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Abstract. Let I3 C Sp,(Q) be the paramodular group of level 3 and I';" C Sp,(R)
the maximal normal discrete extension of I'; of index 2. Denote by DI';" the commutator
subgroup of I';". The main goal of the present note is to determine the structure of the
graded ring of paramodular forms for DI’y Since all generators constructed here are ac-
tually modular forms for I';" with certain multiplier-systems, we can derive generators for
the graded rings of paramodular forms for all groups I" with DIy C I C Iy, especially
;.

1. Introduction

In [16], Igusa determined generators of the graded ring of modular forms for 17 =
Sp,(Z), the paramodular group of degree 2 and level 1. This was the first example, where
generators of the graded ring of paramodular forms of degree 2 are known. Later, Freitag
[9] gave another proof of Igusa’s result, using a distinguished Siegel modular form ®s with
(uniquely determined) nontrivial multiplier-system and known zero-divisor. Then, using
similar techniques, Freitag [10] determined generators of the graded ring of modular forms
of even weight for '), the maximal normal discrete extension of I of index 2. Only
recently, these results were extended to > by Ibukiyama and Onodera [19]. As far as we
know, these are the only results, where generators of the graded ring of modular forms
for the paramodular group of degree 2 and level ¢ are known explicitely. Apart from that,
in degree 2, there is Ibukiyama’s formula for the dimensions of the spaces of cusp-forms
[17], which can be used to deduce some information about generators of the graded ring
of modular forms for I'; (for small level ¢ at least, see e.g. [18], [19]). The general result
of Runge [27, Theorem 2.3], which describes the even part of the graded ring of modular
forms for paramodular groups of arbitrary degree as invariants of a certain space of theta-
constants, hardly gives any explicit information on generators.
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As another example, in this note we solve the case of degree 2 and level 3. More
precisely we determine generators of the graded ring of modular forms for the commutator-
subgroup DI'5" where I';" is the maximal normal discrete extension of I3 (which is of index
2). Our method is in some sense the same as Freitag’s [9]. By results of Borcherds [1], one
can nowadays construct paramodular forms of degree 2 with known zero-divisor, so-called
Borcherds-products. ®s is an example of such a Borcherds-product. More examples were
given in [15]. We construct Borcherds-products for F3* (following [1] or [3] more closely
than [15]). These paramodular forms have non-trivial multiplier-systems in general and we
have to consider modular forms for DI quite naturally. The crucial point is, that we can
find Borcherds-products with “minimal” zero-divisor. As in [9], [10] the only thing we have
to do then, is to lift those modular forms on the divisor, that are restrictions of paramodular
forms, to paramodular forms for I';". Here we use “arithmetical liftings” (generalizations of
Maal3’s construction [24], [25]), introduced by Gritsenko [13], [14] and Gritsenko-Nikulin
[15].

The Borcherds-products constructed in section 4, already appeared in [15] an it was
noted there that these modular forms can be used “to construct all generators of the graded
rings of modular forms for I> and I3”. In fact, for level 2 one can find all forms for the
commutator-subgroup DI7;* (which has index 4 in I3) by the very same method used here.
There are good reasons to belive, that # = 2 and t = 3 are the only cases, where the problem
is as easy as in the Siegel-case (see remark 4.4).

Now we give a short description of the following sections:

In section 2, we fix our notation concerning the paramodular group I'; and the exten-
sion I7*. From [20] we cite a special case of a general result on generators of paramodular
groups, which we did not found anywhere else in the literature. Moreover we give a de-
scription of the character-groups of I3 and I';" following [6].

In section 3 arithmetical liftings from vector-valued modular forms of half-integral
weight for the metaplectic group Mp,(Z) to paramodular forms for I';" with multiplier-
systems are defined. The main result, proposition 3.6, is essentially a reformulation of
results from [14] and [15]. We explicitely calculate the dimensions of the associated Maal3-
spaces, using a dimension-formula of Skoruppa [29], [7].

In section 4 we apply Borcherds theory in order to find paramodular forms for I7*.
Borcherds theory is formulated in terms of orthogonal groups. The (well-known) connec-
tion with paramodular forms is cited from [15] and [3] mainly. The input for Borcherds
lift are vector-valued modular forms of weight —% for Mp,(Z) with poles of small or-
der at the cusp. Since we are looking for forms with “minimal” zero-divisor, we have to
find vector-valued modular forms with poles of small order at the cusp. To this end, an
obstruction-problem from [2] is solved.

In section 5 we use use (some of) the forms, constructed in the preceeding sections in
order to prove our main result, theorem 5.2. It states, that the ring of paramodular forms
for DI is generated by tree Borcherds-products of weight 1, 6 and 12, together with
four MaaB-lifts, needed to generate all the modular forms on the product of two upper
half-planes with multiplier-systems of order 3. Moreover, we find all relations among the
generators. In the same way, we find generators of the rings of paramodular forms for
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I’y and I3 and all relations among them. The formula for the dimensions of the spaces
of paramodular forms for I3, following from these results, coincides with Ibukiyama’s
formula [18].

In the remaining part of this section we set up basic notations:

For aring R (always assumed to be commutative and with unity), we denote by R"*"
the set of n by n matrices with entries in R. Given A, B inR"*" we write A" for the trans-
pose of A and define B[A] = AYBA. Let I, € R™™" be the identity-matrix of dimension
n (if n is obvious, we just write [ instead of 1,,). Sp,,(R), the symplectic group of degree n

with entries in the ring R, is given by Sp, (R) = {M € R¥"*?"| (1(1 _01" )[M] = (1(1 _01” )}.

Form € N, n € Z we write m|n, if m divides n.

For a group G the group of abelian characters of G is denoted by G** and the com-
mutator-group is denoted by DG. If G is finite (which will always be the the case later),
one has G® = G/DG. Forn € N we set C, = Z/n’Z.

Weuse T = (} 1), 7 = (97) as generators of SLy(Z). The principal congruence
subgroup (of level n) is SLy(Z)[n] := {M € SLy(Z)| M = I mod nZ}. The space of
(elliptic) modular forms of weight k for SL,(Z) is denoted by [SL2(Z), k, 1]. For4 < k €
2N denote by g; € [SL2(Z), k, 1] the normalized elliptic Eisenstein-series of weight k.
Explicitly, g;(r) = 1 — %—i D oneN Ok—1(n)eX™ "7 where By is the k™ Bernoulli-number
and 0 (n) = Y yen gpp d¥. Let n(t) = e/, y(1 — €*™7) be the Dedekind-eta-

function and v;, be the multiplier-system of 1. v% is a generator of SL, (Z)® = Cpp. App =

= % ( gi - g%) is the first non-trivial cusp-form for SL2(Z) (up to normalization).

2. Paramodular groups of degree 2

We think of paramodular groups (of degree 2) as subgroups of the rational symplectic
group Sp,(Q). Fort € N define P; := ((1) ?) (a polarization, chosen in normal form without
restriction) and D; = (102 gt ) Later on we will specialize ¢t = 3, but if possible, we give

results for general 7.
DEFINITION 2.1. The paramodular group I (of level t) is given by
I = {M e Sp,(Q) | D;'MD, € Z*} .

The conjugated group I = D, "D, c 74 is the integral paramodular group (of
level r). Note that f, leaves the form ( gt _(f !
As is well known [22], [14], paramodular groups have non-trivial discrete extensions
in Sp,(R) for + > 1. In our special case (were ¢ will be prime later on), we define a

distinguished extension of index 2 of I;. Set

_ (U 0 . . t
Vi = (O Ut“) e Sp,(R) with U, := <1/\/? 0 .

Then sz =landy, : M +— ViM Vt_l is an involution in aut([%).

) invariant.
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DEFINITION 2.2. The extended paramodular group I')* (of level t) is the group,
generated by V; over Iy, i.e.

I} = (I, U{V)) = LULY, C Spy(®).

I} is an extension of index 2 of I7 for t+ > 1. In general, there is an even bigger
maximal normal discrete extension I, O [7*, which is generated by (suitably defined
elements) V; € Sp,(R) forall d||¢ (see [15, 1.3] for details). If ¢ is square-free, then ;™
is maximal discrete, and if ¢ is prime, then I7* = I7;™® is maximal discrete too (though in
general, it is not). Typical elements of I are

— 0 _Pt_l
Jt_(Pt 0 >7

rot(U) = (g U%) for U € 2, = (M € GLy(Z) | LM P! € 727},

trans(S) = (é f) for Se X, ={M e Q>?|M=M", MP, € Z**?},
ay 0 bz 0 b
My xthz(COl ”020‘}1”20”> for Mj = (! ;) € SLa(Z).
0tcy 0 dy
We need generators of I;. From [20, Satz 1.12] we cite

LEMMA 2.3. [I; is generated by J; and trans(S) for S = ((1) 8), ((1) (1)), (8 l(}t).

In the sequel, modular forms for I';* with arbitrary multiplier-systems will be consid-
ered. For the rest of this section we specialize to + = 3. Since multiplier-systems for I3
and I';" have integral weight [5, Satz 14], multiplier-systems are just (abelian) characters of

I3 resp. I
The groups 7% and I'*% are known by [6]. Characters of I'; arise in the following
way: There are surjective homomorphisms (IF, is the field with p elements)

@ I3 — Spy(F2), M+ D;'MD3 mod 2Z,

. 2 ar b as  3by
B3: 13— SLh(F3)*, M~ <<Cl d1> , <C4/3 ds )) mod 37Z.

Recall, that Dy '3Ds is the integral paramodular group and that ( 193 7(1; 3) =

((I) _01 ) mod 2Z Since Sp,(IF») is isomorphic to the symmetric group on six elements (e.g.
via the action on the six odd theta-characteristics in IE“Z‘), there is a character  of Sp,(F2)
of order 2. The pull-back of ¥ gives a character k ;==K oy € 1"3ab of order 2 (in the same
way, the nontrivial character of the Siegel modular group Iy = Sp,(Z) arises [23]).

As is well known, SL(I3)?® is (isomorphic to) a cyclic group of order 3, generated

by a character 7z, which is uniquely determined by 72(} 1) = ¢*" i3,
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The corresponding characters of SLy(IF3)?, which arise by first projecting on the j®
component, are denoted by 7z ;. The pull-back of the characters i ; gives two (independent)

characters j; :=[1j o B3 € F3ab of order 3.
The following lemma is a special case of [6, Theorem 4.2].

LEMMA 2.4. F3ab = (Cy x C3 x C3 is generated by k, |11 and 1.

Explicit values of x and w1 on J3, the subgroups of rotations and the subgroups of
translations are given by

. s1 8
e2misi/3 for M = trans < ) s

s> s4/3
2n M=
1 for M = rot (ul 3u2> and M = J3,
U3 U4
(—1)s1Hsatsa for M = trans <Sl 2 ),
s> S4/3
2.2) (M) =

(_1)(1+u1+u4)(1+u2+u3)+u1u4 for M = rot ui 3M2 ,
U3z U4

1 for M = J3.

(For more explicit formulas see e.g. [23], [15, Lemma 1.2], [6]). Note that uy = g o y3,
so explicit values of 17 can easily be read of (2.1) too.

The involution y3 € aut(I3) acts on F3ab by v = voys. Ifvoy; = v, wesay that v
is symmetric. v € I 3ab can be extended to a character of I';" if (and only if) v is symmetric.
In this case, v is extended to a character of F3* by v(V3) = 1. It was shown in [6, Sec. 5],
that « is symmetric. Since i o Y3 = w2, the characters p1 and w, are not symmetric, but
on the other hand, p := pyuy is symmetric. We extend x and p to characters of Iy as
above (and denote this extended characters by the same symbols again), i.e. as characters
of Iy we have k(V3) = u(V3) = 1. Since Iy’ is an extension of index 2 of I3, generated
by V3, another character x of I';y" is defined by x (V3) = —1 and x (I3) = {1}.

The following lemma is a special case of [6, Cor. 5.5].

LEMMA 2.5. F3*ab = Cy x Cy x Cx is generated by x, k and .

Explicit values of u on J3, rotations rot(U), U € §2;, and translations trans(S), S €
X, are given by

eZJti(S1+S4)/3 for M = trans 51 2 P
s> s4/3
(2.3) n(M) =

up 3un

1 forM:rot( ) and M=J;.

U3z U4
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Since V3 ¢ DI, we have DI'5* C I's. In fact, lemma 2.5 implies, that [ : DI'] =
6 and I3/ DT is generated by the coset trans ((1) 8)DF3*.
Forv € I’ or v € I'}* we define 7 € SLy(Z)™ via D(M) := v(M x, I).

