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Synopsis. In this paper we present an explicit dimension formula for the spaces of Siegel

cusp forms of degree two with respect to the congruence subgroup Γ0(p) and Dirichlet

character modulo p. A certain exponential sum appears in the formula. The value of this

sum is determined by comparing our result with the result of K. Hashimoto ([Ha1])3.

Keyword. Siegel cusp form, holomorphic Lefschetz fixed point formula, exponential sum

Contents

§0. Introduction · · · 3

§1. General Dimension Formula · · · 5

§2. Conjugacy Classes of Γ0(p)/Γ2(p) · · · 9

§3. Details of |NG(Φλ)|’s and τ(φ,Φλ)’s · · · 19

§4. Dimension Formula and Exponential Sums · · · 23

§5. Vector Bundle Ṽµ · · · 34
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Notations

Sg : the Siegel upper half plane of degree g

Sp (g,R), Sp (g,Z) : the symplectic group over R and Z

M ⟨Z⟩ : (AZ +B)(CZ +D)−1

J(M,Z) : CZ +D (the canonical automorphic factor)

µ : (irreducible) holomorphic representation of GL(2,C) into GL(r,C)

Γ : a subgroup of finite index of Sp (g,Z)

Mµ(Γ) (Sµ(Γ)) : the space of automorphic (cusp) forms of type µ with respect to Γ

Mk(Γ) (Sk(Γ)) : the space of automorphic (cusp) forms of weight k with respect to Γ

Γ0(N) : the subgroup of Sp (2,Z) defined by C ≡ O (mod N) (§0)
Γg(N) : the principal congruence subgroup of level N of Sp (g,Z)

Sµ(Γ0(N), χ) : the space of cusp forms of type µ w.r.t. Γ0(N) and Dirichlet character χ (§0)(
a

p

)
: Legendre symbol

h(−p) : the class number of Q(
√
−p)

Xg , Xg
α : the set of fixed points of g and its irreducible component

τ(g,Xg
α), τ(g) : the contribution of g at the fixed point set Xg

α and their sum (§1)
Φ : a representative of the irreducible components of the fixed points sets

CG(Φ), NG(Φ) : the isotropy group and the stabilizer group in G of Φ (Definition 1.4)

Cp
G(Φ) : the set of proper elements of CG(Φ) (Definition 1.4)

CG(g) : the centralizer group in G of an element g of G

e(φ) : (§1)
X2(N) : the quotient space Γ2(N)\S2

X2(N) : the Satake compactification of X2(N)

X̃2(N) : the smooth compactification of X2(N) (N ≥ 3)

D = X̃2(N)−X2(N) : the divisor at infinity

[D] : the line bundle associated with the divisor D

s : X̃2(N) → X2(N) : the map of X̃2(N) which is the identity on X2(N)

G(N), G0(N) : Γ2(1)/Γ2(N),Γ0(N)/Γ2(N)

Vµ : S2 ×Cr with the action M(Z, v) = (M ⟨Z⟩ , µ(CZ +D)v) of M ∈ Γ2(1)

Lg : Sg ×C with the action M(Z, v) = (M ⟨Z⟩ , det(CZ +D)v) of M ∈ Γg(1)

Vµ : the vector bundle Γ2(N)\Vµ over X2(N) (N ≥ 3)

Ṽµ : the extension of Vµ onto X̃2(N) (N ≥ 3)

Lg : the line bundle Γg(N)\Lg over Xg(N) (N ≥ 3)

L̃g , Lg : the extension of Lg onto X̃g(N) and Xg(N) (N ≥ 3)

sj : the symmetric tensor representation of degree j of GL(2,C)

V, V, Ṽ : Vµ, Vµ, Ṽµ, where µ is the standard action of GL(2,C) on C2

D1 : irreducible component of D

π : the restriction of s to D1

C : π(D1) (one dimensional cusp of X2(N))

H : the hermitian metric on V defined by ImZ

h : the hermitian metric on V induced by H
θ,Θ : the connection form and the curvature form of h

P(V ) : the projective bundle associated with vector bundle V

H(V ) : the dual line bundle of the tautological line bundle of P(V )
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ϖ : the projection: P(Ṽ ) → X̃2(N) (N ≥ 3)

ĥ : the hermitian metric on H(V )∗ induced by h

§0. Introduction

Let Sg = {Z ∈ Mg(C) | tZ = Z, Im Z > 0} be the Siegel upper half plane of degree g.

Let

Z ∈ Sg and M =

(
A B
C D

)
∈ Sp (g,R),

and let

M ⟨Z⟩ = (AZ +B)(CZ +D)−1.

Then this defines an action of Sp (g,R) on Sg. Let Z and M be as above, and put

J(M,Z) = CZ +D (∈ GL(g,C)).

Then this satisfies the following relation for any M1,M2 ∈ Sp (g,R) and Z ∈ Sg:

J(M1M2, Z) = J(M1,M2 ⟨Z⟩)J(M2, Z),

and this is called the canonical automorphic factor. Let µ be a holomorphic representation

of GL(g,C) into GL(r,C). Then µ(J(M,Z)) = µ(CZ+D) also satisfies the above relation.

Let µ be as above and let Γ be a discrete subgroup of Sp (g,R). By an automorphic

form of type µ with respect to Γ, we mean a holomorphic map f of Sg to the r-dimensional

complex vector space Cr which satisfies the following equalities:

f(M ⟨Z⟩) = µ(CZ +D)f(Z),

for any M ∈ Γ and Z ∈ Sg. (We need to assume the holomorphy of f at the “cusps” if

g = 1.) We denote by Mµ(Γ) the complex vector space of automorphic forms of type µ with

respect to Γ. If Γ is arithmetically defined discrete subgroup of Sp (g,R), then it is known

that Mµ(Γ) is finite-dimensional.

Let Γ be a subgroup of finite index of Sp (g,Z). An automorphic form f of type µ with

respect to Γ is called a cusp form if it belongs to the kernel of Φ-operator ([Gd] and Definition

5.7, below). We denote by Sµ(Γ) the vector space of cusp forms of type µ with respect to

Γ. In case µ(CZ +D) = det(CZ +D)k, an automorphic (resp. a cusp) form of type µ is
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also called an automorphic (resp. a cusp) form of weight k, and Mµ(Γ) (resp. Sµ(Γ)) is also

denoted by Mk(Γ) (resp. Sk(Γ)).

Now let g = 2, and for a natural number N let

Γ0(N) =

{(
A B
C D

)
∈ Sp (2,Z)

∣∣∣∣ C ≡ O (mod N)

}
.

Let χ be a Dirichlet character modulo N . We denote by Sµ(Γ0(N), χ) the vector space of

the holomorphic maps f of S2 to Cr which satisfy the following equalities:

f(M ⟨Z⟩) = χ(det(D))µ(CZ +D)f(Z),

for any M ∈ Γ0(N) and Z ∈ S2 and belong to the kernel of Φ-operator. In case χ is the

trivial character, Sµ(Γ0(N), χ) is equal to Sµ(Γ0(N)). For a prime number p the dimension

of Sµ(Γ0(p), χ) is calculated in this paper by using the holomorphic Lefschetz fixed point

formula.

Among the contributions of the fixed points at infinity, the following exponential sum

which includes the Legendre symbol appears in our calculations:

∑(
s2 − rt

p

)
(ζr+s − 1)−1(ζs+t − 1)−1(ζ−s − 1)−1,

where ζ = exp(2π
√
−1/p) and (r, s, t) ∈ F3

p is over the triple such that s(r + s)(s + t) ̸= 0

and s2 ̸= rt. The author computed this exponential sum by using computer for primes such

that 5 ≤ p < 500 and found this sum is equal to

−p(p− 1)2

8
+


0, if p ≡ 1 (mod 4)

3

2
ph(−p)2, if p ≡ 3 (mod 4)

,

where h(−p) is the class number of Q(
√
−p). But we did not prove the above equality for

general primes. In the case of weight k and trivial character, K. Hashimoto calculated the

dimension of Sk(Γ0(p)) by using the Selberg’s trace formula ([Ha1]). By comparing our

formula with Hashimoto’s result, we know the above equality holds for general primes. A

similar exponential sum appeared in [T4] concerning a representation of Sp (2,Fp) and the

author presented a conjecture. This conjecture was also proved by K. Hashimoto by using

the Selberg’s trace formula in [Ha2].

