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RYUJI TSUSHIMA

NOTATIONS

&y : the Siegel upper half plane of degree g
Sp(g,R),Sp(g,Z) : the symplectic group over R and Z
M{Z): (AZ+ B)(CZ+ D) !
J(M,Z): CZ+ D (the canonical automorphic factor)
p : (irreducible) holomorphic representation of GL(2, C) into GL(r, C)
I': a subgroup of finite index of Sp (g, Z)
M, (T) (Su(T)) : the space of automorphic (cusp) forms of type p with respect to I"
Mp(T') (Sg(T)) : the space of automorphic (cusp) forms of weight k with respect to I'
T'o(N) : the subgroup of Sp(2,Z) defined by C = O (mod N) (8§0)
I'y(N) : the principal congruence subgroup of level N of Sp (g, Z)
Su(To(N),x) : the space of cusp forms of type g w.r.t. I'g(/N) and Dirichlet character x (§0)
a

<7) : Legendre symbol
p

h(—p) : the class number of Q(+/—p)
X9,X3 : the set of fixed points of g and its irreducible component

7(9,Xg),7(g) : the contribution of g at the fixed point set XJ and their sum (§1)
d : a representative of the irreducible components of the fixed points sets
Ca(®), Ng(®P) : the isotropy group and the stabilizer group in G of ® (Definition 1.4)
CZ(®) : the set of proper elements of Cg(®) (Definition 1.4)
Cc(g) : the centralizer group in G of an element g of G
e@): (51)
X2(N) : the quotient space I'2(N)\ Sz
X2(N) : the Satake compactification of Xo(N)
X5(N) : the smooth compactification of Xa(N) (N > 3)
D = X3(N) — X2(N) : the divisor at infinity
[D] : the line bundle associated with the divisor D
s: Xo(N) — X2(N) : the map of Xo(N) which is the identity on Xo(N)
G(N),Go(N) : I'2(1)/T'2(N),To(N)/T'2(N)
Vu: 62 x C" with the action M(Z,v) = (M (Z) ,u(CZ + D)v) of M € I'2(1)
Ly : 64 x C with the action M(Z,v) = (M (Z) ,det(CZ + D)v) of M € T'4(1)
V. : the vector bundle I'a(N)\V,, over Xa(N) (N > 3)
Vi : the extension of V), onto Xa(N) (N >3)
Lg : the line bundle I'g(N)\Lgy over Xy(N) (N > 3)
Lg,Lg : the extension of Ly onto )zg(N) and Xg(N) (N > 3)
s; : the symmetric tensor representation of degree j of GL(2, C)
V. V,V: Vi, Vi, \7#, where p is the standard action of GL(2, C) on C?
D; : irreducible component of D
7 : the restriction of s to D1
C: m(D1) (one dimensional cusp of X2(N))
H : the hermitian metric on V defined by ImZ
h : the hermitian metric on V induced by H
0,0 : the connection form and the curvature form of h
P(V) : the projective bundle associated with vector bundle V/
H(V): the dual line bundle of the tautological line bundle of P(V')
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@ : the projection: P(V) — X2(N) (N > 3)
h : the hermitian metric on H(V)* induced by h

§0. Introduction
Let 6, = {Z € My(C) | 'Z = Z, Im Z > 0} be the Siegel upper half plane of degree g.

Let

A B
Z €GB and M = (C D) € Sp(g9,R),

and let
M{(Z)=(AZ+ B)(CZ+ D)™ *.

Then this defines an action of Sp(g,R) on &,. Let Z and M be as above, and put
J(M,Z)=CZ+ D (e GL(g,C)).
Then this satisfies the following relation for any M;, M, € Sp(g,R) and Z € &,:
J(M1 My, Z) = J(My1, M3 (Z))J(Ma, Z),

and this is called the canonical automorphic factor. Let p be a holomorphic representation
of GL(g,C) into GL(r,C). Then u(J(M, Z)) = u(CZ + D) also satisfies the above relation.

Let 1 be as above and let I' be a discrete subgroup of Sp(¢,R). By an automorphic
form of type pu with respect to I', we mean a holomorphic map f of &, to the r-dimensional

complex vector space C" which satisfies the following equalities:
f(M(Z)) =u(CZ+ D)f(2),

for any M € I' and Z € &,4. (We need to assume the holomorphy of f at the “cusps” if
g = 1.) We denote by M,,(I') the complex vector space of automorphic forms of type p with
respect to I'. If T' is arithmetically defined discrete subgroup of Sp (g, R), then it is known
that M, (I") is finite-dimensional.

Let I" be a subgroup of finite index of Sp(g,Z). An automorphic form f of type p with
respect to I' is called a cusp form if it belongs to the kernel of ®-operator ([Gd] and Definition
5.7, below). We denote by S,(I") the vector space of cusp forms of type p with respect to
I'. In case u(CZ + D) = det(CZ + D)*, an automorphic (resp. a cusp) form of type p is
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also called an automorphic (resp. a cusp) form of weight k, and M, (I") (resp. S, (I")) is also
denoted by My (L") (resp. Si(I')).

Now let ¢ = 2, and for a natural number N let

To(N) = {(é‘, g) € Sp(2,7) ‘ C=0 (mod N)}.

Let x be a Dirichlet character modulo N. We denote by S, (I'¢(IV), x) the vector space of
the holomorphic maps f of G5 to C” which satisfy the following equalities:

fF(M(Z)) = x(det(D))u(CZ + D) f(Z),

for any M € I'g(IN) and Z € G5 and belong to the kernel of ®-operator. In case x is the
trivial character, S, (I'o(N), x) is equal to S, (I'g(N)). For a prime number p the dimension
of S,,(T'o(p), x) is calculated in this paper by using the holomorphic Lefschetz fixed point
formula.

Among the contributions of the fixed points at infinity, the following exponential sum
which includes the Legendre symbol appears in our calculations:

S (e -y -y e -

p

where ¢ = exp(2mv/—1/p) and (r,s,t) € F} is over the triple such that s(r + s)(s +t) # 0
and s? # rt. The author computed this exponential sum by using computer for primes such

that 5 < p < 500 and found this sum is equal to

p(p— 1)2 0, if p=1 (mod 4)
fTwL 3 5 )
SPh(=p)”, if p=3 (mod 4)

where h(—p) is the class number of Q(y/—p). But we did not prove the above equality for
general primes. In the case of weight k£ and trivial character, K. Hashimoto calculated the
dimension of Si(I'g(p)) by using the Selberg’s trace formula ([Hal]). By comparing our
formula with Hashimoto’s result, we know the above equality holds for general primes. A
similar exponential sum appeared in [T4] concerning a representation of Sp (2,F,) and the
author presented a conjecture. This conjecture was also proved by K. Hashimoto by using
the Selberg’s trace formula in [Ha2].

Recently the author calculated the dimension of the spaces of Siegel cusp forms of

half integral weight and degree two ([T5]). When one study the possibility of “Shimura
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correspondence” (cf. [Shm]|, [Shn] for elliptic modular case) in the case of Siegel cusp forms,
it will be very important to calculate the dimension of the related spaces of Siegel cusp forms
and compare them. If we calculate them by using the holomorphic Lefschetz fixed point
formula, similar exponential sums will appear and it will be necessary to evaluate them. So
it is desirable to prove the above equality directly.

Let T'4(N) = {M € Sp(9,Z) | M = 155 (mod N)} be the principal congruence group
of level N (N > 1) of Sp(g,Z). The author calculated the dimension of S, (I'2(NN)) ([T3])
but did not publish the details of it. In §3, §5 and §6, we present them. This result of
dim S, (I'2(NN)) has applications in [Al] and in [Sto].

§1. General Dimension Formula

Let X be a compact complex manifold and V' a holomorphic vector bundle of rank n on X,
and let G be a finite group of automorphism of the pair (X, V). Let Gy be a subgroup of G
and y a character of Gy. We denote by S(Gy, x) the vector space of the global holomorphic

sections o of V' which satisfy

for any g € Gg and = € X. In this section we present a general formula which represents
the dimension of S(Gy, x) by using the holomorphic Lefschetz fixed point formula.
First we recall the holomorphic Lefschetz fixed point formula. For g € G let X9 be the

set of fixed points of g. X is a disjoint union of submanifolds of X. Let

X9 =Y X
be the irreducible decomposition of X9, and let
Ng =Y N30
0

denote the normal bundle of Xg decomposed according to the eigenvalues e? of g. We put

wovgon =TT (150 )

B
1 L+e?
:H<1+1_ei9“7»3+2(1_6i9)2$5+"'>’
B

where the Chern class of NJ(0) is

c(N3(9)) = [T(1 +zp).

B
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Let T(X¢) be the Todd class of X¢. Let V| X be the restriction of V to XZ and ch(V|XZ)(g)
the Chern character of V|X¢ with g-action ([AS]). Put

o [ch(VIXE)(g) - TT,U°(NE(6)) - T(X2)
o Xa) = { det(L = gI(NE)") } |

and

T(9)=> 7(9. XJ).

«

Then we have

Theorem 1.1. (Holomorphic Lefschetz Fixed Point Formula [AS]).

Y (=) trace (g | H(X,0(V))) = (g)-
i>0
Let V, be the fiber of V at x € X and g : V, — V() the action of g on V. Assume

that g belongs to Gy. Then we denote by g, the action of g on V' defined by g, (v) =
x(9)g(v) (v € V). We call this action of Gy on V' the “twisted” action of Gy by x. We
denote by V), the vector bundle V' equipped with this action of Gy. Replacing ch(V|XZ)(g)
by x(g9)ch(V|Xg)(g) in the definition of 7(g, XJ), we define 7(g,, Xg) and also we define
7(gy) to be the sum of 7(g,, Xg)’s. Since ch(Vy|XZ)(gy) = x(9)ch(V]Xg)(g), it holds that
7(9x, X&) = x(9)7(g, X). Hence we have 7(gy) = x(9)7(g) and

Theorem 1.2. If g belongs to Gg, then

> (=1) trace (gy | H'(X,0(Vy))) = x(9)7(9)-
i>0
Let H{(X,O(V,))% be the invariant subspace of H'(X,O(V,)) by Go. Then we have
the following

Theorem 1.3.

Do) dim H(X.0(R)% = 2 3 x(o)r(o)
i>0 g€Go
Let g,¢' € G and let Xg and X gl/ be irreducible components of X9 and X9, respectively.
We define Xg and X gl, to be equivalent if and only if there exists an element h of G which
maps X3 to X g,, biholomorphically. By this equivalence, we classify the irreducible compo-
nents of the fixed points sets of G. Let ®, (A € A) be the representatives with respect to

this equivalence.
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Definition 1.4. Let Cg(®)) and Ng(®Py) be the isotropy group and the stabilizer group

of @), respectively. Namely, we have

Ca(®r) ={g9€G|g(x)=uxfor any z € ®)},

Ng(@x) ={g € G| g(®)) = ®,}.

Let g be an element of C(®y). If @, is an irreducible component of X9, g is called a proper

element of Cz(®y). We denote by CZ(®y) the set of proper elements of Ce (P ).

Let ¢ € G. We have to count the number of irreducible components of X¢ which are
equivalent to @5 (A € A). h(®y) (h € G) is an irreducible component of X9, if and only
if ¢ = h™gh belongs to C%(®,). Let Ci(yp) be the centralizer of ¢ in G. If ' belongs
to Ca(p), it also holds that ¢ = (hh')"1g(hh'). Hence (hh')(®,) is also an irreducible
component of X9. The number of irreducible components of X9 on which g acts as ¢ acts

on ®, is

o |Cc ()
nle) = |Ca () N Na(Py)|

The map

Ng(q))\) — Cg(q))\)

g— 9 'pg

induces an injection of Ng(®,)/(Ca(p) N Ng(®y)) to Cq(Py). The image of this map
consists of elements of C% () which are conjugate to ¢ in Ng(®y). We denote by e(yp) the
number of the elements of this image and by = this conjugacy relation among the elements

of C%(®y) in Ng(®y). We have

ING(®x)| [Calp) N Na(Py)
_ |Ca(p)]

= Na(@y] )

Let C%(®,)/ = be the set of the representatives of Ct(®y) classified by the relation =. We
denote by ~ the conjugacy relation in G. If ¢,¢" € Ch(P,) satisfy ¢ = ¢/, it holds that
T(p, ) = 7(¢’, ®y). Therefore we proved
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Theorem 1.5.

[Ca(y)]
= Z Z Na(@y)] e(p) - (e, )
AEA peCE(Pr) /= 0~g
1Ca(p)l
- Z Z |Ng(¢‘)\)‘ '7(90’(1)/\)'
AEA eCE (D), p~g
We denote by ~ the conjugacy relation in Go and by G/ = the set of the representatives of
G classified by the relation ~. For g € G, we denote by Cg, (g) the centralizer of g in Gg. If
9,9 € Gy satisfy g ~ ¢, it holds that trace (g | H (X, O(Vy))) = trace (¢’ | H/(X, O(Vy)))-

Hence by Theorem 1.3, we have

S (-1 dim H(X,0(V))% = |G0’ > x(

i>0 ge€Go
1 |Gol
= Y ——=-x(g)(9)
Gol 5 1Ce, (9)]
1
= > o x(@)7(9)
J 57, 1Cay ()

By Theorem 1.5 and above equality, we have

Theorem 1.6.