3. Jacobi-forms with characters and MaaB-Lifts

In this section we use “arithmetical liftings”, defined by Gritsenko [13, 14] and
Gritsenko-Nikulin [15] to construct paramodular forms with certain multiplier-systems.
This is the first of two fundamental methods, used to construct generators of the graded
ring of modular forms for DI". The other one is Borcherds-products, being presented in
the following section.

First we fix our notation concerning paramodular forms. Let H, be the Siegel upper
half-plane of degree n and (M, Z) — M -Z the usual action of Sp, (R) on H,, (as biholo-
morphic transformations). The standard factor of automorphy is j, (M, Z) = det(CZ+ D),
ifM = (é g) € Sp,(R). The corresponding action of weight k € Z on functions

f +H, — Cis given by f|kM(Z) = ju(M, Z)’kf(M - 7).
DEFINITON 3.1. Assume that I' C I} with finite index. Let v be a character of

I'. A holomorphic function f : Hy — C is a paramodular form of weight k € 7 with
character v for I' if

FliM(Z) = v(M)f forallM €T .

[ is a cusp-form, if additionally limy_, o f |kM((Z) i(;) =0forall M € Sp,(Q) and z € H;.
The space of paramodular forms of weight k with character v for I' is denoted by [I', k, v].
The subspace of cusp-forms is denoted by [I', k, v]cusp.

Since in the following we will have to consider (elliptic and Jacobi) modular forms of
half-integral weight too, we need the metaplectic group Mp,(Z). This is two-fold cover of
SLy(Z), consisting of pairs (M, w), where M € SL,(Z) and w : H; — C is a holomorphic
square-root of ji(M, 1), i.e. we have a)(t)2 = j1(M, 1) (see [7, Sec. 4.2] for some more
details on Mp,(Z)). Standard generators of Mp,(Z) are

() (€ D)

By /7 we always denote the principal value of the square root of T, determined by
NR(V/7) > 0or N(/7) = 0 and I(/T) > 0. The subgroup Mp,(Z)[n] := {(M,w) | M =
I mod nZ} is the principal congruence subgroup (of level n) of the metaplectic group.

~)

Mp,(Z) acts with weight k € %Z on functions f : H; — V (where V is a C-vector-space)
by

(3.1) fleM, 0)(7) = w(0) "k f(M - 7).

Let H (Z) be the integral Heisenberg-group as in [15, Sec. 1]. We define the metaplec-
tic Jacobi-group MJ»(Z) to be
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M2 (Z) := Mp,(Z) x H(Z),
where the action of Mp,(Z) on H(Z) is given by the action of the first component. The
parabolic subgroup I'; o C I7 is defined by
It oo :={M € I} | M has last row (0,0, 0, 1)}.

Note that '] oo = SL2(Z) x H(Z). Thus we can think of MJ2(Z) as a two-fold cover of
I' .00 and MJ2(Z) acts with weight k € %Z on functions f : Hy — V (where V is again a
C-vector-space) by

fle(M, @), [u, v; w)(Z)

= w(Zl)—Zkf <(M x1 I)rot <L1t (1)> trans (S w :)MU)Z) ,
7 — 1 22
S \z2 ;)

We also write f|x(M,w) for f|x((M,w),[0,0;0]) and f|k[u, v; w] for f|x((I, 1),

[u, v; w]). Let vy be the character of H(Z), defined by

(3.2) vi ([u, v; w) := (= tvuvtw,

Following [15, Lemma 3.1], all characters of MJ2(Z) are of the form v, = v‘,; X UI;_I

with a € Z/24Z and b € Z/2Z. v, factors over SL(Z) x H(Z), if and only if a is
even (or equivalently if v, 5 has order < 12). In this case we see, that v4 1 is the restriction

of ku? € F3*ab to I',0o = SL2(Z) x H(Z). Therefore, precisely the characters vs; ;,
J € Z/6Z, can be lifted (from I'1 ) into I” 3*ab. This will be used frequently later.

For a function @ : H;x C — C we define &,, on H, by D, ( az ) = P(z;, 72)e2Tims,
We give a definition of Jacobi-forms with character which is suitable for our needs (com-
pare [15, Def. 1.4]).

DEFINITION 3.2. Let v, be a character of MJ2(Z). A holomorphic function @ :
HxC — C is a Jacobi-form of weight k € %Z, indexm € %Z, with character v, p, lfﬁm
satisfies
(3.3) B [k M = v p(M)Byy, for all M € MIx(Z)

and @ admits a Fourier-expansion

Piz2) = Y, aln heriatie)
n,leQ, n>0
4mn—1*>0
(where n, | have bounded denominators, depending on v, ). Moreover, if a(n,l) # 0
implies 4mn — 1> > 0, then @ is a cusp-form. The space of Jacobi-forms of weight k and

index m with character vg p is denoted by [MJ2(Z), k, m, vq p]. The subspace of cusp-forms
is denoted by [MJy(Z), k, m, va plcusp-
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A first simple observation is 2m = b mod 2Z or [MJ2(Z), k, m, v, ] = {0}. This
holds because @ € [MJ2(Z), k, m, vq p] implies

<1 22

2wimw 5 _ 7
e Py (Z) = Py <Z2 4w

) = B |1 (1, 1),[0,0; w)(Z) = (=" D (Z) .
Therefore we will frequently assume 2m = b mod 27Z. Another consequence of the trans-
formation (3.3) is that f € [MJ2(Z), k, m, v, p] has non-zero Fourier-coefficients o (7, /)
forn = 5z mod Zand ! = % mod Z only.

If weight and index are integral and the character is trivial, our Jacobi-forms are just
the Jacobi-forms from [8], such as the Eisenstein-series Ey ,, for even k > 4 and the first
cusp-forms of index 1, ¢10,1 and ¢12,1 (in the notation of [8]). Examples of Jacobi-forms
with non-trivial character are the Dedekind-function n € [MJ,(Z), %, 0, vy x 1] (which
does not depend on the second variable of course) and the theta-series

_4 )
LGRS <7)62m<mzr/8+mz/2) € Mh(2), 3, 3. v, x val,

meZ

12 ;
932(1.2) == Y <;)e2”‘<m2f/24+m2/2> € [MIx(Z), 3. 3. vy x va].
me

Note that ¥1,2(7,0) = 0 for all = € I, whereas 93,2(7,0) = 2n(r) # Oforall T €
H; (as can be seen from the well-known product-expansions [15]). More examples of
Jacobi-forms with non-trivial character can be constructed in the following way: If ¢ €
[MJ2(Z), k, m, 1]cusp is a cusp-form with trivial character, then (we may assume m € Z
without restriction and)

(3.4) on/ € IMI(Z).k — j/2.m,v;) x 1], if jeNwith jm <18.

This is because n~/ (1) = e~ 27/ T/24(1 4 O(¢*"i7)) and for a cusp-form in [MJ>(Z), k, m,
1]cusp, non-trivial Fourier-coefficients «(n, [) exist for 4nm — 2 >3 only. Then 4(n —
j24m—1>>3— jm/6>0for18 > jm.

As is well known, Jacobi-forms appear as Fourier-Jacobi-coefficients of paramodular
forms. In the reverse, Jacobi-forms can be lifted to paramodular forms (by so called “arith-
metical liftings”, i.e. generalizations of Maal}’s construction [25]), as described in [13, 14]
(for trivial character) and [15] (for nontrivial character).

We take a slightly different point of view so far, as we use the correspondence of
Jacobi-forms to vector-valued modular forms for Mp, (Z) in order to lift such vector-valued
forms. In this way, “arithmetical liftings” (for trivial character) were described in [1, Th.
14.3] in a more general context.

As in [8], it is easily seen, that the Fourier-coefficients «(n, ) of a Jacobi-form of
weight m depend on 4mn — [* and [ mod 2mZ only, essentially. If non-trivial characters
are to be taken into account, this has to be changed slightly.

LEMMA 3.3. Assume @ € [M)2(Z), k, m, vy p]. Then el 2mey (1) depends on
4mn — 1% and | mod 2mZ only.
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Proof. We may assume m = b/2 mod Z (or @ = 0). It follows from the definition,
using the transformation-formula (3.3) for rot (1 9) and trans (9 3 ), that

AT @ (2 2 4 yr 4 y) = (—DPE B (1, 7).
This implies forn, [ € Q
(3.5) a(n +mu® +lu, | + 2mu) = e 7 (—)PEg(n, 1) = (=) a(n, 1),
since | = b/2 mod Z (or a(n,l) = 0). With (n’,I') = (n + mu?* + lu, | + 2mu), we have
u=('—1)/2m and 4mn’ — I'’* = 4mn — I2. Now (3.5) can be formulated as
el 2m e () 1Ty = T2 \P g 1) = T2 ) |

|
Form,x € %Z and b € Z withm = x = 5 mod Z define a theta-series 6y, x , on

H;x C by

b
2

. . 2
Z e]tlbl/ZmeZJu(l T/4m—+iz) )

[=x mod 2mZ

em,x,b(fa 2) =

Obviously, 8y, x.» depends on x mod 2mZ only. For b = 0 (and m integral), these are just
the theta-series 6,, x from [8, §5, (4)]. Oy x.» can be reduced to 6,, ; as follows: If m is

integral, then 6,, x »(7, 2) = 6,y x (7, 2+ b/4m). In the case m € % + 7Z, we have
Opor. (T, 2) = Z 2T/ Am+z b /4m) _ Z 22D [8m+21(5+b/8m))
I=x mod 2mZ 21=2x mod 4m%Z
= 62m,2x(":/2, Z/2 + b/Sm) .

Especially we find the following transformation law for 6, , , under the generators of
Mp,(Z) (compare [8,85], [1, Sec. 4]).

(3.6) (Omoxp), 12T = QA /Am (Omxb), -
~ o~ . 1
(em’x’b) |1/2J zezﬂlbx/4m—. Z
(3.7) " V2L T o

x e—2m'x’x/2me—2m'bx’/4m (em,x’,b); )
LetV,, := {f : (m 4+ Z)/2mZ — C} be the vector-space of complex functions on (m +
7)/2mZ. The characteristic functions f{ € V,,, x € (m + Z)/2mZ, form a basis of V,,.
We define the V,,-valued theta-series ®,,; : HixC — V,, by Op p(r,2)(x) =
Om x.»(7, 7). Now the formulas (3.6) and (3.7) imply, that ©,, 5 is a V,,-valued modular
form for Mp,(Z) with a multiplier-system p,,  (i.€. a representation Mp,(Z) — GL(V,,)),
determined by (3.6) and (3.7) (more precisely, ®,,  is a V,,-valued metaplectic Jacobi-
form; see the following definition 3.4). Explicitly, for f € V,, we have
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(omp(T) ) (x) = 274 £ (x|

(pm,b(])f)(_x) — 627lex/4m—

2mi X'{(m+72)/2m7

e—2m'x’x/2me—2m'bx’/4m f(x’) )

Up to isomorphy, p, , does not depend on b. Given n € 2Z we define A, €
GL(V,) by (A, f)(x) = €27inx/4m £(x) (note that e27"*/4" depends on x modulo 2m
only, since n is even). Now if b, b’ € Z satisfy b = b’ mod 2Z, then we see pp, py (M) =
Ab/,bpm,b(M)Al;ib, or, in other words, p,, > and pp, ; are conjugate by Ay _p.

DEFINITION 3.4. Let p : Mpy(Z) — GL(V) be a finite-dimensional representa-
tion, such that p factors over a principal congruence group Mp,(Z)[n]. A holomorphic
function f : Hy — V is a (V-valued) meromorphic modular form of weight k € %Z
with multiplier-system p, if

flkM =p(M)f  forall M € Mp,(Z)

(here the action of Mp,(Z) is defined as in (3.1)) and f has at most a pole at the cusp
ioco. Ifin addition f is bounded in any region I(t) > yo > 0 (i.e. if there is no pole at
the cusp), then f is a (holomorphic) modular form. Moreover, if limyq)—oo f(T) = 0,
then f is cusp-form. The space of meromorphic modular forms of weight k with multiplier-
system p is denoted by [Mp,(Z), k, plmer, the subspace of (holomorphic) modular forms is
denoted by [Mp,(Z), k, p] and the subspace of cusp-forms by [Mp,(Z), k, p]cusp-

Of course, if k is integral, the action of Mp,(Z) factors over SL,(Z) and we can think
of [Mp,(Z), k, p] as a space of (V-valued) elliptic modular forms. In our case, the vector-
space V will almost always be V,, for some m € %Z. For f : H; — V,,, we define the

components fy : Hi — Cforx € (m +Z)/2mZ by f(t) = 3_.ousz)/amz fx (O fx-
On V,, there is a scalar product, defined by

L= Y. f@gw
x:(m+7)/2mZ

(this pairing is not hermitian, but respects holomorhy instead). For a representation p of
Mp,(Z) on V,,, denote by p* the dual representation of p with respect to the pairing above,
i.e. p* satisfies (p*(M) f, p(M)g) = (f, g) forall f, g € V,,, and M € Mp,(Z).

