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On the Graded Ring of Modular Forms of the Siegel 
Paramodular Group of Level 2 

By T. IBUKIYAMA and E ONODERA 

In this paper, we shall describe the concrete ring structure of the graded 
rings of modular forms belonging to the Siegel paramodular group Fpara(2) 
of degree two with polarization diag(1,2). We also show that the Satake 
compactification of the quotient variety by this group is rational. Here, for 
each prime p, we define the group Fpa~(p) by 

rPara(p) := {g E M4(Z) [ tgJ2(P)g = J2(P)}, 

where for any number d, we put 

(11~ i) 0 0 
J2(d) = 0 0 " 

- d  0 

The main results will be given in Section 1. 
Historically, FREITAG [1] has obtained the ring structure for a certain group 

which contains our group Fpara(2) with index 2. He used some geometri- 
cal method. Since the dimension formula for l"para(p) has been known by 
IBUKIYAMA [9], we can use more direct method here, and his result is also 
obtained as a corollary of our result. Various generators of the ring have 
been considered by various approach (cf. GRITSENKO [2], [3], GRITSENKO and 
NIKULIN [4], [5], or RUNGE [15]). But the ring structure was not known as far 
as the authors know. 

Actually we treat the discrete subgroup K(p) of Sp(2, R) which is GL4(Q)- 
conjugate to Fpara(p) and defined by 

K(p) =Sp(2,Q) n pZ Z Z 
pZ pZ z �9 
pZ Z Z 

(The fact that K(p) is conjugate to Fpara(p) is well known and was remarked 
also in the introduction of I~t~IVAMA [9] without proof. As for the written 
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proof, see e.g. HULEK, KAHN and WEINTRAUB [7] or GRITSENKO [2].) This 
group K(p) has been treated in IBUKIYAMA [8], [9] as one of standard parahoric 
subgroups in some different context and several results there are applicable 
here. For example, the dimension formula for Siegel cusp forms of weight 
k _> 5 belonging to K(p) was given in [9] for each prime p, and some forms 
of small weights belonging to K(2) have been given explicitly with their L 
functions in [8]. If we take the Iwahori subgroup B(2) of level 2 defined e.g. 
in [8], then K(2) contains B(2) (cf. [6]) and the ring structure of modular 
forms belonging to B(2) has been known in IBUKIYAMA [10]. We shall use 
these facts. By the way, the structure of A(F(2)) for the principal congruence 
subgroup of degree 2 is well known by IGUSA [12] and our K(2) contains F(2). 
But F(2) is not a normal subgroup of K(2), and we need some work to get 
A(K(2)). In Section 1, we shall state the main result, and the proof will be 
given in Section 2. 

The first author is grateful to the Max Planck Institut f'tir Mathematik, 
Bonn, during his visit when this work was finished. 

1 Main results 

1.1 Preliminary definitions. For any ring S, we denote by Sp(n, S) the usual 
symplectic group of size 2n defined by 

Sp(n,S) := {g E M2n(S) I tgjg  = j} ,  

where 

We denote by Hn the Siegel upper half space of degree n defined by 

Hn := {Z ~ M,(•) I 'Z = Z, Im(Z) > 0}. 

Let F be a discrete subgroup of Sp(n,R) with covolume finite. We denote 
by Ak(F) or Sk(F) the space of modular forms, or cusp forms, of weight k 
belonging to F, respectively. We define two graded rings as follows. 

A(r)  = Ak(F) and A v,n(r) = 
k=0 k=O 

For any F(Z) ~ Ak(F), we write 

F I [g] = Fig[g] = F(gZ) det(CZ + D) -k, for g = (~ 2) E Sp(n,R). 