Z(—l)"dimHi(X,O(VX))GO

>0

C
> T |Z 2 &fgjh'“%%)
g€Go/~ 0 AEA peCL (), o~g

(o, ® C
-y IJV(TS@AA))!' > Calo)l )

AEA peCZ(P) g€Go /g ’CGo(g)’

S(Go,x) is canonically identified with H°(X, O(V,))%°. Hence we have

Corollary 1.7. If H(X,O(V)) =0 for all i > 0, then

7(p, C
dim S(Go, x Z Z U\Egi(rb;\))] Z M'X(g)

AEA ECL (1) g€Go /=g~ ’CGO (9)l



Siegel Cusp Forms and Exponential Sum 9

Remark 1.8. Instead of the last expression, it is sometimes convenient to use the following

expression:

SN VR E WP e~ R

C
AEA peCL(PN) /= g€Go /g ‘ Go(g)’

Remark 1.9. If one classified the fixed points sets and their isotropy groups and obtained
the values of |[Ng(®,)|’s and 7(¢, ®y)’s, he can calculate the dimension of S(Gy, x) only
classifying the conjugacy classes of G and Gy. Namely he may forget all of the geometric
information. In the following of this paper, we proceed according to this principle. We
give no geometric information about ®,’s nor ¢’s in this paper and postpone geometric

arguments until §5.

§2. Conjugacy Classes of T'g(p)/I'2(p)

Let I' be a subgroup of finite index of Sp(g,Z). If g > 2, I' contains the principal
congruence subgroup I'y(N) of Sp(g,Z) for some N ([BLS], [Me]). We may assume that
N > 3. Then the action of I'j(N) on &, is fixed point free. Hence X4(N) := I'y(N)\&,
is a manifold. X,(N) is a quasi-projective algebraic variety and is a open subspace of a
projective variety X ,(N) which is called the Satake compactification ([Sta]). X ,(N) has
singularities along its “cusps”: X 4(N)—X,4(N), if g > 2. Smooth compactification of X,(N)
was constructed in [Ig] when ¢ = 2,3 and in [Nm] when g = 2,3,4 and more generally in
[AMRT]. When g = 2, 3, the compactifications in [Ig] and in [Nm] coincide with each other
and we denote them by X ¢(N). The divisor “at infinity” D := )zg(N ) — X4(NV) is a divisor
with simple normal crossings. In the following, we restrict ourselves to the case when g = 2.

Let p be a holomorphic representation of GL(2,C) into GL(r,C). Let Z € Gy, v € C”

A B
and M = (C’ D> € I'y(N). We put

M(Z,v) = (M (Z), u(CZ + D)v).

This defines an action of I'y(INV) on V), := & x C". If N > 3, this action is fixed point free
and the quotient space I'o(IV)\V, has a structure of a vector bundle over X5(N) which we
denote by V. V, has a natural extension to a vector bundle on X, (N) which we denote by

V,, ([Mu]). A holomorphic section of V,, on X5(/N) has an extension to a holomorphic section

of ‘7” on X5(N). Let (’)(‘N/“ — D) be the sheaf of the germs of the sections of TN/M which vanish
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along the divisor D. Then the space of Siegel cusp form S, (I';(IN)) is canonically identified
with the space of the global sections I'(Xy(N), O(‘N/u — D)) (Proposition 5.9, below). Let
[D] be the line bundle on X,(N) associated with the divisor D. (9(‘7,L — D) is isomorphic
to O(V,, @ [D]®(-1).

Let G(N) = I's(1)/T2(N) and Go(N) = T'g(N)/T'2(N). We apply the results of §1 to
the action of G(N) on the pair ()}2(]\[)7‘7” ® [D]®(=V). In [T2] the fixed points sets of
G(N) were classified as @1, ®,, ... , Po5 and their isotropy groups and stabilizer groups were
determined. (®q,®s,..., P14 intersect the quotient space Xo(N). These were classified by
[Gt].) Among the terms in Corollary 1.7, the order of the stabilizer group |Ng(ny(®x)| were
determined in [T2]. (Note that since we studied the action of the group I'2(1)/ £ T'2(N) in
[T2], the value of |[Ng(ny(®a)| in this paper is the double of the value in [T2].) 7(p, ®x)
were calculated in [T2] (case of weight k) and in [T3] (vector valued case, see §3 below for
the details).

Let N = p be a prime number. Then the classification of the conjugacy classes of G(p)
which is isomorphic to the symplectic group over finite field F,, is well known. Hence what

we have to do is only to classify the conjugacy classes of Go(p). Go(p) is isomorphic to the
following subgroup of Sp (2,F,):

{(g g) € Sp(2,F,) 020}.

First we describe the case p = 2. We list the conjugacy classes of Sp(2,F5) in the

following

Proposition 2.1. Sp(2,F3) has 11 conjugacy classes which we denote by Ey, Es, ... , Eg,
F1,F5,G1,G2 and H. The characteristic polynomials of F; (i =1,2,...,6), F; (i =1,2),
Gi (i=1,2)and H are z* +1, 2* + 2> + 1, 2* + 2> + 2 + 1 and 2* + 23 + 22 + 2 + 1,

respectively. The representatives and the orders of the centralizer groups of them are as

follows:

1 0 0 0 1 0 0 0
01 00 01 0 1

B 00 10 720 B, 00 1 0 48
00 0 1 00 0 1
1 010 1 0 0 1
01 0 1 011 0

Es 0010 16 Ea 0010 48
00 0 1 00 0 1
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1 0 1 1 1 010
1 10 0 1 1 1 1

Es 00 1 1 8 e 00 1 1 8
00 0 1 00 0 1
01 0 0 01 0 0
1 10 0 1 1 1 0

B 00 1 1 18 F 00 1 1 6
00 1 0 00 1 0
00 1 0 001 0
01 0 0 01 0 1

G 1 01 0 18 G2 1 01 0 6
00 0 1 00 0 1
01 1 1
00 1 0

H 00 0 1 5
1 0 0 1

Next we classify the conjugacy classes of G(2). As we saw in Corollary 1.7, the ratio of the
orders of the centralizer groups |Cea(ny(9)]/|Cao(n)(g)| is important rather than [Ce,(n)(g)|-
Therefore in the following two propositions, we list the ratio of the orders of the centralizer

groups.

Proposition 2.2. The conjugacy classes G1,Go and H have no elements in Go(2). The
conjugacy classes Ey, Es, E5, Fg, F1 and Fy do not split in Go(2) and their ratios are
15,3,1,1,3,1, respectively. The conjugacy class Es splits to two conjugacy classes in Go(2)
which we denote by E3, and Es3p and their ratios are 1 and 2, respectively. The conjugacy
class Ey splits to two conjugacy classes in Go(2) which we denote by E4, and Ey, and their

ratios are 1 and 6, respectively. The representatives of Esq, Esy, Fuq, Eap are as follows:

1 010 0 1.1 0 1 0 0 1 01 0 0
01 01 1 0 0 1 01 10 100 0
0 01 0)" 0 00 1) 0 01 0)" 0 0 0 1
0 0 0 1 0 010 0 0 01 00 1 0

Next we study the case of odd prime. Let p be an odd prime. An element of Gy(p) is

A StA-!
O tA—l ’

where A belongs to GL(2,F,) and S is a symmetric matrix in M3(F,). To save the space

represented by the following form:

we denote this matrix by

(A]S).
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We use the same notations as in [Sr] for the conjugacy classes of G(p) = Sp(2,F,). If a
conjugacy class of G(p) does not split in Go(p), we denote the conjugacy class of Go(p)
by the same notation. If a conjugacy class of G(p) splits in Go(p) (for example, As;), we
denote the conjugacy classes by adding alphabet a,b,... to the suffix of the notation in
[Sr] (for example, As14, As1p). In the following proposition, we list the notation of the
conjugacy class of Gy(p), its representative and the ratio of the orders of the centralizer
groups, in this order. Let 6 be the generator of F;2 and let n = 7~! and v = P!, In the
following proposition, we take as the representatives of Ba, (i), Bap(i), Bg(i), Br(i) elements

in Sp(2,F,2) instead of in Sp (2, F,).

Proposition 2.3. The conjugacy classes of Go(p) are classified as follows:

A (é 1o 8)*(3 1o 8) ¥+ ) +1)
N (K TT I (R IT N
e (U302 e
I (R T S (TP B
N O I AT I
I I I I B
T (R E I A (AT B
T (R I (R YT B
Bali) (% w0 o) 1
Bay(i) (% % [0 o) !
Ba(i. ) (%510 o) 1
By, ) (% o lo o) 1
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~ o

N T T N N N N N N

BBC(i7j)

o
-

BBd(i7j)

p+1

in o

By (i)

iT/ o

Br(i)

S e
o

BSa (Z)

o~

By (1)

i L i i
+
S8
Y
7N o o 7N
o o N\ — O
o o oo
o o O
o o
NS I,Wl s
o | - o |
™ - = ™
B RN =] R
- - ' -

BSc(i)

BQa (Z)

p+1

p+1

)

0 0
0 0

|

0 0 v=i0
0 0/)°\0 -1

|

710
01

Cip (1), Cp (4)

)
)

) 0 0
0 1

~7H0 ‘ 0 0 770
0110 1)° 0 —1

1(7)

/
4

C

C41b(i)a

0 0
0 ~

) (0
) (

0

g
1
0-1

C'420, (Z) ) 04,1211 (Z)

’00
0 ~

0 0 vt 0
0 ~ 0 —1

|

70
01

Ciap (i), Clap (1)

(p+1)°

0 0
0 0
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paon (A1) (G100 e
T P ) B A B
D1 < (1) 0 1> 1
e (10 GSGY
615 Y) 1

For Bs,(i) and Boy(i), we assume that 0°,0P° 0% 0P are distinct. For Bsu(i,j),... ,
Bsa(i,7), we assume that 1 < i < j < (p —3)/2. For Bg(i) and Br(i), we assume that
1<i<(p—1)/2. For Bg,(i),...,C)y (1), we assume that 1 <1i < (p—3)/2.

In [T2], we classified the proper elements of the isotropy groups of the fixed points sets
Qp,...,Do5 a8 01,92, .. ,925(6,7,5,t). These elements are in G(N) (N > 3). S,(I'0(2)) is
the invariant subspace of S, (I'2(2N)) by the action of I'g(2)/I'2(2N) (N > 2). We assume
that N is odd. Then we have

To(2)/T2(2N) = Go(2) x G(N) € G(2) x G(N) ~ I'y(1)/T5(2N).

For an element ¢ of I'g(2)/I'2(2N) which fixes points in X5(2N), the ratio of the orders
of its centralizer groups in I'g(2)/T'2(2N) and in I'y(1)/T'2(2N) is equal to the ratio of the
orders of the centralizer groups in Go(2) and in G(2) of ¢ mod 2. Hence the problem is
reduced to determine the conjugacy class in G(2) of ¢ mod 2. For odd prime p, S,,(I'o(p))
is the invariant subspace of S, (I'2(p)) by the action of G(p). Let ¢ be an element of Gy(p)
which fixes points in X, (p). The problem is to determine the conjugacy class in G(p) of .
In the following proposition, we list ¢, the conjugacy class of ¢ mod 2 in G(2) = Sp (2, F5)
and the conjugacy class of ¢ in G(p) = Sp(2,F,) for the cases of p > 2, in this order. When
the notation of the element of the isotropy groups includes some index (for example, “r” in
©15(r)), this index belongs to Z/2NZ if p = 2 and to F), if p > 2. We list the condition that
the element is proper (for example, “r # 0”) in the case of p > 2 under the notation of the
element.

To save the space, we list only one of ¢; and —¢;. In fact we consider I's(1)/ £ I'2(N)

here, because some elements satisfy ¢ = — and so if we consider I'5(1) /T'3(N), the situation
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will be complicated. Sometimes we list only the representatives classified by the equivalence
relation =. Here = means the conjugacy relation among the elements of C%(®5)/ £ 1 in
Ng(®))/ £ 1. In such cases, we mark the notation of the elements by *1 and list the value
of e(p;), at the end of the proposition. In case the notation of the conjugacy class includes
some index (for example, “¢” in B(i)), we do not give the explicit value of ¢, since the ratio

of the centralizer groups does not depend on 1.

Proposition 2.4. The conjugacy classes to which @1, ... ,pa5(6,7,s,t) belong in Sp (2,F5)
and Sp (2,F,) (p > 2) are as follows. The conjugacy classes whose notation are enclosed by

brackets have no elements in Go(2) or in Go(p).

1) ®1 El A1
2) P2 El Dl
3) ¥3 E, Dy
Bs(i), if p=1 (mod 4)
Y e b { Bo(i), if p=3 (mod 4)
Bs(i), if p=1 (mod 4)
5) s B { Bs(i), if p=3 (mod 4)
Az, ifp=3
6) ¢ F Bs(i), if p=1 (mod 3)
Bg(i), if p=2 (mod 3)
C3(i), if p=1 (mod 4)
e & { (Cu@). 17 p= 3 (uod 8
v7(2) E, the same as above
Ao, ifp=3
8) ¢s(1) (G1) Cs(i), if p=1 (mod 3)
(C1(7)), if p=2 (mod 3)
vs(2) (Gh) the same as above
Doy, ifp=3
808(3) (Gl) 03(2), Zf p= 1 (InOd 3)
(C1(2)), if p=2 (mod 3)
ps(4) (G1) the same as above
Bs(i), if p=1 (mod 4)
%) el b { Bo(i), if p=3 (mod 4)
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10)

11)

po(2)"!

o (3)"

¢10(1)
©10(2)

10(3)"

p10(4)"

p10(5)"

©10(6)

©10(7)

©10(8)*!