LEMMA 3.5. Letk € 3Z, vap € MI(Z)® and m € YZ with 2m = b mod 2Z.
Then
[Mp,(Z). k — 5. v p3 ] = [MIo(Z), k. m, va 5]
f = (fx)x:(m+Z)/2mZ = (fa @m,b) = Z fxem,x,b
x:(m+2)/2m%Z

is an isomorphism of the vector-spaces.

Proof. 1If f € [Mpy(Z), k — %, v,“],o;,"1 51> then F = (f, ©y, p) transforms as a Jacobi-

form of weight k, index m with character v, ;. For the Heisenberg-part of MJ2(Z) this
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follows from

- ~ 71 2+ uzr +v
F Jvwl(Z2) = F
m el v; wl(Z) " <z2+MZ1+v z3+u2z1+2uz2+uv+w>

— (f(Zl), Omb (21, 22 + uz) + v)) P2 im (@32 +2uzHuv-w)
= (Pt 2MImEtw) (£(21) Oy (21, 22)) €27
= v ([, v; W)’ F (2)
for Z = (i1 2) € Hy (note that Oy p(7, 2 + ut +v) = (—1)Puv) g=2mim(ue+2uz)
XOm.xb (T, 2) foru, v € Z since 2m = b mod 2Z). Given M € Mp,(Z) we have
Fn|kM(2) = (flr=12M 1), (Om )y |12M (2))
= vy (M) (o s (M) £ (21) » om o (M) (O ) (2))
=03 (M) (£21). Omp (21, 22)) €™ = v (M) Fu(Z) |

since '0:;:, 5 18 the dual of py,,, with respect to the given scalar product on V,,. Moreover F
satisfies the cusp-condition (since all fy and 6,, x , do). The mapping is injective, since for
any fixed r € Hj, the theta-series 6y, x (T, - ), x € (m+7Z)/2mZ, are linearly independent
(as functions of the second variable). Finally we show that the mapping is surjective. Let
@ € [MI2(Z), k, m, v, p] with Fourier-development

D(t,2) = Z a(n, l)ezni(’”‘m)

n=ny, [=lp mod Z,
4mn—I12>0

(where ng = 2“—4 and lp = %’, of course). By lemma 3.3 we know, that ¢;(4mn — %) :=

e 7ibl/2mey (0, 1) depends on 4mn — 1% and [ mod 2mZ only. Therefore we have

. _ 2 . . 2
&(1,7) = Z Z c1(dmn — 12)e2m(4mn [ )r/4membl/2me2m(l T/4m+I1z)
[=ly mod Z n=ng mod Z,
4mn—1*>0
— Z Z cr (N)eZNiNr/4m Z enibl/ZmeZﬂi(lzr/4m+lz)
l':(lo+Z)/2mZNE4mn0,l’2 mod 7Z, [=l" mod Z
N>0

= Y fr@OmrsT) = (f.015) (1.2).
V:(lg+7)/2mZ
(note that [’ € %Z, thus / = [’ mod Z implies [> = I’ mod Z) with f = (f)x:mt+2)/2m2
where
HOE > cp (N)e? TN e/,

O§Nz4mno—x2 mod Z
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Now @ € [MJ2(Z), k, m, v, ] implies f € [Mp,(Z), k — %, v,“],o;,"1 5] (using the linear
independence of the theta-series once more). ]
The arithmetical lifting uses Hecke-operators on Jacobi-forms of integral weight with
characters (since paramodular forms have integral weight). In this case, the character
factors over SLy(Z) x H(Z), i.e. it is of the form v, with a even. Thus let @ €
[MJ2(Z), k,m, & x vi;] be a Jacobi-form of integral weight k, where £ € SLo (Z)*. Let
Q e N satisfy SL2(Z)[ Q] C kern(£). Given [ € N we define the Hecke-operator 79 (1)
on @ asin [15, (1.12)] by

5”, |kT(Q)(Z)(Zl, ZZ, Z3) = lzk*?) Z d*ké(o,a)¢(alebQ’ aZZ)eZNUWLZ'J\ .
ad=l,bmod d

Here, 0, € SLy(Z) has to satisfy o, = (“61 (a)) mod Q. As was proved in [15, Lemma

1.71, if ged(Z,2°Q) = 1, one has ® [y T D (1) € [MI2(Z), k, Im, & x v5;], where & is a
twist of £ (especially, & = &, if [ = 1 mod Q, the only case we will need later on).
Now we can formulate the main result of this section:

PROPOSITION 3.6. Assume k € Z. Let d be a divisor of 6 and v = i’k € F3*ab.

Set Q = g. Then there is an injective homomorphism
M IMpy(Z). k — 3.5 0% 5 1 — [T kv x*T,

defined by (c;(n) is the nth Fourier-coefficient of T — f(7)(1))

—B ~
M(f)(2Z) = co<0>2—k"gk(zo + > m* ¥ (f. ©aj2.a) 4 KT 9 (m)(Z)
meN, m=1 mod QZ

Cusp-forms are mapped to cusp-forms by M.

Proof. Recall that v = v;; X vy as characters of the Jacobi-group SL>(Z) x H(Z),

thus vV = vﬁ. Therefore by lemma 3.5 we have @ := f - Oy/2 4 € [MI2(Z), k, %, V4d d]-

First assume d < 6. Then v? # 1 is non-trivial and every f € [Mp,(Z), k —
%,'\poj/ld] is a cusp-form, i.e. cg(0) = 0. Thus in the notation of [15, Th. 1.12] we
have M(f) = Lift; (). Note that the series defining M (f) converges for all k > 0 in this
case, since @ is a cusp-form. Now [15, Th. 1.12] implies the claim (because of Q = g, the
lift has level Q d/2 = 3).

Now let d = 6. In this case the character v is trivial and the Hecke-operators 7 () (m)
are just the Hecke-operators 7_(m) from [14]. Thus in the notation of [14, Hauptsatz 2.1]
we have M(f) = Fg. For a cusp-form @, this series is Lift; (@) as in [15] again and
converging for k > 0. In general, @ is cuspidal if and only if @(z,0) € [SL2(Z), k, 1] is
cuspidal. Thus if @ is not cuspidal, we may assume k > 4 and the series defining M (f)
converges in this case too. Now [14, Hauptsatz 2.1, Satz 3.8] imply the claim (note that
Jacobi-forms of prime index p are necessarily eigenforms of the operator W), from [8]). B

M is the MaaB-lift and the image My 4 := M([Mp,(Z), k — %, idpjﬂ 4)) is the

MaaB-space with character v x¥.
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Using the arithmetical lifting Lift_; from [15, Th. 1.12], one can define homomor-
phisms [Mp,(Z), k — %,'ﬁdpj 1, ad [F3*, k,v4 Xk] too, but these are not necessarily
injective (and they are not injective in our case, as can be seen, combining results from
section 5 with the dimension-formulas for the spaces [Mp,(Z), k — %, > pj 1, a0 given in
this section).

Note that the representation pp, p is reducible in almost all cases, i.e. except for m = %

and m = 1. For our needs, the decomposition is given as follows: J? = (—1, 1) is acentral
element in Mp,(Z). On V,,, the element 7?2 acts via Pm.b aS

(3.8) (om, b (T?) f)(x) = =i X2 f (—x).

Define W(—1) := ,om,b(fz). Since J2 is central, W(—1) commutes with p,, ,. Thus all
eigenspaces of W(—1) are invariant under p, ;. Because W(—l)2 = —idy,, W(-1)

has order 4 and non-trivial eigenspaces for eigenvalues £i only. In this case denote by
Vm.s C V, the eigenspace with eigenvalue s of W(—1). The restriction of oy, p to V,, ¢
is denoted by pp, b s. In our special cases (where 2m|6), it turns out, that p,, p s is always
irreducible (though it is not in general; compare [8] and [29]). Note that W(—1) acts as
a scalar (that is, W(—1) = cidy,, for some ¢ € C*), if and only if m < 1. Thus pp
is reducible, if m > 1 (and easily seen to be irreducible for m < 1). The decomposition
Om.b = Pm.bi ® Pm.p,—i induces a decomposition

[Mp,(Z). k. vy o7 ] = IMpy(Z). k. vy o/, 1] ® [Mp(Z). k. vy o7y i1
and via the isomorphism from lemma 3.5 a decomposition
[MI2(Z), k, t, va.p] = MI2(Z), k, t, Vg, i] ® [MI2(Z), k, t, v4,p, —i].
Via the MaaB-lift M, we also get a decomposition
Mg = Mid,i ® Mia,—i,

where My 4.5 := M(IMp,(Z), k — 3, V045 45D
The decomposition of p,, , with respect to W(—1) has to be known, if we want to
evaluate Skoruppa’s dimension-formula [29, 7] for [Mp,(Z), k, p], since for this formula,

,o(fz) has to act as a scalar.

LEMMA 3.7 ([7, TH. 4.2], [29, SATZ 5.1]). Let p : Mpy(Z) — GL(V) be a
representation of dimension n of Mp,(Z) with Mp,(Z)[N] C kern(p) for some N € N and

,o(fz) = ¢ idy with a fourth root of unity ¢. Letl; € R, j =1,--- ,n, be such that e2mil;
runs through the eigenvalues of ,o(f). Define

n
A(p):=8{j11;=0mod Z}, B(p):=) Bi(l;))
j=1
(here By is given by B1(x) =0forx € ZandBi(x) = x — |x]| — %forx € R\ Z). Then
fork e %Z one has
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dim[Mp,(Z), k, p] — dim[Mp,(Z), 2 — k, p*]eusp
0, if p(—1) # i *idy,

_ 1 1 . —~
_l5 dim(p) + 5A(,o) — B(p) + Zt)i(eZ’”k/4 trace p(J))

+%m(e2”“"+%>/6 trace p(JT)), if p(=1) =i~2idy.

Note that for £ > 2, the formula gives an explicit expression for dim[Mp,(Z), k, p],
since dim[Mp,(Z), 2 —k, p*]cusp = 0 1in this case. For k = % and k = % there is an explicit
formula for dim[Mp,(Z), k, p] in [29] also.

Let R = Clgy4, gl be the graded ring of elliptic modular forms. Using the dimension-
formula from lemma 3.7 as in [29, Satz 7.3], we see that

[Mp,(Z), 3Z, pl := € IMp,(Z), k, p]
ke%Z

always is a free module of rank dim(p) over R. By lemma 3.5, the same is true for the
analogously defined spaces [MJ»(Z), %Z, m, vy p] of Jacobi-forms.