Next, we define several discrete subgroups of Sp(2, ~,.). For each prime p, we 
define "Iwahori subgroup" B(p) by 

B(p) = Sp(2,Z) n 

z z z 
pZ Z Z 

pZ pZ Z �9 

pZ pZ Z 
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We need several groups which contain B(2). Put 

(OO o i/(i i) (i ~176176176 i/ s o =  0 0 , S l =  0 0 , s 2 =  0 1 ' 

0 0 0 1 1 0 

We also put F'o(p ) = B(p) t2 B(p)s2B(P), and Fo(p) = B(p) to B(p)soB(P). These 
are groups. As for more explicit description, cf.[8] p.601. By the general theory 
of  Bruhat-Tits, we get K(p) = B(p) U B(p)soB(p) tO B(p)s2B(p) U B(p)sos2B(P) 

and the group K(p) is generated by F'o(p) and F'o(p ). Now, put 

0 0 0 
1 0 --1 

p 0 
P = ~  0 0 

Then we get Fo(P ) = PF'o(p)p -1 and pK(p )p  -1 = K(p).  We denote by K*(p) 
the group generated by K(p) and p. We have [K*(p) : K(p)] = 2. 

1.2 Generators of Modular forms. For any m = (m', m") E Z 2n (m', m" E Z,), 
we define a theta constant Om,,m" = Om,m"(Z) by the following function of 
Z ~ H . .  

Om,,m"(Z) = Z exp(2ni (t(p + m'/2)Z(p + m'/2)/2 + '(p + m'/2)m"/2)). 
p E Z  n 

We also put 

x = (0~ooo + 0 ~ ,  + 0~o,o + 0~o,,)t4, 

y = (0oooo0ooo10ooao0oo11) 2, 

Z = (0~1oo - 0o411o)Z/16384, 

K = (001000011001000010010110001111)214096, 

T = (0oloo0ono)4/256, 

where the theta constants are for n = 2. Each of  the above is a modular form 
which belongs to B(2) of weight 2, 4, 4, 6, or 4, respectively. We define the 
following functions. 

F4 = X 2 + 3Y + 3072Z + 960T, 

F6 = X 3 --  9 X Y  - 9216XZ + 27648K + 4 0 3 2 T X ,  

Fs = 1 6 Y Z  -- 1 6 X K  + 6 4 T  2 - T X  2 + 1024TZ + T Y ,  
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F12 = 32X3K + 64X 2 Y Z  -- 9 6 X Y K  - 98304XZK + 5 X 4 T  --  14X2y  T 

-- 14336X2ZT - 6 1 4 4 X K T  + 9YZ T  + 1 8 4 3 2 Y Z T  + 9437184Z2T 

- 896XET 2 + 1152YT 2 + 1179648Z T 2 + 36864T 3, 

G10 = 4X2K -- 1 6 X Y Z  + 1 2 Y K  + 12288ZK + X 3 T  - X Y T  

- 1 0 2 4 X ZT  + 7 6 8 K T  - 6 4 X T  2, 

G12 = 3014656TXZZ - 2 9 4 4 T X E y  + 12582912KXZ - 12288KXY 

+ 184320T2Y - 188743680T2Z - 1152TY 2 + 1207959552TZ 2 

-- 1024X4Z + 2097152xEz  2 + 3145728YZ 2 - 1073741824Z 3 

+ x g y  _ 2X2y2 _ 3 0 7 2 y E z  + y3,  

Gll = 00000000010001000011001000011001000010010110001111 

12 12 12 
01001 -- 01100 X (01000 -- -}- 0~11)/1536 (=  ~11 in [10]). 

Proposit ion 1. The function F4, F6, Fs, Fx2, Gin, G12, or Gll defined above is 
a modular form which belongs to K(2) and of  weight 4, 6, 8, 12, 10, 12 or 11, 
respectively. The first 5forms belong also to K*(2), and we get Gll I [p] = - G l l  
and G12[ [p] -- -G12. Besides, F8, FI2, G10 and Gin are cusp forms. 

The p r o o f  o f  this Proposi t ion will be given in Section 2. 

1.3 Main results. We denote  by B the following subring of A(K(2)) 

B = ~[F4,F6,Fg, F12]. 