©10(9)*!

e11(1)

©11(2)

©11(3)

©11(4)

Es

Fy

Fy

Fy

Fy

RYUJI TSUSHIMA

if p=43 (mod 8)

Bglj if p=1 (mod 8)
B4Zj ), if p=7 (mod 8)

the same as above

A32; if p=3
,zfp_l (mod 3)

), if p=2 (mod 3)
the same as above
Dss, ifp=3
Bs(i,j), if p=1 (mod 3)
(Ba(i,7)), if p=2 (mod 3)

D3y, if p=3

{ Bs(i,j), if p=1 (mod 3)
(Ba(i,4)), if p=2 (mod 3)
D3y, if p=3

{ Bs(i,j), if p=1 (mod 3)
(Ba(i,4)), if p=2 (mod 3)

the same as in the case

of v10(4)

the same as in the case

of v10(5)
Bs (i), if p=3
Bs(i,j), if p=1 (mod 12)
Bs(i), if p=45 (mod 12)
(B4(i,7)), if p=11 (mod 12)

the same as above

(Ca2(@), if p=3

Bs(i,j), if p=1 (mod 12)

(Bs(i,4)), if p=+5 (mod 12)

(B4(i,7)), if p=11 (mod 12)
{ (C4l(i))’ Zf p=3

the same as above
for the other cases

the same as in the case
of ¢11(1)

the same as in the case

of v11(2)



12)

13)

14)

15)

16)

17)

18)

19)

20)

*1
P12

Y13

¢14(1)

©14(2)
©14(3)

©14(4)

¢15(7)
r#0

¢16(r)
r#0

e17(r)
r#0

e1s(1,7)
r#0

3018(2’ T)
r#0

p19(1,7)

¢19(2,7)

@a20(1,7)
r#0

©20(2,7)
r#0

©20(3,7)
r#0
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Fy

Eg

if ris even
if ris odd

if ris even
if ris odd

if ris even

if ris odd

if ris even

if ris odd

the same as above

E57
E67

if ris even
if ris odd

the same as above

, if ris even

{ e
(Ga), if ris odd

{ (Gh), if ris even
(Ga), if ris odd

{ (Gh), if 7 is even
(G2), if ris odd

D3, if p=3
Bs(i,j), if p=1 (mod 3)
(Ba(i,j)), if p=2 (mod 3)

the same as in the case

of v9(2)
Ay, if p=>5
Bs(i,j), if p=1 (mod 5)

(Ba(i,4)), if p=4 (mod 5)
(B1(7)), if p==+2 (mod 5)

the same as above

the same as above

the same as above

*2
Ayy or Ay,
D23 or D24

D23 or D24

{ Cy1(i) or Cya(i), ifdlp—1
(C21(i)) or (Caa(i)), if 41p—1

the same as above

{ *3 below, if p=1 (mod 4)
*4 below, if p=3 (mod 4)

the same as above

Aszg or Az, if p=3
C41(i) or C42(’i), Zf 3 ]p -1
(C21(7)) or (C2a(i)), otherwise
Azy or Asa, if p=3
C41(i) or C42(i), ’Lf 3 ]p —1
(C21(@)) or (C2a(i)), otherwise
D31 or Dss, if p=3
Cy1(i) or Cya(i), if 3lp—1
(C21(7)) or (C2a(i)), otherwise
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21)

22)

23)

24)

25)
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w20 (4,7) { (Gh), if r is even
r#0 (Ga), if ris odd
(1,7) (Gh), if r is even
7T . .
o (Gg), if ris odd
(2,7) (Gh), if r is even
’T . .
- (Ga), if ris odd
( ) Eq, if r and t are even
a2 (l, 7,1 . )
rt 0 Es, if r+1tis odd
Es, if r and t are odd
P22(3,7,1) { Ey, if r+tis even
r+t#0 Es, if r+tis odd
©23(2,7,1) Ey, if r+tis even
r+t#0 Es, if r+tis odd
Eq, if r and t are even
pas(d 7 1) Es, if r+tis odd
rt #0
Es, if r and t are odd
@24(2,7", t) E37 Zf r—+1t s even
r+t#0 Eg, if r+tis odd
[E;;, if r and t are even
p2a(d,7.1) Es, if r+tis odd
rt #0
Es, if r and t are odd
Ey, if r, s, t are even
E if exactly one of
wa5(1,7,5,1) 3 s, tis even
s(r+s)(t+s)#0 B if r and t are even
4 and s is odd
( B>, otherwise
@25(25T787t) { Flv ZfT+S+tZS even
rts+t#0 s, if r+s+tis odd

D35 or D3y,
041 (Z) or C42(i),

if p=3
if 3lp—1

(C21(4)) or (Caa(i)), otherwise

if p=3
if p=1 (mod 3)
if p=2 (mod 3)
if p=3
if p=1 (mod 3)
if p=2 (mod 3)

Az, if ( : ) =1

Aso, if (7;t) =-1
D, if (5Ff) =1

Dsy, if (TT#) =-1
By(i), if p=1 (mod 4)
B;(i), if p=3 (mod 4)

the same as in the case
Of ©23 (47 r, t)

A31, Zf (szfrt) =1

P
Ago, if (55) = -1
Aoy, if s> =1t and ( )

P
Aoo, if s> =1t and ( )

r
p

*5 below, if p=3
Bg(i), if p=1 (mod 3)
Br(i), if p=2 (mod 3)

1
-1
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E if sis even
Y and r +t is even

if s s even

and r +t is odd

if sis odd

and r +t is even

if sis odd

and v+t is odd

Es,
Y25 (4a s, t) >

*
(r+2s+1t)s#0 6 below

E3a

E6a

1 elps) =2, e(po(2)) =2, e(po(3)) =2, e(p10(3)) =2, e(p10(4)) =3, e(p10(5)) =3,
e(p10(8)) =3, e(p10(9)) =3, e(p12) =2, e(p13) = 6.

*2  For 15), “Agy or Ass” means “Asy, if (%) =1 and Aao, if (%) =—-1".
The same applies to 16), 17), 18) and 20).

*3  Cs(i), if r=a, Cyu(i), if (%) =1, Cy2(i), otherwise, where a is (p +1)/2,

(p—1)/2, (1—p)/3, (p—1)/3, for v19(1,7), ©19(2,7), w21(1,7), Y21(2,7), respectively.

¥4 (C1(1)), if m=a, (Co1(i)), if (T;a) =1, (Co92(7)), otherwise, where a is (p+ 1)/2,

(p—1)/2, (p+1)/3, —=(p+1)/3, for ¢19(1,7), p10(2,7), 21(1,7), p21(2,7), respectively.
*5 Ay, if (#) =1, A, if (r+§+t) = —1.

%6 Dy, if (TREH) = (T2H) = 1 Dy, if (TE2SH) = (1e2Zsbl) = ],
Dss, if —(™F2H) = (2=225) = 1, Dy, if (S = (2=2s4) =

Daos, if (%) =1landr+t=2s, Doy, if (’“*i”t) =—1landr+t=2s.

Remark 2.5. In the above theorem we omitted @o5(3, 7, s,t), w25(5,7, s, t) and pa5(6, 7, 5, 1),
because po5(3,7,s,t) is equivalent by the relation “=” to ¢a5(2,r/,s",t") and pa5(5,7, s, 1)
and @95(6,7,,t) are equivalent to @o5(4,7’,s',t"). Instead of them, it suffices to double
(resp. treble) the contribution of po5(2,r, s,t) (resp. wa25(4,7,s,t)) in the dimension formula

(Corollary 1.7).

§3. Details of |Ng(®2x)|’s and 7(p, Pr)’s

Let 1 be an irreducible holomorphic representation of GL(2, C) and (j+k, k) its signature.
Then p is equivalent to s; ® det”, where s; is the symmetric tensor representation of degree
j and det is the alternating tensor representation of degree two of GL(2, C), respectively.
Let N > 3. As in §2, we consider the action of G(N) on the pair (X2(N),V,, ® [D]®(-1). In
this section we list the orders of Ng(n)(®1), No(v)(®2), ... , Ngnv)(P25) and the values of
(o1, P1), 7(p2, P2), ..., T(pa5(4,7,8,t), Pas). The following theorem was obtained in [T2].

In the theorem, [] means [, n prime-
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Theorem 3.1. The orders of the stabilizer groups of ®1,®s,...,Pos are as follows:

0 N (1) = NOTI(1 - p2)(1 — p~4)
2 |Ne (v (@2)] = 2NOT](1 — p=2)2
2NS (1 — p~2)2, if 24N
3) ’NG(N)(‘I)S)’ = { (8/3)N6 I1(1 _p—2)27 if 2| N
" [Ny (®4)] = ANPT](1 — p=2)
(NI -p72), if 24N
5) [Neov) (®5)] = { (16/3)N3[[(1 —p~2), if 2| N

N (R
7) |No(vy(®7)] = AN°T](1 — p~2)
8) |Navy(®s)| = 6N°T](1 —p~2)
9) [N (®9)] = 32
10) |NG(v)(P10)] = 72
11) NG (n)(P11)| =24
12) |NG(n)(P12)| = 24
13) [Ne(n) (P13)] = 48
14) |NG(v)(P14)] = 10
15) [Nov)(®15)] = 2N°T(1 —p~2)
16) [Nov)(®16)] = 2N*T](1 —p~?)
17) [Naw)(®17)] = { ?g;l}v(jn_ g_z)p) j: ZZ
18) [Ne(nv) (P1s)| = 8N
19) |NG(n)(P19)| = 8N

20) |Ne vy (®a0)| = 12N
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21) [Na(ny(®21)| = 6V
22) NG (n)(®22)| = 8N?
23) |NG(n)(@23)] = 8N?
24) ING(n)(®24)| = 8N?
25) |Ng(ny(®a5)| = 12N

We list the values of 7(¢1, ®1), 7(p2, P2), ... ,7(v25(4,7,s,t), Pas) in the following theo-
rem. In the theorem p, w and ¢ mean exp(27i/3), exp(27i/5) and exp(mi/6), respectively
and Tr,(a) means Trqa)/q(a) for an algebraic number o and a € Q(«). Here we assume
that j is even and replace j with 2j. So the signature of p is (25 + k, k). We omit all of the
details of the calculation. 1) is proved in §5 (Theorem 5.10).

Theorem 3.2. 4 7(¢1,®1),7(p2, ®2), ... , 7(25(4, 7, 5,1), Bo5) are as follows (cf. Remark
2.5):
D 7(p1,®1) =27%373571((25 + 1)(k — 2)(2j + k — 1)(25 + 2k — 3)N'°
—60(2j + 1)(27 + 2k — 3)N® +360(25 + 1)NI(1 —p~2)(1 —p~*)
2)  T(pg, ®o) = 277373 (=1)F((k — 2)(2j + k — 1)NS
—6(2j + 2k — 3)N° + 36 NH[[(1 — p~2)?
3) (g3, ®3) = (=1)*((k —2)(2j + k — 1)N® — 3(2j 4+ 2k — 3)N® + 12N %)
y { 276371 [[(1 —p~2)2, if 2t N
27437 2T[(1 —p~2)?, if2|N
4)  7(pa,®4) =27°371(=1)7((2j + 2k — 3)N® — 12N*)[[(1 — p~2)

27° I —p7?), if 24N

T(ps5, Ps5) = (— J ; _ 3 _ 2
5) (s, ®5) = (—1)7((2j + 2k — 3)N? — 8N?) x { 243 (1= p), if 2| N
6) 7(pe, P6) = Tr,(p’ (1 — p))((2j + 2k — 3)N® — 9N?)

2713311 —p2), if 3tN
* 27337 2[[1—p~2), if 3| N

4There are misprints in 2), 16) and 17). See the end of this paper.
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10)

11)
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7(p7(1), @7) = 272371 (1)* (1)’ ((k — 2)N® = 6N*)[](1 —p~?)
+27°37 (@) (i) (2 + k — 1)N® — 6N*)[[(1 — p~2)
7(p7(2), ®7) = the conjugate of T(p7(1), D7) over Q

r(s(1), Bs) = 279373 (p2)R (p)T (1 — p?)((k — 2)N* — 6N*)[[(1 — p~2)

+27337(p")M (1 — p)((2 + k= HN? = 6N?)[J(1 — p~?)
7(0s(2), Bs) = the conjugate of T(ps(1), Bs) over Q
7(ps(3), @s) = 27372(=p)* ()’ (1 = p*)((k — 2)N® = 6N*)[](1 —p~?)
+278372(=p*)" (p = (25 + k = )N = 6N*)[](1 —p?)
T(ps(4), ®g) = the conjugate of T(ps(3), Bs) over Q
T(po(1), @o) = 273 (=1)*(=1)7(2j + 1)
7(1p0(2), @9) = 27%(=4)" (1) (1 + )
7(o(3), ®o) = 272(0)" (—i) (1 — i)
7(10(1): P10) = 37%(0)" (p)’ (20 + 1)(25 + 1)
7(p10(2), 10) = 372(0*)" ()’ (20° +1)(2] + 1)
7(10(3), @10) = 271371 (= 1) Tr, ((p)’ (—p?))
7(10(4), P10) = 7(910(7), P10) = 37 (=p)" (p)’
7(#10(5), @10) = T(910(6), P10) = 37 (=p*)" (p*)?
7(010(8), ®10) = 371 (6°)"(—p?)’ (1 + 2p)
7(¢10(9), ®10) = 371 (p)" (=p)’ (1 + 20°)
T(p11(1), @11) = 27137 (0 (=1) (1 + 02) — 271371 (0")F (0®) (0 + 0?)
T(p11(2), @11) = 271371 (0°) (= 1)/ (1 + 0°) — 27137 (%) " (o) (0! + o)

7(¢11(3), @11) = 271371 (0)* (—1)7 (1 + 02) — 271371 (0)*(0®) (07 + 0?)
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13)

14)

15)

16)

17)

18)

19)

20)

21)
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T(p11(4), @11) = 27137 (@) (1) (1 + 0" — 27137 (0 ) (6") (0° + 0°)

T(p12, ®12) = 271371 (=1)"Tr, ((p)’ (—p?))

T(p13, ®13) = 27 (= 1) T ((5)” (1 + 7))

T(p1a(1), @ra) =57 (W) (W) =57 (w) (W) w?

T(p14(2), P1a) =571 (W) (W) =57 (W*) P (w) !

T(p14(3), Pra) = 571 (W) (WP = 571w (WY w

T(p1a(4), ®1a) =57 (W) (W) =57 (W) (w?) W’

T(p15(r), ®15) = 27°371(2) + DN°TI(1 - p~?)