A basis for the eigenspace V,, s is given as follows (recall f{ € V,, being the charac-
teristic function of x € (m + Z)/2mZ and W(—1)? = — idy, ): For s € {£i} let

s =Sy —s W=D eV,

If 2x # 0 mod 2m then f  # 0. If on the other hand 2x = 0 mod 2m then we have
W(=1) f§ = —i(=D)?™f,ie. f£ €V, _j1ym. Now let

Bos = {f;’ X € (m+7)/2mZ, 2x =0 mod 2m, s = —z(—1)2m} ,
Biy = {f;’s x € £(m + Z)/2m7Z, 2x £ 0 mod 2m] .
Then By := Bps U Bis is a basis of V,, ;. Using this basis, one can calculate all the
parameters in the dimension-formula from lemma 3.7 for p,; p . For example one has
—27ix%/2m s 2mix2/2m —2mix%/2m
~ e + ise e
trace(om,p,s(J)) = Z S + Z T ,
xiE(m+2)/2mZ, mt x:(m+2)/2mZ, mt
2x#0 mod 2m 2x=0 mod 2m
—2mix%/4m | i 2mwix?3/4m —2mix%/4m
PN e + ise e
trace(omps(JT) = »_ : + e
x:t(m+7)/2m7, 2mi x:(m+72)/2mZ, 2mi
2x#0 mod 2m 2x=0 mod 2m

Of course it is possible to find explicit formulas for the traces for all the irreducible con-
stituents of oy, 5, as was shown for m € Z in [29].
The following table lists the parameters of the dimension formula for [Mp,(Z), k —

%, p] with p = T)’dpj/z J.+» Where d is a divisor of 6 and v = p%k € I}
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d| s | A(p) | B(p) | dim(p) | trace p(J) | trace p(JT) 0

1fi| o | 1 ol A VOl
20-i| o | Z| 2 0 T
3li | o | 2] 2 0 =B Bpt
3|t 0 E_i 1 _l_jgl @ ?ng/z,—i
6|i| 0o | L | 2 0 =3+ oy

6|—i| 1 | 4 4 0 S i

Using these parameters, we can calculate the dimensions of the MaaB3-spaces My 4 .
The following table lists the dimensions of My 4 for k < 14. There are no nontrivial
forms of weight k < 0. The last two columns list the character v of the forms in the Maal3-
space My 4.5 and a basis of the module [MJ2(Z), Z, d /2, (v4,1)‘1, s] over R. We use the
following abbreviations:

pr12 =12 € IML(Z), 1, 5, v41, ],
pur = 221 ¢ (ML @), 4,1, 50, i1,
n
6,372 :=n""032 € MI(Z), 6, 3, vi2,1, —i],
$12,1 .
83 = Fﬁi‘/z € [M)2(2),8,3,1, =i,
$o.3 := "] 032 € IM2(2), 9,3, 1,

12,1 ,
$11,3 1= ¢n—4171/2173/2 € [M)(2),11,3, 1, i].

d| s |1 23 5 7 8 9 10111213 14| v

1|i|1 00 01 101 01 0 2 0|u%|dLip
2—z01010102020203M¢f,l/2,¢4,1
300 101010202020/ « |6, ¢
3/=i|0 00001000101 01|« [¢630

6|/ i 1000000001010 1 0| I |do3 dii3
6|-i|0 0010207203040 4] 1 E4,3,E6’3,¢>?’1/2,¢>8,3

Note that it is easy to deduce the dimensions of My 4 for k > 15 from the values
given in the table, since for k > 2 we have by the dimension formula dim[Mp,(Z), k +
12, p] = dim(p) + dim[Mp,(Z), k, p].
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For k = 1 and k = 2 lemma 3.7 does not give the dimensions of My 4 ; explicitly
and the results from [29, Satz 5.2] have to be used. Alternatively, some ad hoc arguments

can be given as follows: Since [Mp,(Z), %Z, p] is a free module of rank dim(p) over R,
we find dim[Mp,(Z), k, p] < dim[Mp,(Z),k + [, p] for all 4 < [ € 2N. Especially
dim My 45 < rgs(k) := min{dim My44,4.5, dim Myy645}. Fork = 1 or k = 2 this
minimum is 0 except for the following cases:
dim M 1; = 1, since ﬁzﬁpf/z’i is the multiplier-system of the n-function and r; ; (1) = 1.
dim My, _; = 1,since r5,_;(2) = 1 and ¢f’1/2 € [MIx(Z), 2, 1, vs.0, —i].
dim My 6, —; = 0, since dim[MJ»(Z), 2, 3, 1] = 0 was proved in [8, Th. 9.1].
dim M 3; =0, sincedimMj e —; =0and 0 # ¢ € [M2(Z), 1, %, V12,1, i] would imply
0 # ¢? € [M1x(Z),2,3, 1, —i].

In section 5 we need the restriction of MaaB-lifts to the diagonal, which in the case of
paramodular forms is properly defined by a certain Witt-operator (see (5.1)).

If f € [Mp,(Z), k — %, T)'d,o:; 2 41> then we associate with f the “Nullwert” of the
Jacobi-form ( f, ©&y/2,4), which we denote by ¥ f, i.e.
W)@ = ([, Og2,4)(z,0).
Obviously we have ¥y f € [SLy(Z), k, 7¥]. The mapping f > ¥ f is a surjective ho-
momorphism (as we will prove immediately). The importance of this surjectivity is, that
we can show now, how to lift certain modular forms from the diagonal as MaaB-lifts to

paramodular forms. Although the following lemma is needed only in a very few special
cases later on, we give a slightly more general statement here.

LEMMA 3.8. 1) Letd be adivisor of 6 and v = pu’k € F3*ab.
[Mp,(Z), k — 5,505 5 41 = [SLa(Z), k, 7], f > W0 f

is a surjective homomorphism.
2) Let f € [Mpy(Z),k — %, p;‘ ¢] and assume that (Y f)(t) = >

is an simultaneous eigenform of all Hecke-operators TV (m). Then

1
(3.9) W3(M())(z1,23) = m%f(m)%f(a)-

neNo a(n)eZﬂmt

Proof. 1) [SLa(Z),k, %] = {0}, if k is odd, since V(—I) = 1. Thus we may
assume k = 0 mod 2Z. Then there are three cases left:

Case 1: d = 2. Since [SL;(Z), k2] = nS[SLg(Z), k — 4,1] by lemma 5.1 and
$4,1(7.0) = ¢12,1(z, 0)/n'°(7) = 12(2), a pre-image of n° f in [MI2(Z), k, 1, (va,1)°]
is given by ﬁ¢4,1 f.

Case 2: d = 3. Since [SLy(Z), k,7°] = n'?[SLy(Z), k — 6, 1] by lemma 5.1 and
¢6,3/2(7, 0) = 2n'2(7), apre-image of n'2 f in [MJ2(Z), k, 3, (va1)* ] is given by 3¢6,3/2 f -
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Case 3: d = 6. Since a basis of [SL2(Z), k, 1] is given by gjgé’ for all (a, b) € N(z)
with 4a + 6b = k, it is sufficient to find pre-images of these forms. A pre-image of g glg
in [MJ2(Z), k, 3, 1] is g4 g6E4 3,ifa > 0, or g4gg 1E(,,3, if b > 0.

2) Assume f € [Mp,(Z), k—1 3 ,03’6] is such that ¥ f is an simultaneous eigenform
of all Hecke-operators 7 (m) (which are the usual Hecke-operators on elliptic modular
forms as in [26] or [21]), i.e. o f [k TV () = I¥- 2“”) ;W f forall I € N (because of the
normalization of 7 (1) chosen here). From the deﬁmtlon we derive for @ = (f, ®3)

O3, TV m)(21,0,23) =m™ 3 3" a7Fe (L )T
ad=m, b mod d
a(m)

= (l]/of)|k']‘(1)(m)(zl)62ni3mz3 — k2
a(l)

(Wo f)(z1)e?™i3mas

Finally we find

vva(/w(f))(m,a)=M(f)<zo1 ZO/3) 00 5 91(e1)

+ ) m* s |kT“>(m><Z1, 0,23/3)

meN
—a(O)—gk<m)+Z @)

(1 (W f)(z1) e 1Im3/3

— a(O) gk(z1) + (!I/of)(zl)E Z a(m)e™ims

By
= a(0) <—gk(21) w(%f)(m)) + w(%f)(m)(%f)(m)

= m(%f)(m)(%f)(&),

since (0) = 0 or ¥ f is a multiple of the Eisenstein-series g, (in which case ﬁ Y f(z1)
= SR g, (1)) u

If a suitable Hecke-theory for [SLy(Z), k, V] with nontrivial characters ¥ had been
developed, one might prove formulas for the restrictions of the MaaB-lifts to the diagonal
in the same way in general.

4. Divisors and Borcherds-products

Using results of R. Borcherds [1], it is possible to find paramodular forms (of degree 2)
with known (zero-)divisors, so called Borcherds-products. Borcherds theory is formulated
in terms of orthogonal groups and paramodular forms arise from these using well-known
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isomorphisms of the underlying groups. A description can be found e.g. in [15, Sec. 1.3]
and, more general, in [12].

Throughout this section we assume ¢ € N. Consider the lattice L := 7> x Z* x Z
equipped with the quadratic form g, ((I1, l2, I3, 14, B)) = 1l + I314 — tﬂz. L has signature
(2,3). Let

K={leM|l) =1 =0},
Ki={Y =1, y3,2) € KQR[q(Y), y1 >0},

Associated with L is the half-space H;, = K ® R + i, which is essentially the Siegel-
half-space Hl; of degree 2 via the biholomorphic transformation

71 22
w; Hy — Hyp, = (21,123, 22) -
22 13

Let O(L)* = O(L) N SO(L ® R)*, where SO(L ® R) ™ is the connected component
of the identity in the special orthogonal group of L ® R. PO(L)* = O(L)™" /{#1id} acts on
H} as a group of biholomorphic transformations.

As described in [15], the arithmetic structure PO(L) " corresponds to the group PI;™*
= ["®/{£]} in the symplectic setting, i.e. there is an isomorphism £2; : PI;™* —
PO(L)™, which is compatible with the identification of the associated half-spaces via wy.
In other words, there is a commutative diagram

Prm x H, 2o po(Ly*t x Hy
H, SN H,

where the vertical arrows indicate the action of ;™ resp. O(L)™" on the corresponding
half-space. Explicit formulas for £2; and the action of O(L)™ on HJ can be found in [12,
Prop. 2.6] and [15, Sec. 1.3].

Using the automorphic embedding (£2;, w;) we can think of modular forms for (sub-
groups of) O(L)™ as paramodular forms. Note that the weight of the forms is the same on
both sides (see [3, Sec. 3.3] for details on the translation of factors of automorphy). We do
not worry about how multiplier-systems correspond exactly, since they are left unspecified
in the next theorem and we will determine them in the symplectic setting.

Let L’ be the dual of L (with respect to the bilinear form b,(x, y) = ¢,(x + y) —
q:(x) — q:(y) associated with ¢;). Explicitly L' = Z? x 7Z? x %Z, thus we can identify

L'/L with %Z/Z (in the obvious way). For A = (I1, 1, 13,14, B) € L' with ¢;(A) < 0

define
L I3 —1B
A :=1Z e Hy|l; — tlpdet(Z) + trace Z)=0¢.
—tB  tly
This is a rational quadratic divisor. The discriminant of Aiss(th) = —4tg;(A), if A e L'

is primitive. As is easily seen, ;™ acts on the set of rational quadratic divisors of fixed
discriminant: Given M € I'™ and A a rational quadratic divisor, the set MA := {M -
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VAWAS )\J-} is again a rational quadratic divisor with SO = s(MAL) (in fact this action
realizes a homomorphism ;™ — PO(L)™, which is essentially the isomorphism £2;).
Following Freitag and Hermann [12, Lemma 4.4], one can show:

LEMMA 4.1. All rational quadratic divisors of fixed discriminant are equivalent
under I,

Note that the I-orbits of rational quadratic divisors of fixed discriminant are distin-
guished by their image in the discriminant-group L’/L. The importance of lemma 4.1 is,
that if 7 is prime, any modular form for I'}*, that vanishes on a rational quadratic divisor AT,
vanishes on the orbit I7*A+ = merrM AL, This will be used extensively in section 5 to
determine generators of graded rings of modular forms for I';* (with multiplier-systems).

SetVy :={f:L'/JL — C}andlet p; : Mp,(Z) — GL(V) be the Weil-representa-
tion associated with the quadratic module (L'/L, g; mod Z) as in [1, Sec. 4]. Then py =
,ot*’o (where pt’f o is the representation of Mp,(Z), which already appeared in the preceeding
section) via the identification 5- +— x of L'/L = %Z/Z and Z/2t7Z. Again we have a
decomposition p;, = pr.; D pr.—i, Where py, s is the restriction of py, to the eigenspace of
,oL(fz) with eigenvalue s. Note that py ; = pz*,o,ﬂ because of the dual. O(L)™ acts on
Vi by (Mf)(l) = f(M~'1). The discriminant-kernel O(L);; C O(L)* is the subgroup,
fixing V; pointwise. Via the action on V, there is an induced action of O(L)™ on the
space [Mp,(Z), k, prlmer. The crucial point is, that O(L)*/O(L)j = O(L/L’) is the
orthogonal group of (L' /L, g, mod Z). Therefore, the action of O(L)™ commutes with the
action of Mp,(Z) via pr, on V[, (and, for square-free ¢ at least, O(L/L’) decomposes pr.

into irreducible constituents).
f € [Mpy(Z), k, pr.Imer has a Fourier-expansion

f= Z Z e, n)eZNinrflc )

leL'/L —ookneq: ()47

Note that ¢(/, n) is defined for [ € %Z also (via the identification of %Z/Z with L'/L).
The following fundamental theorem is a special case of [1, Th. 13.3] or [3, Th. 3.19]
for lattices of signature (2, 3).

