fixed points (sets), we classify the rational boundary compo-

nents of S2 with respect to Γ 2
0 (4) and determine the configuration of the cusps of the

Satake compactification Γ 2
0 (4)\S2 of Γ 2

0 (4)\S2. Let B1 be the one-dimensional bound-
ary component of S2 which is defined by ImZ2 = ∞. Let N(B1, Γ2) be the stabilizer in
Γ2 of B1. The elements of N(B1, Γ2) have the following form:⎛

⎜⎜⎝
∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎟⎠ .

The one-dimensional cusps of the Satake compactification correspond bijectively to the

double cosets in Γ 2
0 (4)\Γ2/N(B1, Γ2). Similarly as above we classify the double cosets

by a computer. We have

PROPOSITION 2.5. Γ 2
0 (4)\Γ2/N(B1, Γ2) consists of four double cosets. The rep-

resentatives are P1, P2, P3 and P4, where P1 = 14 and

P2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , P3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 2 0 1

⎞
⎟⎟⎠ , P4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

⎞
⎟⎟⎠ .

Let

M =

⎛
⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎟⎠ .

The submatrix

(
a b

c d

)
in M acts on the one-dimensional rational boundary component at

infinity and PiMP
−1
i (i = 1, 2, 3, 4) belongs to Γ 2

0 (4) if and only if(
a b

c d

)
,

(
a c

b d

)
,

(
a b

c d

)
,

(
a b

c d

)

belongs to Γ 1
0 (4), respectively. Hence each one-dimensional cusps of the Satake compact-

ification is biholomorphic to Γ 1
0 (4)\S1. Γ 1

0 (4)\S1 is a rational curve with three holes.
Let B0 be the zero-dimensional boundary component of S2 which is defined by

ImZ1 = ImZ2 = ∞. Let N(B0, Γ2) be the stabilizer in Γ2 of B0. The elements of
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N(B0, Γ2) have the following form:⎛
⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟⎟⎠ .

The zero-dimensional cusps of the Satake compactification correspond bijectively to the

double cosets in Γ 2
0 (4)\Γ2/N(B0, Γ2). We have

PROPOSITION 2.6. Γ 2
0 (4)\Γ2/N(B0, Γ2) consists of seven double cosets. The rep-

resentatives are P1, P2, · · · , P7, where

P5 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 0

⎞
⎟⎟⎠ , P6 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 2 0 1

−1 0 0 0

⎞
⎟⎟⎠ , P7 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
2 0 1 0
0 2 0 1

⎞
⎟⎟⎠ .

Let Ci be the one-dimensional cusp corresponding to the double coset

Γ 2
0 (4)PiN(B1, Γ2) (i = 1, 2, 3, 4), respectively and let Qi be the zero-dimensional cusp

corresponding to the double coset Γ 2
0 (4)PiN(B0, Γ2) (i = 1, 2, · · · , 7), respectively. Then

the cusps of the Satake compactification look like as follows.

�
�
�

�
�
�

�
�
�

�
��

�
�

�
�

�
�

�
�

�
�

��

�

� ��

� ��

Cusps of Γ 2
0 (4)\S2 :

C2C1 C4

C3
Q3 Q6 Q7

Q1 Q2 Q4

Q5

This is proved as follows. The cusps Q1, Q2, Q3 and Q4 are on C1, C2, C3 and C4,

respectively. Since

Γ 2
0 (4)P5N(B1, Γ2) = Γ 2

0 (4)P1N(B1, Γ2) ,

Γ 2
0 (4)P6N(B1, Γ2) = Γ 2

0 (4)P3N(B1, Γ2) ,

Γ 2
0 (4)P7N(B1, Γ2) = Γ 2

0 (4)P3N(B1, Γ2) ,

Q5, Q6 andQ7 are on C1, C3 and C3, respectively. Let P11 be as in Theorem 2.8. Since

Γ 2
0 (4)P5N(B0, Γ2) = Γ 2

0 (4)P11N(B0, Γ2) ,

Γ 2
0 (4)P11N(B1, Γ2) = Γ 2

0 (4)P4N(B1, Γ2) ,
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Q5 is also on C4. Similarly we can prove that Q5 and Q6 are also on C2, Q3 is also on C1

and Q7 is also on C4.

PROPOSITION 2.7. We have [Γ αg : Γ g
0 (4)] = 2g (g−1)/2. Especially [Γ α2 : Γ 2

0 (4)] =
2 and Γ 2

0 (4) is a normal subgroup of Γ α2 .

Proof. We have

αΓ αg α
−1 =

{(
A B

C D

)
∈ Γg

∣∣∣∣ B ≡ O (mod 2), diagonal elements of C tD are even

}
,

αΓ
g

0 (4)α
−1 =

{(
A B

C D

)
∈ Γg

∣∣∣∣ B ≡ C ≡ O (mod 2)

}
.

We map them into Sp(g ,F2). Namely,

αΓ αg α
−1/Γg (2) =

{(
A O

TA tA−1

) ∣∣∣∣ A ∈ GL(g ,F2),
t T = T ,

diagonal elements of T are 0

}
,

αΓ
g

0 (4)α
−1/Γg (2) =

{(
A O

O tA−1

) ∣∣∣∣ A ∈ GL(g ,F2)

}
.

Hence [αΓ αg α−1 : Γg (2)] = 2g (g−1)/2|GL(g ,F2)| and [αΓ g
0 (4)α

−1 : Γg (2)] =
|GL(g ,F2)|. Therefore [Γ αg : Γ g

0 (4)] = [αΓ αg α−1 : αΓ g
0 (4)α

−1] = 2g (g−1)/2. �

As a matter of fact we classify the fixed points (sets) with respect to Γ α2 instead of

Γ 2
0 (4) (cf. Remark 3.6). In the following theorem we represent the representatives with

respect to Γ 2
0 (4) as Φa, Φa′, Φb, Φc. These notations mean thatΦa andΦa′ are equivalent

with respect to Γ α2 and Φa, Φb and Φc are not equivalent with respect to Γ α2 .

THEOREM 2.8. Let

P8 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠ , P9 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 1 0

−1 2 0 1

⎞
⎟⎟⎠ , P10 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 0 1

⎞
⎟⎟⎠ ,

P11 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 2 1

−1 2 0 0

⎞
⎟⎟⎠ , P12 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 2 1 0
2 2 0 1

⎞
⎟⎟⎠ , P13 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 1 1

−1 1 0 0

⎞
⎟⎟⎠ ,

P14 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 2 1 1

−1 1 2 0

⎞
⎟⎟⎠ , P15 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 1 0
1 1 0 1

⎞
⎟⎟⎠ , P16 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 1 1

−1 1 1 0

⎞
⎟⎟⎠ ,



86 R. TSUSHIMA

P17 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
2 2 1 0
2 2 0 1

⎞
⎟⎟⎠ , P18 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 1 0
0 −1 0 0

⎞
⎟⎟⎠ , P19 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 1 0
0 −1 0 2

⎞
⎟⎟⎠ ,

P20 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 1 2
0 −1 2 0

⎞
⎟⎟⎠ , P21 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 1 2
0 −1 2 2

⎞
⎟⎟⎠ , P22 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠ ,

P23 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−1 2 1 0
2 −1 0 1

⎞
⎟⎟⎠ , P24 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
2 −1 1 0

−1 2 0 1

⎞
⎟⎟⎠ , P25 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 1 0

−1 −1 0 1

⎞
⎟⎟⎠ ,

P26 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
2 1 1 0
1 −1 0 1

⎞
⎟⎟⎠ , P27 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 −1 0
0 −1 0 0

⎞
⎟⎟⎠ , P28 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 −1 2
0 −1 2 0

⎞
⎟⎟⎠ ,

P29 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
2 1 1 0
1 2 0 1

⎞
⎟⎟⎠ , P30 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 2 1

−1 2 2 0

⎞
⎟⎟⎠ , P31 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 2 2 1

−1 2 2 0

⎞
⎟⎟⎠ ,

P32 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 2 1 1

−1 1 0 0

⎞
⎟⎟⎠ , P33 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 −1 1

−1 −1 0 0

⎞
⎟⎟⎠ , P34 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 2
0 −1 2 0

⎞
⎟⎟⎠ .

Then fixed points (sets) of Γ 2
0 (4) are classified as follows.

(1) Γ 2
0 (4)\Γ2/N(Φ1, Γ2) consists of one double coset. The representative is P1. Φ1a :=

P1Φ1 is the total space X̃2(4N).

(2) Γ 2
0 (4)\Γ2/N(Φ2, Γ2) consists of three double cosets. The representatives are P1, P4

and P8. Only Φ2a := P1Φ2 and Φ2a′ := P4Φ2 are fixed by elements of Γ 2
0 (4).

(3) Γ 2
0 (4)\Γ2/N(Φ3, Γ2) consists of five double cosets. The representatives are P1, P2,

P5, P6 and P7. OnlyΦ3a := P1Φ3, Φ3b := P5Φ3 andΦ3c := P7Φ3 are fixed by elements

of Γ 2
0 (4).

(4) Γ 2
0 (4)\Γ2/N(Φ4, Γ2) consists of eleven double cosets. The representatives are P1,

P3, P4, P5, P8, P9, P10, P11, P12, P13 and P14. Only Φ4a := P1Φ4 and Φ4a′ := P4Φ4

are fixed by elements of Γ 2
0 (4).
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(5) Γ 2
0 (4)\Γ2/N(Φ5, Γ2) consists of eight double cosets. The representatives are P1,

P2, P6, P7, P10, P13, P15 and P16. Only Φ5a := P1Φ5 and Φ5b := P7Φ5 are fixed by

elements of Γ 2
0 (4).

(6) Γ 2
0 (4)\Γ2/N(Φ6, Γ2) consists of six double cosets. The representatives are P1, P3,

P5, P10, P14 and P16. Only Φ6a := P1Φ6 is fixed by elements of Γ 2
0 (4).

(9) Φ9 is not fixed by the elements of Γ2 which are conjugate to elements of Γ 2
0 (4).

(10) Γ 2
0 (4)\Γ2/N(Φ10, Γ2) consists of ten double cosets. The representatives are P1,

P3, P4, P7, P8, P9, P12, P13, P14 and P17. Only Φ10a := P14Φ10 is fixed by elements of

Γ 2
0 (4).