(9—(2j+2k—3)N (2j+2k-3)N-6 4 >
- G- (-0)

rlpra(r), 1a) = 2037 (-1t (2 EIEREIN) wsp )

(), @) = (-1 (S IR AN L) v )

275, if 24 N
X
273371 if 2| N

T(prs(1,7), @15) = 272 (=) ((-1)7 —i)(¢" = 1)~
T(p18(2,7), ®15) = 272(0)* ((=1) +4)(¢" = 1)~

T(p19(1,7), @19) = 272(—0)*((=1)7 — i)(exp (mi(2r — 1)/N) — 1)~
T(p19(2,7), @19) = 272(0)"((—1)7 + @) (exp (mi(2r + 1)/N) — 1)~}
7(p20(1,7), @20) = 372(p*)" (p*(p)! = 1)(p — 1)(¢" = 1)
7(p20(2,7), @20) = 372(p)" (p(p*)’ = D(p* = 1)(¢" = 1)7*
T(p20(3,7), ®20) = 371 (=p*)* (1 + p*(p)) (p = (" = 17!
T(p20(4,7), ®20) = 371 (=p)* (1 + p(p*)) (p* = (" = )7

T(p21(1,7), @21) = 372(p*)"(P*(p)’ —1)(p — 1)(exp (2mi(3r —1)/3N) — 1)~
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7(p21(2,7), @21) = 372(p)" (p(p*)” — 1)(p* — 1)(exp (2mi(3r +1)/3N) — 1)~

(2541 2 2
22) 7—(9022(1,’1“, t)’q)22) - (CT — 1)((,5 — 1) <(CT . 1) + (Ct _ 1) + 3)

—1)k 4
(Pl t), 022) = (<£+t . D ((wt — " 3)

23)  T(p23(2,7,1), Bog) =271 (=1)/ (" — 1)
T(p2s(4,7,1), @) = 271 (=1)*(¢" = )TN - )

24)  T(p24(2,m, ), @2g) =271 (=1)/ (" = 1)
T(p2a(4,7,1), ®2a) = 271 (=1)F(¢" = )TN - )

25)  T(pas(1,m,8,1), Pos) = (2) + 1)(C"F* = 1) 1) -1
T(p25(2,1,8,1), ®a5) = 37 T, (07 (1 = p)) (T = 1)~

T(p25(4,1,5,1), ®25) = (=" (T2H —1)7H ¢~ 1)

§4. Dimension Formula and Exponential Sums

Let p be a prime number and x a Dirichlet character modulo p. Let N be a natural
number which is relatively prime to p. S, (I'o(p), x) is the invariant subspace of S, (I'2(pN))
of the action of Gy := I'g(p)/T'2(pN) which is twisted by x. By applying the results in §2,
§3 and the vanishing theorem (Theorem 6.1) to the general dimension formula in §1, we can
calculate the dimension of S, (Io(p), x). We may assume N = 1if p > 2 and N (> 3) is odd
if p=2. Let (j + k, k) be the signature of p. Since —14 belongs to I'g(p), S, (Fo(p), x) =~ 0
if j is odd. So in this section we assume the signature of u is (25 + k, k).

Let p be an odd prime. When we calculate the contributions of the fixed points at infinity,
we have to evaluate some exponential sums. Almost all of them are evaluated easily and
we omit here the evaluation of them. But in the following cases, the evaluations are rather
complicated and in a certain case, we can not evaluate it directly.

As we saw in §2, the conjugacy class in G(p) of @aa(1,7,t) is Agy if (_7”) =1 and Az if
(;”) = —1. In Go(p), A3y splits to Az1, and Asyp. But Ass does not split. Therefore by

P
the results in §1 and in §2, the contribution of 92(1,7,t)’s to dim S, (I'o(p), x) is equal to

i { @4 DY Tlen(ln), ®a) + 3 rlon(1n0). 8 |
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where in the first sum, (r,¢) is over the pairs such that (_T”) = 1 and in the second sum,

(r,t) is over the pairs such that ( _7”) = —1. The above sums are rewritten as

1 i Ly g
18 {(P +1) 7«;1 T(p22(1,7,1), Po2) +pr;1 (p> T(p22(1,7,1), Pa2)
1

:4]103{(2j+l)(p+ 1)1(5—1) (2p—1) Y (‘p’"t) T(gng(l,r,t),@zz)}

rit=1
Therefore the problem is reduced to evaluate the sum in the last expression. To evaluate
this sum, we recall the well-known formula of the Gaussian sums and the class numbers. We
denote by h(—p) the class number of Q(\/—p).
Theorem 4.1. Let p be an odd prime and we denote exp(2mwy/—1/p) by (. Then
p—1

2 <l;> ¢ = \/671% where €, = <—pl) |

k—
p— <k>k—{07 if p=1 (mod 4)
S \P/ | ph(p)/wy. if p=3 (mod 4)

where wg = 3 and w, = 1, otherwise.

_ =

Corollary 4.2.

(a) 5 <k) 1 _ { 0, if p=1 (mod 4) |

=\ 1=¢5 | /=ph(-p)/wp, if p=3 (mod 4)
Pk 1
(b) (p) g = VM D)y, if =3 (mod 1),
k=1
Proof. Since
1 _ _1Z§r<—k7“
1—-¢k p&e”
we have
Pk 1 1~ [k .
X () ima X ()
20 G
pkm:l p p
11771 r p1 S
-2 () ()
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Hence (a) is proved by Theorem 3.1. (b) is proved from

1 1 2

(1 — Ck)g = % ril((p - 2)7" - TQ)CkT

and
p—1 p—1
k> 5 1 <k> > >
=Y (0) - -k
k=1 <p 2k=1 p
p—1
k
S5
1 \P
We put

Ap = Z (_:) <<r—1>1<<t—1> <<<r2—1> i <<t2—1> +3>'

r,it=1

Then by Corollary 4.2, we have

/o, if p=1 (mod 4)
T { ph(—p)2/2, if p=3 (mod 4)

and

Proposition 4.3. The contribution of paa(1,7,t)’s is

2+ D)@+ V-1’2 -1) @+ ][0 if p=1 (mod 4)
48p3 4p?

- ph(—p)?/w?, if p=3 (mod 4)

Next we consider the contribution of a5(1,r,s,t)’s. Similarly as above by using the
results in §2, the contribution is expressed as
2 / 17
W{(2p+ 1) Z T(pas(1, 7, 5,1), Pas) + Z T(p25(1,1,5,t), 25)

+pz T(¢25(17T757t)7(p25)}7

where in the first sum, (r, s,t) is over the triples such that (%) =1, in the second sum,

(r,s,t) is over the triples such that (%) = —1 and in the third sum, (r,s,t) is over the
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triples such that s* = rt. In each sum, it is assumed that s(r + s)(s +t) # 0. The above

sums are rewritten as

1 5?2 —rt
6})3{(174- 1) ZT(go%(l,r,s,t),q)gg)) +p Z ( . > T(pas(1,7,8,t), Pas)
s2#rt
- 7(8025(177“,8,t)7‘1’25)}
s2=rt
2i+1) ( (p+Dp—-1)°
RN 8 =)

where we put

=3 () e -t -y -

s2rt p
A D DN (SR ) R (SR D R (G il

s2=rt

We can prove
Proposition 4.4. Z, = 0.

Proof. We put k =1r/s = s/t. Then Z, is rewritten as

p—2p—1

D) (Sl V(SR VR (Gup Vi

k=1s=1
We modify the above expression as follows.
1
(1— C(kJrl)s)(l _ C(k‘lJrl)s)(l — ()

(1 _ C(k+1)s) + C(kJrl)s
(1 _ C(k+1)5)(1 _ C(k—l—l-l)s)(l _ C_S)

1 1
T (A - ) (R = (1 - ) (1 ()
1 (1— C(k*1+1)s) + C(k*1+1)s
SO I = ) (CE (1 - (T - ()
1 1
T I ) (D (-
1
T CE D (- )
1 1

(= () (T =) (O = (A - )
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. (1) ¢
(¢ 0D — 1)(¢- (T +0s — 1)(1 - ¢-)
1 1
T sy (A - () (s S (I - ()
1 1

T S ETE ) (R S ¢ S (- 1)

The sums of the first three terms in the last expression are evaluated as follows.

p—2p—1 p—1 1 p—1 1
>3 T - PN e (e P MY (e [ erary
=1 -1+
4 12 ‘
p—2p—1 p—1 1 p—1 1
>3 i PN (TP MY (e (e
-1 (p-1)(p-5)
N 4 12 '
In the third term, we put u = (k! + 1)8 Then (k + 1)s = ku. So we have
—2p—1 —2p—1
p—1 1 p—1 1
B m;:l Cm -1 —1) ; (¢ =D -1
_ (-1 (@-DHE+D
4 12 ‘
The sum of these three sums is zero. Hence we have

p—2p—1

ZZ C (k+1)s _ 1)(< (k 1+1)s _ 1)(Cs _ 1)'

k=1s=1
In the right-hand side, we can change s to —s. Therefore this is equal to Z,,. Thus we proved

Z, = 0.

We have not evaluated Y,. But we computed this sum by using computer for p < 500

and obtained the following

Proposition 4.5. For primes such that 3 < p < 500 we have

0 if p=1 (mod 4)
—1)2 )
Yp:_p(p - )

s “Ph(—p)*/w?, if p=3 (mod 4)

We evaluated all of the exponential sums which appear in the formula of dim S, (I'o(p), x)
except Y,. Comparing our result with Hashimoto’s result ([Hal]) in the case of weight k

and trivial y, we derive the following
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Theorem 4.6. Proposition 4.5 holds for general odd primes.
Hence we have

Proposition 4.7. The contribution of po5(1,1,s,t)’s is

i+ V-2 -1 @i+1) [0 if p=1 (mod 4)
48p? " 4p? - ph(—p)? /w2, if p=3 (mod 4)
2, =

Remark 4.8. The terms of the class number in X, and in Y), cancel with each other and

do not appear in dim S, (I'o(p), x)-

Remark 4.9. Concerning the representation of Sp (2,F,) on Si(I'2(p)), a similar exponen-
tial sum which is represented as

> (;) T(a5(1,7, 5, 1), Bos)

s2=rt
by our notation was considered and a conjecture about this value was presented in [LW].

This conjecture was proved by [A2] and [IS].

Remark 4.10. Let p > 2. We recall @1, p15(r), w2o(1,7,t) and pao5(1,7,s,t). They are

100 0 100 0 10 7 0 10 7 s
01 0 0 010 r 01 0 ¢ 01 s ¢t
o010 {oo1o0] loo1o|l ® |ogo1 0
000 1 000 1 000 1 00 0

respectively. We regard (pos(1,7,t) as the degenerated element of ¢o5(1,7,s,t). Similarly
15(r) is the degenerated element of @ao(1,7,t) and ¢ is the degenerated element of ¢15(7).
These elements constitute a series of degenerating elements. As we saw before, the contri-
butions of ¢1, ©15(7)’s, wao(1,7,t)’s and @a5(1, 7, s,t)’s include terms which are multiples of

1 1 1
or —. For example the contribution of ¢; is

p’ P p
T(p1, 1)  [Co)(#1)l
[New)|  Caow)(#1)]

=27%3735"(p+ 1)(p* +1) ((Qj +1)(k—2)(2j + k —1)(2j + 2k — 3)

60(25 +1)(25 +2k—3)  360(2j + 1)
o p2 - p3 )
But we know (experimentally) if we take the sum of the contributions of the elements in the

1
series, then the terms which are multiples of —, — or — cancel with each other. Therefore
pp p
in the following theorem, we list the sum of the contributions of each series.

Now by taking the sum of the contributions of all of the fixed points, we have
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Theorem 4.11. Let p be a prime number, h a generator of (Z/pZ)* and x a Dirichlet
ml) and assume x(h) = ¢* (0 < u < p—2).

Let N (> 3) be odd if p =2 and N = 1 if p > 2 and let Gy be I'y(p)/T2(pN). Let

character modulo p, and let { = exp <

wu be the holomorphic representation of GL(2,C) whose signature is (25 + k,k). Then
S (=1) dim H*(Xo(pN), O(V,, — D))5° is given by the following Mathematica function:

Siegellp_,u_,j_,k_]:=Block[{a,1j,1k,1jk,1u,x,y},
mod[x_,y_]:=Mod[x,y]l+1;

a=(p+1)*(p~2+1) * (2% j+1)* (2% j+k-1) * (2% j+2xk-3) * (k-2) /5/27/128;
a=a-(p+1)*(2%j+1)* (2% j+2*k-3)/9/16;

a=a+(2%j+1)/12;

(* contribution of ¢; *)

(x contribution of i5(r) *)

(* contribution of pos(1,r,t) *)

(* contribution of o5(1,7,s,t) *)

1k={1,-1};
lu={1,-1};
a=a+If [p==2,15, (p+1) "2]* (2% j+k-1)* (k-2) /9/128*
1k [[mod[k,2]1]1*1ul[mod[u,2]1]1];
a=a-If[p==2,9,2x(p+1)]*(2%j+2xk-3)/3/64*1k[[mod[k,2]]1]*1ul[mod[u,2]]1];
a=a+If [p==2,3,2]*1k[[mod[k,2]]1]*1ul[mod[u,2]]1]1/16;
(* contribution of g *)
(* contribution of ¢i6(r) *)

(* contribution of po3(4,r,t) *)

a=a+If [p==2,7, (p+1) "2]* (2% j+k-1) * (k-2) /3/64*
1k [[mod[k,2]]1]1*1ul[mod[u,2]1]1];
a=a-If [p==2,5,2%(p+1)]1*(2%j+2*xk-3) /64*1k[[mod[k,2]]1]1*1ul[mod[u,2]]1];
a=a+If [p==2,1/4,1/8]*1k[[mod[k,2]]1]*1lul[mod[u,2]1]1];
a=a+1/8%If [Mod[p,4]==1,1,0]*1k[[mod[k,2]]]*1ul[mod[u,2]]1];
a=a+1/8xIf [Mod[p,4]1==3,2,0]*1k[[mod[k,2]]1]1*1ul[mod[u,2]1]];
(* contribution of (3 *)
(* contribution of ¢i7(r) *)
(x contribution of (oa(3,7,t) *)