THEOREM 4.2 Let f € [Mp,(Z), —%, oL Imer With Fourier-coefficients c(l, n) for
l € L'/Land —oco < n € q(l) + Z. Assume c¢(I,n) € Z foralln <0andalll € L'/L.
Then there is a (meromorphic) modular form B(f) of weight c(0, 0)/2 for the subgroup
of O(L)* fixing f with some multiplier-system, such that all zeros and poles of B(f) are
along rational quadratic divisors A+, A € L' primitive, q;(\) < 0, with multiplicity

Z c(ri, rzq, 1)) .
reN

We will refer to the functions B(f) as Borcherds-products. As the name suggests,
these functions have product-expansions, but these are converging only “near cusps” in
general. As explained above, we think of Borcherds-products B( f) as paramodular forms
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also. A description of the product-expansions of Borcherds-products in the symplectic
setting was given in our special case in [15, Th. 2.1] (there the input are “weak” Jacobi-
forms instead of meromorphic vector-valued modular forms, which is essentially the same
by arguments analogous to lemma 3.5).

Every f € [Mp,(Z), —%, OLImer 1s fixed by the discriminant-kernel O(L);l|r at least.
But the irreducible constituents of oy, are fixed by nontrivial subgroups of O(L)*/ O(L);lr
in general. For weight —%, non-trivial contributions to [Mp,(Z), —%, OLImer only come
from py, ; since [Mp,(Z), —%, OL.—ilmer 18 trivial. This implies (using the explicit formula
for p;‘io(fz) given in (3.8)), that if f € [Mp,(Z), —%, OLImer, then f(z)(=1) = f(r){),
i.e. f isinvariantunder M € O(L)™, if M acts as multiplication by —1 on the discriminant-

group (at least). Note that £2,(V;) acts as —1 on the discriminant-group. Thus Borcherds-
products are always paramodular forms for I7* at least. In general, there is a distinguished

irreducible constituent of py, which is invariant under the full group O(L)™.
We summarize results from [1, Th. 13.3], [3, Th. 3.19] and [15, Th. 2.1] in our special
case (in the symplectic setting):

COROLLARY 4.3. Let f € [Mp,y(Z), —%, OL Imer With Fourier-coefficients c(l, n)

forl e L'/L and —o0o < n € q;(I) +Z. Assume c(I,n) € Zforalln <0andalll € L'/L.

1) There is a (meromorphic) modular form B(f) of weight c(0,0)/2 for I';* with
some multiplier-system, such that all zeros and poles of B(f) are along rational quadratic
divisors A*, A € L' primitive, q; () < 0, with multiplicity

Z c(ri, rzq,()»)) .

reN
2) Letnp:= —min{n € %Z lc(l, n) # 0 for somel € L'/L}, define

1 1
A= Zc(l/Zt, —1’/4t), B= 5 Zlc(l/Zt, —1%/41),

€T leN

1
C=7 > Pe(/a,-IP/4, D= )" o1/, —n —I*/41)
leZ neN, leZ

and set Ly = (B% Bc/z) (this is essentially the Weyl-vector from [1, Th. 13.3]). Then B(f)
has a product-expansion, converging for I(Z) > ng, of the form

B(f)(Z) = p2itrace(hw Z) 1—[ (1 _e27ri(nzl+lzz+tmz3))c(l/2t,mn712/4t)

(m,n,01)>0

(here (m,n,l) > Omeans m,n € No, l € Z andl < 0 orm +n > 0). Moreover, the

Borcherds-product satisfies B(f)(V; - Z) = (=1)PB(f)(Z).

Borcherds lift is multiplicative: For f and ¢ satisfying the assumptions from corollary
4.3, one finds B(f + g) = B(f)B(g).

In the remaining part of this section, we give some explicit examples of Borcherds-
products for Iy, For applications in the following section, we are interested in forms
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with “minimal” divisor (and “small” weight). From Borcherds theorem it is heuristically
clear, that we have to determine meromorphic forms in [Mp,(Z), —%, PL.iImer With poles
of minimal order. The following table lists representatives A; of all the orbits £23(173)A;
with primitive 1; € L’ such that —1 < g3(;) = % < 0. The 4™ column gives the
defining equation of the rational quadratic divisor )‘f with discriminant S(Aj.-) =j <12
In the 5™ column, the order ordy, of the Borcherds-product ¢ = B(f), associated with a
form f € [Mp,(Z), —%, pL.i Imer With Fourier-coefficients c(/, n), along )\;- is given, if f
has a pole of order < 1 at the cusp ico.

J Aj ap) | Z ordy (A1)
1(0,0,0,0, %) —5 |2=0 |cG.—-H +cE -5 +cG. -5
41(1,0,0,0,2) | =L |mn=1 TJed, -

91 (1,0,0,0,3) 3 =1 led =3

12 (0,0,1,-1,0) | —1 |z3=1z1|c(0,—1)

In order to construct Borcherds-products explicitly, the only question that remains is:
How to find modular forms f € [Mp,(Z), — %, oL.i Imer With explicitly given singularities?
There are (at least) two possibilities:

1) The first method is to find holomorphic modular forms of weight 12n—1/2,n € N
with multiplier-system oy, ; and divide by Af,. In other words, we can use

[Mp,(Z), =5, pr.ilmer = Y AT IMpy(Z), 12n — 3, pr.i1.
neN
Since for + = 3 we have pr; = pgko _;» and we gave an explicit basis of the module
[MI>(Z), %Z, 3,1,i] = [Mp,(Z), %Z, p;‘o _il over R in section 3 on page 13, all forms in

the spaces [Mp,(Z), 12n — %, pL.i] can be calculated explicitly in principle.
2) There is a second method givenby Borcherds in [2]. The result from
[2, Th. 3.1] states, that there is a “simple” criterion for a given singularity of type

Qneqy+zhd,n)qg")eryr (at ioo) to be extensible to a meromorphic form in
—o0&n=<0

[Mp,(Z), —%, orLlmer: There exists f € [Mp,(Z), —%, o1 Imer (With Fourier-coefficients
cr(l,n)), such that h(l,n) = cyp(l,n) for all I and n < 0, if and only if every g €
[Mp,(Z), %, pf] (with Fourier-coefficients c4 (I, n)) satisfies
4.1) Z Z h(l, )y, —n) = 0.

leL'/L neqi()+7Z,n<0

Note that in general for f € [Mpy(Z),2 — k, plmer and g € [Mp,(Z), k, p*], we have
(f, g9) € [SL2(Z), 2, 1]mer and therefore Zl,nso crl,n)cg, —n) = 0.
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Speaking informally, we can say that all obstructions for a given singularity to
be extensible to a meromorphic form in [Mp,(Z), —%, oL ]lmer come from forms in
[Mp,(Z), %, pi]. Therefore we call [Mp,(Z), %, pi] the obstruction-space for [Mp,(Z),
- %a PLImer.

Using the dimension-formula from lemma 3.7 (and the parameters from the table on
page 13 as well as ,oz = p3,0), we find dim[Mp,(Z), %, ,oZ] = 1. A generator of the
obstruction-space can be realized as a vector-valued Eisenstein-series E g as given in [4,

Th. 4.8]. The Fourier-development of E s is given by (here we set g = ¢27{7)

Es(m)(0) =1~ 24q" —72¢> 4+ 07

E%(r)(l/é) = E%(r)(5/6) = —1gV12 _ 1241312 4 0(g?5/12)
Es(1)(2/6) = E5(1)(4/6) = — 7913 —55¢*3 £ 073
E% (1)(3/6) = —34¢>* — 484"/ + 0"V .

Note that £ s actually lies in [Mp,(Z), %, pz ;] thus for/ € L'/L we find

~EsO) = (pf(T)E;) (@O = ~iE5 (D) (D).

If we restrict the order of the pole at ico to be < 1, the obstruction-problem (4.1)
admits the following singularities H; = }_,.c, 1)4+7, —1<n<o 1. n)q", 1 € L'/L, as solu-
tions:

Hy = Oq_l—i-2q0 Oq_1+l2q0 Oq_1+32q0 1q_l+24q0
H1/6:H5/6: 1q71/12 _qul/lz _qul/lz Oq71/12
Hyj6 = Hyjg = 0g~1/3 14713 0g~1/3 0g~1/3

Hj = 0g-3/4 g3/ 1q-3/4 0g-3/4.

The corresponding Borcherds-products are denoted by 1, Y6, Y16 and Y12 (the index
always indicates the weight of the Borcherds-product). The following table lists the weight
k and the order of the Borcherds-product v along the rational quadratic divisors )‘f of
discriminant < 12 (there are no zeros along rational quadratic divisors of discriminant
> 12). The 6™ column gives the multiplier-system v of the Borcherds-products. In the last
four columns, the parameters A, B, C and D from corollary 4.3 (originally [15, Theorem
2.1]) are listed.

k{Af|Af |25 |Ap| v | A B C D
1 10|00 |xxp?|1/6 172 172 0
K | 1/2 172 3/2 0
0
1

6/ 0|1]0]|0
16 0|0 |1 0 I 4/3 1 4
1210|100 1 X 1 0 0
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Since the multiplier-system of Borcherds-products is left undetermined by theorem
4.2, we have to give additional arguments. Again, there are several possibilities:

1) Let v be the multiplier-system of the Borcherds-product yx. From the parameter
A and the product-expansion of ¥ in corollary 4.3, one can easily deduce ¥ (Z + (§9))
= ¥y (2), thus v (trans (§ Q) = ¥4 = (u%k) (trans (§ 8))6A. Furthermore,
Y|k V3 = (=1)¥* Py follows directly from corollary 4.3, thus v(V3) = (—D*P.

Since each character v € I3 is uniquely determined by the values v (trans (J))

and v(V3), we have v = (u?k)04 xk+P.

2) Alternatively, some ad hoc arguments gan be given for some of the Borcherds-
products at least. By the way, we get other useful information as a side-effect. For example,
we can identify some Borcherds-products with certain Maaf-lifts.

Note that modular forms of weight £ with multiplier-system v necessarily have zeros
along certain rational quadratic divisors AL, if this divisor is fixed pointwise by a trans-
formation M, € I7*, such that j,(M;, A # v(M,) for all Z € A+. Here are some
examples of such transformations for (some of) the rational quadratic divisors of discrimi-

nant < 1:
(/1 0
L _
Z el =>Z_Z_<0 _1):|,

N T o 0 1
Z e :Z_Z_<0 _1)}+<1 0),
([0 /3
Z €At Z=1Z .
St _<1N§ 0 ﬂ
In all cases we have j>(M;, Z) = —1. Thus for f € [F3*, k, Xj (/,LZK)I] we find
M. DR #L
f(Z)=0on {af, if (=D* # (=1,
/\llz, if (D% # (=17 .

Some special cases frequently needed later are

“4.2) f =0 on )»f‘ for f € []“3*’ 2k +1,v] @lkeZve F3>f<ab)’
4.3) f =0 on )»j‘ for f € [1*3*’ 2k,K(X/L)j] @llk, jeZ),
“4.4) f =0 on )»f‘z for f € []*3*’ 2k, X(KIL)’/] @llk, jeZ).

Now we can determine the multiplier-system of the Borcherds-products i1 and .
Let 0 # f1 € Mj.1,; be a generator of the Maaf3-space of weight 1 with character

x w2k It follows from (4.2), that f; = 0 on )»li. Then f1/1 is a non-trivial paramodular
form in [DF3*, 0, 1] = C. Thus we have ¢r; = cf] for some ¢ € C*. Especially, ¥; has
multiplier-system x 1%«
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Let 0 # fe € Mg 3,—; be a generator of the Maal3-space of weight 6 with character
k. It follows from (4.3), that fs = 0 on Aj‘. Then fg/ve is a non-trivial paramodular
form in [DF3*, 0, 1] = C. Thus we have ¢ = cfg for some ¢ € C*. Especially, ¥ has
multiplier-system « .

The other Borcherds-products can’t be dealt with in the same way. But for 2 at
least, we can find some other arguments (we do not need /¢ in section 5). Note that the

zeros of 1o imply, that the multiplier-system of 15 is of the form v = Xj /,Ll for some
J, 1 € Z (if ¥ would appear in v, then we had ¥12 = 0 on )»j using (4.3)). We want it to be
X Y12 cannot be a MaaB3-lift in this case and we cannot give an argument analogous to
and ¥ but have to find another realization of vr15. The idea is the following: If we find a

non-trivial form f € [I3, k, &], where & is a non-symmetric character in F3ab (such as 1)
of order n, then " — f" |nk V3 is a non-trivial form with character y for F3* "= "k Vais
non-trivial, since otherwise we would have f"*(Z) = f" |nk 3 (Z) = (—1)_”]‘f” (V3-Z) for
all Z € Hy. Because H is simply connected, this would imply f(Z) = (=1)"%¢ f(V3-2)
for all Z € H, with ¢ a fixed n't root of unity. From this we could derive for all M € I3

EM)F(Z) = fliM(Z) = ¢ (fl&VaM) (Z) = L E(VAM V5 ) £ V3(2)
=EVsMV; )Y f(2).