Recently the author calculated the dimension of the spaces of Siegel cusp forms of

half integral weight and degree two ([T5]). When one study the possibility of “Shimura
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correspondence” (cf. [Shm], [Shn] for elliptic modular case) in the case of Siegel cusp forms,

it will be very important to calculate the dimension of the related spaces of Siegel cusp forms

and compare them. If we calculate them by using the holomorphic Lefschetz fixed point

formula, similar exponential sums will appear and it will be necessary to evaluate them. So

it is desirable to prove the above equality directly.

Let Γg(N) = {M ∈ Sp (g,Z) | M ≡ 12g (mod N)} be the principal congruence group

of level N (N ≥ 1) of Sp (g,Z). The author calculated the dimension of Sµ(Γ2(N)) ([T3])

but did not publish the details of it. In §3, §5 and §6, we present them. This result of

dimSµ(Γ2(N)) has applications in [A1] and in [Sto].

§1. General Dimension Formula

LetX be a compact complex manifold and V a holomorphic vector bundle of rank n onX,

and let G be a finite group of automorphism of the pair (X,V ). Let G0 be a subgroup of G

and χ a character of G0. We denote by S(G0, χ) the vector space of the global holomorphic

sections σ of V which satisfy

σ(g(x)) = χ(g)g(σ(x)),

for any g ∈ G0 and x ∈ X. In this section we present a general formula which represents

the dimension of S(G0, χ) by using the holomorphic Lefschetz fixed point formula.

First we recall the holomorphic Lefschetz fixed point formula. For g ∈ G let Xg be the

set of fixed points of g. Xg is a disjoint union of submanifolds of X. Let

Xg =
∑
α

Xg
α

be the irreducible decomposition of Xg, and let

Ng
α =

∑
θ

Ng
α(θ)

denote the normal bundle of Xg
α decomposed according to the eigenvalues eiθ of g. We put

Uθ(Ng
α(θ)) =

∏
β

(
1− e−xβ−iθ

1− e−iθ

)−1

=
∏
β

(
1 +

1

1− eiθ
xβ +

1 + eiθ

2(1− eiθ)2
x2β + · · ·

)
,

where the Chern class of Ng
α(θ) is

c(Ng
α(θ)) =

∏
β

(1 + xβ).
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Let T (Xg
α) be the Todd class ofXg

α. Let V |Xg
α be the restriction of V toXg

α and ch(V |Xg
α)(g)

the Chern character of V |Xg
α with g-action ([AS]). Put

τ(g,Xg
α) =

{
ch(V |Xg

α)(g) ·
∏

θ Uθ(Ng
α(θ)) · T (Xg

α)

det(1− g|(Ng
α)∗)

}
[Xg

α],

and

τ(g) =
∑
α

τ(g,Xg
α).

Then we have

Theorem 1.1. (Holomorphic Lefschetz Fixed Point Formula [AS]).∑
i≥0

(−1)i trace (g | Hi(X,O(V ))) = τ(g).

Let Vx be the fiber of V at x ∈ X and g : Vx → Vg(x) the action of g on V . Assume

that g belongs to G0. Then we denote by gχ the action of g on V defined by gχ(v) =

χ(g)g(v) (v ∈ Vx). We call this action of G0 on V the “twisted” action of G0 by χ. We

denote by Vχ the vector bundle V equipped with this action of G0. Replacing ch(V |Xg
α)(g)

by χ(g)ch(V |Xg
α)(g) in the definition of τ(g,Xg

α), we define τ(gχ, X
g
α) and also we define

τ(gχ) to be the sum of τ(gχ, X
g
α)’s. Since ch(Vχ|Xg

α)(gχ) = χ(g)ch(V |Xg
α)(g), it holds that

τ(gχ, X
g
α) = χ(g)τ(g,Xg

α). Hence we have τ(gχ) = χ(g)τ(g) and

Theorem 1.2. If g belongs to G0, then∑
i≥0

(−1)i trace (gχ | Hi(X,O(Vχ))) = χ(g)τ(g).

Let Hi(X,O(Vχ))
G0 be the invariant subspace of Hi(X,O(Vχ)) by G0. Then we have

the following

Theorem 1.3. ∑
i≥0

(−1)i dimHi(X,O(Vχ))
G0 =

1

|G0|
∑
g∈G0

χ(g)τ(g).

Let g, g′ ∈ G and let Xg
α and Xg′

α′ be irreducible components of Xg and Xg′
, respectively.

We define Xg
α and Xg′

α′ to be equivalent if and only if there exists an element h of G which

maps Xg
α to Xg′

α′ biholomorphically. By this equivalence, we classify the irreducible compo-

nents of the fixed points sets of G. Let Φλ (λ ∈ Λ) be the representatives with respect to

this equivalence.
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Definition 1.4. Let CG(Φλ) and NG(Φλ) be the isotropy group and the stabilizer group

of Φλ, respectively. Namely, we have

CG(Φλ) = {g ∈ G | g(x) = x for any x ∈ Φλ} ,

NG(Φλ) = {g ∈ G | g(Φλ) = Φλ} .

Let g be an element of CG(Φλ). If Φλ is an irreducible component of Xg, g is called a proper

element of CG(Φλ). We denote by Cp
G(Φλ) the set of proper elements of CG(Φλ).

Let g ∈ G. We have to count the number of irreducible components of Xg which are

equivalent to Φλ (λ ∈ Λ). h(Φλ) (h ∈ G) is an irreducible component of Xg, if and only

if φ = h−1gh belongs to Cp
G(Φλ). Let CG(φ) be the centralizer of φ in G. If h′ belongs

to CG(φ), it also holds that φ = (hh′)−1g(hh′). Hence (hh′)(Φλ) is also an irreducible

component of Xg. The number of irreducible components of Xg on which g acts as φ acts

on Φλ is

n(φ) :=
|CG(φ)|

|CG(φ) ∩NG(Φλ)|
.

The map

NG(Φλ) −→ CG(Φλ)

g 7−→ g−1φg

induces an injection of NG(Φλ)/(CG(φ) ∩ NG(Φλ)) to CG(Φλ). The image of this map

consists of elements of Cp
G(Φλ) which are conjugate to φ in NG(Φλ). We denote by e(φ) the

number of the elements of this image and by ≡ this conjugacy relation among the elements

of Cp
G(Φλ) in NG(Φλ). We have

n(φ) =
|CG(φ)|
|NG(Φλ)|

· |NG(Φλ)|
|CG(φ) ∩NG(Φλ)|

=
|CG(φ)|
|NG(Φλ)|

· e(φ).

Let Cp
G(Φλ)/ ≡ be the set of the representatives of Cp

G(Φλ) classified by the relation ≡. We

denote by ∼ the conjugacy relation in G. If φ,φ′ ∈ Cp
G(Φλ) satisfy φ ≡ φ′, it holds that

τ(φ,Φλ) = τ(φ′,Φλ). Therefore we proved
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Theorem 1.5.

τ(g) =
∑
λ∈Λ

∑
φ∈Cp

G(Φλ)/≡,φ∼g

|CG(φ)|
|NG(Φλ)|

· e(φ) · τ(φ,Φλ)

=
∑
λ∈Λ

∑
φ∈Cp

G(Φλ),φ∼g

|CG(φ)|
|NG(Φλ)|

· τ(φ,Φλ).

We denote by≈ the conjugacy relation inG0 and byG0/ ≈ the set of the representatives of

G0 classified by the relation ≈. For g ∈ G0, we denote by CG0(g) the centralizer of g in G0. If

g, g′ ∈ G0 satisfy g ≈ g′, it holds that trace (g | Hi(X,O(Vχ))) = trace (g′ | Hi(X,O(Vχ))).

Hence by Theorem 1.3, we have

∑
i≥0

(−1)i dimHi(X,O(Vχ))
G0 =

1

|G0|
∑
g∈G0

χ(g)τ(g)

=
1

|G0|
∑

g∈G0/≈

|G0|
|CG0(g)|

· χ(g)τ(g)

=
∑

g∈G0/≈

1

|CG0(g)|
· χ(g)τ(g).

By Theorem 1.5 and above equality, we have

Theorem 1.6.

∑
i≥0

(−1)i dimHi(X,O(Vχ))
G0

=
∑

g∈G0/≈

χ(g)

|CG0(g)|
∑
λ∈Λ

∑
φ∈Cp

G(Φλ),φ∼g

|CG(φ)|
|NG(Φλ)|

· τ(φ,Φλ)

=
∑
λ∈Λ

∑
φ∈Cp

G(Φλ)

τ(φ,Φλ)

|NG(Φλ)|
·

 ∑
g∈G0/≈,g∼φ

|CG(g)|
|CG0(g)|

· χ(g)

 .