(* contribution of po4(4,r,t) *)
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(¥ contribution of o5(i,7,5,t) (i =4,5,6) *)

1j={1,-1};

a=a+If [p==2,7,p+1]*(2%j+2%k-3) /3/64*1j [[mod[j,2]]1];

a=a+If [Mod[p,4]==1, (2%j+2%k-3)/96*1j [[mod[j,2]]1]1*1u[ [mod[u,2]]],0];
a=a-If[p==2,2,11*1j[[mod[j,2]1]11/8;

a=a-If [Mod[p,4]==1,1j[[mod[j,2]]1]*1ul[mod[u,2]1]1],0]1/8;

(* contribution of (4 *)

(* contribution of po3(2,r,t) *)

a=a+(p+1)*(2*j+2*¥k-3) /128%1j [[mod[j,2]11];

a=a+If [Mod[p,4]==1, (2%j+2xk-3) /64*1j[[mod[j,2]11]1*1u[[mod[u,2]1]1],0];
a=a-1j[[mod[j,2]111/8;

a=a-If [Mod[p,4]==1,1j[[mod[j,2]11]*1ul[mod[u,2]]],0]1/8;

(* contribution of (5 *)

(* contribution of po4(2,r,t) *)

1j={1,0,-1};

lu={2,-1,-1};

a=a+If [p==3,7,p+1]*(2*j+2xk-3)*1j [[mod[j,3]1]1]/54;

a=a+If [Mod[p,3]==1, (2%j+2%k-3)*1j[[mod[j,3]1]*1ul[mod[u,3]]1],0]/54;
a=a-If[p==3,1/2,1/3]1*1j[[mod[j,3]1]1];
a=a-If[Mod[p,3]==1,1j[[mod[j,3]1]1]*1ul[mod[u,3]1]1],01/6;

(* contribution of (g *)

(x contribution of 95(2,7,5,t) and wo5(3,7,s,t) *)

1jk={{-2+k, 1-2%j-k, 2-k, -1+2%j+k}, {2-k, 1-2%j-k, -2+k, ~1+2% j+k}} ;

a=a+If [p==2,1jk[[mod[j,2] ,mod[k,4]1]1]1,01/32;

1u={2,0,-2,0};

a=a+(p+1)*If [Mod[p,4]==1,1jk[[mod[j,2] ,mod[k,4]]1],0]*
lul[[mod[u,4111/96;

1jk={{-1,1,1,-1},{1,1,-1,-1}3};

a=a+If [p==2,3*1jk[[mod[j,2] ,mod[k,4]1]1],0]1/16;

a=a+If [Mod[p,4]==1,1jk[[mod[j,2],mod[k,4]1]1],0]*1ul[mod[u,4]1]]1/8;

(* contribution of p7(1) and ¢7(2) *)

(¥ contribution of ¢i5(1,r) and p15(2,7) *)

a=a+If [p==2,1jk[[mod[j,2] ,mod[k,4]1]1],0]1/16;
a=a+If [Mod[p,4]==1,1jk[[mod[j,2],mod[k,4]1]1],0]*1u[[mod[u,4]1]1]1/8;

31
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(¥ contribution of pi9(1,7) and p19(2,7) *)

1jk={{-3+2%j+2%k,1-2%j-k,2-k},{1+2%j,-1-2%j,0},
{-1+42%j+k,3-2*%j-2*k,-2+k}};

lu={2,-1,-1};
a=a+(p+1)*If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,3]1]1],0]*
1lu[[mod[u,3]]1]1/216;

a=a+If [p==3,1jk[[mod[j,3],mod[k,3,311]1,0]/54;
1jk={{-2,1,1},{0,0,0},{-1,2,-1}};

a=a+If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,3]1]1],0]*1ul[mod[u,3]]1]/18;
a=a+If [p==3,1jk[[mod[j,3],mod[k,3]1]],0]1/18;
1jk={{-1,1,0},{0,0,03},{0,1,-1}};
a=a+If[p==3,1jk[[mod[j,3],mod[k,3]11],01/9;

(* contribution of g(1) and @g(2) *)

(x contribution of oo(l,7) and pog(2,7) *)

1jk={{-1-2%j,1-2%j-k,2-k, 1+2%j,-1+2*j+k ,-2+k},
{3-2%j-2xk,3-2%j-2xk,0,-3+2*% j+2%k, -3+2*% j+2*k,0},
{1-2%j-k,-1-2%j,-2+k,-1+2%j+k,1+2%j,2-k}};

lu={2,1,-1,-2,-1,1%};

a=a+(p+1)*If [Mod[p,3]==1,1jk[[mod[j,3] ,mod[k,6]]1],0]*
lul[mod[u,6111/72;

lu={1,-1};

a=a+If [p==3,1jk[[mod[j,3] ,mod[k,61]1],0]*1ul[mod[u,2]]1]/18;

1jk={{0,-1,-1,0,1,1},{-2,-2,0,2,2,0},{-1,0,1,1,0,-1}};

lu={2,1,-1,-2,-1,1};

a=a-If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,6]]1],0]*1ul[mod[u,6]11]1/6;

lu={1,-1};

a=a-If[p==3,1jk[[mod[j,3],mod[k,6]]1],0]*1lul[mod[u,2]]1]1/6;

(x contribution of ¢g(3) and @g(4) *)

(x contribution of 90(3,7) and @oo(4,7) *)

1jk={{-1,1,0},{0,0,0},{0,1,-1}};

lu={2,-1,-1};

a=a+2/9*If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,3]]1],0]*1u[[mod[u,3]]];
a=a+1/9*If [p==3,1jk[[mod[j,3],mod[k,3]]1],0];

(¥ contribution of o1(1l,r) and @21(2,7) *)

1jk={1,-1};
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lu={1,-1};

a=a+(p+1)*(2%j+1)/128*1jk[[mod[j+k,2]1]1];

a=a+If [Mod[p,4]==1, (2%j+1)/64*1jk[[mod[j+k,2]]1]1*1u[[mod[u,2]1]],0];
(x contribution of ¢g(1) *)

1jk={{1,1,-1,-1},{-1,1,1,-1},{-1,-1,1,1},{1,-1,-1,1}};

a=a+If [p==2,1jk[[mod[j,4] ,mod[k,4]1]1]1/16,0];

1lu={4,-2,0,-2};
a=a+If[Mod[p,8]==1,1jk[[mod[j,4],mod[k,4]1]1]*1ul[mod[u,4]1]11/16,0];
lu={2,-2};

a=a+If [Mod[p,8]==3,1jk[[mod[j,4],mod[k,4]]]*1lul[mod[u,2]]1]/16,0];
1u={2,0,-2,0};

a=a+If [Mod[p,8]==5,1jk[[mod[j,4],mod[k,4]]]*1lul[mod[u,4]1]1]1/16,0];
(x contribution of g(2) and @g(3) *)

1jk={{0,-1,1},{-1,1,03},{1,0,-1}};

a=a+If [p==3,1,p+1]*(2*j+1)*1jk[[mod[j, 3] ,mod[k,3]1]]1/108;

lu={2,-1,-1};

a=a+If [Mod[p,3]==1, (2*j+1)*1jk[[mod[j,3] ,mod[k,3]1]],0]*
lu[[mod[u,3]1]1/108;

(* contribution of i9(1) and ¢10(2) *)

1jk={{1,-1},{-2,2},{1,-1}};

a=a+If [p==2,1jk[[mod[j,3],mod[k,2]1]1]1,0]1/36;

lu={4,-1,1,-4,1,-1};

a=a+If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,2]1]1],0]*1ul[mod[u,6]1]1]/108;
lu={1,-1};

a=a+If [p==3,1jk[[mod[j,3],mod[k,2]]1],0]*1ul[mod[u,2]]1]/108;

(x contribution of ¢10(3) *)

1jk={{2,1,-1,-2,-1,1},{-1,1,2,1,-1,-2},{-1,-2,-1,1,2,1}};

a=a+If [p==2,1jk[[mod[j,3],mod[k,6]1]],0]1/18;

lu={4,-1,1,-4,1,-1};

a=a+If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,6]1]]1,0]*1ul[mod[u,6]1]11/27;
lu={1,-13};

a=a+If [p==3,1jk[[mod[j,3],mod[k,6]1]],0]*1ul[mod[u,2]]11/27;

(x contribution of ¢ig(i) (i =4,5,6,7) *)

1jk={{031,—1}a{_19110}9{—110’1},{01_191},{1,_190}1{1903—1}};
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a=a+If [(p-2)*(p-3)==0,1jk[[mod[j,6] ,mod[k,3]]1],0]/12;
lu={4,-3,1,0,1,-3%};

a=a+If [Mod[p,12]==1,1jk[[mod[j,6] ,mod[k,3]1]1],0]*1ul[mod[u,6]11]1/12;
lu={2,-2};

a=a+If [Mod[p,12]1==5,1jk[[mod[j,6] ,mod[k,3]1]1],0]*1ul[mod[u,2]]1]/12;
lu={2,-1,-13};

a=a+If [Mod[p,12]==7,1jk[[mod[j,6] ,mod[k,3]1]1],0]*1ul[mod[u,3]1]1]1/12;
(x contribution of ¢10(8) and ©10(9) *)

1jk={{1,0,0,0,-1,0,-1,0,0,0,1,0},{-1,0,0,0,1,0,1,0,0,0,-1,0}};
1lu={4,0,2,0,-2,0,-4,0,-2,0,2,0};
a=a+If[Mod[p,12]==1,1jk[[mod[j,2],mod[k,12]1]1],0]*1ul[mod[u,12]11]/12;
1jk={{0,0,0,1,0,1,0,0,0,-1,0,-1%},{0,-1,0,-1,0,0,0,1,0,1,0,0},

{0,1,0,0,0,-1,0,-1,0,0,0,1}};
a=a-If[Mod[p,12]==1,1jk[[mod[j,3],mod[k,12]1]1],0]*1ul[mod[u,12]11]1/12;
(x contribution of 11(2) (i =1,2,3,4) *)

1jk={{1,-1},{-2,2},{1,-1}};

a=a+If [p==2,1jk[[mod[j,3],mod[k,2]]1],0]/36;

lu={4,-1,1,-4,1,-1%};

a=a+If [Mod[p,3]==1,1jk[[mod[j,3],mod[k,2]11],0]*1ul[mod[u,61]1]1/36;
lu={1,-1};

a=a+If [p==3,1jk[[mod[j,3],mod[k,2]]1],0]*1u[[mod[u,2]11]1/36;

(* contribution of (1o *)

1j={1,-1,-1,1};

1k={1,-1};

a=a+If [p==2,1j[[mod[j,4]]1]1*1k[[mod[k,2]]],0]1/16;

1lu={4,-2,0,-2};

a=a+If [Mod[p,8]==1,1j[[mod[j,4]11]*1k[[mod[k,2]1]1]*1u[[mod[u,4]1]1],0]1/16;
lu={2,-2};

a=a+If [Mod[p,8]==3,1j[[mod[j,4]11]*1k[[mod[k,2]11]*1ul[mod[u,2]11],0]1/16;
1u={2,0,-2,0};

a=a+If [Mod[p,8]==5,1j[[mod[j,4]1]]1*1k[[mod[k,2]]1]*1ul[mod[u,4]1]1]1,0]/16;

(* contribution of (13 *)
1jk={{1,0,0,-1,0},{-1,1,0,0,0},{0,0,0,0,0},{0,0,0,1,-1},{0,-1,0,0,1}};
lu={4,-1,-1,-1,-1};

a=a+If [Mod[p,5]==1,1jk[[mod[j,5],mod[k,5]]1],0]*1u[[mod[u,5]]1]1/5;
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a=a+If [p==5,1jk[[mod[j,5],mod[k,5]]1],0]/5;
(x contribution of 14(i) (i =1,2,3,4) *)

Return[a];
]

From the above theorem and the vanishing theorem (Theorem 6.1), we have the following

Corollary 4.12. Let p, x and u be as in the above theorem. If j =0 and k > 4 or if
j >0 and k > 5, the dimension of S,(I'o(p),x) is equal to Siegellp_,u_,j_,k_].

85. Vector Bundle {’u

Let N > 3 and p a holomorphic representation of GL(2, C). Let X5(N), X2(N), Xo(N)
and ‘7“ be as in §2. Xo(NN) has a natural morphism s: X5(N) — X(N) which is the identity
on Xo(N). Xo(N) is set theoretically a disjoint union of X5(N), copies of X;(IN)’s which
are called cusps of degree one and finite number of points which are called cusps of degree
zero.

Let f be an element of M,(I's(N)) ~ H°(X3(N),O(V,)). Then f has an extension
f e HO(X,(N), (’)(17“)), since f has a Fourier expansion:

£(2) =" a(S)exp(2miTe(SZ)/N)
$>0
at every cusp of degree one ([Gd]). Hence we have another isomorphism:

M,,(Ta(N)) =~ H*(X2(N), O(V,)).

We return to the case of general degree g in the following

Example 5.1. Let Z € ;4 and put Z = (Z;;), and let

w=" fij(2)dZ;
(5]
be a holomorphic 1-form on &,. We put f;;(Z) = fi;(Z) and define a symmetric matrix
valued holomorphic function f such that the (4, j)-coefficient of f(Z) is equal to f;;(2), if
i =jand f;;(Z)/2, otherwise. Then w is represented as Tr f(Z)(dZ;;). We put W = M (Z).
Then since we have

(dWi;) = (CZ + D)~ (dZi;)(CZ + D),
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w is invariant under the action of I'y(V), i. e.,
Z fig(M(Z))dW;; = Z fii(2)dZ;;,
1<j i<j

for any M € I'y(N), if and only if f satisfies
f(M(2))=(CZ+D)f(2)"(CZ + D)

for any M. Therefore in this case, f belongs to M, (I'g(N)), where s, is the symmetric
tensor representation of degree two of GL(g,C). The 1-form w which corresponds to the
extended section f € HO(X g(N), O(V4,)) of f may have logarithmic poles along the divisor

at infinity D ([Mu]). Therefore we have the following isomorphism of vector bundles:

O(V,,) ~ Q'(log D).