Thus & would be symmetric, in contradiction to our assumption on &.

As an example of such a form for I3 with non-symmetric character, we want to define
an Eisenstein-series E4(uu1) € [I3,4, 1] of Klingen-type for I3 with (non-symmetric)
character p1 by

Esu)(Z) = Y M) (M-2))1|sM(2)
M3 0\
(here (M -Z)* is the upper left entry of M - Z). The summation is well-defined, since 1] is
the multiplier-system of 1%. Moreover, limy_ oo E4(121)(§ f;) = n8(1) # 0, thus E4(u1)
is non-trivial. Since w1 has order 3, the argument given above, now would lead to vy, €
[I75, 12, ], if the sum defining E4(u1) would converge absolutely. But this is not the
case. Probably the convergence can be fixed using some sort of Hecke-trick. We avoid this
minor problem in the following way. We define an Eisenstein-series Eg (/1,%) € [[3,8, M%]
of Klingen-type for I3 with (non-symmetric) character /1,% by
Esui(Z):= > (M) n'*(M-2)")1|sM(Z).
M3 00\
Note that the sum converges absolutely now and is well-defined again, i.e. we have
0 # Eg(pL%) € [I3,8, M%]- In this case, the argument given above leads to 0 # fo4 =
Es(u)® + Eg(uD)3]24Vs € [I'f,24, x]. From (4.4) we get fo4 = 0 on A{,. Thus
f12 := faa/Y12 is a non-trivial form of weight 12 for I';" (with some multiplier-system).
f12|12V3 = — f12 would imply fi2/v¥12 € [DF3*,O, 1] and fo4 = CI//122 with some
constant ¢ € C*. As a square, 1//122 can have multiplier-systems of 3-power-order only,
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but the multiplier-system of f>4 has order 2. Thus we must have f12|12 V3 = fi2 and
1//12|12 V3 = —v12, i.e. the multiplier-system of 17 is of the form v = X/,Ll for some
I € Z. Now if pu! # 1, then W3(¥r12)(z1.23) = v12(3 230/3) would be a form of weight
12 on H; x Hj with (non-trivial) multiplier-system vf)l X v,%’ . With [ € {1, 2}, lemma 5.1

leads to W3(¥12) (21, 23) = ¢ ¥ (z)n®(23)9 124/ (21) g 1241 (z3) for some ¢ € C*. On the
other hand we have

Lk K 0 1k p[73 0
Wa(f [kV3)(z1,23) = (= 1) f<V3 (0 Z3/3)) =D f<0 Z1/3>
= (=D*W3(f)(z3. 21)

in general. Since ¥12|12V3 = —12, this implies W3(¥12)(z1, 23) = —W3(¥12)(23, 21)-
But obviously 7 (z1)n* (23)¢ 12-4/(21) g 12—4/(z3) is invariant under interchanging z; and
z3. Thus in this case W3(1r12) = 0 would follow, but /12 does not vanish on )»f- (identi-
cally). All together, 12 has multiplier-system .

REMARK 4.4. 1) Thereisno M € I}, which fixes )»f)- pointwise. Thus vanishing

along )\é- can’t be correlated to certain combinations of characters/weights as with the other
rational-quadratic divisors (of norm < 12) above.

2) The characters u/ cannot be used to derive zeros of forms along any rational-
quadratic divisor in general. For example, both 1//12 and 16 have character u, but their
zero-divisors are disjoint.

3) All four Borcherds-products v already appeared in [15] (Th. 2.6, (3.22), Exam.
1.17 and (4.8) in [15] resp.).

4) In some sense the problem of finding generators for [DI7%", Z, 1] is as easy as
in the Siegel case (that is [D 17, Z, 1]), since in both cases the rational-quadratic divisors
can be separated by Borcherds-products (i.e. for any rational-quadratic divisor A there is
a Borcherds-product vanishing exactly along the orbit I’,*)»L with order 1). The crucial
point is, that there are no cusp-forms in the obstruction-space in both cases, since by results
of Bruinier [3] the Eisenstein-series in the obstruction-space determines the weight of a
Borcherds-product only. By the same reason it can be expected, that the analogous problem
for I’y can be solved in the same way (though everything is known in this case by [19], for
I and F2* at least). For ¢t > 4 the obstruction-space seems to have dimension > 2 (the
obstruction-space is in fact contained in the subspace associated with ,oz’ ;). The following

table lists D = dim[Mp, (Z), %, ,oZ] for some small 7.

t (1234567891011 1213 14 15 16 17 18 19 20
D({1112222333 3 43 4 45 45 46

In general, finding generators for [DI*, Z, 1] gets more and more involved, as the dimen-
sion of the obstruction-space increases.
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5. Graded rings of modular forms

The divisor )\f- can be used for a reduction process in the same way as it was used by
Freitag in the case of Siegel modular forms of degree two. More precisely, if we can lift all
(generators for the ring of) automorphic forms on A+, that arise from paramodular forms

of level 3 by restriction to A+, then for any paramodular form a suitable linear combination
with this lifts is divisible by the Borcherds-product v; from the preceding section. It will
turn out, that it is sufficient to lift generators of a certain subring only, if we make use of
some of the other Borcherds-products too.

First we introduce some notation: Forn € Nlet C, := C[Xq, --- , X,,] be the ring of
polynomials in the n (independent) indeterminants X1, - - - , X,,. If I < n we have a natural
inclusion C; ¢ C,,. For P € C, and j € {1,---,n} let degj(P) denote the degree of P
with respect to X ;.

We define the Witt-Operator W3 on functions f : H, — C by

(5.1) W3(f)(z1,23) == f(zol 10 ) .
323

From the embedding of SL,(Z) x SL2(Z) — I3, defined in section 2, we see, that f €
[F3*, k, v]implies W3 (f) € [SL2(Z) x SL1(Z), k, V], i.e. W3(f) is an elliptic modular form
of weight k with character V in each of the two variables separately. Moreover from the
transformation of f under V3 it follows that W3(f)(z3, z1) = (—D*v(V3) W3 (f)(z1, 23).

First we need more information about [SL,(Z), k, V]. The following lemma 5.1 is
well-known. On the other hand it is prototypical for analogous statements in higher dimen-
sions, such as our main theorem 5.2 and the following lemmata. Therefore we sketch a
proof of lemma 5.1 also.

Forevenn € Nset I'(n) := kern(vZ) C SLy(Z) (this is the invariance group of n™).

LEMMA 5.1. Letn € N be an even divisor of 24 and m = %
1 (1), Z, 1] := EPII (), k, 11 = CIn", g4, g¢] -

keZ
More precisely, for j € {0, --- ,m — 1} we have
[SL2(Z), k, v}/ 1 = 0" [SLa(Z), k —nj/2,1].

2) The generators of [I" (n), Z, 1] satisfy the relation (n")" = 117(92 - gg).

3) Let P, = X — %(Xg — X%) € Csand I = (P,) C C3 be the ideal, generated
by P,. Then [I"'(n),Z, 11 = C3/1.

Proof. 1) Ifn € Nis an even divisor of 24, then DSLy(Z) C I'(n) and I"(n)/
DS1,(Z) actson [I"(n), k, 1] as a group of commuting operators. Thusif f € [I"(n), k, 1],
then we can decompose f = Zj:Z/mZ fj with f; € [SL2(Z), k, v?,j]. Therefore without

restriction, we can assume f € [SL2(Z), k, v:,'j] with j € {0, --- ,m — 1}. Then
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fa+ D)= (T)f(x) =/ f(r)

and f has a zero at ioco of order % at least. This implies fj/n”j € [SLa(Z), k — nj/2,1].
2) follows from (n"*)" = A1p = %(g?1 — gg), as is well-known.
3) The relation stated in 2) shows P, (n", g4, g6) = 0 on H;. Now assume that
Q e Cj satisfies Q(1", g4, 9¢) = 0on Hj. We have to show, that Q € . After reducing Q
modulo /, we may assume deg; (Q) < m. Write Q = Z;":ol X{ R; with R; € C[X2, X3]
for all j. From our assumption Z;fl;ol ™7 R (94, 9¢) = 0 on H follows. The summand

(n")j Rj(g4, g¢) has character vzj . Since these characters are all different, all summands
have to vanish separately. Thus we get R;(g4, g¢) = 0 on IH; for all j. Because g4 and g
are algebraically independent, R; = 0 follows. Thus we arrive at Q =0 € [. |

Using lemma 3.8 we can choose MaaB-lifts Ex € Mye —i C [I5,k, 1] for k €
{4, 6, 12}, such that

W3 (Ek)(z1,23) = g5 (21) 94 (23) .

Especially, W3(E4), W3(E¢) and W3(E12) generate the ring [SLa(Z) x SLy(Z), 2Z,
1]symm of symmetric modular forms of even weight on H; x H; (here symmetric means
f(z1,23) = f(z3,z1) for all (z1,z3) € H; x Hy; see e.g. [11, III, Folg. 4.1]). Moreover
these forms are algebraically independent on H; x Hj. Note that, despite the notation,
Ey is not necessarily an Eisenstein-series for I';* of Siegel-type. From dimension-formulas
we will prove later, it can be seen, that in fact Ej is an Eisenstein-series (up to a non-zero
factor) for k € {4, 6}.

Now we choose a MaaB-lift f4 € Ma 2 _; C [I75, 4, ul, such that

Wa(fa)(z1,23) = n® (2B (z3) .

In fact, f4 is uniquely determined by this property, since dim M4 2 —; = 1. Note, that if
f € Map i, then W3(f) € Cnd(z1)n®(z3) by lemma 5.1. Note too, that W3(f) = 0
implies f = 0: If W3(f) = 0, we have f/wl2 € [I75,2,1] and W3(f/w12) = 0 again, thus
FUt € 1Iy,0, 4% = {0} and f =0,

Let ¥, Y12 be the Borcherds-products from section 4. Without loss of generality we
can scale these products in such a way, that

W3 (W) (21, 23) = 12 (z1)n"*(22)

W3(¥12) (21, 23) = A12(z1)92(22) — 92 (z1) A12(22) -

Note that [SLy(Z) x SLa(Z), 12, 1]ansi (the space of anti-symmetric modular forms of
weight 12 on H; xH ) has dimension 1 and is generated by A12(z1)g¢(22)*>—g¢(21)*A12(22)
(and 12 is the smallest weight £ such that dim[SLy(Z) x SL2(Z), k, 1]ang 7~ 0).

With the MaaB-lifts just chosen and the Borcherds-products, constructed in section 4,
we have found enough forms in order to generate the graded ring of paramodular forms for
DTIy. We summarize the properties of these forms (the lower index always indicates the
weight of the modular form):
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Ey €[I3, k1] fork =4,6,12, fa €15, 4, ul,
Ui €Ty, 1, xepl, Y6 € (I, 6,61, Y2 €Iy, 12, 1.

For later use we define some forms (the lower index is the weight again):

he = Y eIy, 6,11, hs= yifielly,8,11, hio= yiffelly,10,1],

ho = ¥ive € 15,9, x1,  hii= vivefs € [IF,11, x1,

hat = YiVevnz € (I3, 21,11, hos = Y1 faveyiz € (15,23, 1].
Now we state our main result.

THEOREM 5.2.

) (DI, Z, 11 := @DIDIy, k. 11 = CLfa, Y6, Y12, Y1, E4, Eg, E1a].
keZ

2) Y1, E4, Eq and E1; are algebraically independent.
3) The generators of [DIy, ZZ, 1] satisfy relations of the form (with certain constants
c;j € C and polynomials py, p2 € C4 and p3 € Ce)

fi =¥ faEs = pr(¥}, E4, Es, En) |
Ve — ¥ fa Es = po(Y{, Es, Ee, E2)
Uiy = p3(W fa, U7 £ 97, Ea, Eo, En) .
4) [DI3,Z,11 = Cq/1, where I = (P1, P2, P3) C C7 is the ideal, generated by
Pi =X} —c1 X X1 X5 — p1(X$, Xs, X6, X7),
Py =X} — 2 X5 X1 X5 — pa(X$, X5, X6, X7)  and
Py = X3 — p3(X3 X1, X X3, XS, X5, X6, X7) .