S(G0, χ) is canonically identified with H0(X,O(Vχ))
G0 . Hence we have

Corollary 1.7. If Hi(X,O(V )) ≃ 0 for all i > 0, then

dimS(G0, χ) =
∑
λ∈Λ

∑
φ∈Cp

G(Φλ)

τ(φ,Φλ)

|NG(Φλ)|
·

 ∑
g∈G0/≈,g∼φ

|CG(g)|
|CG0(g)|

· χ(g)

 .
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Remark 1.8. Instead of the last expression, it is sometimes convenient to use the following

expression:

∑
λ∈Λ

∑
φ∈Cp

G(Φλ)/≡

τ(φ,Φλ)

|NG(Φλ)|
· e(φ) ·

 ∑
g∈G0/≈,g∼φ

|CG(g)|
|CG0(g)|

· χ(g)

 .

Remark 1.9. If one classified the fixed points sets and their isotropy groups and obtained

the values of |NG(Φλ)|’s and τ(φ,Φλ)’s, he can calculate the dimension of S(G0, χ) only

classifying the conjugacy classes of G and G0. Namely he may forget all of the geometric

information. In the following of this paper, we proceed according to this principle. We

give no geometric information about Φλ’s nor φ’s in this paper and postpone geometric

arguments until §5.

§2. Conjugacy Classes of Γ0(p)/Γ2(p)

Let Γ be a subgroup of finite index of Sp (g,Z). If g ≥ 2, Γ contains the principal

congruence subgroup Γg(N) of Sp (g,Z) for some N ([BLS], [Me]). We may assume that

N ≥ 3. Then the action of Γg(N) on Sg is fixed point free. Hence Xg(N) := Γg(N)\Sg

is a manifold. Xg(N) is a quasi-projective algebraic variety and is a open subspace of a

projective variety Xg(N) which is called the Satake compactification ([Sta]). Xg(N) has

singularities along its “cusps”: Xg(N)−Xg(N), if g ≥ 2. Smooth compactification of Xg(N)

was constructed in [Ig] when g = 2, 3 and in [Nm] when g = 2, 3, 4 and more generally in

[AMRT]. When g = 2, 3, the compactifications in [Ig] and in [Nm] coincide with each other

and we denote them by X̃g(N). The divisor “at infinity” D := X̃g(N)−Xg(N) is a divisor

with simple normal crossings. In the following, we restrict ourselves to the case when g = 2.

Let µ be a holomorphic representation of GL(2,C) into GL(r,C). Let Z ∈ S2, v ∈ Cr

and M =

(
A B
C D

)
∈ Γ2(N). We put

M(Z, v) = (M ⟨Z⟩ , µ(CZ +D)v).

This defines an action of Γ2(N) on Vµ := S2 ×Cr. If N ≥ 3, this action is fixed point free

and the quotient space Γ2(N)\Vµ has a structure of a vector bundle over X2(N) which we

denote by Vµ. Vµ has a natural extension to a vector bundle on X̃2(N) which we denote by

Ṽµ ([Mu]). A holomorphic section of Vµ on X2(N) has an extension to a holomorphic section

of Ṽµ on X̃2(N). Let O(Ṽµ−D) be the sheaf of the germs of the sections of Ṽµ which vanish



10 RYUJI TSUSHIMA

along the divisor D. Then the space of Siegel cusp form Sµ(Γg(N)) is canonically identified

with the space of the global sections Γ(X̃2(N),O(Ṽµ − D)) (Proposition 5.9, below). Let

[D] be the line bundle on X̃2(N) associated with the divisor D. O(Ṽµ −D) is isomorphic

to O(Ṽµ ⊗ [D]⊗(−1)).

Let G(N) = Γ2(1)/Γ2(N) and G0(N) = Γ0(N)/Γ2(N). We apply the results of §1 to

the action of G(N) on the pair (X̃2(N), Ṽµ ⊗ [D]⊗(−1)). In [T2] the fixed points sets of

G(N) were classified as Φ1,Φ2, . . . ,Φ25 and their isotropy groups and stabilizer groups were

determined. (Φ1,Φ2, . . . ,Φ14 intersect the quotient space X2(N). These were classified by

[Gt].) Among the terms in Corollary 1.7, the order of the stabilizer group |NG(N)(Φλ)| were

determined in [T2]. (Note that since we studied the action of the group Γ2(1)/± Γ2(N) in

[T2], the value of |NG(N)(Φλ)| in this paper is the double of the value in [T2].) τ(φ,Φλ)

were calculated in [T2] (case of weight k) and in [T3] (vector valued case, see §3 below for

the details).

Let N = p be a prime number. Then the classification of the conjugacy classes of G(p)

which is isomorphic to the symplectic group over finite field Fp is well known. Hence what

we have to do is only to classify the conjugacy classes of G0(p). G0(p) is isomorphic to the

following subgroup of Sp (2,Fp):{(
A B
C D

)
∈ Sp (2,Fp)

∣∣∣∣ C = O

}
.

First we describe the case p = 2. We list the conjugacy classes of Sp (2,F2) in the

following

Proposition 2.1. Sp (2,F2) has 11 conjugacy classes which we denote by E1, E2, . . . , E6,

F1, F2, G1, G2 and H. The characteristic polynomials of Ei (i = 1, 2, . . . , 6), Fi (i = 1, 2),

Gi (i = 1, 2) and H are x4 + 1, x4 + x2 + 1, x4 + x3 + x + 1 and x4 + x3 + x2 + x + 1,

respectively. The representatives and the orders of the centralizer groups of them are as

follows:

E1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 720 E2


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 48

E3


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 16 E4


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 48
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E5


1 0 1 1
1 1 0 0
0 0 1 1
0 0 0 1

 8 E6


1 0 1 0
1 1 1 1
0 0 1 1
0 0 0 1

 8

F1


0 1 0 0
1 1 0 0
0 0 1 1
0 0 1 0

 18 F2


0 1 0 0
1 1 1 0
0 0 1 1
0 0 1 0

 6

G1


0 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 18 G2


0 0 1 0
0 1 0 1
1 0 1 0
0 0 0 1

 6

H


0 1 1 1
0 0 1 0
0 0 0 1
1 0 0 1

 5

Next we classify the conjugacy classes ofG0(2). As we saw in Corollary 1.7, the ratio of the

orders of the centralizer groups |CG(N)(g)|/|CG0(N)(g)| is important rather than |CG0(N)(g)|.

Therefore in the following two propositions, we list the ratio of the orders of the centralizer

groups.

Proposition 2.2. The conjugacy classes G1, G2 and H have no elements in G0(2). The

conjugacy classes E1, E2, E5, E6, F1 and F2 do not split in G0(2) and their ratios are

15, 3, 1, 1, 3, 1, respectively. The conjugacy class E3 splits to two conjugacy classes in G0(2)

which we denote by E3a and E3b and their ratios are 1 and 2, respectively. The conjugacy

class E4 splits to two conjugacy classes in G0(2) which we denote by E4a and E4b and their

ratios are 1 and 6, respectively. The representatives of E3a, E3b, E4a, E4b are as follows:
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,


0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

 ,


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Next we study the case of odd prime. Let p be an odd prime. An element of G0(p) is

represented by the following form: (
A S tA−1

O tA−1

)
,

where A belongs to GL(2,Fp) and S is a symmetric matrix in M2(Fp). To save the space

we denote this matrix by

(A | S).
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We use the same notations as in [Sr] for the conjugacy classes of G(p) = Sp (2,Fp). If a

conjugacy class of G(p) does not split in G0(p), we denote the conjugacy class of G0(p)

by the same notation. If a conjugacy class of G(p) splits in G0(p) (for example, A31), we

denote the conjugacy classes by adding alphabet a, b, . . . to the suffix of the notation in

[Sr] (for example, A31a, A31b). In the following proposition, we list the notation of the

conjugacy class of G0(p), its representative and the ratio of the orders of the centralizer

groups, in this order. Let θ be the generator of F×
p2 and let η = θp−1 and γ = θp+1. In the

following proposition, we take as the representatives of B2a(i), B2b(i), B6(i), B7(i) elements

in Sp (2,Fp2) instead of in Sp (2,Fp).