Theorem 1. The modular forms F4, F6, Fs, F12 are algebraically independent 
and B is a weighted polynomial ring. The graded ring A~ven(K(2)) is given by 

A~wn(K(2)) = B @ (G12)B @ (Glo)B �9 (GloG12)B, 

and we get 

A(K(2)) = Aeven(K(2)) @ (Gll)Aeven(K(2)), 

where @ means the direct sum as modules. The ideal of  cusp forms of  A(K(2)) 
is spanned by Fs, F12, Glo, and Gll. 

The fundamental relations o f  the generators o f  the above graded ring are 
given as follows: 

G~o = F8F12/4, 

729G22 = 26873856F22 - 10368FaF12 - 71663616FgFsF12 - i0368F2F12 

+ F 6 _ 6912F44F8 - 2FaF 2 + 15925248FEF 2 - 13824F4FEF8 

+ F 4 - 12230590464F83 + GIo(82944FEF6 + 63700992F6Fg), 

= 3 - 3 .  2 6 ( - f 6 F 8 2  + 3F4F8610  - t120 o). 

Next  Corol lary was first proved by FREITAG [1] for even weights. 
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Corollary 1. We get 

A(K*(2)) = B @ (G10)B @ (GllG12)B �9 (GIlG12Glo)B. 

Now, we will give a result of  the structure of  the variety. For the sake of  
simplicity, we put 

= Glo/F4F6,  

fl 2 3 = F6/F~, 

= F s / F L  

Further, we define the automorphic functions A, B, C belonging to K(2) by 

A = 27y (20736~ 2 -- y)(G12/F3), 

B = fl (20736~ 2 -- y)2 _ 20736~2y _ 143327232~2y 2 _ ~)2 

-- 6912~ 3 + 41472cty 2 + 31850496~ 3, 

C = y (768y 2 + ~ - 13824~y + 15925248trEy -- 2~ + 20736~2). 

As an application of  the above theorem, we get 

Corollary 2. The Satake compactification 6a(K(2)\H2) = Proj(A(K(2))) is a 
rational variety. The function field is given by 

C (  G~ A kF4Fr, ~ ,  B)"  

2 P r o o f s  

2 .1  We first review some dimension formulas. 

P r o p o s i t i o n  2. (cf. [9]) We get 

~ d i m  Ak(K(2)) t k = 
k=0 

oo 

E dim Sk(K(2)) t k = 
k=0 

(1 + t 1~ (1 + t 12) (1 + t 11) 

(1 - -  t 4) (1 - -  t 6) (1 - -  t s)  (1 - -  t12) ' 

(t 8 + t  lO+ t  1 2 - t  20)(1 + t  12) 

(1 - t 4) (1 - t 6) (1 - t 8) (1 - t12) ' 

oo 

E dim Ak(Fo(2)) t k = (1 + t 11) (1 + t 6 q- t 8 q- t 10 -F t 12 -F t 18) 

k=0 (1 - -  t 4 )  2 (1 - t 6) (1 - t 12) 

Proof. As for the formula for F'0(2), this is an easy corollary to IGUSA [12]. 
When the weight k < 4, the results for K(2) is obtained from explicit structure 
of  Ak(B(2)) very easily. For general k with k > 5, as for dim Sk(K(2)), the 
above formula is the special case of  [9] Theorem 4. As for dimAk(K(2)) ,  it 
is easily obtained by the surjectivity of �9 operator by Satake [16] and the 
explicit description of  cusps of K(p) given e.g. in [11] for each prime p. We 
omit the details. [] 
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Proof of  Proposition 1. It has been written in [8] how to obtain forms in 
Ak(K(2)). We review this shortly for readers convenience. For automorphic 
form F E Ak(B(2)), write the Fourier expansion as 

F(Z) = Z a(T) exp(2n i tr(TZ)), 
T 

where T runs over positive semi-definite half integral matrices. The subspace 
n 

Ak(F0(2)) is characterized by those forms F ~ Ak(B(2)) such that a(T) = 
0 for all T with odd (1,1) component (As for the proof, see [8]). Since 
we know dimAk(F'0(2)) and the generators of A(B(2)) (cf. [10]), we can 

r 

determine Ak(F0(2)) if k is given explicitly and enough Fourier coefficients 
t t  ! ! 