(12) Γ 2
0 (4)\Γ2/N(Φ12, Γ2) consists of twenty four double cosets. The representatives

are P1, P3, P4, P7, P9, P10, P13, P14, P15, P18, P19, P20, P21, P22, P23, P24, P27, P28,

P29, P30, P31, P32 and P33. Only Φ12a := P24Φ12 and Φ12a′ := P29Φ12 are fixed by

elements of Γ 2
0 (4).

(15) Γ 2
0 (4)\Γ2/N(Φ15, Γ2) consists of four double cosets. The representatives are P1,

P2, P3 and P4. Let Φ15a := P1Φ15, Φ15a′ := P4Φ15, Φ15b := P2Φ15 and Φ15c :=
P3Φ15. All of them are fixed by elements of Γ 2

0 (4).

(16) Γ 2
0 (4)\Γ2/N(Φ16, Γ2) consists of seven double cosets. The representatives are P1,

P2, P3, P4, P8, P12 and P34. Only Φ16a := P1Φ16, Φ16a′ := P4Φ16, Φ16b := P2Φ16,

Φ16c := P3Φ16, Φ16d := P12Φ16 and Φ16e := P34Φ16 are fixed by elements of Γ 2
0 (4).

(17) Γ 2
0 (4)\Γ2/N(Φ17, Γ2) consists of ten double cosets. The representatives are P1,

P2, P3, P4, P5, P6, P7, P11, P13 and P14. Only Φ17a := P1Φ17, Φ17a′ := P4Φ17,

Φ17b := P3Φ17, Φ17c := P5Φ17, Φ17c′ := P11Φ17, Φ17d := P7Φ17 and Φ17e :=
P14Φ17 are fixed by elements of Γ 2

0 (4).

(22) Γ 2
0 (4)\Γ2/N(Φ22, Γ2) consists of twelve double cosets. The representatives are P1,

P2, P3, P4, P5, P6, P7, P11, P12, P13, P17 and P32. LetΦ22a := P1Φ22, Φ22a′ := P4Φ22,

Φ22b := P2Φ22, Φ22c := P7Φ22, Φ22c′ := P17Φ22, Φ22d := P13Φ22, Φ22e := P32Φ22,

Φ22f := P5Φ22, Φ22f ′ := P11Φ22, Φ22g := P6Φ22, Φ22h := P3Φ22 and Φ22h′ :=
P12Φ22. All of them are fixed by elements of Γ 2

0 (4).

(23) Γ 2
0 (4)\Γ2/N(Φ23, Γ2) consists of fifteen double cosets. The representatives are P1,

P2, P3, P4, P5, P6, P7, P8, P11, P12, P13, P17, P31, P32 and P34. Only Φ23a := P1Φ23,

Φ23a′ := P4Φ23, Φ23b := P2Φ23, Φ23b′ := P34Φ23, Φ23c := P3Φ23, Φ23c′ := P12Φ23,

Φ23d := P5Φ23, Φ23d ′ := P11Φ23, Φ23e := P6Φ23, Φ23e′ := P31Φ23, Φ23f := P7Φ23,

Φ23f ′ := P17Φ23, and Φ23g := P32Φ23 are fixed by elements of Γ 2
0 (4).

(24) Γ 2
0 (4)\Γ2/N(Φ24, Γ2) consists of thirteen double cosets. The representatives are

P1, P2, P3, P4, P5, P6, P7, P11, P12, P13, P17, P32 and P34. Only Φ24a := P1Φ24,

Φ24a′ := P4Φ24, Φ24b := P3Φ24, Φ24b′ := P12Φ24, Φ24c := P5Φ24, Φ24c′ := P11Φ24,

Φ24d := P7Φ24, Φ24d ′ := P17Φ24, and Φ24e := P32Φ24 are fixed by elements of Γ 2
0 (4).
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(25) Γ 2
0 (4)\Γ2/N(Φ25, Γ2) consists of eight double cosets. The representatives are P1,

P2, P3, P4, P5, P6, P7 and P11. Let Φ25a := P1Φ25, Φ25a′ := P4Φ25, Φ25b := P2Φ25,

Φ25c := P3Φ25, Φ25d := P5Φ25, Φ25d ′ := P11Φ25, Φ25e := P6Φ25 and Φ25f :=
P7Φ25. All of them are fixed by elements of Γ 2

0 (4).

Proof. We prove only (9). Other cases are similarly proved. Cp(Φ9, Γ2) has ten

elements. It consists of ±P2, ±P5, ±P−1
5 and other four elements. Other four ele-

ments are conjugate to ±P5 or ±P−1
5 . Since the characteristic polynomials of ±P5 and

±P−1
5 are x4 + 1, they are not conjugate to elements of Γ 2

0 (4) (cf. Proof of Lemma 2.1).

Γ 2
0 (4)\Γ2/N(Φ9, Γ2) consists of eighteen double cosets. The representatives are P1, P3,

P4, P7, P8, P9, P10, P12, P17, P18, P19, P20, P21, P22, P23, P24, P25 and P26. PiP2P
−1
i

(i = 1, 3, 4, 7, 8, 9, 10, 12, 17, · · · , 26) does not belong to Γ 2
0 (4). Hence Φ9 is not fixed

by the elements of Γ2 which are conjugate to elements of Γ 2
0 (4) (cf. Lemma 2.4). �

3. Detailed data

In this section we list the data which we use to compute the dimension formula. First
we recall the holomorphic Lefschetz fixed point formula. Let X be a compact complex
manifold and V a holomorphic vector bundle on X, and letG be a finite group of automor-
phisms of the pair (X, V ). For g ∈ G let Xg be the set of fixed points of g . Then, Xg is a
disjoint union of submanifolds of X. Let

Xg =
∑
α

Xg
α

be the irreducible decomposition of Xg , and let

Ng
α =
∑
θ

Ng
α (θ)

denote the normal bundle ofXg
α decomposed according to the eigenvalues eiθ of g . We put

Uθ (Ng
α (θ)) =

∏
β

(
1 − e−xβ−iθ

1 − e−iθ

)−1

,

where the Chern class of Ng
α (θ) is

c(Ng
α (θ)) =

∏
β

(1 + xβ) .

Let T (Xg
α ) be the Todd class of Xg

α . Let V |Xg
α be the restriction of V to Xg

α and
ch(V |Xg

α )(g ) the Chern character of V |Xg
α with g -action ([AS]). Put

τ (g ,Xg
α ) =

{
ch(V |Xg

α )(g ) ·∏θ Uθ (N
g
α (θ)) · T (Xg

α )

det(1 − g |(Ng
α )∗)

}
[Xg

α ]
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and

τ (g ) =
∑
α

τ (g ,Xg
α ) .

We have

THEOREM 3.1 ([AS]).∑
i≥0

(−1)i Tr (g |Hi(X,O(V ))) = τ (g ) .

Let Γ be a subgroup of Γ 2
0 (4) of finite index and χ a character of Γ whose kernel is

a subgroup of Γ of finite index. The kernel of χ contains Γ2(4N) for some N . In our case

X, V and G are X̃2(4N), Symj (Ṽ )⊗ H̃
⊗(2k+1)
2 ⊗ [D]⊗(−1) and Γ/Γ2(4N), respectively.

But in the following we assume that V is Symj (Ṽ ) ⊗ H̃⊗k
2 ⊗ [D]⊗(−1) for the sake of

simplicity. When we apply the data, we replace k with 2k + 1.
Applying the holomorphic Lefschetz theorem we have the dimension formula. We

state the general dimension formula (cf. [T5], Theorem 1.6). Let g ∈ Γ/Γ2(4N). We

denote the centralizer of g in Γ 2
0 (4)/Γ2(4N) and in Γ/Γ2(4N) by C(g , Γ 2

0 (4)/Γ2(4N))
and C(g , Γ /Γ2(4N)), respectively. Let

N(Φ,Γ 2
0 (4)/Γ2(4N)) = {M ∈ Γ 2

0 (4)/Γ2(4N) | M maps Φ into Φ} .
THEOREM 3.2. Under the assumption that the higher cohomology groups vanish,

the dimension of Sj,k+1/2(Γ, χ) is expressed as

∑
Φ

∑
P

∑
M

τ(PMP−1, PΦ)

|N(PΦ,Γ 2
0 (4)/Γ2(4N))|

(∑
g

|C(g , Γ 2
0 (4)/Γ2(4N))|

|C(g , Γ /Γ2(4N))| · χ(g )
)
.

Here Φ is over the 15 fixed points (sets) in §2, P is over the representatives of

Γ 2
0 (4)\Γ2/N(Φ,Γ2) and M is over Cp(Φ) ∩ P−1Γ 2

0 (4)P . Let Conj(Γ /Γ2(4N)) be the
set of the representatives of the conjugacy classes of Γ/Γ2(4N). Moreover g runs over

Conj(Γ /Γ2(4N)) such that g is conjugate to PMP−1 in Γ 2
0 (4)/Γ2(4N).

Let Φ be an irreducible component of fixed points sets and let M ∈ Cp(Φ). The
Chern character with M-action ch : W �→ ch(W)(M) is also a ring homomorphism of the
ring of the holomorphic vector bundles to the cohomology ring as in the case of the usual
Chern character. Hence we have

ch(V |Φ)(M) = ch(Symj (Ṽ )⊗ H̃⊗k
2 ⊗ [D]⊗(−1)|Φ)(M)

= ch(Symj (Ṽ )|Φ)(M)⊗ ch(H̃⊗k
2 |Φ)(M)⊗ ch([D]⊗(−1)|Φ)(M) .

Let Z ∈ Φ. Then by definition we have

ch(H̃⊗k
2 |Φ)(M) = J (M,Z)kch(H̃⊗k

2 |Φ) .
Let

ch0(V |Φ)(M) = ch(Symj (Ṽ )|Φ)(M)⊗ ch(H̃⊗k
2 |Φ)⊗ ch([D]⊗(−1)|Φ)(M)
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and let

τ0(M,Φ) =
{
ch0(V |Φ)(M) ·∏θ Uθ (NM(θ)) · T (Φ)

det(1 −M|(NM)∗)
}
[Φ] .

Then we have

ch(V |Φ)(M) = J (M,Z)kch0(V |Φ)(M)
and

τ (M,Φ) = J (M,Z)kτ0(M,Φ) .

Let L2 and L̃2 be as in Notation 1.11. We have H̃⊗2
2 � L̃2 and

ch(H̃2) = 1 + c1(H̃2)+ 1

2
c1(H̃2)

2 + 1

6
c1(H̃2)

3

= 1 + 1

2
c1(L̃2)+ 1

8
c1(L̃2)

2 + 1

48
c1(L̃2)

3 .