Proposition 2.3. The conjugacy classes of G0(p) are classified as follows:

A1, A
′
1

(
1 0
0 1

∣∣∣ 0 0
0 0

)
, −

(
1 0
0 1

∣∣∣ 0 0
0 0

)
(p2 + 1)(p+ 1)

A21, A
′
21

(
1 0
0 1

∣∣∣ 1 0
0 0

)
, −

(
1 0
0 1

∣∣∣ 1 0
0 0

)
p+1

A22, A
′
22

(
1 0
0 1

∣∣∣ γ 0
0 0

)
, −

(
1 0
0 1

∣∣∣ γ 0
0 0

)
p+1

A31a, A
′
31a

(
1 0
0 1

∣∣∣ 1 0
0 −1

)
, −

(
1 0
0 1

∣∣∣ 1 0
0 −1

)
1

A32, A
′
32

(
1 0
0 1

∣∣∣ 1 0
0 −γ

)
, −

(
1 0
0 1

∣∣∣ 1 0
0 −γ

)
1

A31b, A
′
31b

(
1 1
0 1

∣∣∣ 0 0
0 0

)
, −

(
1 1
0 1

∣∣∣ 0 0
0 0

)
2p

A41, A
′
41

(
1 1
0 1

∣∣∣ 0 0
0 1

)
, −

(
1 1
0 1

∣∣∣ 0 0
0 1

)
1

A42, A
′
42

(
1 1
0 1

∣∣∣ 0 0
0 γ

)
, −

(
1 1
0 1

∣∣∣ 0 0
0 γ

)
1

B2a(i)

(
θi 0
0 θpi

∣∣∣ 0 0
0 0

)
1

B2b(i)

(
θ−i 0
0 θ−pi

∣∣∣ 0 0
0 0

)
1

B3a(i, j)

(
γi 0
0 γj

∣∣∣ 0 0
0 0

)
1

B3b(i, j)

(
γ−i 0
0 γj

∣∣∣ 0 0
0 0

)
1
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B3c(i, j)

(
γi 0
0 γ−j

∣∣∣ 0 0
0 0

)
1

B3d(i, j)

(
γ−i 0
0 γ−j

∣∣∣ 0 0
0 0

)
1

B6(i)

(
ηi 0
0 η−i

∣∣∣ 0 0
0 0

)
p+1

B7(i)

(
ηi 0
0 η−i

∣∣∣ 0 1
1 0

)
1

B8a(i)

(
γi 0
0 γi

∣∣∣ 0 0
0 0

)
1

B8b(i)

(
γ−i 0
0 γ−i

∣∣∣ 0 0
0 0

)
1

B8c(i)

(
γi 0
0 γ−i

∣∣∣ 0 0
0 0

)
p+1

B9a(i)

(
γi 1
0 γi

∣∣∣ 0 0
0 0

)
1

B9b(i)

(
γ−i 1
0 γ−i

∣∣∣ 0 0
0 0

)
1

B9c(i)

(
γi 0
0 γ−i

∣∣∣ 0 1
1 0

)
1

C3a(i), C
′
3a(i)

(
γi 0
0 1

∣∣∣ 0 0
0 0

)
,

(
γi 0
0 −1

∣∣∣ 0 0
0 0

)
p+1

C3b(i), C
′
3b(i)

(
γ−i 0
0 1

∣∣∣ 0 0
0 0

)
,

(
γ−i 0
0 −1

∣∣∣ 0 0
0 0

)
p+1

C41a(i), C
′
41a(i)

(
γi 0
0 1

∣∣∣ 0 0
0 1

)
,

(
γi 0
0 −1

∣∣∣ 0 0
0 1

)
1

C41b(i), C
′
41b(i)

(
γ−i 0
0 1

∣∣∣ 0 0
0 1

)
,

(
γ−i 0
0 −1

∣∣∣ 0 0
0 1

)
1

C42a(i), C
′
42a(i)

(
γi 0
0 1

∣∣∣ 0 0
0 γ

)
,

(
γi 0
0 −1

∣∣∣ 0 0
0 γ

)
1

C42b(i), C
′
42b(i)

(
γ−i 0
0 1

∣∣∣ 0 0
0 γ

)
,

(
γ−i 0
0 −1

∣∣∣ 0 0
0 γ

)
1

D1

(
1 0
0 −1

∣∣∣ 0 0
0 0

)
(p+ 1)2
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D21, D22

(
1 0
0 −1

∣∣∣ 0 0
0 1

)
,

(
1 0
0 −1

∣∣∣ 0 0
0 γ

)
p+1

D23, D24

(
1 0
0 −1

∣∣∣ 1 0
0 0

)
,

(
1 0
0 −1

∣∣∣ γ 0
0 0

)
p+1

D31

(
1 0
0 −1

∣∣∣ 1 0
0 1

)
1

D32, D33

(
1 0
0 −1

∣∣∣ 1 0
0 γ

)
,

(
1 0
0 −1

∣∣∣ γ 0
0 1

)
1

D34

(
1 0
0 −1

∣∣∣ γ 0
0 γ

)
1

For B2a(i) and B2b(i), we assume that θi, θpi, θ−i, θ−pi are distinct. For B3a(i, j), . . . ,

B3d(i, j), we assume that 1 ≤ i < j ≤ (p − 3)/2. For B6(i) and B7(i), we assume that

1 ≤ i ≤ (p− 1)/2. For B8a(i), . . . , C
′
42b(i), we assume that 1 ≤ i ≤ (p− 3)/2.

In [T2], we classified the proper elements of the isotropy groups of the fixed points sets

Φ1, . . . ,Φ25 as φ1, φ2, . . . , φ25(6, r, s, t). These elements are in G(N) (N ≥ 3). Sµ(Γ0(2)) is

the invariant subspace of Sµ(Γ2(2N)) by the action of Γ0(2)/Γ2(2N) (N ≥ 2). We assume

that N is odd. Then we have

Γ0(2)/Γ2(2N) ≃ G0(2)×G(N) ⊂ G(2)×G(N) ≃ Γ2(1)/Γ2(2N).

For an element φ of Γ0(2)/Γ2(2N) which fixes points in X̃2(2N), the ratio of the orders

of its centralizer groups in Γ0(2)/Γ2(2N) and in Γ2(1)/Γ2(2N) is equal to the ratio of the

orders of the centralizer groups in G0(2) and in G(2) of φ mod 2. Hence the problem is

reduced to determine the conjugacy class in G(2) of φ mod 2. For odd prime p, Sµ(Γ0(p))

is the invariant subspace of Sµ(Γ2(p)) by the action of G0(p). Let φ be an element of G0(p)

which fixes points in X̃2(p). The problem is to determine the conjugacy class in G(p) of φ.

In the following proposition, we list φ, the conjugacy class of φ mod 2 in G(2) = Sp (2,F2)

and the conjugacy class of φ in G(p) = Sp (2,Fp) for the cases of p > 2, in this order. When

the notation of the element of the isotropy groups includes some index (for example, “r” in

φ15(r)), this index belongs to Z/2NZ if p = 2 and to Fp if p > 2. We list the condition that

the element is proper (for example, “r ̸= 0”) in the case of p > 2 under the notation of the

element.

To save the space, we list only one of φi and −φi. In fact we consider Γ2(1)/ ± Γ2(N)

here, because some elements satisfy φ ≡ −φ and so if we consider Γ2(1)/Γ2(N), the situation
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will be complicated. Sometimes we list only the representatives classified by the equivalence

relation ≡. Here ≡ means the conjugacy relation among the elements of Cp
G(Φλ)/ ± 1 in

NG(Φλ)/± 1. In such cases, we mark the notation of the elements by *1 and list the value

of e(φi), at the end of the proposition. In case the notation of the conjugacy class includes

some index (for example, “i ” in B2(i)), we do not give the explicit value of i, since the ratio

of the centralizer groups does not depend on i.

Proposition 2.4. The conjugacy classes to which φ1, . . . , φ25(6, r, s, t) belong in Sp (2,F2)

and Sp (2,Fp) (p > 2) are as follows. The conjugacy classes whose notation are enclosed by

brackets have no elements in G0(2) or in G0(p).