Remark 5.2. If u(CZ + D) = det(CZ + D)*, V,, and XN/“ are line bundles which we also
denote by Lo and EQ, respectively. Lo can be extended to a holomorphic line bundle Lo
on X3(N), and Eg is the pullback of Ly by s. But in general V,, cannot be extended onto
X32(N). The closure of a cusp of degree one of X5(N) is biholomorphic to X;(/N) and the

restriction of Ly to X1 (N) is isomorphic to L;.

le Z12
Zl2 Z22

be the coordinate system of G,. Let C° be a cusp of degree one in X5(N) and C its closure

Let

in Xo(NN). Cusps of degree one in Xo(N) are equivalent to each other under the action of
[2(1)/T2(N). So we assume that CY is defined by Im Zas = co. Let DY be s71(C°) and D,
the closure of DY in X5(N). We denote the restriction of s to Dy by wr. Ly | Dy is isomorphic
to the pullback of L; on C ~ Yl(N ) by m. D; has a structure of an elliptic surface over C
and DY has the structure of the universal family of elliptic curves with level N ([Ig], [Nm]
and [AMRY] Chapter I, §4).

We need to study the structure of YN/u | D1. Let p: & — X1(N) =~ C° be the covering
map. The universal covering space of DY is &; x C. Let P(N) be the subgroup of T'y(N)
consisting of elements which map C' into itself. The set

1 0 0 O
B(N) := vl
0 1

o OO
OO =
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is a normal subgroup of P(N). P(N)/B(N) is isomorphic to the covering transformation
group of the covering space p: &1 x C — DY. Let M € P(N). Then it is known that M is

equivalent modulo B(N) to an element such as

a 0 b 0 1 0 0 n a 0 b an—bm

0 1 0 0 m 1 n 0 fm 1 n 0

c 0 d 0 0 01 —m/|)] |c 0 d en—dm]’
0 0 01 0 0 0 1 0 0 O 1

where

(CCL Z)EI‘l(N) and m, n € NZ.

The coset MB(N) acts on &1 x C as

az1+b 2z +mz +n
cz1+d ez +d ’

(2’1722) — <
for (z1,22) € 61 x C. Let 7 : &1 x C — &5 be the projection to the first factor. Then

7| DY : DY — X;(N) is associated with 7 and we have the following commutative diagram:

61><CL>D?

T

S — OO
p

YN/M | DY is constructed directly as a quotient space of &; x C x C" by P(N)/B(N) as
follows. Let M be as above. Then the coset M B(N) acts on &1 x C x C” as

M) MBW)(r.) = (MBI,

for (z1,22) € 61 x C and § € C". ‘7“ | DY is biholomorphic to the quotient space of
61 x C x C" by this action.

Let (j + k, k) be the signature of p where j and k are integers with j > 0. Then p is of
degree j + 1 and equivalent to s; ® det”. We have

a’ <‘7> a’ b (j>aj_2b2 e b
1 2

. I — 1 . .
s (@ b\ 0 a’ =1 (‘7 1 >a72b e it
J - 0 0 al 2 R A
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If j > 1, this is written as ‘
a’ *

0o (i)

Therefore from the explicit construction (1) of ‘7u | DY, we see that 178].71 | DY is a quotient
bundle of ‘Zj | DY and the kernel is the line bundle which corresponds to the automorphic
factor (cz; + d)?. Obviously this line bundle is isomorphic to the pullback of L?j by 7 | DY.

Hence we have the following exact sequence of vector bundles:
(2) 0= LY | DY =V, | DY =V, ,|D}—o.

Let p and o be s; ® det” and 5j-1 ® det”, respectively. Then multiplying by f?k | DY, we

have another exact sequence:
(3) 0= LYY™ DY 5V, | DYV, | DY — 0.

We can easily see that this exact sequence is extended onto D;. So we have the following

exact sequence:
(4) 0—>f5®(j+k)]D1—>I7M\D1—>X~/G]D1—>O.
Therefore we derive

ch(V,, | D1) = ch(LYY™ | Dy) + ch(V, | Dy),

where ch means the Chern character and by induction we obtain the following

Theorem 5.3.
(5) (V| D1) = (i +k)er(La | D)

= (1/2)(j + 1)(j + 2k)e1 (La | Dy).
(6) c2(V, | Dy) =0,

Remark 5.4. Since det(u(CZ + D)) = det(CZ + D)UTDE+2R)/2 e have

a1(Va) = (1/2)( + 1)(j + 2k)er (Lo).
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So as to the first Chern class, (5) in the theorem holds without restricting to D;. The author
proved a similar exact sequence of vector bundles as (4) in the case of the Siegel upper half
plane of degree three and p = so by a different method (proof of [T1] Theorem (5.2)).
We used that exact sequence to compute the dimension of Si(I's(N)) with N > 3. Such
exact sequences are very important when we use the Riemann-Roch-Hirzebruch’s formula
(cf. proof of Theorem 5.10, below).

Let f € HO()’Z'2(N),O(‘7,_L)) be the extension of f € H(Xy(N),O(V,,)), and let f | D; €
H°(Dy, (9(‘7“ | D1)) be the restriction of f to D;. Now we have the following

Theorem 5.5. In the above sequence (4), f | Dy is mapped to 0, i. e.,

f1 Dy e HY(Dy,0(LEY™ | Dy)).

Proof. Let 7 € &1. Then p ({7} x C) is isomorphic to the elliptic curve E, := C/N(Z1+Z).
(NZ)? acts on C x CUtD) ag

(m.n) (w,€) = <w+mf+n,u<é _17")5),

for w € C, £ € CUTY and m, n € NZ. I7M | £+ is biholomorphic to the quotient space of
C x CU*D by this action. If j = 0, u(CZ + D) = det(CZ + D)* and

1 —m
“(0 1 >_1'

So XN/# | E, is a trivial line bundle. This is the reason why Ls is extended to X3(N) and
L, | Dy is isomorphic to 7*(L1). Let 7 > 1. Then we have the following exact sequence of

vector bundles from (4):
(7) 0—>ET><C—>X~/H|ET—>‘70|ET—>0,

where E. x C means the trivial line bundle on E.. So to prove Theorem 5.5, it suffices to
prove the following

Lemma 5.6. The restriction f | E. of f is mapped to 0 by the above sequence (7).

Proof. Let ¢ = p | {r} x C. Then ¢*(f | E,) is a section of QS*(‘N/u | E;) which is identified

with a holomorphic map a of C to CUT1) satisfying the following equalities:

u(y ") atw) = atwtmr )
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where
aj(w)

a(w) =
ay (w)
ap(w)

We prove the assertion by induction on j. Let j = 1. Then we have the following relations:
ai(w +m7 +n) = a1 (w) — mag(w),
ap(w +m7 4+ n) = apg(w).

From the second relation we derive that ag(w) is constant which we denote by «. Hence it

follows that

ai(w +m7 +n) = a1 (w) — ma.

Differentiating by w, we derive
ai(w+mr +n) = a}(w).
Therefore af (w) is a constant which we denote by 3. So we have
a1 (w) = pw + 7,
where 7 is a constant. Hence it follows that for any w € C and m, n € NZ,
B(w +mt +n)+ v = pw+v — ma.

So we have a = f = 0. Thus we proved that

Now let j > 2. Then a(w) is mapped to

aj—1(w)
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Hence a;j(w) and a;_;(w) satisfy the following relations:
a;j(w+mr+n) =a;(w) —mja;_1(w),
aj—1(w+mr+n)=aj_1(w).
So similarly as before we have
aj-1(w) =0,
and a;j(w) is a constant.

Let 5 = 0. Then we have the following isomorphism:
~ — —®k
(8) H(Dy,O(L§" | D1)) = H'(X1(N), O(L,")).

For f € HO(X3(N), O(LS*)), we denote by ®(f) the element of HO(X(N), O(Z?k)) corre-
sponding to f | Dy by the above isomorphism (8). Let j > 1, and f € H%(Xa(N), O(V,,)).
Then by Theorem 5.5, f | Dy belongs to HO(Dy, (’)(Z?UHC) | D1)). We denote by ®(f) the

element of H°(X(N), O(Z?(ﬁk))) which corresponds to f | Dy by the above isomorphism

(8).
Definition 5.7. The linear map:

- —+®(j+k
@ : M, (T3(N)) = H'(Xo(N), 0(V,.) = H (X2 (N), 0LV ™)) = My (D1 (W)

is called ®-operator. ®-operator is defined for each cusp of degree one and f € M, (I'2(N)) is

called a cusp form, if f belongs to the kernel of ®-operator for each cusp of degree one. We

denote by S, (I'2(IN)) the subspace of M, (I's(N)) consisting of cusp forms. If I' D I'y(NV),

S, (I') is defined to be M, (I') NS, (I'2(N)).

Remark 5.8. In [Gd] ®-operator is defined by a different method. We return to the general
case of degree g and recall the definition of ®-operator there. Let F,Sg ) be the representation
space of a holomorphic representation u of GL(g,C). Let F}Sg/) be the subspace of Fﬁg)

consisting of elements which are fixed by
g0 My
a < 0 M2> ’
for any M, and M, with det My = 1. Then we have

~1 1 0
F;SQ)QF;EQ )2...21:‘/5)2]:‘/5)‘
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F,Sg " is stable under the action of
(9" — M 0
wEM) = ( 0 19—9’) ’

for any M € GL(g',C). ®9~1 is defined by

‘P(g_l)f(Zl) _ lim f (tZl Zu > 7
99

Im Z,,—c0 u

for Z, € &,_1. ®9) is defined inductively for general ¢'. If Z € &/, ®9") f(Z) belongs to
Flsg/) and ®¢) f is an automorphic form of type ;9" with respect to I'y/(N).
In the case of degree two, our ®-operator coincides with @), If j = 0, FP(LQ) , Fél) and F,SO)

coincide with each other, and if j > 1, F, ;51) is one-dimensional and F, AEO) is zero-dimensional.

The following proposition is obvious from the observation above.
Proposition 5.9. f € H*(X2(N),O(V,,)) is a cusp form if and only if f wanishes along
D. Therefore we have

Su(T2(N)) = H(X2(N), O(V,, — D)),

where (9(17“ — D) is the subsheaf of (9(17“) consisting of germs of sections of 17” which
vanish along D.

Now we can calculate dim S, (I'z(IV)) (IV > 3).
Theorem 5.10. Let N >3. If j=0and k>4 orif j > 1 and k > 5, then the dimension
of S, (I'2(N)) is equal to

278375 (G + 1)(k—2)(j+ k—1)(j + 2k — 3)N' = 60(j + 1)(j + 2k — 3)N®

+360(+ ONT) [ (-pHa-p*).

p|N, p:prime

Proof. Let [D] be the line bundle on X5(N) which is associated with the divisor D. Then

by the vanishing theorem (Theorem 6.1, below), we have
dim S,,(T5(N)) = dim H*(Xy(N), O(V,, — D))

= dim H(X,(N), O(V, @ [D]®D))
= X(X2(N),0(V,, ® [D]*("1)),
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where x means the Euler-Poincaré characteristic. Let ¢; be the i-th Chern class of X (N)
and let ¢; be the i-th logarithmic Chern class of X5(N) with respect to X5(N) ([T1]) and
S?(D) the second fundamental symmetric polynomial of (the cohomology classes of) the

irreducible divisors in D. Then from [T1] Proposition (1.2), we have

ci=¢+D

ca =C + ¢ D+ S*(D),

where we denote the divisor D and its cohomology class by the same notation. By the

formula of Riemann-Roch-Hirzebruch, we have

X(X2(N), O(V, ® [D]®1))
1

:ﬁ(élcl(f/u)g + 1263(‘20 — 1261(‘7M)CQ(‘7M) + GCl(f/L)zél — 1262(‘2)51

+261(V,)& + 2¢1(V,))ea + (5 + 1))

1 . o _
+ ﬁ(1202(vu> — 601(‘/“)61 — 65% — (] + 1)(0% -+ CQ))D

- 2—14(0 +1)e1D? + 2¢1(V,,) D?) + ;Z(ch(VM)SQ(D) + (j + e S%(D))

— 2—14(j +1)D S?(D).

Since
& = (—1)¢;(Vi,)

by Example 5.1, the terms in the first and the second lines are proportional to the invariant
volume of I'y(N)\ &2 ([Mu]). (In [Mu] Theorem 3.2, it is stated that a polynomial of ci(ffu)’s
for a single representation p is proportional. But moreover a polynomial of ci(ffu)’s for
various representations is also proportional. Proof is the same.) Therefore these terms are
calculated by [Is] Theorem 4. Note that “the canonical factor of automorphy” in [Is] is
Y{(CZ + D)~ by our notation and [Is] Theorem 4 ii) is misprinted. “cOT’—|— (CSJK” should be
‘ol by,

The terms in the third line and the second term in the fourth line vanish by Theorem

5.3. Next from (5) in Theorem 5.3, we have
e1(V,)D? = (1/2)(j + 1)(j + 2k)e1 (L2) D2
and it holds that ¢; = —3¢; (Eg) Hence the first term in the fourth line is equal to

(1/24)(j + 1)(j + 2k — 3)ex (L) D.
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This and the term in the fifth line are similarly calculated as in [T1].

§6. Proof of the Vanishing Theorem

In this section we prove the vanishing theorem:

Theorem 6.1. Let pu be an irreducible holomorphic representation of GL(2,C) and let
(j + k, k) be its signature. If j =0 and k >4 or if 7 >1 and k> 5 and if p > 0, then

HP(X3(N),O(V,, — D)) ~ 0.