Since Symj (Ṽ ) and L̃2 correspond to the automorphy factors (which are defined with re-

spect to Γ2) Symj (CZ +D) and det(CZ +D), respectively and the divisorD is invariant
with respect to Γ2, the terms in τ0(M,Φ) are invariant with respect to Γ2. Namely, we have

PROPOSITION 3.3. Let M ∈ Cp(Φ,Γ2) and P ∈ Γ2. If M and PMP−1 belong to

Γ 2
0 (4), then

τ0(PMP
−1, P Φ) = τ0(M,Φ) .

Hence the only term in τ (M,Φ) which depends on Γ 2
0 (4) is J (M,Z). What we

have to do to get the dimension formula is to compute |N(P Φ,Γ 2
0 (4)/Γ2(4N))| and

τ (PMP−1, P Φ) for everyP ∈ Γ 2
0 (4)\Γ2/N(Φ,Γ2) andM∈Cp(Φ)∩P−1Γ 2

0 (4)P . From

the above observation it suffices to compute τ0(M,Φ), |N(P Φ,Γ 2
0 (4)/Γ2(4N))| and

J (PMP−1, P 〈Z〉) (Z ∈ Φ). We list τ0(M,Φ) in Theorem 3.4, |N(P Φ,Γ 2
0 (4)/Γ2(4N))|

in Theorem 3.8 and J (PMP−1, P 〈Z〉) (Z ∈ Φ) in Theorem 3.9, respectively.
In the following theorem we assume that j is even. Hence we replace j with 2j and

assume G is Γ 2
0 (4)/± Γ2(4N). The notations ϕ1, ϕ2, · · · , ϕ25(6, r, s, t) ∈ Γ2/± Γ2(4N)

are same as in [T2]. We do not show them explicitly here. If one does not know them, he can
obtain the dimension formula from the data in Theorem 3.4, Theorem 3.8 and Theorem 3.9.
The elements in Cp(Φ10) except ϕ10(i) (i = 1, 2, 4, 5) are not conjugate to the elements

in Γ 2
0 (4).

THEOREM 3.4. Let V be Sym2j (Ṽ ) ⊗ H̃⊗k
2 ⊗ [D]⊗(−1). Let ζ = e(1/4N) and

ρ = e(1/3). We have the following results. There p in
∏

is over the odd prime numbers
which divide N, while Trρ means the trace map Q(ρ) → Q.

(1) τ0(ϕ1,Φ1) = 233−1(2j + 1)(2(k − 4)(4j + k − 2)(2j + k − 3)N10

−30(2j + k− 3)N8 + 45N7)
∏
(1 −p−2)(1 −p−4)
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(2) τ0(ϕ2,Φ2) = 2−1((k − 4)(4j + k − 2)N6

−6(2j + k − 3)N5 + 36N4)
∏
(1 − p−2)2

(3) τ0(ϕ3,Φ3) = 22((k − 4)(4j + k − 2)N6

−3(2j + k − 3)N5 + 3N4)
∏
(1 − p−2)2

(4) τ0(ϕ4,Φ4) = 2−1(−1)j ((2j + k − 3)N3 − 3N2)
∏
(1 − p−2)

(5) τ0(ϕ5,Φ5) = 2−13(−1)j ((2j + k − 3)N3 − 2N2)
∏
(1 − p−2)

(6) τ0(ϕ6,Φ6) = Trρ(ρj (1 − ρ))((2j + 2k − 3)N3 − 9N2)

×
{

2−13−3∏(1 − p−2), if 3 � N

2−33−2∏(1 − p−2), if 3 | N
τ0(ϕ

−1
6 ,Φ6) = τ0(ϕ6,Φ6)

(10) τ0(ϕ10(1),Φ10) = 3−2(ρ)j (2ρ + 1)(2j + 1)

τ0(ϕ10(2),Φ10) = 3−2(ρ2)j (2ρ2 + 1)(2j + 1)

τ0(ϕ10(4),Φ10) = 3−1(ρ)j

τ0(ϕ10(5),Φ10) = 3−1(ρ2)j

(12) τ0(ϕ12,Φ12) = 2−13−1Trρ((ρ)j (−ρ2))

(15) τ0(ϕ15(r),Φ15) = 2−33−1(2j + 1)N3∏(1 − p−2)

×
(

9 − (2j + 2k − 3)N

(1 − ζ r)
+ (2j + 2k − 3)N − 6

(1 − ζ r)2
− 4

(1 − ζ r)3

)

(16) τ0(ϕ16(r),Φ16) = 2−53−1
(

12 − (2j + 2k − 3)N

(1 − ζ r)

)
N3∏(1 − p−2)

(17) τ0(ϕ17(r),Φ17) =
(

8 − (2j + 2k − 3)N

(1 − ζ r)
+ 4

(1 − ζ r)2

)
N3∏(1 − p−2)

(22) τ0(ϕ22(1, r, t),Φ22) = (2j + 1)

(ζ r − 1)(ζ t − 1)

(
2

(ζ r − 1)
+ 2

(ζ t − 1)
+ 3

)

τ0(ϕ22(3, r, t),Φ22) = 1

(ζ r+t − 1)

(
4

(ζ r+t − 1)
+ 3

)

(23) τ0(ϕ23(2, r, t),Φ23) = 2−1(−1)j (ζ r+t − 1)−1

τ0(ϕ23(4, r, t),Φ23) = 2−1(ζ r − 1)−1(ζ t − 1)−1

(24) τ0(ϕ24(2, r, t),Φ24) = 2−1(−1)j (ζ r+t − 1)−1

τ0(ϕ24(4, r, t),Φ24) = 2−1(ζ r − 1)−1(ζ t − 1)−1
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(25) τ0(ϕ25(1, r, s, t),Φ25) = (2j + 1)(ζ r+s − 1)−1(ζ s+t − 1)−1(ζ−s − 1)−1

τ0(ϕ25(2, r, s, t),Φ25) = 3−1Trρ(ρj (1 − ρ))(ζ s+r+t − 1)−1

τ0(ϕ25(3, r, s, t),Φ25) = 3−1Trρ(ρj (1 − ρ))(ζ s+r+t − 1)−1

τ0(ϕ25(4, r, s, t),Φ25) = (ζ r+2s+t − 1)−1(ζ−s − 1)−1

τ0(ϕ25(5, r, s, t),Φ25) = (ζ s+t − 1)−1(ζ r − 1)−1

τ0(ϕ25(6, r, s, t),Φ25) = (ζ r+s − 1)−1(ζ t − 1)−1

Proof. Due to [T5], Theorem 3.2 which is the result in the case of weight k and level

N . It suffices to remove det(CZ +D)k of τ (ϕ,Φ) in [T5], Theorem 3.2 and replace k and
N with k/2 and 4N, respectively. �

Let Γ α2 be as above. We have the following

PROPOSITION 3.5. If Γ α2 PN(Φ,Γ2) = Γ α2 P
′N(Φ,Γ2), then

|N(P Φ,Γ 2
0 (4)/Γ2(4N))| = |N(P ′Φ,Γ 2

0 (4)/Γ2(4N))| .
Proof. From the assumption we have elements γ ∈ Γ α2 and n ∈ N(Φ,Γ2) such that

P ′ = γPn. N(P Φ,Γ 2
0 (4)/Γ2(4N)) is isomorphic to (N(P Φ,Γ2) ∩ Γ 2

0 (4))/(N(P Φ,

Γ2)∩Γ2(4N)). Since Γ 2
0 (4) is a normal subgroup of Γ α2 and Γ2(4N) is a normal subgroup

of Γ2, we have

γ (N(P Φ,Γ2) ∩ Γ 2
0 (4)) γ

−1 = N(P ′Φ,Γ2) ∩ Γ 2
0 (4),

γ (N(P Φ,Γ2) ∩ Γ2(4N)) γ−1 = N(P ′Φ,Γ2) ∩ Γ2(4N).

The assertion is proved from these relations. �

Let

C(P Φ,Γ 2
0 (4)/Γ2(4N)) = {M ∈ Γ 2

0 (4)/Γ2(4N) | M 〈Z〉 = Z for any Z ∈ P Φ}
and let Cp(P Φ,Γ 2

0 (4)/Γ2(4N)) be the set of proper elements.

REMARK 3.6. Let P Φ, P ′Φ and γ be as in the above proposition. It is obvious

that Cp(P ′Φ,Γ 2
0 (4)/Γ2(4N)) = γ Cp(P Φ,Γ 2

0 (4)/Γ2(4N)) γ−1. Since the automorphy
factor J (M,Z) is defined with respect to Γ α2 , we have

J (γMγ−1, γ 〈Z〉) = J (M,Z)

for M ∈ Cp(P Φ,Γ 2
0 (4)/Γ2(4N)) and Z ∈ P Φ. From the above proposition and

this observation it follows that the contributions of P Φ and P ′Φ to the dimension of
S2j,k+1/2(Γ

2
0 (4)) are same.

Next we prove that the contributions of P Φ and P ′Φ are the same also in the case of

S2j,k+1/2(Γ
2

0 (4), ψ). It suffices to prove the following



Siegel Cusp Forms of Half Integral Weight and Degree Two 93

LEMMA 3.7. Let M =
(
A B

4C D

)
∈ Γ 2

0 (4) and γ ∈ Γ α2 . Put ψ̃(M) = ψ(detD).

Then ψ̃(M) = ψ̃(γMγ−1).

Proof. It suffices to prove that ψ̃ is extendable to a character of Γ α2 . Let P4 be

as in Proposition 2.5. Then Γ α2 = Γ 2
0 (4) ∪ Γ 2

0 (4) P4. Let M =
(
A B

4C D

)
, M ′ =

(
A′ B ′

4C′ D′
)

∈ Γ 2
0 (4) and F =

(
0 1
1 0

)
. Then

MP4 =
(
A+ 2BF B

4C + 2DF D

)
.