Proof. 1) I73/DIY acts on [DI5, k, 1] as a group of commuting operators. The
decomposition of [ DI, k, 1] into the eigenspaces of these operators is

(5.2) [DI5, k, 1] = @ [T, k, v].
VGF;ab

Now let f € [DI5, k, 1]. Using the decomposition (5.2), we can write f = Zverg*ab f
with f,, € [I7%, k, v]. Therefore we can assume f € [F3*, k, v] without restriction.

Case 1: k = 1 mod 2Z. Then W3(f) = 0by (4.2) and f/v1 € [I5, k — 1, vxxul.

Case 2: k = 0 mod 27Z, v(V3) = —1. Then f = 0 on Af‘z by (4.4), thus f/v¥12 €
(I3 k=12, vx].

Case 3: k = 0 mod 2Z, v = «k(x )’ for some j € Z. Then f = 0 on )»j- by (4.3),
thus f/ve € [I%5, k — 6, vk].
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Case4:k =0mod2Z,v = p,j,j € {0, 1, 2}. Now, W3(f) € [SL2(Z) x SL»(Z), k,

v,%j lsymm, 1.€. W3(f) is a modular form for SL;(Z) with multiplier-system v?,j in each

of the two variables. Using lemma 5.1 we find W3(f)(z1,z2) = ¥ ¥ (22)h(z1, 22)
with a symmetric modular form & € [SL2(Z) x SL2(Z), k — 4j, 1]symm. Thus there is a
polynomial P such that

h(z1,23) = P(94(z1)94(23), 96(21)96(23) » 912(21)912(23)) -

This shows, that W3(f) can be lifted as f4j P(E4, Eg, E12) to a paramodular form on H.
Now we have f — f] P(E4, Eg, E12) = 0 on Al and (f — f] P(E4, Es, E12)/¥1 €
(15 k=1, xiep/ ™1,

2) Assume Q € C4 satisfies Q(Y1, E4, E¢, E12) = 0 on Hp. Write Q =
ZIENO X’IR,, where R; € C[X3, X3, X4] for all r. Restricting to H; x H, we find

0= W3(Q(1, E4, Es, E12)) = Ro(W3(E4), W3(Eg), W3(E12)) .
Since W3(E4), W3(Ee) and W3(E|>) are algebraically independent (on H x H), Rg = 0
follows. Then Q = Xi(3_,cn, X Re+1) is divisible by X and 0 = D reng X1 Rt
satisfies é(l/f], E4, E¢, E12) = 0 on H; again. Inductively R, = O for all r, and Q = 0
altogether, follows. Therefore ¥r1, E4, Eg and E, are algebraically independent.

3) Obviously, £, ¥¢ € [I'y.12, 1]and ¥, € [Ty, 24, 1]. From lemma 5.3, 1) it
follows, that ff, 1//62 and wlzz are polynomials in kg, h1o, he, E4, E¢ and E12. Thus the
claim is true for 30122- If P € Cg is a polynomial, such that P(hg, k19, he, E4, Es, E12) €
[F3*, 12, 1], then P is of the form P = ¢X X4 + p with ¢ € C, p € C[X3, X4, X5, X6,
since all monomials of weight 12 containing hg or hjg are given by hg E4. Therefore the
polynomials for f43 and 1//62 are of the form given in the lemma.

4) The relations stated in 3) show P;(f4, V6, Y12, ¥1, E4, Eg, E12) = 0 on H for
Jj = 1,2,3. We have to prove, that if Q € C7 is such that Q(f1, Ve, Y12, V1, E4, E¢, E12)
= 0 on Hp, then Q € I := (P1, P>, P3). Therefore assume Q(f1,---, E12) = 0 on Hb.
Moreover, after reducing Q modulo /, we can assume deg;(Q) < 1, deg,(Q) < 1 and

deg,(Q) < 2. Write Q = ZIENO XZR,, where R; € C; satisfies degy(R;) = O for all ¢
(i.e. X4 does not appear in R;). Now we show Ry = 0. First write

Ro= Y X['XP?X3Urryy With  Uppyry € CIXs, X6, X7] forall 71, 72,73
0=<r1=2,
0=ra,r3=1

Restricting to A7, we find (here f ® g is defined by (f ® ¢)(z1,22) = f(z1)9(z2))
O = W3(Q(f4a R ElZ))

=Rom®* @ 0%, 12 @ n'2, W3(¥/12),0, 94 ® 94, 96 ® 96 912 @ 9 12)

= > @ MY 22 W3(Y12) 3 Uryryrs (94 ® 942 96 ® 962 912 ® 912)

=M =4, V=,r3=
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on H; x Hj. Since the characters of the summands come from the factors ( ® 1)81+1272
and are therefore all different, and because each summand is (—1)"3-symmetric (under
(21, 24) — (24, 21)), the summands vanish one for one. Thus we have Uy, (94® 94, 96®
96, 912 ®9g12) = 0 onH; x H; and, by the argument applied in the proof of 2), Uy, ,,,; = 0
for all r1, rp, r3. This proves Ry = 0. Now Q = X4(Z,€N0 XZR,_H) follows, i.e. Q is
divisible by X4, and we can apply the same argumentto Q/ X4 again. Inductively we derive
R; = 0 for all t. Therefore Q = 0 € I, as had to be shown.

Since all generators for [DI5*, Z, 1] are modular forms for F3* (with multiplier-
systems), we can in principle find generators for the graded rings of paramodular forms
for all groups I" with DI’y C I' C I'y". We give three examples. The following lemma
will be useful for a reduction-process from forms on a 4-dimensional half-space, e.g. the
hermitian half-space of degree 2. An analogous example was given by Freitag [11], where
he used paramodular forms in [ I, 27, 1] to determine generators for the ring of symmetric

Hermitian modular forms of degree 2 for Q(+/—1). Actually, this was our prime motivation
for the present note and we hope to use the results presented here in order to find generators

for the ring of Hermitian modular forms of degree 2 for Q(+/—2) soon.
LEMMA 5.3.
) (15,22, 11 := @5, k, 1] = Clhg, hio, he, E4, Es, Enal,
ke2Z

2) he, E4, Eg and E12 are algebraically independent.
3) The generators of [I5, 27, 1] satisfy the following relations (here ¢ € C and
p1 € Cy are the same as in theorem 5.2, 3))

h3 = hehio
hi, = hs(cihs E4 + pi(he, Es, Eg, E12)),
hghio = he(c1hs E4 + p1(he, Ea, Eg, E12)) .
4) [I5,2Z,1]1 = Cg/1, where I = (P, P2, P3) C Cg is the ideal, generated by
Py =X} — X2X3,
Py = X3 — X1 (c1 X1 Xa + p1(X3, Xa, X5, X¢))  and
Py =X1X7 — X3 (a1 X1 X4 + p1(X3, X4, X5, X6)) .

Proof. 1) Let f €[5, k, 1] and k = 0 mod 27Z. We apply the reduction process
from lemma 5.2. First there is a polynomial Q; € Cs, such that f — Q{(E4, Eg, E12) =0
along )»ll of order 2 (since k is even). Then we have g, = (f — Q1(E4, Ee, Elz))/%z €
[F3*, k—2, M%]. Now there is a polynomial Q> € Csz, such that gl—f42 0>(E4, Eg, E12) =
0 along )»f- of order 2 again. Thus g, = (g; — Q2(E4, Ee, E12))/tp12 e[, k—4, ul
and once more, there is a polynomial Q3 € Cs, such that g, — f4 Q3(E4, E¢, E12) = 0
along A{ of order 2. Finally g3 = (g, — Q3(Ea4, E¢, E12))/¥} € [Ty, k — 6, 1] follows.
Summarizing, we have
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f = g1¥} + Pi(E4, Ee, E12) = (g2} + f} P2(E4, Ee, E12))¥? + Pi(E4, Eg, E1)
= (93¥1 + fa P3(E4, Es, E)V{ + Vi fi P2(Es, E6, E12) + Pi(E4, E6, E12)
=93 1/f16 + fa Kﬁi‘ P3(E4, Eg, E12) + f42 %2 Py(E4, Eg, E12) + P1(Ey4, Eg, E2) .

Inductively f € C[yS, i fa, 2 f2, Es, Eg, E12] follows.
2) follows from theorem 5.2, 2).
3) The first relation follows directly from the definition of the 4 ;’s. For the other

two relations remember f43 = c1hg E4 + p1(he, Ea, E¢, E12) from theorem 5.2.

4) The relations stated in 3) show P;(hg, hio, he, E4, E¢, E12) =0for j =1,2, 3.
Now assume that Q € Cg satisfies Q(hs, h10, ke, Ea, Es, E12) = 0 on Hy. Reducing O
modulo /, we can assume that the degree of Q as a polynomial in X and X» is 1 at most,
i.e. Q is of the form

0 =Up+ X1U1 + X2Up, with Uj € C[X3, X4, X5, Xg] for j =0,1,2.
Write U; = Zkzo X’;Rj,k with R € C[X4, X5, X6], j =0, 1,2, k € Ng. We show, that
Ro,0 = R1,0 = R2,0 = 0. Note that kg and h1¢ vanish along )\f- of order 4 and 2 resp. Thus
by restriction to )»ll we have
0 = W3(Q(hs, hio, he, Ea, Ee, E12)) = W3(Uo(he, E4, Ee, E12))
= Ro,0(W3(E4), W3(Es), W3(E12))

on H%. This implies Ryg,0 = 0. Now, on Hj, we have

0= ZhléRo,k(Em Eg, E12) + ZhShéRl,k(E4» Eg, E12)

k=1 k=0
+ Z hlohléRz,k(Em Eg, E12)
k=0

=y (1ﬁ? Z hE Ro k+1(E4, Ee, E12) + Z W} fEhER k(Ea, Eo, E12)
k>0 k>0

+ Z fFhE Ry i (Ea, Es, E12)> .
k>0
Now the term in the brackets has to vanish on Hj and by restriction to )»ll we get 0 =

W3 (f4)2R2,0(W3 (E4), W3(Eg), W3(E12)) on H%. Since f4 does not vanish along )\f-, this
implies R2 0 = 0. Now, on H, we have
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0= Z h]éRo,k(E4, Ee, E12) + Z hshléRl,k(E4, Eg, E12)

k=1 k>0
+ Z hioht Ry k(Es, Eg, E12)
k>1

=y <¢12 Z % Ro k+1(E4, Eo, E12) + Z FEhER) 1 (E4, Es, E1)
k>0 k>0

+ Z RV ThE Ry k1 (Es, Eg, E12)> .
k=0

Again the term in the brackets has to vanish on Hy and restriction to )»f- leads to 0 =

W3(f4)2R1,0(W3(E4), W3(Ee), W3(E12)) this time. As before Ry o = 0 follows. Alto-
gether we see, that

0= X3<Z X5Rokr1 + X, Z X5R1 k1 + X2 Z X§R2,k+1>
k>0 k=0 k>0

is divisible by X3. Now the same argument can be applied to O/ X3 again. Inductively,

R; = 0forall j, k follows. Therefore Q = 0 and Q € I is proved. |
LEMMA 5.4.
) (I3, Z, 11 := @DIIF, k, 11 = Clhai, ha3, hg, h1o, he, Ea, Ee, E12],
keZ

2) The generators of Iy, Z, 1] satisfy the following relations (here c; € C, py,
p2 € Cq and p3 € Cg are as in theorem 5.2, 3))

hg = hehio ,
"3y = hs(cihs E4 + p1(he, E4, Eq, E12)),
hghio = he(c1hg E4 + p1(he, E4, Eg, E12)),
h3, = he(cahg E4 + pa(he, Ea, Ee, E12))p3(hs, hio, he, Es, Ee, E12)
h33 = hio(cahs E4 + pa(he, Ea, Ee, E12)) pa(hs, hio, he, E4, Ee, E12)
haithaz = hg(cahg E4 + pa(he, Es, Ee, E12)) p3(hs, hio, he, Es, E¢, E12) ,
ha1hg = hashe,
haihio = hashs,
hazhio = hai(c1hg E4 + pi(he, E4, E6, E12)) .

3) [IF,2,11=Cg/l, wherel = (Pj|j=1,---,9) C Cgis the ideal, generated
by
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P = X3 — X4Xs,

P, = Xﬁ — X3 (c1X3X6 + p1(Xs, X6, X7, X3)) ,

Py = X3X4 — X5 (c1X3X6 + p1(Xs, X6, X7, X3)) ,

Py = X{ — pa(Xs, Xa, Xs, X¢, X7, X3)Xs ,

Ps = X3 — p(X3, Xa, Xs, X¢, X7, X5)Xa,

Ps = X1X2 — p(X3, X4, X5, X6, X7, X3) X3,

P =X1X3— XoXs5,

Py = X1 X4 — X7X3,

Py = X2X4 — X1 (c1X3X6 + p1(Xs5, X6, X7, X38)) ,
with Py = (c2X3X6 + p2(Xs, X¢, X7, X3)) - p3(Xs5, X6, X7, X3) .