1) φ1 E1 A1

2) φ2 E1 D1

3) φ3 E4 D1

4) φ4 E4

{
B8(i), if p ≡ 1 (mod 4)

B6(i), if p ≡ 3 (mod 4)

5) φ5 E3

{
B8(i), if p ≡ 1 (mod 4)

B6(i), if p ≡ 3 (mod 4)

6) φ ∗1
6 F1


A31, if p = 3

B8(i), if p ≡ 1 (mod 3)

B6(i), if p ≡ 2 (mod 3)

7) φ7(1) E2

{
C3(i), if p ≡ 1 (mod 4)

(C1(i)), if p ≡ 3 (mod 4)

φ7(2) E2 the same as above

8) φ8(1) (G1)


A21, if p = 3

C3(i), if p ≡ 1 (mod 3)

(C1(i)), if p ≡ 2 (mod 3)

φ8(2) (G1) the same as above

φ8(3) (G1)


D21, if p = 3

C3(i), if p ≡ 1 (mod 3)

(C1(i)), if p ≡ 2 (mod 3)

φ8(4) (G1) the same as above

9) φ9(1) E3

{
B8(i), if p ≡ 1 (mod 4)

B6(i), if p ≡ 3 (mod 4)
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φ9(2)
∗1 E5


B3(i, j), if p ≡ 1 (mod 8)

B2(i), if p ≡ ±3 (mod 8)

(B4(i, j)), if p ≡ 7 (mod 8)

φ9(3)
∗1 E5 the same as above

10) φ10(1) F1


A32, if p = 3

B8(i), if p ≡ 1 (mod 3)

B6(i), if p ≡ 2 (mod 3)

φ10(2) F1 the same as above

φ10(3)
∗1 F1


D33, if p = 3

B3(i, j), if p ≡ 1 (mod 3)

(B4(i, j)), if p ≡ 2 (mod 3)

φ10(4)
∗1 F2


D34, if p = 3

B3(i, j), if p ≡ 1 (mod 3)

(B4(i, j)), if p ≡ 2 (mod 3)

φ10(5)
∗1 F1


D31, if p = 3

B3(i, j), if p ≡ 1 (mod 3)

(B4(i, j)), if p ≡ 2 (mod 3)

φ10(6) F1
the same as in the case
of φ10(4)

φ10(7) F2
the same as in the case
of φ10(5)

φ10(8)
∗1 F2


B8(i), if p = 3

B3(i, j), if p ≡ 1 (mod 12)

B2(i), if p ≡ ±5 (mod 12)

(B4(i, j)), if p ≡ 11 (mod 12)

φ10(9)
∗1 F2 the same as above

11) φ11(1) (G2)


(C42(i)), if p = 3

B3(i, j), if p ≡ 1 (mod 12)

(B5(i, j)), if p ≡ ±5 (mod 12)

(B4(i, j)), if p ≡ 11 (mod 12)

φ11(2) (G2)

 (C41(i)), if p = 3

the same as above
for the other cases

φ11(3) (G2)
the same as in the case
of φ11(1)

φ11(4) (G2)
the same as in the case
of φ11(2)
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12) φ ∗1
12 F2


D32, if p = 3

B3(i, j), if p ≡ 1 (mod 3)

(B4(i, j)), if p ≡ 2 (mod 3)

13) φ ∗1
13 E6

the same as in the case
of φ9(2)

14) φ14(1) (H)


A41, if p = 5

B3(i, j), if p ≡ 1 (mod 5)

(B4(i, j)), if p ≡ 4 (mod 5)

(B1(i)), if p ≡ ±2 (mod 5)

φ14(2) (H) the same as above

φ14(3) (H) the same as above

φ14(4) (H) the same as above

15) φ15(r)
r ̸= 0

{
E1, if r is even

E2, if r is odd
A21 or A

∗2
22

16) φ16(r)
r ̸= 0

{
E1, if r is even

E2, if r is odd
D23 or D24

17) φ17(r)
r ̸= 0

{
E4, if r is even

E3, if r is odd
D23 or D24

18) φ18(1, r)
r ̸= 0

{
E2, if r is even

E3, if r is odd

{
C41(i) or C42(i), if 4 | p− 1

(C21(i)) or (C22(i)), if 4 - p− 1

φ18(2, r)
r ̸= 0

the same as above the same as above

19) φ19(1, r)

{
E5, if r is even

E6, if r is odd

{
*3 below, if p ≡ 1 (mod 4)

*4 below, if p ≡ 3 (mod 4)

φ19(2, r) the same as above the same as above

20) φ20(1, r)
r ̸= 0

{
(G1), if r is even

(G2), if r is odd


A32 or A31, if p = 3

C41(i) or C42(i), if 3 | p− 1

(C21(i)) or (C22(i)), otherwise

φ20(2, r)
r ̸= 0

{
(G1), if r is even

(G2), if r is odd


A31 or A32, if p = 3

C41(i) or C42(i), if 3 | p− 1

(C21(i)) or (C22(i)), otherwise

φ20(3, r)
r ̸= 0

{
(G1), if r is even

(G2), if r is odd


D31 or D33, if p = 3

C41(i) or C42(i), if 3 | p− 1

(C21(i)) or (C22(i)), otherwise
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φ20(4, r)
r ̸= 0

{
(G1), if r is even

(G2), if r is odd


D32 or D34, if p = 3

C41(i) or C42(i), if 3 | p− 1

(C21(i)) or (C22(i)), otherwise

21) φ21(1, r)

{
(G1), if r is even

(G2), if r is odd


A41, if p = 3

*3 below, if p ≡ 1 (mod 3)

*4 below, if p ≡ 2 (mod 3)

φ21(2, r)

{
(G1), if r is even

(G2), if r is odd


A42, if p = 3

*3 below, if p ≡ 1 (mod 3)

*4 below, if p ≡ 2 (mod 3)

22) φ22(1, r, t)
rt ̸= 0


E1, if r and t are even

E2, if r + t is odd

E3, if r and t are odd

{
A31, if

(−rt
p

)
= 1

A32, if
(−rt

p

)
= −1

φ22(3, r, t)
r + t ̸= 0

{
E4, if r + t is even

E5, if r + t is odd

{
D31, if

(
r+t
p

)
= 1

D34, if
(
r+t
p

)
= −1

23) φ23(2, r, t)
r + t ̸= 0

{
E4, if r + t is even

E5, if r + t is odd

{
B9(i), if p ≡ 1 (mod 4)

B7(i), if p ≡ 3 (mod 4)

φ23(4, r, t)
rt ̸= 0


E1, if r and t are even

E2, if r + t is odd

E3, if r and t are odd


D31, if

(
r
p

)
=

(
t
p

)
= 1

D32, if −
(
r
p

)
=

(
t
p

)
= 1

D33, if
(
r
p

)
= −

(
t
p

)
= 1

D34, if
(
r
p

)
=

(
t
p

)
= −1

24) φ24(2, r, t)
r + t ̸= 0

{
E3, if r + t is even

E6, if r + t is odd

{
B9(i), if p ≡ 1 (mod 4)

B7(i), if p ≡ 3 (mod 4)

φ24(4, r, t)
rt ̸= 0


E4, if r and t are even

E3, if r + t is odd

E2, if r and t are odd

the same as in the case
of φ23(4, r, t)

25) φ25(1, r, s, t)
s(r + s)(t+ s) ̸= 0



E1, if r, s, t are even

E3,
if exactly one of
r, s, t is even

E4,
if r and t are even
and s is odd

E2, otherwise



A31, if
(
s2−rt

p

)
= 1

A32, if
(
s2−rt

p

)
= −1

A21, if s
2 = rt and

(
r
p

)
= 1

A22, if s
2 = rt and

(
r
p

)
= −1

φ25(2, r, s, t)
r + s+ t ̸= 0

{
F1, if r + s+ t is even

F2, if r + s+ t is odd


*5 below, if p = 3

B9(i), if p ≡ 1 (mod 3)

B7(i), if p ≡ 2 (mod 3)
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φ25(4, r, s, t)
(r + 2s+ t)s ̸= 0



E4,
if s is even
and r + t is even

E5,
if s is even
and r + t is odd

E3,
if s is odd
and r + t is even

E6,
if s is odd
and r + t is odd

*6 below

*1 e(φ6) = 2, e(φ9(2)) = 2, e(φ9(3)) = 2, e(φ10(3)) = 2, e(φ10(4)) = 3, e(φ10(5)) = 3,

e(φ10(8)) = 3, e(φ10(9)) = 3, e(φ12) = 2, e(φ13) = 6.

*2 For 15), “A21 or A22” means “A21, if
(
r
p

)
= 1 and A22, if

(
r
p

)
= −1”.

The same applies to 16), 17), 18) and 20).

*3 C3(i), if r = a, C41(i), if
(
r−a
p

)
= 1, C42(i), otherwise, where a is (p+ 1)/2,

(p−1)/2, (1−p)/3, (p−1)/3, for φ19(1, r), φ19(2, r), φ21(1, r), φ21(2, r), respectively.

*4 (C1(i)), if r = a, (C21(i)), if
(
r−a
p

)
= 1, (C22(i)), otherwise, where a is (p+ 1)/2,

(p−1)/2, (p+1)/3, −(p+1)/3, for φ19(1, r), φ19(2, r), φ21(1, r), φ21(2, r), respectively.

*5 A41, if
(
r+s+t

3

)
= 1, A42, if

(
r+s+t

3

)
= −1.