We reduce the proof of this theorem to the case of the cohomology group of a certain line
bundle of a P'-bundle over XQ(N ) and apply the vanishing theorem of Kawamata-Viehweg
([Ka] and [V]). But this proof is a rather makeshift one. The vector bundle V, on &,
has a Sp (2, R)-invariant hermitian metric which induces a metric on V, @ [D]®(-1. This
metric “degenerates” along the divisor at infinity D. If one develop a theory of harmonic
integrals with respect such a degenerating metric (cf. [Z] for one dimensional case), then
our vanishing theorem can be proved by applying the vanishing theorem of Nakano directly
to the vector bundle ‘N/M ® [D]®(_1). Before the proof of Theorem 6.1, we present a proof
(which uses the vanishing theorem of Nakano ([Nk])) of the vanishing theorem in case I'\ G,
is compact, because we have to use the positivity of the Sp (2, R)-invariant metric in the

proof of Theorem 6.1.

Remark 6.2. In the case of compact quotients, the vanishing theorem holds when k = 4
(Theorem 6.6). So it is expected that the vanishing theorem also holds when k = 4 in the

case of non-compact quotients.

Now we prove the vanishing theorem for the case of compact quotients by using Nakano’s
vanishing theorem. First we recall the positivity of holomorphic vector bundles in the sense
of Nakano. Let X be a complex manifold of dimension n, V' a holomorphic vector bundle

of rank r on X and h a hermitian metric on V. Put
0=h"1Oh and © = 96.

0 is the connection form and © is the curvature form. © is a r X r matrix whose coefficients

are (1,1)-forms. Let (21,22%,...,2") be the local coordinate in X and let

> H(O)gipdz'd7

1<i,j<n
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be the (p, 0)-coefficient of h©. Since it holds that

for a vector £ = (E”)lgggr,1gign-

Definition 6.3. ([Nk|). If the hermitian form O(§,€) is positive (resp. non-negative or
negative) for every non-zero £, V is said to be positive (resp. semi-positive or negative®)
and written as

V>0 (resp. V>0 or V <0).

In the case of the line bundle this notion of positivity coincides with the positivity in the
sense of Kodaira ([Ko]).

Now we return to the case of the Siegel upper half plane. Let u be the representation of
GL(g,C) on CY with the standard action. In this case we denote V,, V,, and YN/# by V, V

and ‘N/, respectively. Let Z € &,. For u, v € Vz, we put
H=ImZ and (u,v)="aHv.
Then since it holds that
ImM (Z) = (CZ+ D) ' (ImZ)(CZ+ D)™,
for any Z € &, and M € Sp(g,R), we have
(Mu, Mv) = (u,v),

i. e., this hermitian metric H is Sp (g, R)-invariant. Therefore for any torsion free discrete
subgroup I' of Sp(g,R), this metric H induces a hermitian metric h on V := I'\V. In
case ((CZ + D) = det(CZ + D) we also denote V,, by L,. Similarly as before, we define
(u,v) = u(det H)v for Z € &, and u,v € (Ly)z, and this metric is also Sp (g, R)-invariant.

Therefore this metric induces a metric on Ly := I'\ L,,.

5The definition of the negativity was false. V is said to be negative if V* is positive.
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Proposition 6.4. With respect to the above metric, we have

(10) L, > 0.

Proof. Since the metric H is Sp (g, R)-invariant, it suffices to prove the positivity at a single

point Z € &,. We put Z = /—11,. Let Y =Im Z. Then

(0;5) = 5(Y*18Y)
=Y '90Y — Y oYY~ loy

= —(1/4)(>_ dZi N dZy;).
k

We introduce variables £7(49) for 1 < 0,4, < g and i < j, and put €7 = ¢9(3) Then
for £ = (£7(59)) it holds that

0(&,¢) = (1/4) Z g5k Eilik)

1<i,j,k<g

= (1/4) Z Z gj(jk)gi(i,k)

1<k<g1<i,j<g

= (1/4) Y ‘ 3 ,gi(zyk)f

1<k<g 1<i<g
> 0.

So (9) is proved. (10) is well known, since v/—190 log(det H) defines the Bergmann metric

on G,.

The following lemma is proved similarly as in [Gr2] p.209, although the positivity in [Gr2]

is different from our positivity. (Actually the positivity in [Gr2] is weaker than ours.)

Lemma 6.5. Let Vi and Vo be holomorphic vector bundles on a complex manifold X. If
Vi > 0 and Vo > 0 with respect to some hermitian metrics hy and hs, V1 ® Vo > 0 with

respect to the metric hy ® ho. Moreover if Vo > 0, then V3 ® Vo > 0.

Let p be an irreducible holomorphic representation of GL(g, C) and (fi, fa, ... , fy) with
fi > fa > --- > f, its signature. Let I' be a discrete subgroup of Sp (g, R) without torsion

elements such that I'\G, is compact. In this case, we have the following
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Theorem 6.6. If f, > g+ 2 and if p > 0, then

HP(T\&,, O(V,,)) ~ 0.

Proof. Let K be the canonical line bundle on I'\G,. Then it is known that

K ~ [®g+1)
~ L, .
Let o be the irreducible representation of GL(g, C) whose signature is

(fi—=9—=2,fa—9g—2,...,fg—g9—2).

Then p=0® det9*? Since fo—9—22>0, V®7 contains a vector bundle isomorphic to V,
as its direct summand, where f is equal to Y 7_,(f; — g — 2). Therefore it suffices to prove
that

HP(T\&,, O(VE & L20T2))) ~ 0.

Since V®f ® LSO(QH) is isomorphic to V®/ ® L, ® K, this is proved by Proposition 6.4,

Lemma 6.5 and the following

Theorem 6.7. ([Nk]) Let X be a compact complex manifold, V' a holomorphic vector bundle
on X and K the canonical line bundle on X. If V> 0 and if p > 0, then

HP(X,0(V @ K)) ~ 0.

Remark 6.8. Theorem 6.6 was proved for general bounded symmetric domains in [Is]
and [MM]. The dimension of the spaces of vector valued automorphic forms in the case of
compact quotients was calculated in [Is] for general bounded symmetric domain (and also

in [L] by the Selberg’s trace formula).

Now we return to the proof of Theorem 6.1. Let W be a holomorphic vector bundle of
rank 7 on a compact complex manifold X and let W* be its dual vector bundle. We identify
X with the zero section of W*. Then P(W) := (W* — X)/C* is a P"~! bundle on X and
W* — X is a C* bundle on P(W). We denote by H(W)* the tautological line bundle on
P (W) which is the line bundle associated with this C* bundle and we denote by H (W) its

dual line bundle.
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Definition 6.9. Let L be a holomorphic line bundle on a projective manifold X. L is said to
be numerically semi-positive if for any non-singular compact curve B and any holomorphic
map f : B — X, the degree of f*(L) is non-negative. Let W be a holomorphic vector bundle

on X. W is said to be numerically semi-positive if H(W') is numerically semi-positive.

The following isomorphism is well known:
(11) HP(X,0(87(W)) ® F) ~ HP(P(W), O(H(W)®) @ w* F),

where F is a coherent sheaf on X and @ : P(W) — X is the projection. Let Kx and Kp(w)
be the canonical line bundles on X and P(W), respectively. Then we have the following

isomorphism ([Gr2] p.202 or [KO]):
(12) Kpwy =~ HW)®" @ o (Kx @ (det(W))).

In the following we denote YN/# for the standard representation p of GL(2,C) on C? by
V. Let i be s; ® det®. Then 17# is isomorphic to Sj(17) ® ES% The case of j = 0 is easily
proved by the ampleness of Ly ([Ba]) and Kodaira vanishing theorem ([Ko]). So we assume
that j > 1. Then O(VM — D) is isomorphic to O(YN/M ® [D]®(=1). So this is isomorphic to
O(S4(V) ® L§* @ [D]®(-V). Let K be the canonical line bundle on X5(N). Then K is
isomorphic to LY? @ [D]®(~1). So the above sheaf is isomorphic to O(S7 (V) ® E;‘Q(’“‘g) ®K).

By the isomorphism (9), we have the following isomorphism:
HP(X5(N),0(87(V) @ LY @ K)) ~ HP(P(V), O(H(V)¥ @ =" (L5 @ K))).

Since Ly = det(V), this is isomorphic to

~ =@kt
(13) HY(P(V), O(H(V)?U+? @ o*(L5" ) © Kp ),

from (12). We prove that this cohomology group vanishes by the following theorem of
Kawamata-Viehweg:

Theorem 6.10. ([Kal, [V]). Let X be a projective manifold of dimension n, L a holomor-
phic line bundle on X, ¢1(L) the first Chern class of L and K the canonical line bundle on

X. If L is numerically semi-positive and c1(L)"[X] is positive, then we have

H?(X,0(L® K)) ~ 0,
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for p > 0.

So we have to prove the numerical semi-positivity of L := H(V)®0+2) g w*(E;@(k%))
and the positivity of ¢y (L)*[P(V)] for k > 5. Since Ly is an ample line bundle on X(N)
and @*(Ly) is the pullback of Ly by sow@ : P(V) = X3(N) — Xo(N), this is numerically
semi-positive. Therefore it suffices to prove the numerical semi-positivity of H (‘7) and the
positivity of ¢; (L)*[P(V)).

First we calculate ¢1(L)4[P(V)]. Put a = j +2 and b = k — 4, and let e; and ey be the
first and the second Chern classes of V, respectively. Then by [Grl] (A.9), we have

ci(H(V))? —w*(e1)er(H(V)) + w*(e2) = 0.

Since e; = ¢1(V) = ¢1(Ls), we have
a(L)'P(V)] = (aci (H(V)) + bw" (e1 (L)) [P(V)]
= w*((a* 4 4a%b + 6a%b? + 4ab®)e? — 2(a* + 2a°b)eres) ey (H(V))[P(V)]
= ((a* + 4a®b + 620> + 4ab*)e? — 2(a* + 20°b)e1es)[ X2 (N)]
Let h be the metric on V' which is induced by the Sp (2, R)-invariant metric H, and let

© be the curvature form of h. Put
1
det <12 + .®> = wp + w1 + w2,
21

where w; is (i,4)-form. Since h degenerates along D, h does not define the metric on V.
But A is good on X5(N) in the sense of [Mu] p.242. Namely h is dominated by the Poincaré
metric on X5(N) ([Mu] p.240). Hence w; is locally integrable on Xo(N) and this defines a
current [w;] on X5(N), and this current represents the cohomology class e; ([Mu]). Since h
is induced by the Sp (g, R)-invariant metric H, w; and ws are induced by Sp (g, R)-invariant
differential forms 7 and Q9 on &,, respectively. From [BH] §16.4, we have Q1 AQq = 2.
(We can prove this directly. At Z = /—115, we have

0 = % (dZy1 NdZy1 +2dZ1a N dZrg + dZos NdZ )
Qy = <87lm> 2 (dZy1 NdZ1y N dZoy NdZos +2dZ1y NdZy1 N dZig NdZys
+2dZ12 NdZ12 NdZsa N dZs2) ,
(cf. proof of Proposition 6.4).) Hence we have wy Aw; = 2wy and wy Awy Awy = 2wy A wa.

Since €21 A1 Ay is a multiple of the invariant volume form by a constant, we can calculate
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3[X5(N)] from the invariant volume of the fundamental domain of Iy(N) in &5 . This is
essentially the Hirzebruch proportionality ([Mu]). Therefore from [T1] Corollary (1.6), we
have

e}[Xo(N)] = 2e162[Xa (V)] = 2793725 N [[(1 = p~?)(1 = p?),

where J] means J[,x pprime- SO c1(D)A[P(V)] is equal to

2773725 tab(a + b)(a+ 20) N [[(1 = p )1 = p7*).

Therefore ¢; (L)*[P(V)] is positive if k > 5.

Now we prove the numerical semi-positivity of H (Y~/) Let V* be the dual vector bundle
of V. If Z € X5(N), then ‘75 has a hermitian form h* := *h=!. Let u be a non-zero
element of ‘~/Z* We define a positive function h on V* | X2(N) minus its zero section by
n(Z,u) = tuh*u. For A € C*, it holds that h(Z, Au) = |A|*h(Z, u). Since H(V)* minus its
zero section is naturally biholomorphic to V* minus its zero section, h defines a metric on
H(V)* | @ 1(X3(N)). We also denote this metric by h. Since V | X2(N) > 0 with respect
to the metric i by Proposition 6.4, we have V* | X5(N) < 0 with respect to h*. Therefore
H(V)* | @~ 1(X5(N)) < 0 with respect to h. These facts are similarly proved as in [Gr2] or
[KO].

We regard @w—1(D) as the boundary (or points at infinity) of w=!(X5(NV)). Since h* is
induced from the Sp (2, R)-invariant metric H* := *H ™!, we can easily see that the metric
h is good on P(V). Namely h is dominated by the Poincaré metric on P(V). Let

1 o~
w= T@alog hZ,u).

™

Then w is locally integrable on P(V') and the current [w] represents the first Chern class of
H(V)*.

Let B be a compact smooth curve and f : B — P(‘7) a holomorphic map. We prove
that the degree of f*(H(V)) is non-negative. First we assume that f(B) ¢ D. We put
BY = f~Y(@w 1 (X3(N))). We regard B — B° as the boundary of BY. We define a metric
hg on f*(H(V)*) | BY as the pullback of b by f. Let w(® be the Poincaré metric on P(V).

Then f*(w) is dominated by the Poincaré metric on B° and so is hp. Therefore hy is

good on B. Hence
1 _
wp = Tmaal@g hp (= f"(w))
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is locally integrable on B and the current [wg] represents the first Chern class of f*(H(V)*).

So we have

dex f(HV)) = [ wp.

Since H(V)* | @ }(X3(N)) < 0 with respect to h, we have f*(H(V)*) | B® < 0 with
respect to hp. Hence the above integral is non-positive. Therefore the degree of f*(H(V))
is non-negative.