Put ψ̃(MP4) = ψ(detD). We have to prove that ψ̃(MM ′P4) = ψ̃(M)ψ̃(M ′P4),

ψ̃(MP4M
′) = ψ̃(MP4)ψ̃(M

′) and ψ̃(MP4M
′P4) = ψ̃(MP4)ψ̃(M

′P4) for any M, M ′ ∈
Γ 2

0 (4). The first case is trivial. We prove only the second case. The third case is sim-
ilarly proved. The lower right 2 × 2 matrix of MP4M

′ is (4C + 2DF)B ′ + DD′. Let

D =
(
d11 d12

d21 d22

)
, B ′ =

(
b′

11 b′
12

b′
21 b′

22

)
and D′ =

(
d ′

11 d ′
12

d ′
21 d ′

22

)
. Then

det((4C + 2DF)B ′ +DD′)− (detD)(detD′)

≡ 2(d11d22 + d12d21)(b
′
11d

′
12 + b′

21d
′
22 − b′

12d
′
11 − b′

22d
′
21) (mod 4) .

On the other hand we have

b′
11d

′
12 + b′

21d
′
22 = b′

12d
′
11 + b′

22d
′
21 ,

because it holds that tB ′D′ = tD′B ′. Hence it follows that

det((4C + 2DF)B ′ +DD′) ≡ (detD)(detD′) (mod 4) .

This proves the assertion. �

In the following theorem we list |N(P Φ,Γ 2
0 (4)/Γ2(4N))|. If P Φ and P ′Φ are not

equivalent with respect to Γ 2
0 (4) but equivalent with respect to Γ α2 , we list only one of

them and we mark the notations of the fixed points (sets) by ∗. We also list the order

of C(P Φ,Γ 2
0 (4)/Γ2(4N)). We list P Φ, |C(P Φ,Γ 2

0 (4)/Γ2(4N))| and |N(P Φ,Γ 2
0 (4)/

Γ2(4N))| in this order. Similarly as before p in
∏

is over the odd prime numbers which
divide N .

THEOREM 3.8. The orders of the isotropy groups and the stabilizer groups of the

fixed points (sets) of Γ 2
0 (4) are as follows.

Φ1a 2 2113N10∏(1 − p−2)(1 − p−4)(1)

Φ2a
∗ 4 27N6∏(1 − p−2)2(2)

Φ3a 4 210N6∏(1 − p−2)2(3)
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Φ3b 4 28N6∏(1 − p−2)2

Φ3c 4 2103N6∏(1 − p−2)2

Φ4a
∗ 8 25N3∏(1 − p−2)(4)

Φ5a 8 253N3∏(1 − p−2)(5)

Φ5b 8 253N3∏(1 − p−2)

Φ6a 12

{
253N3∏(1 − p−2), if 3 � N

2332N3∏(1 − p−2), if 3 | N(6)

Φ10a 12 12(10)

Φ12a
∗ 24 24(12)

Φ15a
∗ 8N 210N6∏(1 − p−2)(15)

Φ15b 2N 26N6∏(1 − p−2)

Φ15c 8N 29N6∏(1 − p−2)

Φ16a
∗ 16N 26N4∏(1 − p−2)(16)

Φ16b 4N 24N4∏(1 − p−2)

Φ16c 16N 26N4∏(1 − p−2)

Φ16d 16N 26N4∏(1 − p−2)

Φ16e 4N 24N4∏(1 − p−2)

Φ17a
∗ 16N 28N4∏(1 − p−2)(17)

Φ17b 16N 28N4∏(1 − p−2)

Φ17c
∗ 16N 27N4∏(1 − p−2)

Φ17d 16N 28N4∏(1 − p−2)

Φ17e 4N 25N4∏(1 − p−2)

Φ22a
∗ 26N2 29N3(22)

Φ22b 22N2 23N3

Φ22c
∗ 26N2 29N3

Φ22d 24N2 26N3
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Φ22e 23N2 26N3

Φ22f
∗ 23N2 26N3

Φ22g 23N2 25N3

Φ22h
∗ 25N2 28N3

Φ23a
∗ 27N2 27N2(23)

Φ23b
∗ 23N2 23N2

Φ23c
∗ 26N2 26N2

Φ23d
∗ 24N2 24N2

Φ23e
∗ 24N2 24N2

Φ23f
∗ 27N2 27N2

Φ23g 24N2 24N2

Φ24a
∗ 27N2 27N2(24)

Φ24b
∗ 26N2 26N2

Φ24c
∗ 24N2 24N2

Φ24d
∗ 27N2 27N2

Φ24e 24N2 24N2

Φ25a
∗ 283N3 283N3(25)

Φ25b 223N3 223N3

Φ25c 28N3 28N3

Φ25d
∗ 26N3 26N3

Φ25e 25N3 25N3

Φ25f 28N3 28N3

Proof. We prove only the cases of Φ3b = P5Φ3 and Φ3c = P7Φ3. Other cases

are proved easily. N(PΦ3, Γ
2

0 (4)/Γ2(4N)) is isomorphic to (N(PΦ3, Γ2) ∩ Γ 2
0 (4))/

(N(PΦ3, Γ2) ∩ Γ2(4N)). From [T2], Theorem 2.2 we have

[N(PΦ3,Γ2) : N(PΦ3,Γ2) ∩ Γ2(4N)] = [PN(Φ3,Γ2)P
−1 :PN(Φ3,Γ2)P

−1∩Γ2(4N)]
= [N(Φ3, Γ2) : N(Φ3, Γ2) ∩ Γ2(4N)]
= 2113N6∏(1 − p−2)2 .
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So it suffices to determine [N(PΦ3, Γ2) : N(PΦ3, Γ2) ∩ Γ 2
0 (4)]. Let ε, δ and γ be⎛

⎜⎜⎝
1 0 0 1/2
0 1 1/2 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 0 1/2 0
0 0 0 1/2

−2 0 0 0
0 −2 0 0

⎞
⎟⎟⎠ ,

respectively. Let

N1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
a1 0 b1/2 0

0 a2 0 b2/2

2c1 0 d1 0

0 2c2 0 d2

⎞
⎟⎟⎟⎠ ∈ Sp(2,Q)

∣∣∣∣
ai, bi, ci, di ∈ Z
ai ≡ d3−i (mod 2)
bi ≡ c3−i (mod 2)

(i = 1, 2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Then N(Φ3, Γ2) = εN1ε
−1 ∪ δεN1ε

−1 ([T2], Theorem 2.6). Let l be a natural number

and let N1(2l) be the subgroup of N1 consisting of the elements such that

(
ai bi
ci di

)
≡

(
1 0
0 1

)
(mod 2l) (i = 1, 2). N1(2l) is a normal subgroup of N1 which is isomorphic to

Γ1(2l)× Γ1(2l) and we have [N1 : N1(2)] = 6.
Let N2 be the subgroup ofN1 consisting of the elements such that c2 ≡ 0 (mod 4) and

b1 ≡ c2 (mod 8). Then

P5N(Φ3, Γ2)P
−1
5 ∩ Γ 2

0 (4) = P5(εN2ε
−1)P−1

5 ∪ P5(δεγN2ε
−1)P−1

5

and

[P5N(Φ3, Γ2)P
−1
5 : P5N(Φ3, Γ2)P

−1
5 ∩ Γ 2

0 (4)] = [N1 : N2] .
On the other hand

[N1 : N1(8)] = 6 · [N1(2) : N1(8)] = 6 · [Γ1(2) : Γ1(8)]2 = 3 · 213

and [N2 : N1(8)] = 210 because N2/N1(8) is isomorphic to a subgroup of SL(2,Z/8Z)×
SL(2,Z/8Z) of order 210. Hence we have [N(P5Φ3, Γ2) : N(P5Φ3, Γ2) ∩ Γ 2

0 (4)] = 24.
This proves the case of Φ3b.

Let N3 be the subgroup of N1 consisting of the elements such that a1 + c1 − d1 ≡
c1 + c2 ≡ 0 (mod 2). Then

P7N(Φ3, Γ2)P
−1
7 ∩ Γ 2

0 (4) = P7(εN3ε
−1)P−1

7 ∪ P7(δεN3ε
−1)P−1

7

and

[P7N(Φ3, Γ2)P
−1
7 : P7N(Φ3, Γ2)P

−1
7 ∩ Γ 2

0 (4)] = [N1 : N3].
Since [N3 : N1(2)] = 3, we have [N(P7Φ3, Γ2) : N(P7Φ3, Γ2)∩Γ 2

0 (4)] = 2. This proves
the case of Φ3c. �
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In the following theorem we list J (PϕP−1, P 〈Z〉) and ψ(detD), where ϕ is an ele-
ment of Cp(Φ,Γ2/Γ2(4N)) such that PϕP−1 ∈ Cp(P Φ,Γ 2

0 (4)/Γ2(4N)), Z ∈ Φ andD

is the lower right 2×2 matrix of PϕP−1. We list P Φ, ϕ, J (PϕP−1, P 〈Z〉) andψ(detD)

in this order. In the case where Φ is in the divisor at infinity, J (PϕP−1, P 〈Z〉) means the

limit of J (PϕP−1, P 〈Z〉) when Z tends to Φ.

THEOREM 3.9. The proper elements of the isotropy groups of the fixed points (sets)
of Γ 2

0 (4) and the values of the automorphy factor of weight 1/2 and the character ψ are
as follows. We assume that r + t ≡ 0 (mod 4) for the elements whose notations are marked
by ∗1) and assume that r − t ≡ 0 (mod 2) for the elements whose notations are marked by
∗2). The meaning of the mark ∗ of Φ is the same as in the above theorem.