*6 D31, if
(
r+2s+t

p

)
=

(
r−2s+t

p

)
= 1, D32, if

(
r+2s+t

p

)
= −

(
r−2s+t

p

)
= 1,

D33, if −
(
r+2s+t

p

)
=

(
r−2s+t

p

)
= 1, D34, if

(
r+2s+t

p

)
=

(
r−2s+t

p

)
= −1,

D23, if
(
r+2s+t

p

)
= 1 and r + t = 2s, D24, if

(
r+2s+t

p

)
= −1 and r + t = 2s.

Remark 2.5. In the above theorem we omitted φ25(3, r, s, t), φ25(5, r, s, t) and φ25(6, r, s, t),

because φ25(3, r, s, t) is equivalent by the relation “≡” to φ25(2, r
′, s′, t′) and φ25(5, r, s, t)

and φ25(6, r, s, t) are equivalent to φ25(4, r
′, s′, t′). Instead of them, it suffices to double

(resp. treble) the contribution of φ25(2, r, s, t) (resp. φ25(4, r, s, t)) in the dimension formula

(Corollary 1.7).

§3. Details of |NG(Φλ)|’s and τ (φ,Φλ)’s

Let µ be an irreducible holomorphic representation of GL(2,C) and (j+k, k) its signature.

Then µ is equivalent to sj ⊗ detk, where sj is the symmetric tensor representation of degree

j and det is the alternating tensor representation of degree two of GL(2,C), respectively.

Let N ≥ 3. As in §2, we consider the action of G(N) on the pair (X̃2(N), Ṽµ⊗ [D]⊗(−1)). In

this section we list the orders of NG(N)(Φ1), NG(N)(Φ2), . . . , NG(N)(Φ25) and the values of

τ(φ1,Φ1), τ(φ2,Φ2), . . . , τ(φ25(4, r, s, t),Φ25). The following theorem was obtained in [T2].

In the theorem,
∏

means
∏

p|N, p:prime.
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Theorem 3.1. The orders of the stabilizer groups of Φ1,Φ2, . . . ,Φ25 are as follows:

1) |NG(N)(Φ1)| = N10∏(1− p−2)(1− p−4)

2) |NG(N)(Φ2)| = 2N6∏(1− p−2)2

3) |NG(N)(Φ3)| =

{
2N6

∏
(1− p−2)2, if 2 - N

(8/3)N6
∏
(1− p−2)2, if 2 | N

4) |NG(N)(Φ4)| = 4N3∏(1− p−2)

5) |NG(N)(Φ5)| =

{
8N3

∏
(1− p−2), if 2 - N

(16/3)N3
∏
(1− p−2), if 2 | N

6) |NG(N)(Φ6)| =

{
12N3

∏
(1− p−2), if 3 - N

9N3
∏
(1− p−2), if 3 | N

7) |NG(N)(Φ7)| = 4N3∏(1− p−2)

8) |NG(N)(Φ8)| = 6N3∏(1− p−2)

9) |NG(N)(Φ9)| = 32

10) |NG(N)(Φ10)| = 72

11) |NG(N)(Φ11)| = 24

12) |NG(N)(Φ12)| = 24

13) |NG(N)(Φ13)| = 48

14) |NG(N)(Φ14)| = 10

15) |NG(N)(Φ15)| = 2N6∏(1− p−2)

16) |NG(N)(Φ16)| = 2N4∏(1− p−2)

17) |NG(N)(Φ17)| =

{
2N4

∏
(1− p−2), if 2 - N

(8/3)N4
∏
(1− p−2), if 2 | N

18) |NG(N)(Φ18)| = 8N

19) |NG(N)(Φ19)| = 8N

20) |NG(N)(Φ20)| = 12N
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21) |NG(N)(Φ21)| = 6N

22) |NG(N)(Φ22)| = 8N3

23) |NG(N)(Φ23)| = 8N2

24) |NG(N)(Φ24)| = 8N2

25) |NG(N)(Φ25)| = 12N3

We list the values of τ(φ1,Φ1), τ(φ2,Φ2), . . . , τ(φ25(4, r, s, t),Φ25) in the following theo-

rem. In the theorem ρ, ω and σ mean exp(2πi/3), exp(2πi/5) and exp(πi/6), respectively

and Trα(a) means TrQ(α)/Q(a) for an algebraic number α and a ∈ Q(α). Here we assume

that j is even and replace j with 2j. So the signature of µ is (2j + k, k). We omit all of the

details of the calculation. 1) is proved in §5 (Theorem 5.10).

Theorem 3.2. 4 τ(φ1,Φ1), τ(φ2,Φ2), . . . , τ(φ25(4, r, s, t),Φ25) are as follows (cf. Remark

2.5):

1) τ(φ1,Φ1) = 2−83−35−1((2j + 1)(k − 2)(2j + k − 1)(2j + 2k − 3)N10

− 60(2j + 1)(2j + 2k − 3)N8 + 360(2j + 1)N7)
∏
(1− p−2)(1− p−4)

2) τ(φ2,Φ2) = 2−73−3(−1)k((k − 2)(2j + k − 1)N6

− 6(2j + 2k − 3)N5 + 36N4)
∏
(1− p−2)2

3) τ(φ3,Φ3) = (−1)k((k − 2)(2j + k − 1)N6 − 3(2j + 2k − 3)N5 + 12N4)

×

{
2−63−1

∏
(1− p−2)2, if 2 - N

2−43−2
∏
(1− p−2)2, if 2 | N

4) τ(φ4,Φ4) = 2−53−1(−1)j((2j + 2k − 3)N3 − 12N2)
∏
(1− p−2)

5) τ(φ5,Φ5) = (−1)j((2j + 2k − 3)N3 − 8N2)×

{
2−5

∏
(1− p−2), if 2 - N

2−43−1
∏
(1− p−2), if 2 | N

6) τ(φ6,Φ6) = Trρ(ρ
j(1− ρ))((2j + 2k − 3)N3 − 9N2)

×

{
2−13−3

∏
(1− p−2), if 3 - N

2−33−2
∏
(1− p−2), if 3 | N

4There are misprints in 2), 16) and 17). See the end of this paper.
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7) τ(φ7(1),Φ7) = 2−53−1(i)k(−1)j((k − 2)N3 − 6N2)
∏
(1− p−2)

+ 2−53−1(i)k(i)((2j + k − 1)N3 − 6N2)
∏
(1− p−2)

τ(φ7(2),Φ7) = the conjugate of τ(φ7(1),Φ7) over Q

8) τ(φ8(1),Φ8) = 2−33−3(ρ2)k(ρ)j(1− ρ2)((k − 2)N3 − 6N2)
∏
(1− p−2)

+ 2−33−3(ρ2)k(1− ρ)((2j + k − 1)N3 − 6N2)
∏
(1− p−2)

τ(φ8(2),Φ8) = the conjugate of τ(φ8(1),Φ8) over Q

τ(φ8(3),Φ8) = 2−33−2(−ρ2)k(ρ)j(1− ρ2)((k − 2)N3 − 6N2)
∏
(1− p−2)

+ 2−33−2(−ρ2)k(ρ− 1)((2j + k − 1)N3 − 6N2)
∏
(1− p−2)

τ(φ8(4),Φ8) = the conjugate of τ(φ8(3),Φ8) over Q

9) τ(φ9(1),Φ9) = 2−3(−1)k(−1)j(2j + 1)

τ(φ9(2),Φ9) = 2−2(−i)k(i)j(1 + i)

τ(φ9(3),Φ9) = 2−2(i)k(−i)j(1− i)

10) τ(φ10(1),Φ10) = 3−2(ρ)k(ρ)j(2ρ+ 1)(2j + 1)

τ(φ10(2),Φ10) = 3−2(ρ2)k(ρ2)j(2ρ2 + 1)(2j + 1)

τ(φ10(3),Φ10) = 2−13−1(−1)kTrρ((ρ)
j(−ρ2))

τ(φ10(4),Φ10) = τ(φ10(7),Φ10) = 3−1(−ρ)k(ρ)j

τ(φ10(5),Φ10) = τ(φ10(6),Φ10) = 3−1(−ρ2)k(ρ2)j

τ(φ10(8),Φ10) = 3−1(ρ2)k(−ρ2)j(1 + 2ρ)

τ(φ10(9),Φ10) = 3−1(ρ)k(−ρ)j(1 + 2ρ2)

11) τ(φ11(1),Φ11) = 2−13−1(σ7)k(−1)j(1 + σ2)− 2−13−1(σ7)k(σ8)j(σ + σ3)

τ(φ11(2),Φ11) = 2−13−1(σ5)k(−1)j(1 + σ10)− 2−13−1(σ5)k(σ4)j(σ11 + σ9)