are known. Now, we have Ak(K(2)) = Ak(F0(2)) n Ak(F0(2)) and Ak(F0(2)) = 
r 

Ak(F0(2)) I k[P]. So we can get Ak(K(2)) for given small k. We know that X, K, 
T are invariant by the action of p and Y 14[P] = 1024Z, z I4L o] = Y/1024. 
Hence, we can also show that F4, F6, Fs, F12, Glo ~ Ak(K'(2)). We can show 
G121 [P] = -Gx2 easily from the above. If we put G = Gll J Lol] for 

i/ 
0 0 0 

0 - 1  
P l =  1 0 ' 

0 0 

then obviously (Gll I [p])(Z) = 211G(2Z). By the theta transformation formula 
(cf. [13]), we get 

G(Z) = _ ( 0 ~ 0 1  _ 0100112 _ 0~11 +01111 ) 1 2  H 0,,/1536, 
m 

where m runs over ten even characteristics rood 2. Since dim All(K(2)) = 1, 
obviously Gill Lo] is Gll or --Gll, hence comparing one non vanishing Fourier 
coefficient, we can show it is -G l l .  If  you prefer more theoretical proofs, you 
can prove this by using the following relations (cf. [13] p. 232) 

Ooooo(2Z)Ooloo(2Z) - -  (00100(2) 2 + 0Ol lo(Z)2) /4 ,  

01ooo(2Z)O11oo(2Z) 

00011(2Z)0ml(2Z) 
OOOlo(2Z)Oollo(2Z) 

00001 (2Z)01001 (2Z) 

00001 (2Z) 2 

010OI(2Z) 2 

00011 (2Z) 2 

= (0Ol0o(Z) 2 - -  00110(Z)2) /4 ,  

= (011oo(Z)Oml(Z))/2, 

= ( O o l o o ( Z ) O o . o ( Z ) ) / 2 ,  

= (01ooo(Z)Oloo1(Z))/2, 

= (O00~(Z)O0001 (Z) -{'- O0010(Z)Ooo11(Z))/2, 

= (Ooooo(Z)Ooool ( Z )  --  OOOlo(Z)Ooo11(Z))/2, 

-~" (O0000(Z)O0011 (Z) + O0010(Z)Oooo1(Z))/2, 

0m1(2Z) 2 = (Ooooo(Z)Ooo11(z ) - Ooo~o(Z)Oooo1(Z) ) /2, 

and Riemann's theta formula (cf. [12].) Since K, YZ, and T(X 2- Y - 

1024 Z - 64 T) are cusp forms (cf. [I0]), it is easy to see Fs, F12 and G10 are 
cusp forms. Hence, Proposition 1 is proved. [] 
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Now we introduce the Witt operator. For any function F(Z) on H2, we put 

(WF)(zl,z2) = F ( ~  o g 2 ) '  

Zl, z2 E H1. We denote by Ek(Z), z E HI the Eisenstein series of weight 
k belonging to SLz(Z) having 1 as the constant term. For short we write 
Ek = Ek(Z:) and E' k = Ek(2Z0 for mutually independent variables Zl, z2 E Hb 
The image of  theta constants by W is again easily expressed by theta constants. 
Also, it is easy to see the following relations: 

E, = (z:) + Oo41(z2)O o(Z:) + 

E', = (160081(z,) + 160o4,(z1)Oam(z,) + O~o(Z,))/16 , 

E6 = (20o 4, (z2) + 0~o(Z2)) (008, (z2) + 0O4, (z2)O~o(Z2) - 20~o(Z2))/2, 

E'6 = (20o41(z0 + O~o(ZO) (320081 (z,) + 32041 (zx)O~o(Zl) -- 0~o(Z0)/64. 