Φ1a ϕ1 1 1(1)

Φ2a
∗ ϕ2 1 − 1(2)

Φ3a ϕ3 1 − 1(3)

Φ3b ϕ3 − 1 − 1

Φ3c ϕ3 1 − 1

Φ4a
∗ ϕ4 1 1(4)

Φ5a ϕ5 1 1(5)

Φ5b ϕ5 − 1 1

Φ6a ϕ6 1 1(6)

ϕ−1
6 1 1

Φ10a ϕ10(1) ρ2 1(10)

ϕ10(2) ρ 1

ϕ10(4) − ρ2 − 1

ϕ10(5) − ρ − 1

Φ12a
∗ ϕ12 − 1 − 1(12)

ϕ−1
12 − 1 − 1

Φ15a
∗ ϕ15(r) 1 1(15)

Φ15b ϕ15(4r) 1 1

Φ15c ϕ15(r) (i)r (−1)r

Φ16a
∗ ϕ16(r) 1 − 1(16)
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Φ16b ϕ16(4r) 1 − 1

Φ16c ϕ16(r) (i)r (−1)r+1

Φ16d ϕ16(r) (i)r (−1)r+1

Φ16e ϕ16(4r) 1 − 1

Φ17a
∗ ϕ17(r) 1 − 1(17)

Φ17b ϕ17(r) (i)r (−1)r+1

Φ17c
∗ ϕ17(r) 1 − 1

Φ17d ϕ17(r) − (i)r (−1)r+1

Φ17e ϕ17(4r) 1 − 1

Φ22a
∗ ϕ22(1, r, t) 1 1(22)

ϕ22(3, r, t) 1 − 1

Φ22b ϕ22(1, 4r, 4t) 1 1

ϕ22(3, 4r, 4t) 1 − 1

Φ22c
∗ ϕ22(1, r, t) (i)r+t (−1)r+t

ϕ22(3, r, t) (i)r+t (−1)r+t+1

Φ22d ϕ22(1, r, t)
∗1) 1 1

ϕ22(3, r, t)∗1) 1 − 1

Φ22e ϕ22(1, 2r, 2t)∗2) (−1)t 1

ϕ22(3, 2r, 2t)∗2) (−1)t − 1

Φ22f
∗ ϕ22(1, 4r, t) 1 1

Φ22g ϕ22(1, 4r, t) (i)t (−1)t

Φ22h
∗ ϕ22(1, r, t) (i)t (−1)t

Φ23a
∗ ϕ23(2, r, t) 1 1(23)

ϕ23(4, r, t) 1 − 1

Φ23b
∗ ϕ23(2, 4r, 4t) 1 1

ϕ23(4, 4r, 4t) 1 − 1

Φ23c
∗ ϕ23(4, r, t) (i)t (−1)t+1

Φ23d
∗ ϕ23(4, 4r, t) 1 − 1

Φ23e
∗ ϕ23(4, 4r, t) (i)t (−1)t+1
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Φ23f
∗ ϕ23(2, r, t) (i)r+t (−1)r+t

ϕ23(4, r, t) (i)r+t (−1)r+t+1

Φ23g ϕ23(2, 2r + 1, 2t + 1)∗2) i(−1)t − 1

ϕ23(4, 2r + 1, 2t + 1)∗2) i(−1)t 1

Φ24a
∗ ϕ24(2, r, t) 1 1(24)

ϕ24(4, r, t) 1 − 1

Φ24b
∗ ϕ24(4, r, t) (i)t (−1)t+1

Φ24c
∗ ϕ24(4, 4r, t) 1 − 1

Φ24d
∗ ϕ24(2, r, t) − (i)r+t (−1)r+t

ϕ24(4, r, t) − (i)r+t (−1)r+t+1

Φ24e ϕ24(2, 2r, 2t)∗2) (−1)t 1

ϕ24(4, 2r, 2t)∗2) (−1)t − 1

Φ25a
∗ ϕ25(1, r, s, t) 1 1(25)

ϕ25(2, r, s, t) 1 1

ϕ25(3, r, s, t) 1 1

ϕ25(4, r, s, t) 1 − 1

ϕ25(5, r, s, t) 1 − 1

ϕ25(6, r, s, t) 1 − 1

Φ25b ϕ25(1, 4r, 4s, 4t) 1 1

ϕ25(2, 4r, 4s, 4t) 1 1

ϕ25(3, 4r, 4s, 4t) 1 1

ϕ25(4, 4r, 4s, 4t) 1 − 1

ϕ25(5, 4r, 4s, 4t) 1 − 1

ϕ25(6, 4r, 4s, 4t) 1 − 1

Φ25c ϕ25(1, r, s, t) (i)t (−1)t

ϕ25(6, r, s, t) (i)t (−1)t+1

Φ25d
∗ ϕ25(1, 4r, s, t) 1 1

ϕ25(5, 4r, s, t) 1 − 1

Φ25e ϕ25(1, 4r, 2s, t) (i)t (−1)t

ϕ25(5, 4r, 2s, t) (i)t (−1)t+1
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Φ25f ϕ25(1, r, s, t) (i)r+2s+t (−1)r+t

ϕ25(4, r, s, t) (i)r+2s+t (−1)r+t+1

Proof. Due to the transformation formula of Θ(Z) (Theorem 1.4). When Φ is in the
divisor at infinity, ϕ includes parameters (for example “r” of ϕ15(r)). In such cases we have

a problem to evaluate the Gaussian sum λ(PϕP−1). But we skip this problem as follows.
Since ϕ15(r) = ϕ15(1)r , we have

lim
Z→Φ15

J (Pϕ15(r)P
−1, P 〈Z〉) = lim

Z→Φ15
J (Pϕ15(1)P

−1, P 〈Z〉)r .

Hence it suffices to compute J (PϕP−1, P 〈Z〉) for the generators of C(PΦ,Γ 2
0 (4)/

Γ2(4N)). �

4. The dimension formula

In this section we present the explicit dimension formulas and also prove

M2j,k+1/2(Γ
2

0 (4), ψ) = S2j,k+1/2(Γ
2

0 (4), ψ). We can prove the following vanishing the-
orem similarly as in [T5], Theorem 6.1 by using the vanishing theorem of Kawamata-
Viehweg ([Ka], [V]).

THEOREM 4.1. If j = 0 and k ≥ 3 or if j ≥ 1 and k ≥ 4, then

Hi(X̃2(4N),O(Symj (Ṽ )⊗ H̃
⊗(2k+1)
2 ⊗ [D]⊗(−1))) � {0}

for i > 0.

By using this theorem and the theorem of Riemann-Roch-Hirzebruch we have

THEOREM 4.2. If j = 0 and k ≥ 3 or if j ≥ 1 and k ≥ 4, then

Sj,k+1/2(Γ2(4N)) = 233−1(j + 1)(2(2k − 3)(2j + 2k − 1)(j + 2k − 2)N10

− 30(j + 2k − 2)N8 + 45N7)×
∏
(1 − p−2)(1 − p−4) ,

where p is over odd prime numbers which divide N .

Proof. It suffices to replace k and N in the formula of the dimension of Sj,k(Γ2(N))

([T3]) with k + 1/2 and 4N, respectively. �

To evaluate the sums which appear in the computation of Theorem 4.4 and Theorem
4.5 we use the following

LEMMA 4.3. Let ζ = e(1/4N). Then we have
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4N−1∑
r=1

(i)kr

(1 − ζ r)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 − 4N

2
, if k ≡ 0 (mod 4) ,

−1 + 2N

2
, if k ≡ 1 (mod 4) ,

−1

2
, if k ≡ 2 (mod 4) ,

−1 − 2N

2
, if k ≡ 3 (mod 4) .

(1)

4N−1∑
r=1

(i)kr

(1 − ζ r)2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−16N2 + 24N − 5

12
, if k ≡ 0 (mod 4) ,

2N2 − 12N − 5

12
, if k ≡ 1 (mod 4) ,

8N2 − 5

12
, if k ≡ 2 (mod 4) ,

2N2 + 12N − 5

12
, if k ≡ 3 (mod 4) .

(2)

4N−1∑
r=1

(i)kr

(1 − ζ r)3
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−16N2 + 16N − 3

8
, if k ≡ 0 (mod 4) ,

4N3 + 2N2 − 8N − 3

8
, if k ≡ 1 (mod 4) ,

8N2 − 3

8
, if k ≡ 2 (mod 4) ,

−4N3 + 2N2 + 8N − 3

8
, if k ≡ 3 (mod 4) .

(3)

The dimension of S2j,k+1/2(Γ
2

0 (4)) is calculated as

∑
Φ

∑
P

∑
M

J(PMP−1, P 〈Z〉)2k+1 τ0(M,Φ)

|N(PΦ,Γ 2
0 (4)/Γ2(4N))|

,

where Φ is over the 15 fixed points (sets) in §2, P is over the representatives of

Γ 2
0 (4)\Γ2/N(Φ,Γ2), M is over Cp(Φ) ∩ P−1Γ 2

0 (4)P and Z ∈ Φ. We have

THEOREM 4.4. If j = 0 and k ≥ 3 or if j ≥ 1 and k ≥ 4, the dimension of
S2j,k+1/2(Γ

2
0 (4)) is given by the following Mathematica function:

SiegelHalf[j_,k_]:=Block[{a,ljk},

mod[x_,y_]:=Mod[x,y]+1;

a=(2*j+1)*(4*j+2*k-1)*(j+k-1)*(2*k-3)/2^5/3^2;
a=a+(2*j+1)*If[Mod[k,2]==0,19-22*k-22*j,25-22*k-22*j]/2^6/3;
a=a+3*(2*j+1)*If[Mod[k,2]==0,-1,1]/2^6;
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(* contribution of ϕ1 *)
(* contribution of ϕ15(r) *)
(* contribution of ϕ22(1, r, t) *)
(* contribution of ϕ25(1, r, s, t) *)

a=a+(4*j+2*k-1)*(2*k-3)/2^6;
a=a+If[Mod[k,2]==0,17-12*k-12*j,49-20*k-20*j]/2^6;
(* contribution of ϕ2 *)
(* contribution of ϕ16(r) *)
(* contribution of ϕ23(4, r, t) *)

a=a+7*(4*j+2*k-1)*(2*k-3)/2^6/3;
a=a+(35-48*k-48*j)/2^5/3;
a=a-13/2^4/3;
a=a+If[Mod[k,2]==0,7,15]/2^6;
a=a+If[Mod[k,2]==0,2,3]/2^2;
(* contribution of ϕ3 *)
(* contribution of ϕ17(r) *)
(* contribution of ϕ22(3, r, t) *)
(* contribution of ϕ24(4, r, t) *)
(* contribution of ϕ25(i, r, s, t) (i = 4, 5, 6) *)

ljk={1,-1};
a=a+(j+k-1)*ljk[[mod[j,2]]]/2^3;
a=a-If[Mod[k,2]==0,3,5]*ljk[[mod[j,2]]]/2^4;
(* contribution of ϕ4 *)
(* contribution of ϕ23(2, r, t) *)

a=a-If[Mod[k,2]==0,3,1]*ljk[[mod[j,2]]]/2^4;
(* contribution of ϕ5 *)
(* contribution of ϕ24(2, r, t) *)

ljk={1,0,-1};
a=a+2*ljk[[mod[j,3]]]*(j+k-1)/3^2;
a=a-ljk[[mod[j,3]]]/2;
(* contribution of ϕ6 *)
(* contribution of ϕ25(2, r, s, t) and ϕ25(3, r, s, t) *)

ljk=(2*j+1)*{{1,0,-1},{0,-1,1},{-1,1,0}};
a=a+ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of ϕ10(1) and ϕ10(2) *)

ljk={{1,-2,1},{-2,1,1},{1,1,-2}};
a=a+ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of ϕ10(4) and ϕ10(5) *)

ljk={1,-2,1};
a=a-ljk[[mod[j,3]]]/2/3^2;
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(* contribution of ϕ12 *)