τ(φ11(3),Φ11) = 2−13−1(σ)k(−1)j(1 + σ2)− 2−13−1(σ)k(σ8)j(σ7 + σ9)
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τ(φ11(4),Φ11) = 2−13−1(σ11)k(−1)j(1 + σ10)− 2−13−1(σ11)k(σ4)j(σ5 + σ3)

12) τ(φ12,Φ12) = 2−13−1(−1)kTrρ((ρ)
j(−ρ2))

13) τ(φ13,Φ13) = 2−3(−1)kTri((i)
j(1 + i))

14) τ(φ14(1),Φ14) = 5−1(ω)k(ω4)j − 5−1(ω)k(ω3)jω2

τ(φ14(2),Φ14) = 5−1(ω2)k(ω3)j − 5−1(ω2)k(ω)jω4

τ(φ14(3),Φ14) = 5−1(ω3)k(ω2)j − 5−1(ω3)k(ω4)jω

τ(φ14(4),Φ14) = 5−1(ω4)k(ω)j − 5−1(ω4)k(ω2)jω3

15) τ(φ15(r),Φ15) = 2−33−1(2j + 1)N3∏(1− p−2)

×
(
9− (2j + 2k − 3)N

(1− ζr)
+

(2j + 2k − 3)N − 6

(1− ζr)2
− 4

(1− ζr)3

)

16) τ(φ16(r),Φ16) = 2−53−1(−1)k
(
12− (2j + 2k − 3)N

(1− ζr)

)
N3∏(1− p−2)

17) τ(φ17(r),Φ17) = (−1)k
(
8− (2j + 2k − 3)N

(1− ζr)
+

4

(1− ζr)2

)
N3∏(1− p−2)

×

{
2−5, if 2 - N

2−33−1, if 2 | N

18) τ(φ18(1, r),Φ18) = 2−2(−i)k((−1)j − i)(ζr − 1)−1

τ(φ18(2, r),Φ18) = 2−2(i)k((−1)j + i)(ζr − 1)−1

19) τ(φ19(1, r),Φ19) = 2−2(−i)k((−1)j − i)(exp (πi(2r − 1)/N)− 1)−1

τ(φ19(2, r),Φ19) = 2−2(i)k((−1)j + i)(exp (πi(2r + 1)/N)− 1)−1

20) τ(φ20(1, r),Φ20) = 3−2(ρ2)k(ρ2(ρ)j − 1)(ρ− 1)(ζr − 1)−1

τ(φ20(2, r),Φ20) = 3−2(ρ)k(ρ(ρ2)j − 1)(ρ2 − 1)(ζr − 1)−1

τ(φ20(3, r),Φ20) = 3−1(−ρ2)k(1 + ρ2(ρ)j)(ρ− 1)(ζr − 1)−1

τ(φ20(4, r),Φ20) = 3−1(−ρ)k(1 + ρ(ρ2)j)(ρ2 − 1)(ζr − 1)−1

21) τ(φ21(1, r),Φ21) = 3−2(ρ2)k(ρ2(ρ)j − 1)(ρ− 1)(exp (2πi(3r − 1)/3N)− 1)−1
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τ(φ21(2, r),Φ21) = 3−2(ρ)k(ρ(ρ2)j − 1)(ρ2 − 1)(exp (2πi(3r + 1)/3N)− 1)−1

22) τ(φ22(1, r, t),Φ22) =
(2j + 1)

(ζr − 1)(ζt − 1)

(
2

(ζr − 1)
+

2

(ζt − 1)
+ 3

)

τ(φ22(3, r, t),Φ22) =
(−1)k

(ζr+t − 1)

(
4

(ζr+t − 1)
+ 3

)
23) τ(φ23(2, r, t),Φ23) = 2−1(−1)j(ζr+t − 1)−1

τ(φ23(4, r, t),Φ23) = 2−1(−1)k(ζr − 1)−1(ζt − 1)−1

24) τ(φ24(2, r, t),Φ24) = 2−1(−1)j(ζr+t − 1)−1

τ(φ24(4, r, t),Φ24) = 2−1(−1)k(ζr − 1)−1(ζt − 1)−1

25) τ(φ25(1, r, s, t),Φ25) = (2j + 1)(ζr+s − 1)−1(ζs+t − 1)−1(ζ−s − 1)−1

τ(φ25(2, r, s, t),Φ25) = 3−1Trρ(ρ
j(1− ρ))(ζs+r+t − 1)−1

τ(φ25(4, r, s, t),Φ25) = (−1)k(ζr+2s+t − 1)−1(ζ−s − 1)−1

§4. Dimension Formula and Exponential Sums

Let p be a prime number and χ a Dirichlet character modulo p. Let N be a natural

number which is relatively prime to p. Sµ(Γ0(p), χ) is the invariant subspace of Sµ(Γ2(pN))

of the action of G0 := Γ0(p)/Γ2(pN) which is twisted by χ. By applying the results in §2,

§3 and the vanishing theorem (Theorem 6.1) to the general dimension formula in §1, we can

calculate the dimension of Sµ(Γ0(p), χ). We may assume N = 1 if p > 2 and N (≥ 3) is odd

if p = 2. Let (j + k, k) be the signature of µ. Since −14 belongs to Γ0(p), Sµ(Γ0(p), χ) ≃ 0

if j is odd. So in this section we assume the signature of µ is (2j + k, k).

Let p be an odd prime. When we calculate the contributions of the fixed points at infinity,

we have to evaluate some exponential sums. Almost all of them are evaluated easily and

we omit here the evaluation of them. But in the following cases, the evaluations are rather

complicated and in a certain case, we can not evaluate it directly.

As we saw in §2, the conjugacy class in G(p) of φ22(1, r, t) is A31 if
(−rt

p

)
= 1 and A32 if(−rt

p

)
= −1. In G0(p), A31 splits to A31a and A31b. But A32 does not split. Therefore by

the results in §1 and in §2, the contribution of φ22(1, r, t)’s to dimSµ(Γ0(p), χ) is equal to

2

8p3

{
(2p+ 1)

∑′

τ(φ22(1, r, t),Φ22) +
∑′′

τ(φ22(1, r, t),Φ22)

}
,
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where in the first sum, (r, t) is over the pairs such that
(−rt

p

)
= 1 and in the second sum,

(r, t) is over the pairs such that
(−rt

p

)
= −1. The above sums are rewritten as

1

4p3

{
(p+ 1)

p−1∑
r,t=1

τ(φ22(1, r, t),Φ22) + p

p−1∑
r,t=1

(
−rt
p

)
τ(φ22(1, r, t),Φ22)

}

=
1

4p3

{
(2j + 1)(p+ 1)(p− 1)2(2p− 1)

12
+ p

p−1∑
r,t=1

(
−rt
p

)
τ(φ22(1, r, t),Φ22)

}
.

Therefore the problem is reduced to evaluate the sum in the last expression. To evaluate

this sum, we recall the well-known formula of the Gaussian sums and the class numbers. We

denote by h(−p) the class number of Q(
√
−p).

Theorem 4.1. Let p be an odd prime and we denote exp(2π
√
−1/p) by ζ. Then

p−1∑
k=1

(
k

p

)
ζk =

√
ϵpp, where ϵp =

(
−1

p

)
.

p−1∑
k=1

(
k

p

)
k =

{
0, if p ≡ 1 (mod 4)

−ph(−p)/ωp, if p ≡ 3 (mod 4)
,

where ω3 = 3 and ωp = 1, otherwise.

Corollary 4.2.

p−1∑
k=1

(
k

p

)
1

1− ζk
=

{
0, if p ≡ 1 (mod 4)
√
−ph(−p)/ωp, if p ≡ 3 (mod 4)

.(a)

p−1∑
k=1

(
k

p

)
1

(1− ζk)2
=

√
−ph(−p)/ωp, if p ≡ 3 (mod 4).(b)

Proof. Since

1

1− ζk
= −1

p

p−1∑
r=1

rζkr,

we have

p−1∑
k=1

(
k

p

)
1

1− ζk
=− 1

p

p−1∑
k,r=1

(
k

p

)
rζkr

=− 1

p

p−1∑
k,r=1

(
r

p

)
r

(
kr

p

)
ζkr

=− 1

p

p−1∑
r=1

(
r

p

)
r

p−1∑
s=1

(
s

p

)
ζs.
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Hence (a) is proved by Theorem 3.1. (b) is proved from

1

(1− ζk)2
=

1

2p

p−1∑
r=1

((p− 2)r − r2)ζkr

and

p−1∑
k=1

(
k

p

)
k2 =

1

2

p−1∑
k=1

(
k

p

)
(k2 − (p− k)2)

= p

p−1∑
k=1

(
k

p

)
k.