Hence, it is easy to show that W(Fs) = W(Gm) = 0 and 

W (F,) = 4E'4E,, 

W(F6) = --8E'6E6, 

W(Ft2) = (E43 - E62) (E 3 -- E2)/81, 

W(G,2) = 3 -3 .  26 (E'43E 2 -- E3E'62). 

Lemma 1. Let P and Q be polynomials of  three variables which satisfy the 
following relation 

P (W(F4), W(F6), W(F12)) q- W(GI2)Q(W(F4), W(F6), W(F12)) -- 0. 

Then we get P = Q = O .  

Proof It is clear that E4, E' 4, E6, E' 6 are algebraically independent. The 
forms W(F4), W(F6) and W(F12) are invariant under the exchange between 
Ek and E' k (k = 4, 6) and G,: becomes - G , 2  by this exchange. So, we get 
P(W(F4), W(F6), W(F12)) = 0. But obviously, W(F4), W(F6) and W(FI2) are 
algebraically independent. Hence P = Q = 0 as polynomials. [] 

Proof of  Theorem 1. First, it is easy to show the formula for G 2 for k = 10, 
11, 12 in Theorem 1, since we know the relation 

64K2 = - 1 6 X T K - -  T(--16 Y Z  + X : T -  Y T -  1 0 2 4 Z T -  64T2),  

and the formula to express G21 by X, Y, Z, K and T in Appendix of  [10]. 
All we must do is to express both sides of  the formulas as polynomials of  X, 
Y, Z,  K, T of  degree one with respect to K to find out they are the same. In 
particular we get 

G2o = FsF12/4. 
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Proposition 3. Let ei(xl, x2, X3, x4), 1 < i < 4 be polynomials o f  four variables 
which satisfy the following relation 

el  (F4, F6,/78, F12) q- G12P2(F4, F6, Fs, F12) 

-t- GloP3(F4,F6,F8,F12) q- GloG12P4(F4,F6,F8,F12) = O. 

Then Pi = O, i = 1 . . . . .  4 as polynomials. In particular, F4, F6, Fs, F12 are 
algebraically independent. 

Proof. We take the image under the Witt operator of  the both sides of  the 
above relation. Since W(Glo) = 0, by the above lemma we get 

P1 (Xl, x2, 0, x4) = P2(x1,  x2, 0, x4) = 0. 

That is, for i = 1, 2, we have Pi = x3Qi for some polynomials Qi- Now, 
multiplying G10 to both sides, we get 

F8GloQ1 (F4,/76, Fs, F12) @ FsGloG12Q2(F4, F6, F8, F12) 

+ 4-1F8F12P3 (F4, F6,/78, F12) + 4-1F8F12G12P4(F4, F6, F8, F12) = 0. 

NOW dividing both sides by Fs, then applying W on both sides, and dividing 
by W(F12) --/: O, we can see as before that Pi = x3Qi for i = 3, 4, for some 
polynomials Qi. Repeating this process, we can conclude that Pi = 0 for all 
i = 1 . . . . .  4. [] 

By the above proposition, we can calculate the dimensions of  (B + GloB + 
G12B-t-GloG12B) fq Ak(K(2)) for each k to find that it is equal to dim Ak(K(2)). 
Hence our main theorem is proved. [] 

Corollary 1 is clear from Theorem. 

Proof o f  Corollary 2. We denote by :~ff the function field of  Proj(A(K(2))). We 
define elements A, B, C, ~, fl, V E ~ as in section 1. By the formula for G~o, 
we get F12/F34 = 4~2fl/7. By Theorem 1, it is easy to see that )ff is generated 
by ~, fl, ~,, and G12/F34 . Now, we define the field ~f" by :~f" = ~(~, A/C,  B/C),  
By modifying the formula for G~2, we can show that A 2 = B 2 - -vC  2. Hence 
7 = (B/C)  2 -  (A/C) 2 E of". Since C is a polynomial of  ~t and V, we get 
C E . Hence A, B E :r and also G12/F34, fl E Jl ' .  Thus we get o,~(' = 
and Corollary 2. [] 
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