Return[a];

]

The dimension of S2j,k+1/2(Γ
2

0 (4), ψ) is calculated as

∑
Φ

∑
P

∑
M

J(PMP−1, P 〈Z〉)2k+1ψ(detD)
τ0(M,Φ)

|N(PΦ,Γ 2
0 (4)/Γ2(4N))|

,

where D is the lower right 2 × 2 matrix of PMP−1. We have

THEOREM 4.5. If j = 0 and k ≥ 3 or if j ≥ 1 and k ≥ 4, then the dimension of

S2j,k+1/2(Γ
2

0 (4), ψ) is given by the following Mathematica function:

SiegelHalfpsi[j_,k_]:=Block[{a,ljk},

mod[x_,y_]:=Mod[x,y]+1;

a=(2*j+1)*(4*j+2*k-1)*(j+k-1)*(2*k-3)/2^5/3^2;
a=a+(2*j+1)*If[Mod[k,2]==0,25-22*k-22*j,19-22*k-22*j]/2^6/3;
a=a-3*(2*j+1)*If[Mod[k,2]==0,-1,1]/2^6;
(* contribution of ϕ1 *)
(* contribution of ϕ15(r) *)
(* contribution of ϕ22(1, r, t) *)
(* contribution of ϕ25(1, r, s, t) *)

a=a-(4*j+2*k-1)*(2*k-3)/2^6;
a=a-If[Mod[k,2]==0,49-20*k-20*j,17-12*k-12*j]/2^6;
(* contribution of ϕ2 *)
(* contribution of ϕ16(r) *)
(* contribution of ϕ23(4, r, t) *)

a=a-7*(4*j+2*k-1)*(2*k-3)/2^6/3;
a=a-(35-48*k-48*j)/2^5/3;
a=a+13/2^4/3;
a=a-If[Mod[k,2]==0,15,7]/2^6;
a=a-If[Mod[k,2]==0,3,2]/2^2;
(* contribution of ϕ3 *)
(* contribution of ϕ17(r) *)
(* contribution of ϕ22(3, r, t) *)
(* contribution of ϕ24(4, r, t) *)
(* contribution of ϕ25(i, r, s, t) (i = 4, 5, 6) *)

ljk={1,-1};
a=a+(j+k-1)*ljk[[mod[j,2]]]/2^3;
a=a-If[Mod[k,2]==0,5,3]*ljk[[mod[j,2]]]/2^4;
(* contribution of ϕ4 *)
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(* contribution of ϕ23(2, r, t) *)

a=a-If[Mod[k,2]==0,1,3]*ljk[[mod[j,2]]]/2^4;
(* contribution of ϕ5 *)
(* contribution of ϕ24(2, r, t) *)

ljk={1,0,-1};
a=a+2*ljk[[mod[j,3]]]*(j+k-1)/3^2;
a=a-ljk[[mod[j,3]]]/2;
(* contribution of ϕ6 *)
(* contribution of ϕ25(2, r, s, t) and ϕ25(3, r, s, t) *)

ljk=(2*j+1)*{{1,0,-1},{0,-1,1},{-1,1,0}};
a=a+ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of ϕ10(1) and ϕ10(2) *)

ljk={{1,-2,1},{-2,1,1},{1,1,-2}};
a=a-ljk[[mod[j,3],mod[k,3]]]/2/3^2;
(* contribution of ϕ10(4) and ϕ10(5) *)

ljk={1,-2,1};
a=a+ljk[[mod[j,3]]]/2/3^2;
(* contribution of ϕ12 *)

Return[a];

]

Now we prove

THEOREM 4.6.

M2j,k+1/2(Γ
2

0 (4), ψ) = S2j,k+1/2(Γ
2

0 (4), ψ) .

Proof. Let Z =
(
Z1 0

0 Z2

)
and f ∈ M2j,k+1/2(Γ

2
0 (4), ψ). We have to prove that

lim
ImZ2→∞ f | [ξ ]2j,k+1/2(Z) = 0(∗)

for any ξ ∈ p−1(Γ2). Let Pi (i = 1, 2, 3, 4) be the matrices which correspond to the
representatives of one-dimensional cusps as before and let us recall that

ϕ2 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

To prove the assertion, it suffices to prove (∗) for ξ = (P, φ(Z)) such that P is P1, P2, P3

or P4. Let Z be as above. From ϕ2 〈Z〉 = Z, we have

P 〈Z〉 = Pϕ2 〈Z〉 = (Pϕ2P
−1)P 〈Z〉 .
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for any P . Let i = 1, 2 or 3. Then Piϕ2P
−1
i = ϕ2. Hence we have

f (Pi 〈Z〉) = f ((Piϕ2P
−1
i )Pi 〈Z〉)

= J (ϕ2, Pi 〈Z〉)2k+1ψ(−1) f (Pi 〈Z〉)
= −f (Pi 〈Z〉).

Therefore f (Pi 〈Z〉) = 0. Next let i = 4. Then we have

P4ϕ2P
−1
4 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 −4 1 0
4 0 0 −1

⎞
⎟⎟⎠

and J (P4ϕ2P
−1
4 , P4 〈Z〉) is identically equal to 1. Therefore similarly as above we have

f (P4 〈Z〉) = 0. �

REMARK 4.7. Note that f (Pi 〈Z〉) (i = 1, 2, 3, 4) is identically zero for Z =(
Z1 0
0 Z2

)
. So it may be natural to ask whether for any P ∈ Γ2, f (P 〈Z〉) is identi-

cally zero or not. But this is not true in general. Let us recall that Φ2 is

{(
Z1 0
0 Z2

)}
and

let P8 be as before. Then P1, P4 and P8 are the representatives of Γ 2
0 (4)\Γ2/N(Φ2, Γ2).

P8ϕ2P
−1
8 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 −2 1 0
2 0 0 −1

⎞
⎟⎟⎠

does not belong to Γ 2
0 (4) but belongs to Γ α2 and J (P8ϕ2P

−1
8 , P8 〈Z〉) is identically equal

to 1. Therefore if f (Z) belongs to M2j,k+1/2(Γ
α

2 , ψ), it holds that f (P 〈Z〉) = 0 for any

P ∈ Γ2 and Z =
(
Z1 0
0 Z2

)
. (ψ is extendable to a character of Γ α2 (cf. Lemma 3.7).)

5. The case j = 0

In this section we prove
⊕∞

k=0Mk+1/2(Γ
2

0 (4)) and
⊕∞

k=0Mk+1/2(Γ
2

0 (4), ψ) are mod-
ules of rank one over the graded ring of the modular forms of integral weights.

PROPOSITION 5.1.
∞∑
k=0

dim Sk+1/2(Γ
2

0 (4)) t
k =

∞∑
k=0

SiegelHalf[0,k] tk + t2

= 2t5 + 2t6 − t7 − 2t8 − t9 + t10

(1 − t)(1 − t2)2(1 − t3)
.
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Proof. If f (Z) ∈ Sk+1/2(Γ
2

0 (4)), then f (Z)Θ(Z)2 ∈ Sk+3/2(Γ
2

0 (4)). Since

dim S7/2(Γ
2

0 (4)) is equal to SiegelHalf[0,3] = 0, we have S5/2(Γ
2

0 (4)) �
S3/2(Γ

2
0 (4)) � S1/2(Γ

2
0 (4)) � {0}. But since SiegelHalf[0,2] = −1, SiegelHalf

[0,1] = 0 and SiegelHalf[0,0] = 0, we have the equality of the first line. �

Now we have

THEOREM 5.2.
∞∑
k=0

dimMk+1/2(Γ
2

0 (4)) t
k

=
∞∑
k=0

dim Sk+1/2(Γ
2

0 (4)) t
k + 3

∞∑
k=0

dim Sk+1/2(Γ
1

0 (4)) t
k + 4

∞∑
k=0

tk − (3 + 3t + t2)

= 2t5 + 2t6 − t7 − 2t8 − t9 + t10

(1 − t)(1 − t2)2(1 − t3)
+ 3(t4 + t5)

(1 − t2)2
+ 4

(1 − t)
− (3 + 3t + t2)

= 1

(1 − t)(1 − t2)2(1 − t3)
.

Proof. Recall that

ϕ15(r) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 r

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

and put Z =
(
Z1 0

0 Z2

)
. From Theorem 3.9 (15) Φ15c we have

lim
ImZ2→∞ J (P3ϕ15(r)P

−1
3 , P3 〈Z〉) = (i)r ,

where i = √−1. Hence if f ∈ Mk+1/2(Γ
2

0 (4)) and r is an odd integer, then we have

lim
ImZ2→∞ f (P3 〈Z〉) = lim

ImZ2→∞ f (P3〈ϕ15(r) 〈Z〉)

= lim
ImZ2→∞ f ((P3ϕ15(r)P

−1
3 )P3 〈Z〉)

= lim
ImZ2→∞ J (P3ϕ15(r)P

−1
3 , P3 〈Z〉)2k+1f (P3 〈Z〉)

= (i)r(2k+1) lim
ImZ2→∞ f (P3 〈Z〉) .

Therefore lim ImZ2→∞f (P3 〈Z〉) and lim ImZ2→∞f | [ξ ]k+1/2(Z) are identically 0 where
ξ = (P3, φ(Z)). Namely, the Φ-operators to the one-dimensional cusp C3 and to the zero-
dimensional cuspsQ3, Q6 and Q7 are 0-maps.

Next we prove the surjectivity of the Φ-operators to other cusps. In general the Eisen-
stein series of Klingen type of degree g attached to a cusp form of degree r and weight k
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converges if k > g + r + 1 ([Kl]). We define Eisenstein series of half integral weight in the
following. In case k is a half integer, their convergence is also proved similarly as in the
case of integral weight.