Next we assume that f(B) C D. Let D; be the irreducible component of D which contains

f(B). Then as we saw in §5, we have the following exact sequence of vector bundles:
0= Ly|Dy —» V|Dy = Dy xC — 0,

where D1 x C means the trivial line bundle on D;. We need to prove the numerical semi-

positivity of V | Dy. This is proved by the following
Theorem 6.11. Let X be a projective manifold and let

¢ (4

0O—- Vi =V — V3 — 0.

be an exact sequence of holomorphic vector bundles on X. If Vi and V3 are numerically

semi-positive, then Vo is also numerically semi-positive.

Proof. (due to T. Fujita). A holomorphic vector bundle V' on X is numerically semi-positive
if and only if for any compact smooth curve B, any holomorphic map f : B — X and any
quotient line bundle L of f*(V'), the degree of L is non-negative. This is similarly proved as
[F] Proposition (2.8). Let f : B — X be as above, L a line bundle on B and

0:f*(Vo) = L - 0

an exact sequence. Let 6 o f*(¢) be the composition of § and f*(¢) where f*(¢) is the
pullback of ¢ by f and let r be the rank of V;. First we assume that 6 o f*(¢) is not
identically zero. Then 6 o f*(¢) is written locally as

(v1,v2, ... ,0.) — hi(x)vy + ho(x)ve + - - - + hy(z)0y,

() =0

where hy, hs, ..., h, are local holomorphic functions. If hy(x) = he(x) = -+ = h,
at x = p, then 6 o f*(¢) degenerates at p. Let n be the order of zero of 6 o f*(¢) which
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is defined to be the minimum of the orders of zeros of h;’s at p and let ¢(z) be a local

coordinate around p. We put h}(z) = h;(x)t(x)~". Then the following map
(01,02, ... ,0p) — Ry (x)v1 + hy(z)ve + -+ + hy(z)vy

does not degenerate at p. Let {p;} be the set of points where 6 o f*(¢) degenerates and n;
be the order of zero at p;. Let R be the divisor ). n;p;. We modify the map 6 o f*(¢) at

each point p; as above, then we have an exact sequence:
ffi) = Lo [RPCY - o.

Since V; is numerically semi-positive, the degree of L ® [R]®(~1) is non-negative. So the
degree of L is non-negative. If # o f*(¢) is identically zero, then € factors through f*(V3).

So similarly as above we can prove that the degree of L is non-negative.

§7. Dimension Formula for the Full Modular Group
In this section we present the dimension of S),(I's(1)) by a Mathematica function and the
generating function of them. This result was announced in [T3]. But it is rather difficult to

evaluate them from the expression in [T3].

Theorem 7.1. Let N > 3 and p the holomorphic representation of GL(2,C) whose sig-
nature is (2§ + k, k). Then x;i = Z(—l)"dimHi()Nfg(N),(’)(vM — D))¢W) s given by the

(2
following Mathematica function:

SiegelFull[j_,k_]:=Block[{a,lj,1k,1jk,x,y},
mod[x_,y_]:=Mod[x,y]l+1;

a=(2%j+1) * (2% j+k-1) * (2% j+2%k-3) * (k-2) /5/27/128;
a=a-(2xj+1)* (2% j+2+k-3)/9/32;

a=a+(2*j+1)/48;

(* contribution of 1 *)

(x contribution of i5(r) *)

(x contribution of (oo(l,7,t) *)

(* contribution of o5(1,7,s,t) *)

1k={1,-1};
a=a+(2%j+k-1)*(k-2) /9/128*1k [ [mod [k,2]]];
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a=a-(2*j+2%k-3) /3/64*1k [ [mod [k,2]]];
a=a+1k[[mod[k,2]1]]1/32;

(* contribution of (o *)

(x contribution of ig(r) *)

(* contribution of po3(4,r,t) *)

a=a+(2*%j+k-1)*(k-2)/3/64x1k[[mod[k,2]1];
a=a-(6*j+6xk-7)/3/64*1k[[mod[k,2]1]];
a=a-1/12x1k[[mod[k,2]11];
a=a+1/32x1k[[mod[k,2]1]];
a=a+1/8*1k[[mod[k,2]]];
(* contribution of (3 *)
(x contribution of i7(r) *)

(3,7,t) *)
(* contribution of po4(4,r,t) *)

(i,r,8,t) (i =4,5,6) *)

(* contribution of g9

(* contribution of a5

1j={1,-1};
a=a+(2xj+2+k-3)/3/64*1j[[mod[j,2]1]1];
a=a-1j[[mod[j,2]11]1/16;

(* contribution of (4 *)

(* contribution of po3(2,r,t) *)

a=a+(2%j+2¥k-3) /128*1j [[mod[j,2]11];
a=a-1j[[mod[j,2]1]1]1/16;
(* contribution of 5 *)

(x contribution of o4(2,7,t) *)

1j={1,0,-1};

a=a+(2*j+2%¥k-3)*1j [[mod[j,3]1]]1/54;
a=a-1j[[mod[j,3]111/6;

(* contribution of g *)

(x contribution of o5(2,7,s,t) and @o5(3,7,s,t) *)

1jk={{-2+k,1-2%j-k,2-k,-1+2*%j+k},{2-k,1-2%j-k,-2+k , - 1+2* j+k}};

a=a+ljk[[mod[j,2],mod[k,4]111/96;
1jk={{-1,1,1,-1},{1,1,-1,-1}3};
a=a+ljk[[mod[j,2] ,mod[k,4]1]1]/16;

(* contribution of p7(1) and ¢7(2) *)
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(¥ contribution of pi5(1,r) and p15(2,7) *)

a=a+ljk[[mod[j,2],mod[k,4]1]1]1/16;
(¥ contribution of pi9(1,r) and p19(2,7) *)

1jk={{-3+2%j+2%k, 1-2%j-k, 2-k}, {1+2%],-1-2%j , 0},
{-1+2%j+k,3-2*%j-2*k,-2+k}};

a=a+1jk[[mod[j,3],mod[k,3]11]/216;

1jk={{-2,1,1},{0,0,03},{-1,2,-1}};

a=a+1jk[[mod[j,3],mod[k,3]1]1]/36;

(* contribution of pg(1l) and ¢g(2) *)

(x contribution of oo(l,7) and pog(2,7) *)

1jk={{-1-2%j,1-2%j-k,2-k,1+2%j,-1+2*j+k,-2+k},
{3-2%j-2%k,3-2%j-2%k, 0, -3+2%j+2%k, ~3+2%j+2%k, 0},
{1-2%j-k,-1-2%j,-2+k,-1+2*j+k, 1+2xj,2-k}};

a=a+ljk[[mod[j,3],mod[k,6]1]1]1/72;

1jk={{0,-1,-1,0,1,1},{-2,-2,0,2,2,0},{-1,0,1,1,0,-1}};

a=a-1jk[[mod[j,3],mod[k,6]11]1/12;

(x contribution of ¢g(3) and wg(4) *)

(x contribution of 90(3,7) and @oo(4,7) *)

1jk={{—1,1,0},{0,0,0},{0,1,-1}};
a=a+ljk[[mod[j,3],mod[k,3]111/9;
(¥ contribution of po1(1,r) and 21(2,7) *)

1jk={1,-1};
a=a+(2%j+1)/128*1jk[[mod[j+k,2]11];
(x contribution of pg(1) *)

1jk={{1,19_11_1}:{_111:1,_1}’{_1:_1’1:1};{1’_1,_111}};
a=a+ljk[[mod[j,4],mod[k,4]11]1/16;
(* contribution of pg(2) and ¢g(3) *)

1jk={{03_1’1}:{_1,1;0}’{1’0:_1}};
a=a+(2*j+1)*1jk[[mod[j,3],mod[k,3]]1]/108;
(x contribution of ¢i0(1) and @1p(2) *)

1jk={{1,_1}){_292}){1,_1}};
a=a+ljk[[mod[j,3],mod[k,2]]1]/108;
(* contribution of ¢10(3) *)
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1jk={{2,1’_1,_2’_1;1},{_111,2’1’_1,-2}:{-1,_2,_111’2’1}};
a=a+ljk[[mod[j,3],mod[k,6]11]/27;
(* contribution of ig(i) (i =4,5,6,7) *)

1jk={{0,1,_1},{_1,1,0},{_l,o,l},{o,_l,1},{1,_1,0},{1,0,_1}};
a=a+1ljk[[mod[j,6],mod[k,3]1]1]1/12;
(¥ contribution of ¢109(8) and ¢10(9) *)

1jk={{1,0,0,0,-1,0,-1,0,0,0,1,0},{-1,0,0,0,1,0,1,0,0,0,-1,0}};

a=a+ljk[[mod[j,2],mod[k,1211]1/12;

1jk={{0,0,0,1,0,1,0,0,0,-1,0,-1},{0,-1,0,-1,0,0,0,1,0,1,0,0},
{0,1,0,0,0,-1,0,-1,0,0,0,1}%};

a=a-1jk[[mod[j,3] ,mod[k,12]1]1]1/12;

(x contribution of ¢1(i) (1 =1,2,3,4) %)

1jk={{1,-1},{-2,2},{1,-1}};
a=a+ljk[[mod[j,3],mod[k,2]]1]1/36;

(* contribution of (15 *)
1j={1,-1,-1,1};

1k={1,-1};
a=a+1j[[mod[j,4]11]*1k[[mod[k,2]11]/16;

(* contribution of (13 *)

1jk={{1,0,0,-1,0},{-1,1,0,0,0},{0,0,0,0,0},
{0,0,0,1,-1},{0,-1,0,0,1}};

a=a+ljk[[mod[j,5] ,mod[k,5]]1]1/5;

(x contribution of 14(i) (i =1,2,3,4) *)

Returnl[a];

]

From the above theorem and the vanishing theorem (Theorem 6.1), we have the following

Corollary 7.2. If j=0and k >4 orif j >0 and k > 5, then the dimension of S,,(I'2(1))
s equal to SiegelFulll[j_,k_].

Table 7.3. Let xji be as in Theorem 7.1. Then the generating function

Z Xk stk

J,k=0
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of xjr (k>0) is a rational function of s and t whose denominator is

t12).

%) (1

(1=s")(1 = s)(1=5")(1 =) -tH(1 - 7)1

Let f(s,t) be the numerator. f(s,t) is of degree 17 with respect to s and of degree 26 with

respect to t. The coefficients of s7t* (0 < j < 17, 0 < k < 26) are given by the following

matriz:

0 -1 -1-1-1 0

0
0 -1 -1 -1 -1

0

0

1

1

1 -1 -1 -2 -1 -1

1

1 -3 -1-1-1 0

0
1
0
0
0

1
0

1 -2 -1 -2 -1 -1
1 -1 -1 -1 -1 -1

0 -1 -2 -1 -1 -1

0
1

1

1

0 -2 -2 -2 -2 -1 -1

2

0 -1 -1 -2 -1 -2

1

1
0

0
2

0 -1 -3 -3 -3 -1

0

-1 -1

2 -1 -2 -4-3 -3 -1 1

1

2

0
1

0 -1 -1 -1 -1

0

1
0 -3 -3 -3 -2

0 -1 -1

1

0
1 -1 -2 -2 —4 -2 -2

0

0
1 -2 -3 -6 -5 -4 -1

1

2

2

1 -3 -2 -4 -2 -3

0-1-1-3 -3 -2 -1

1

0

0

0 -1 -2 -2 -3 -1

0

1
0

1

2

1

-1 -1

0

0 -1 -1 -1

0
0 -1 -1

0 -1 -1 -2-1 1

0

1

0
0 -1 -1 -1

0

0 0

0 -1 -1-1-1 1

0

1
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CORRECTIONS TO THEOREM 3.2

2) 7(pa, ®2) should be 277372(—1)k((k — 2)(2j + k — 1)N©

16) 7(p16(r), ®16) should be 27°371(—1)k (

—6(2] + 2k — 3)N® + 36 NH[[(1 — p~2)2.

12 — (2 + 2k — 3)N
(1—¢7)

) NI -
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8- (2j+2k-3)N = 4
(1=¢7) (1—¢")
275, if 24N
X

17) 7(p17(r), ®17) should be (—l)k < 2) N2TI(1 —p~?)

278371 if2|N
CORRECTIONS TO [T2]

p.849, line 12 from the bottom: “37/3” should read “37/2”.

p.862, line 12: “i*(A(®3))” should read “¢" (A(®3))".

p-877, line 1 from the bottom: “%” should read “%”.

p.870, line 5: The (3,3) coefficient of the matrix shoud be 1.

p.871, line 5: “2-33=1"" should read “2-3371(—1)*".

p.872, line 8: “Lemma (4.)” should read “Lemma (4.9)”.

p-877, line 7: “rt Z0 mod £” should read “r Z0,t %0 mod £”.

p.877, line 9: “+¢("+1/2” should read “+¢("+9/2 —17,

p.877, line 10: “rt #0 mod ¢” should read “r #0,t# 0 mod ¢”.

p.877, line 10: “¢", ¢'” should read “¢", ¢*, —1".

p.877, line 11: “+¢+t9/27 should read “+¢(rt0)/2 —17,

p.877, line 12: “rt 20 mod ¢” should read “r Z0,t# 0 mod £”.

p.877, line 12: “¢™, ¢'” should read “¢", ¢!, —17.

p.877, line 13: “(r+s)(s+t)s #0 mod ¢” should read “r+s# 0, s+t #0,s Z0 mod £”.
p.877, line 15: “(r +2s+t)s # 0 mod ¢” should read “r +2s+t#0, s 0 mod ¢”.
p.878, line 3: “7(¢a2(2,7,t), P22)” should read “T(¢paa(3,7,t), Paa)”.

e-mail address: tsushima@math.meiji.ac.jp

http://www.meiji.ac.jp/severs/math/tsushima.html®

6This is false. The correct one is http://www.math.meiji.ac.jp/ tsushima