Proof. 1) Let f € [Ik,1]. If k = 0 mod 2Z, then f € Clhg, hi9, he, E4, Eg,
E12] by lemma 5.3. Therefore assume k = 1 mod 2Z. The reduction-process from
lemma 5.2 now leads to f/v1vev12 € [I%,k — 19, u] and the existence of P € Cjs,
such that f/y1¥6¥12 — faP(Es, E, E12) vanishes along ;. Now f = (f/y1¥6¥12 —
faP(Ey4, Es, Elg))/wl2 € [, k — 23, 1] follows. We arrive at

f = v1vev12(W2 f + faP(Es, Es, E12)) € hat (I3, k — 21, 1]+ hos[T5, k — 23, 1]

Since k — 21 and k — 23 are even, lemma 5.3 again implies the claim.

2) The relations involving h%, h%o and hghi are the same as in lemma 5.3. The
remaining relations follow from the definitions of the 4y together with the relations from
theorem 5.2.

3) The relations stated in 2) show P;(h21, h23, hg, h1o, he, E4, E¢, E12) = 0 for

j=1,---,9. Now assume that Q € Cg satisfies Q(ha1, h23, hg, h10, he, E4, E¢, E12) =
0 on Hj. Reducing Q modulo /, we can assume that the degree of Q as a polynomial in
X1, -, X4 is 2 at most. Furthermore all terms of degree 2 in X1, - -- , X4 can be reduced

to X»X3. Then Q is of the form (here we set Xg = 1)

0= Z X;Uj+ X2X3Un3 with Uj e C[Xs, X6, X7, Xg] for j =0,---,4,23.
0<j=<4
Write Uj = Y 420 X5Rjk with Rjx € C[Xe, X7,Xg], j = 0,---,4,23, k € N.
We show, that R;o = 0 for j = 0,---,4,23. Note that 1, iy = Iﬂf’lﬂmﬁlg, hyy =
Y1 faveVna, hs = Y1 fa, hio = ¥i fF and hashg = ¥ f7 V612 vanish along A{- of or-
der O, 3, 1, 4, 2, 5 resp. Since these orders are all different, we can proceed exactly as in
the proof of lemma 5.3, i.e. by extracting the highest power of y; and restriction to )\f- of
Q(ha1, - -+, E12), successively Rgo = R2,0 = Ra0 = R1,0 = R3,0 = Rs,0 = 0 follows.
Altogether we see, that Q is divisible by X5 and the same argument can be applied to O/ X5
again. Inductively, R = O for all j, k follows. Therefore O = 0 and Q € I is proved. B
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Since the dimensions dim[ I3, k, 1] are known by results of Ibukiyama ([17], [18]), we
determine generators for [I73, Z, 1] in order to compare the dimension formulas. Note that
Iz = kern(y).

LEMMA 5.5.

) 13,2, 1] := @13, k. 11 = Clho, h11. hs, hio, Y12, he, Ea. Ee, Enal,
keZ

2) The generators of [ I3, Z, 1] satisfy the following relations (here c; € C, pi,
p2 € Cq and p3 € Cg are as in theorem 5.2, 3) again)

h§ = heho,
hiy = hs(cihs E4 + pi(he, E4, Eg, E12)),
hghio = he(c1hg E4 + p1(he, Ea, E¢, E12)) ,
h3 = he(cahs Eq4 + p2(he, Ea, Eo, E12))
hi) = hio(cahg E4 + pa(he, Es, Ee, E12)) |
hoh1y = hs(cahg E4 + p2(he. E4, Ee. E12))
hohg = hiihe,
hohio = hi1hg,
hiithio = ho(c1hg E4 + pi(hs, Ea, Eg, E12)) ,
vy = p3(hs, hio, he, E4, Ee, E12) .

3) [U3,2,11=Co/l, wherel = (Pj|j=1,---,10) C Co is the ideal, generated
by

Pl = X3 — X4Xs,

Py = X; — X3 (c1X3X7 + p1(Xe, X7, X3, X9))
P3 = X3X4 — X6 (c1X3X7 + p1(Xe, X7, X3, X9)) ,
Py = X] — Xe(c2X3X7 + p2(Xe, X7, X3, X0)) ,

Ps = X3 — X4(c2X3X7 + p2(Xe. X7, X3, X)) ,

Ps = X1X2 — X3(c2X3X7 + p2(Xe, X7, X3, X9)),
P =X1X3 — X7 Xg,

P =X1X4—X2X3,

Py = X2 X4 — X1(c1 X3X7 + p1(Xe, X7, X3, X9)) ,
Pio = X3 — p3(X3, X4, X6, X7, X3, Xo) .

Proof. 1) Let f e [I3,k,1]. We can decompose f into eigenfunctions of V3,
ie. f = fi+ fy with f,, € [I'{, k, v]. Thus without restriction assume f € [I7, k, v],



Paramodular Forms of Degree 2 and Level 3 191

v € {1, x}. By lemma 5.3 it is sufficient to show, that f is a polynomial in k9, 11 and ¥r12
over [I'5, 27, 1]. In order to prove this, we apply the reduction process from theorem 5.2.

Case 1: k =0mod 2Z, v = 1. Then f € [[5, 2Z, 1].

Case 2: k = 0 mod 2Z,v = x. Then f/v¥12 € [I5, k=12, 1]and f € Y2[[55, 27, 1].

Case 3: k = 1 mod 27Z, v = 1. Then f/vy1vev12 € [I5, k — 19, u] and there exists
P € C3, such that f/y1¥e¥12 — faP(Ea, Eg, E12) vanishes along )»ll of order 2. Now
f = (f/invs¥ns — faP(Ea, Es, E)/¥} € (I3 k=21, 11and f = yivevnaf +
ViveVi2 faP(Es, Eg, E12) € hoyri2[ 15, 22, 1]+ hyiyial I3, 2Z, 1] follows.

Case 4: k =1 mod 2Z, v = x. Then f/y1y¥e € [I5,k — 7, u] and there exists P €
Cs, such that f/y1¥e — faP(Ea4, Ee, E12) vanishes along )»ll of order 2. Now f =
(f/4n s — faP(Es, Ee. Ex))/Y} € (5. k=9, 11and f = Y6 [ + Y16 fa P(Es. Es,
E12) € hol I, 2Z, 11+ hy 1[I, 2Z, 1] follows.

2) As in the previous cases (lemma 5.3, lemma 5.4), all relations follow from the
definitions of the 4 ;’s and the relations, stated in theorem 5.2.

3) The relations stated in 2) show P;(hg, h11, hg, h1o, Y12, he, E4, E¢, E12) = 0
for j = 1,---,10. Now assume Q € Cy satisfies Q(ho, h11, hs, h19, V12, he, E4, Eg,
E1p) = 0 on Hp. If we reduce Q modulo (Pjp), we can assume that degs(Q) < 1.
Note that X5 does not appear in any of the other generators of /. If we reduce Q modulo
(P1,---, Py), we can assume, that the degree of Q as a polynomial in X1, ---, X4 is 2 at
most. Furthermore all terms of degree 2 in X1, - -- , X4 can be reduced to X, X3. Then Q
is of the form (we set Xo = 1 as before)

0= Z Xl5< Z X;Uj+ X2X3U23,1> with  U;; € C[Xe, X7, X3, Xo]
0<i<1 0<j<4

forl =1,2,and j =0,---,4,23. Write U;; = Zkzo XéRjﬁ],k with R x € C[X7, X3,
Xol], forl =1,2,j =0,---,4,23, k € Ngo. We show, that R;;o = 0 forl = 1,2,
j =0,---,4,23. Principally, we can now proceed as in lemma 5.4, since 1, hg = wfl/fg,,
hit = V1 fave, hs = ¥i fa, hio = ¥{ f§ and hoshg = ] f{ W12 again vanish along A
of order 0, 3, 1, 4, 2, 5 resp.. The only difference is, that we now always get a sum of two
terms (since Q is linear in X5 by assumption)

R 0,0(W3(Es), W3(Es), W3(E12)) + W3(¥12)Rj 1,0(W3(E4s), W3(Ee), W3(E12)) ,

which has to vanish on H%. But since W3 (v12) is antisymmetric (under (z1, z3) — (21, 23)),
whereas all W3(Ey) are symmetric, the summands have to vanish one for one. The proof
now runs as before again, i.e. since Rj; o = 0 forall j, [, Q is divisible by X4 and, induc-
tively, O = 0 as well as Q € I follows.

From theorem 5.2, lemma 5.4 and lemma 5.5 we can deduce the generating functions
for the dimensions dim [I", k, 1] for I' = DI, I'; and I';. We find
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COROLLARY 5.6.
A+ + )1 +50 +112)
1-H1—-tH1 - t6)(1 —t12) ’

> dim[DIy k115 =

kEN()

1468 4710 4421 4 423 4 431
(1 —H1 =921 —112)

> dim[Iy k1] =
kGN()

)

A+ A+ B+ + 0 4P

Z dim[I3, k, 1115 =
keNy 1= =921 —112)

9

In the case of I';, the same generating function was already deduced by Ibukiyama [18]
from his general formula for dim [17, k, 1]cusp for k > 5, givenin [17].
Modular functions on I';*\ H are quotients of modular forms. Thus lemma 5.4 allows
us to determine the function-field of the Satake-compactification 5" \ Hy of Iy \ Hy. Let
h

K=C [%, 2—2, F] From the relations in lemma 5.4, 3) we deduce
4 4

2
(@) _hehio _ hg Es hio .
E? Ey  Ej he E4Ee

and therefore Eﬁlg(, € K. The polynomial p in theorem 5.2, 3) satisfies pj (he, E4, E¢, E12)

€ [F3*, 12, 1]. This implies

p1(X1, X2, X3, X4) = c11 X7 + c1nX1 X3 + c13X3 + 614X§ + c15X4
for some constants ¢; € C. Recall that p; was chosen in such a way that f43 —clhg E4 =
p1(hs, E4, Eg, E12). Restricting to )»f- we find
W3(f)(z1,23) = (18 (20)n8(23))° = Ana(zD) A12(23)
=ci3 (96(21)96(Z3))2 +cua (94(11)94(13))3 +c15912(21)912(23)

(because of W3(he) = W3(hg) = 0). This implies c15 # 0, since Ajp @ Az € Clgs ®
94, 96 @ ggl. Using the relation for h%o in lemma 5.4, 3) we deduce

( hio )2 _c1Eghg + hg (c1ihg + cinhe Eg + ci3 E§ + c14E} + c15E1)

E4Eq EA%Eé
2 13 2 2
hs\" E; (hg) hg <h6> hg he hg
=i| =] | — ) tcii—=|—) +co——+c13—
I(EA%) h% Eg llEé% E¢ lei E¢ B Ei
e B3 (E)z oyl B2
2 12 2 2
E2n2 \E E? E?

Therefore % € K. Now we can prove
6
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COROLLARY 5.7. I\ Hy is a rational variety. The function-field is given by
hZ
Clls he 6|
E?’ E¢’ E3
hg

Proof. Let K = C [%, 2—2, F] as above. Assume f is a modular function on
4 4

I’} \ Hy. Then f = g/g" with g, g' € [I'{, k, 1] is a quotient of modular forms of some
weight k € N. We may assume k € 4N (since g/g’ = g*/¢>g’ as modular functions). In

ng

this case, every monomial hg' E}? E¢* E3 of weight k = 6n +4ny + 6n3 + 12n4 satisfies

ny ng 2\ (n3+ny)/24ny
—k/4; ny pny N3 png he E12> (E6>
E h!'E*E°E ;S =|— — — ek.
4 6 4 F6 F12 <E6> ( Eé Ei
Since k is even, lemma 5.4, 3) implies, that g is of the form g = Uy + hgUj + h1oU3z with

polynomials U; € Clh¢, E4, Eg, E12]. Therefore E;kMUo, E;k/4(E£U1), E;k/4(E4E6U3)

€ K and

hg 2 k4 hio _1-k/4
—F U+ —EFE EcUs e K
E2 4 1 E.Eq 4 6U3

4

k/4

- —k/4
E;Mg = EJM Uy +

follows from the remarks above. Since the same argument applies to g’, we find f =

—k/4 —k/4
9/9' =E, /g/E4 Py ek

Since the field of modular functions on I';" \ H has transcendence-degree 3, the gen-

erators given in the corollary have to be algebraically independent. |
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