Let N(B0, Γ2) and N(B1, Γ2) be as in §2 and let Pi (i = 1, 2, 4, 5) be as in §2. Let
ξi = (Pi, φi(Z)) ∈ G̃2 (i = 1, 2, 4, 5). We assume that ξ1 = (14, 1) and ξ4 = ι(P4) =
(P4, J (P4, Z)) since P4 ∈ Γ α2 . First we prove the case of zero-dimensional cusps. Let 1
be the function on S2 which is identically 1. Let

Ei(Z) =
∑
γ

1 | [ξ−1
i ι(γ )]k+1/2(Z) ,

where γ is over (PiN(B0, Γ2)P
−1
i ∩ Γ 2

0 (4))\Γ 2
0 (4). Let M ∈ N(B0, Γ2) and assume that

PiMP
−1
i ∈ Γ 2

0 (4). We prove ξi ι(M) ξ
−1
i = ι(PiMP

−1
i ) (i = 1, 2, 4, 5). Then

1 | [ξ−1
i ι(PiMP

−1
i γ )]k+1/2(Z) = (1 | [ι(M)]k+1/2) [ξ−1

i ι(γ )]k+1/2(Z)

= 1 | [ξ−1
i ι(γ )]k+1/2(Z) .

Therefore 1 | [ξ−1
i ι(γ )]k+1/2(Z) is independent of the choice of γ .

We prove our assertion. The case of i = 1 or i = 4 is trivial. Similarly as in the proof
of Theorem 1.8, we have

ι(PiMP
−1
i )(ξi ι(M) ξ

−1
i )−1 = ι(PiMP

−1
i ) ξi ι(M

−1) ξ−1
i = (14, t) ,

where

t = J (PiMP
−1
i , PiM

−1P−1
i 〈Z〉) φi(M−1P−1

i 〈Z〉) J (M−1, P−1
i 〈Z〉) φi(P−1

i 〈Z〉)−1

is a constant. We prove that t = 1. Let Z = PiM〈Z′〉. Since J (M−1, P−1
i 〈Z〉) = 1, t is

equal to

J (PiMP
−1
i , Pi〈Z′〉) φi(Z′) φi(M〈Z′〉)−1 .

Let

M1 =
(

12 S

O 12

)
, S ∈ M(2,Z), S = t S and M2 =

(
U O

O tU−1

)
, U ∈ GL(2,Z) .

Let S =
(
r s

s t

)
and U =

(
a b

c d

)
. Elements of N(B0, Γ2) have the form of M1M2.

Let i = 2. Then P2M1M2P
−1
2 belongs to Γ 2

0 (4) if and only if r, s and t are divisible

by 4. Since lim ImZ′→∞φ2(Z
′) φ2(M1〈Z′〉)−1 = 1 (cf. Proof of Theorem 1.8), the asser-

tion for M1 follows from Theorem 3.9 (25) Φ25b ϕ25(1, 4r, 4s, 4t). Since P2M2P
−1
2 ∈

N(B0, Γ2), we have J (P2M2P
−1
2 , P2 〈Z〉) = 1. On the other hand we have

φ2(Z
′)

φ2(M2〈Z′〉) =
√

det(−Z′)√
det(−UZ′ tU)

= 1 .
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(It suffices to check in the case Z is diagonal and U is over the generators of GL(2,Z).)
So the assertion forM2 was proved.

Let i = 5. P5M1M2P
−1
5 belongs to Γ 2

0 (4) if and only if r and b are divisible by 4.

Since lim ImZ′→∞φ5(Z
′) φ5(M1〈Z′〉)−1 = 1, the assertion for M1 is due to Theorem 3.9

(25) Φ25d
∗ ϕ25(1, 4r, s, t). Let

Γ̃ 1,0(4) =
{(
a b

c d

)
∈ GL(2,Z)

∣∣∣∣ b ≡ 0 (mod 4)

}
.

U1 =
(

1 4
0 1

)
, U2 =

(
1 0
1 1

)
and U3 =

(
1 0
0 −1

)
are the generators of Γ̃ 1,0(4)/(±12). It

suffices to prove the assertion for them. If U = U2 or U = U3, the assertion is trivial since

φ5(Z
′) = φ5(M2〈Z′〉) and P5M2P

−1
5 ∈ N(B0, Γ2). Let U = U1 and Z =

(
Z1 0

0 Z2

)
.

Then

φ5(Z)

φ5(M2 〈Z〉) =
√
Z1√

Z1 + 16Z2
.

We assume arg
√
Z1 is in (0, π/2). Since Z and UZ tU are connected by the path(

Z1 + t2Z2 tZ2

tZ2 Z2

)
(0 ≤ t ≤ 4)

which is on S2, arg
√
Z1 + 16Z2 is also in (0, π/2). On the other hand

P5M2P
−1
5 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −4 1 0

−4 0 0 1

⎞
⎟⎟⎠ .

From the transformation formula of Θ(Z) we have

J (P5M2P
−1
5 , P5 〈Z〉) =

√
Z1 + 16Z2

Z1
.

Its argument is in (−π/2, π/2) (cf. Remark 1.2). Hence the assrtion was proved.

If k ≥ 3, the series of Ei(Z) (i = 1, 2, 4, 5) converges and Ei(Z) ∈ Sk+1/2(Γ
2

0 (4)).
Similarly as in the case of integral weight we can prove that lim ImZ→∞Ei | [ξi]k+1/2(Z) =
1 and lim ImZ→∞Ei | [ξj ]k+1/2(Z) = 0 (i �= j). Hence Φ-operators to the zero-
dimensional cuspsQ1, Q2, Q4, Q5 are surjective if k ≥ 3.

Next we construct Eisenstein series of Klingen type and prove the case of one-dimen-
sional cusps. M ∈ N(B1, Γ2) has the following form.
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⎛
⎜⎜⎝
a 0 b an− bm

mu u nu ru

c 0 d cn− dm

0 0 0 u

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 n

m 1 n 0
0 0 1 −m
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 u 0 0
0 0 1 0
0 0 0 u

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 1 0 r

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

where M0 =
(
a b

c d

)
∈ Γ2, m, n, r ∈ Z and u = ±1. We denote the matrices of the right

hand side by M1, M2, M3, M4, respectively. Let Z =
(
Z1 Z12
Z12 Z2

)
. It is easily seen that

J (M,Z) = J (M0, Z1).

Let ξi (i = 1, 2, 4) be as before. Let f ∈ Sk+1/2(Γ
1

0 (4)). Since Sk+1/2(Γ
1

0 (4)) � {0}
(k ≤ 3), we can assume that k ≥ 4. LetM 〈Z〉1 be the upper-left entry of M 〈Z〉. We have
M 〈Z〉1 = M0〈Z1〉. We put f̃ (Z) = f (Z1). Then

f̃ | [ι(M)]k+1/2(Z) = f̃ (M 〈Z〉)J (M,Z)−2k−1 = f (M 〈Z〉1)J (M0, Z1)
−2k−1

= f (M0〈Z1〉)J (M0, Z1)
−2k−1 = f (Z1) = f̃ (Z) .

Let i = 1 or 4 and define

Ei,f (Z) =
∑
γ

f̃ | [ι(P−1
i γ )]k+1/2(Z)

where γ is over (PiN(B1, Γ2)P
−1
i ∩Γ 2

0 (4))\Γ 2
0 (4). f̃ | [ι(P−1

i γ )]k+1/2(Z) is independent
of the choice of γ from the above observation.

We return to the general case of degree g . Let

Γ g ,0(4) :=
{ (

A B

C D

)
∈ Γg

∣∣∣∣ B ≡ O (mod 4)

}
.

Then αΓ ∗
g α

−1 ∩ Γg contains Γ g ,0(4). Let Θ0(Z) = θ(Z/2). If M belongs to Γ g ,0(4),
then

J 0(M,Z) := Θ0(M 〈Z〉)/Θ0(Z)

is holomorphic on Sg . By using J 0(M,Z) we define the space Sk+1/2(Γ
g ,0(4)) simi-

larly as before. Let Qg =
(

4 · 1g O

O 1g

)
and λg = (Qg , 1) ∈ G̃g . Let M ∈ Γ g ,0(4)

and ι0(M) = (M, J 0(M,Z)). By definition we have Q−1
g Γ g ,0(4)Qg = Γ

g
0 (4) and

J (Q−1
g MQg ,Q

−1
g 〈Z〉) = J 0(M,Z). Hence it follows λ−1

g ι0(M)λg = ι(Q−1
g MQg ).

If f ∈ Sk+1/2(Γ
g

0 (4)), then
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(f | [λ−1
g ]k+1/2) | [ι0(M)]k+1/2(Z) = (f | [λ−1

g ι0(M)λg ]k+1/2) | [λ−1
g ]k+1/2(Z)

= f | [λ−1
g ]k+1/2(Z) .

Therefore f �→ f | [λ−1
g ]k+1/2 is an isomorohism of Sk+1/2(Γ

g
0 (4)) to Sk+1/2(Γ

g ,0(4)).

Let f ∈ Sk+1/2(Γ
1

0 (4)) and f 0 = f | [λ−1
1 ]k+1/2 ∈ Sk+1/2(Γ

1,0(4)). We put

f̃ 0(Z) = f 0(Z1) for Z ∈ S2. We have P2Γ
2,0(4)P−1

2 = Γ 2
0 (4). Let

E2,f (Z) =
∑
γ

f̃ 0 | [ξ−1
2 ι(γ )]k+1/2(Z)

where γ is over (P2N(B1, Γ2)P
−1
2 ∩ Γ 2

0 (4))\Γ 2
0 (4). M ∈ N(B1, Γ2) is decomposed to a

productM1M2M3M4 as before. We assume M belongs to Γ 2,0(4). Namely, b, n and r are

divisible by 4. We prove ξ2 ι
0(M) ξ−1

2 = ι(P2MP
−1
2 ). Then f̃ 0 | [ξ−1

2 ι(γ )]k+1/2(Z) is

independent of the choice of γ since f̃ 0 | [ι0(M)]k+1/2(Z) = f̃ 0(Z).
Let Z = PM〈Z′〉. Then

ι(P2MP
−1
2 )(ξ2 ι

0(M) ξ−1
2 )−1 = ι(P2MP

−1
2 ) ξ2 ι

0(M−1) ξ−1
2 = (14, t) ,

where

t = J (P2MP
−1
2 , P2〈Z′〉) φ2(Z

′) J 0(M,Z′)−1 φ2(M〈Z′〉)−1

is a constant. We prove that t = 1. Let Z′ =
(
Z1 0

0 Z2

)
. Then the case of M3 is trivial.

Since J 0(M4, Z
′) = 1 and lim ImZ2→∞φ2(Z

′)φ2(M4〈Z′〉)−1 = 1, the assertion for M4

is due to Theorem 3.9 (15) Φ15b. The case of M2 is easily proved if m = 1 and n = 0.

Let m = 0 and n = 4. Then J 0(M2, Z
′) = 1. When W moves on the segment from

Z′ =
(
Z1 0

0 Z2

)
to M2〈Z′〉 =

(
Z1 4

4 Z2

)
, detW moves on the segment from Z1Z2 to

Z1Z2 − 16. Hence the argument of

φ2(Z
′)

φ2(M2〈Z′〉) =
√
Z1Z2√

Z1Z2 − 16

is in (−π/2, π/2). On the other hand

P2M2P
−1
2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −4 1 0

−4 0 0 1

⎞
⎟⎟⎠ .

From the transformation formula of Θ(Z) we have

J (P2M2P
−1
2 , P2〈Z′〉) =

√
Z1Z2 − 16

Z1Z2
.
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Its argument is in (−π/2, π/2). Hence the assrtion was proved. Now we prove the case

of M1. Since Γ 1,0(4)/(±12) is generated by

(
1 4
0 1

)
and

(
1 0
1 1

)
, it suffices to prove the

assertion for them. Let

(
a b

c d

)
=
(

1 4
0 1

)
. Then J 0(M1, Z

′) = 1,

φ2(Z
′)

φ2(M1〈Z′〉) =
√
Z1Z2√

(Z1 + 4)Z2
and P2M1P

−1
2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−4 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

From the transformation formula of Θ(Z) we have

J (P2M1P
−1
2 , P2〈Z′〉) =

√
Z1 + 4

Z1
.

Hence the assrtion is similarly proved as before. Let

(
a b

c d

)
=
(

1 0
1 1

)
. Then since

P2M1P
−1
2 ∈ N(B0, Γ2), J (P2M1P

−1
2 , P2〈Z′〉) = 1.

φ2(Z
′)

φ2(M1〈Z′〉) =
√
Z1Z2√

Z1Z2/(Z1 + 1)

and

J 0(M,Z′) = J 0
((

1 0
1 1

)
, Z1

)
= J

((
1 0
4 1

)
,
Z1

4

)
.

This is calculated by the transformation formula and equal to
√
Z1 + 1. Hence the assrtion

is similarly proved as before.
Since k ≥ 4, the series of Ei,f (Z) (i = 1, 2, 4) converges and Ei,f (Z) ∈

Sk+1/2(Γ
2

0 (4)). Similarly as in the case of integral weight we can prove that
lim ImZ2→∞Ei,f | [ξi]k+1/2(Z) = f (Z1) (i = 1, 4), lim ImZ2→∞E2,f | [ξ2]k+1/2(Z) =
f 0(Z2) and lim ImZ2→∞Ei,f | [ξj ]k+1/2(Z) = 0 (i �= j). Hence Φ-operators to the one-
dimensional cusps C1, C2 and C4 are surjective. Now the theorem was proved for k ≥ 3.

We show that dimM1/2(Γ
2

0 (4)) = 1, dimM3/2(Γ
2

0 (4)) = 1 and dimM5/2(Γ
2

0 (4)) =
3. Then the first equality of the theorem is proved. Since Θ(Z) ∈ M1/2(Γ

2
0 (4)),

dimM1/2(Γ
2

0 (4)) ≥ 1. We have the product map:

M1/2(Γ
2

0 (4))×M21/2(Γ
2

0 (4), ψ) → M11(Γ
2

0 (4)) .

Since dimM21/2(Γ
2

0 (4), ψ) = dimM11(Γ
2

0 (4)) = 1 (cf. Proposition 5.3, and Proposition

5.4), dimM1/2(Γ
2

0 (4)) = 1. Similarly we have Θ(Z)3 ∈ M3/2(Γ
2

0 (4)) and the product
map:

M3/2(Γ
2

0 (4))×M21/2(Γ
2

0 (4), ψ) → M12(Γ
2

0 (4), ψ) .
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Since dimM12(Γ
2

0 (4), ψ) = 1, we have dimM3/2(Γ
2

0 (4)) = 1. Similarly we have the
product maps:

M5/2(Γ
2

0 (4))×M21/2(Γ
2

0 (4), ψ) → M13(Γ
2

0 (4)) ,

M1/2(Γ
2

0 (4))×M2(Γ
2

0 (4)) → M5/2(Γ
2

0 (4)) .

Since dimM13(Γ
2

0 (4)) = 3, we have dimM5/2(Γ
2

0 (4)) ≤ 3 and since dimM2(Γ
2

0 (4)) =
3, we have dimM5/2(Γ

2
0 (4)) ≥ 3. Thus we have completed the proof of Theorem 5.2. �

PROPOSITION 5.3.
∞∑
k=0

dimMk+1/2(Γ
2

0 (4), ψ) t
k =

∞∑
k=0

SiegelHalfpsi[0,k] tk + (3 + t + t2)

= t10

(1 − t)(1 − t2)2(1 − t3)
.

Proof. From Theorem 4.6, we have dimMk+1/2(Γ
2

0 (4), ψ) = dim Sk+1/2(Γ
2

0 (4), ψ).

Since we have dim S7/2(Γ
2

0 (4), ψ) = SiegelHalfpsi[0,3] = 0, it follows

that S5/2(Γ
2

0 (4), ψ) � S3/2(Γ
2

0 (4), ψ) � S1/2(Γ
2

0 (4), ψ) � {0}. But since we have
SiegelHalfpsi[0,2] = −1, SiegelHalfpsi[0,1] = −1 and SiegelHal
fpsi[0,0] = −3, we have the equality of the first line. �

Let M(Γ 2
0 (4)), M(Γ 2

0 (4), ψ) and A(Γ 2
0 (4), ψ) be

⊕∞
k=0Mk+1/2(Γ

2
0 (4)),⊕∞

k=0Mk+1/2(Γ
2

0 (4), ψ) and
⊕∞

k=0Mk(Γ
2

0 (4), ψ
k), respectively. Then A(Γ 2

0 (4), ψ) is

a graded ring and since it holds J (M,Z)2 = det(CZ + D)ψ(detD), M(Γ 2
0 (4)) and

M(Γ 2
0 (4), ψ) are A(Γ 2

0 (4), ψ)-modules. From the result of J.-I. Igusa ([Ig1]), we have
the following proposition. (We can also prove them by dimension formula.)

PROPOSITION 5.4.
∞∑
k=0

dimMk(Γ
2

0 (4)) t
k = 1 + t4 + t11 + t15

(1 − t2)3(1 − t6)
,

∞∑
k=0

dimMk(Γ
2

0 (4), ψ) t
k = t + t3 + t12 + t14

(1 − t2)3(1 − t6)
,

∞∑
k=0

dimMk(Γ
2

0 (4), ψ
k) tk = 1 + t + t3 + t4

(1 − t2)3(1 − t6)
= 1

(1 − t)(1 − t2)2(1 − t3)
.

From this, Theorem 5.2 and Proposition 5.3, we have

COROLLARY 5.5. M(Γ 2
0 (4)) and M(Γ 2

0 (4), ψ) are free A(Γ 2
0 (4), ψ)-modules of

rank one.
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A generator of M(Γ 2
0 (4)) as A(Γ 2

0 (4), ψ)-module is given by Θ(Z). Let f21/2(Z)

be a generator of M(Γ 2
0 (4), ψ). Then f21/2(Z)Θ(Z) is an automorphic form with re-

spect to J (M,Z)22ψ(detD) = det(CZ + D)11. Hence this belongs to M11(Γ
2

0 (4)). Let

f11(Z) be the base of one-dimensional space M11(Γ
2

0 (4)). Then f11(Z)/Θ(Z) is holo-

morphic and we may take f21/2(Z) = f11(Z)/Θ(Z). Since A(Γ 2
0 (4), ψ) is contained in⊕∞

k=0Mk(Γ2(4)) and
⊕∞

k=0Mk(Γ2(4)) is contained in the ring of theta constants ([Ig1]),

every elements of M(Γ 2
0 (4)) andM(Γ 2

0 (4), ψ) are representable by theta constants.

REMARK 5.6. T. Ibukiyama represented the generators ofA(Γ 2
0 (4), ψ) and f21/2(Z)

explicitly by theta constants ([Ib]). Especially A(Γ 2
0 (4), ψ) is generated by algebraically

independent modular forms f1, X, g 2 and f3 whose weights are 1, 2, 2 and 3, respectively.
f21/2(Z) is divisible by nine theta constants and not divisible by one theta constant. Let

Z ∈ S2. Then there exists M ∈ Γ2 such that M 〈Z〉 =
(
Z1 0

0 Z2

)
, if and only if one

of ten theta constants vanishes at Z (J.-I. Igusa, [H]). Hence f21/2(Z) does not belong to
S21/2(Γ

α
2 , ψ) (cf. Remark 4.7).

Appendix. The generating functions

We list here the generating functions of SiegelHalf[j,k] and SiegelHalf-
psi[j,k].

TABLE A.1.
∑∞
j, k=0 SiegelHalf[j,k]sj tk is a rational function of s and t

whose denominator is

(1 − s2)2(1 − s3)2(1 − t)(1 − t2)2(1 − t3).

The coefficients of sj tk (0 ≤ j ≤ 9, 0 ≤ k ≤ 7) in the numerator are given by the
following matrix.

0 0 −3 −6 −6 −3 4 3 −3 −4
0 0 1 1 1 3 3 1 1 1

−1 −1 7 17 20 8 −12 −8 8 10
1 1 2 7 7 −2 −9 −4 1 2
2 3 −2 −12 −20 −9 8 4 −8 −8
1 3 −5 −21 −23 −5 12 6 −7 −9
0 0 −1 −1 2 2 1 3 4 2

−2 −3 4 14 13 0 −8 −2 7 7

TABLE A.2.
∑∞
j, k=0SiegelHalfpsi[j,k]s

j tk is a rational function of s and
t whose denominator is

(1 − s2)2(1 − s3)2(1 − t)(1 − t2)2(1 − t3).
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The coefficients of sj tk (0 ≤ j ≤ 9, 0 ≤ k ≤ 7) in the numerator are given by the
following matrix.

−3 0 6 6 −6 −21 −11 3 6 2
2 0 −4 −5 1 12 10 1 −3 −2
6 0 −12 −11 17 47 23 −6 −12 −4
0 0 0 5 10 4 −5 −6 −3 1

−5 0 13 15 −12 −41 −25 −1 9 5
−6 1 15 9 −21 −46 −24 6 14 4

3 2 −6 −12 −3 13 14 6 −2 −3
4 0 −9 −8 8 26 17 0 −6 −2
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