We put

Xp =

p−1∑
r,t=1

(
−rt
p

)
1

(ζr − 1)(ζt − 1)

(
2

(ζr − 1)
+

2

(ζt − 1)
+ 3

)
.

Then by Corollary 4.2, we have

Xp =

{
0, if p ≡ 1 (mod 4)

−ph(−p)2/ω2
p, if p ≡ 3 (mod 4)

.

and

Proposition 4.3. The contribution of φ22(1, r, t)’s is

(2j + 1)(p+ 1)(p− 1)2(2p− 1)

48p3
− (2j + 1)

4p2

{
0, if p ≡ 1 (mod 4)

ph(−p)2/ω2
p, if p ≡ 3 (mod 4)

.

Next we consider the contribution of φ25(1, r, s, t)’s. Similarly as above by using the

results in §2, the contribution is expressed as

2

12p3

{
(2p+ 1)

∑′

τ(φ25(1, r, s, t),Φ25) +
∑′′

τ(φ25(1, r, s, t),Φ25)

+ p
∑′′′

τ(φ25(1, r, s, t),Φ25)

}
,

where in the first sum, (r, s, t) is over the triples such that
(
s2−rt

p

)
= 1, in the second sum,

(r, s, t) is over the triples such that
(
s2−rt

p

)
= −1 and in the third sum, (r, s, t) is over the
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triples such that s2 = rt. In each sum, it is assumed that s(r + s)(s + t) ̸= 0. The above

sums are rewritten as

1

6p3

{
(p+ 1)

∑
τ(φ25(1, r, s, t),Φ25) + p

∑
s2 ̸=rt

(
s2 − rt

p

)
τ(φ25(1, r, s, t),Φ25)

−
∑
s2=rt

τ(φ25(1, r, s, t),Φ25)

}

=
(2j + 1)

6p3

(
− (p+ 1)(p− 1)3

8
+ pYp − Zp

)
,

where we put

Yp =
∑
s2 ̸=rt

(
s2 − rt

p

)
(ζr+s − 1)−1(ζs+t − 1)−1(ζ−s − 1)−1,

Zp =
∑
s2=rt

(ζr+s − 1)−1(ζs+t − 1)−1(ζ−s − 1)−1.

We can prove

Proposition 4.4. Zp = 0.

Proof. We put k = r/s = s/t. Then Zp is rewritten as

Zp =

p−2∑
k=1

p−1∑
s=1

(ζ(k+1)s − 1)−1(ζ(k
−1+1)s − 1)−1(ζ−s − 1)−1.

We modify the above expression as follows.

1

(1− ζ(k+1)s)(1− ζ(k−1+1)s)(1− ζ−s)

=
(1− ζ(k+1)s) + ζ(k+1)s

(1− ζ(k+1)s)(1− ζ(k−1+1)s)(1− ζ−s)

=
1

(1− ζ(k−1+1)s)(1− ζ−s)
+

1

(ζ−(k+1)s − 1)(1− ζ(k−1+1)s)(1− ζ−s)

=
1

(1− ζ(k−1+1)s)(1− ζ−s)
+

(1− ζ(k
−1+1)s) + ζ(k

−1+1)s

(ζ−(k+1)s − 1)(1− ζ(k−1+1)s)(1− ζ−s)

=
1

(1− ζ(k−1+1)s)(1− ζ−s)
+

1

(ζ−(k+1)s − 1)(1− ζ−s)

+
1

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)(1− ζ−s)

=
1

(1− ζ(k−1+1)s)(1− ζ−s)
+

1

(ζ−(k+1)s − 1)(1− ζ−s)
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+
(1− ζ−s) + ζ−s

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)(1− ζ−s)

=
1

(1− ζ(k−1+1)s)(1− ζ−s)
+

1

(ζ−(k+1)s − 1)(1− ζ−s)

+
1

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)
+

1

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)(ζs − 1)
.

The sums of the first three terms in the last expression are evaluated as follows.
p−2∑
k=1

p−1∑
s=1

1

(1− ζ(k−1+1)s)(1− ζ−s)
=

p−1∑
m,n=1

1

(1− ζm)(1− ζn)
−

p−1∑
s=1

1

(1− ζs)(1− ζ−s)

=
(p− 1)2

4
− (p− 1)(p+ 1)

12
.

p−2∑
k=1

p−1∑
s=1

1

(ζ−(k+1)s − 1)(1− ζ−s)
=

p−1∑
m,n=1

1

(ζm − 1)(1− ζn)
−

p−1∑
s=1

1

(ζ−s − 1)(1− ζ−s)

= − (p− 1)2

4
− (p− 1)(p− 5)

12
.

In the third term, we put u = (k−1 + 1)s. Then (k + 1)s = ku. So we have

p−2∑
k=1

p−1∑
s=1

1

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)
=

p−2∑
k=1

p−1∑
u=1

1

(ζ−ku − 1)(ζ−u − 1)

=

p−1∑
m,n=1

1

(ζm − 1)(ζn − 1)
−

p−1∑
u=1

1

(ζu − 1)(ζ−u − 1)

=
(p− 1)2

4
− (p− 1)(p+ 1)

12
.

The sum of these three sums is zero. Hence we have

−Zp =

p−2∑
k=1

p−1∑
s=1

1

(ζ−(k+1)s − 1)(ζ−(k−1+1)s − 1)(ζs − 1)
.

In the right-hand side, we can change s to −s. Therefore this is equal to Zp. Thus we proved

Zp = 0.

We have not evaluated Yp. But we computed this sum by using computer for p < 500

and obtained the following

Proposition 4.5. For primes such that 3 ≤ p < 500 we have

Yp = −p(p− 1)2

8
+


0, if p ≡ 1 (mod 4)

3

2
ph(−p)2/ω2

p, if p ≡ 3 (mod 4)
.

We evaluated all of the exponential sums which appear in the formula of dimSµ(Γ0(p), χ)

except Yp. Comparing our result with Hashimoto’s result ([Ha1]) in the case of weight k

and trivial χ, we derive the following



Siegel Cusp Forms and Exponential Sum 29

Theorem 4.6. Proposition 4.5 holds for general odd primes.

Hence we have

Proposition 4.7. The contribution of φ25(1, r, s, t)’s is

− (2j + 1)(p− 1)2(2p2 − 1)

48p3
+

(2j + 1)

4p2
×

{
0, if p ≡ 1 (mod 4)

ph(−p)2/ω2
p, if p ≡ 3 (mod 4)

.

Remark 4.8. The terms of the class number in Xp and in Yp cancel with each other and

do not appear in dimSµ(Γ0(p), χ).

Remark 4.9. Concerning the representation of Sp (2,Fp) on Sk(Γ2(p)), a similar exponen-

tial sum which is represented as∑
s2=rt

(
r

p

)
τ(ϕ25(1, r, s, t),Φ25)

by our notation was considered and a conjecture about this value was presented in [LW].

This conjecture was proved by [A2] and [IS].

Remark 4.10. Let p > 2. We recall φ1, φ15(r), φ22(1, r, t) and φ25(1, r, s, t). They are
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 r
0 0 1 0
0 0 0 1

 ,


1 0 r 0
0 1 0 t
0 0 1 0
0 0 0 1

 and


1 0 r s
0 1 s t
0 0 1 0
0 0 0 1

 ,

respectively. We regard φ22(1, r, t) as the degenerated element of φ25(1, r, s, t). Similarly

φ15(r) is the degenerated element of φ22(1, r, t) and φ1 is the degenerated element of φ15(r).

These elements constitute a series of degenerating elements. As we saw before, the contri-

butions of φ1, φ15(r)’s, φ22(1, r, t)’s and φ25(1, r, s, t)’s include terms which are multiples of
1

p
,
1

p2
or

1

p3
. For example the contribution of φ1 is

τ(φ1,Φ1)

|NG(p)|
·
|CG(p)(φ1)|
|CG0(p)(φ1)|

=2−83−35−1(p+ 1)(p2 + 1)

(
(2j + 1)(k − 2)(2j + k − 1)(2j + 2k − 3)

− 60(2j + 1)(2j + 2k − 3)

p2
+

360(2j + 1)

p3

)
.

But we know (experimentally) if we take the sum of the contributions of the elements in the

series, then the terms which are multiples of
1

p
,
1

p2
or

1

p3
cancel with each other. Therefore

in the following theorem, we list the sum of the contributions of each series.

Now by taking the sum of the contributions of all of the fixed points, we have
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Theorem 4.11. Let p be a prime number, h a generator of (Z/pZ)× and χ a Dirichlet

character modulo p, and let ζ = exp

(
2πi

p− 1

)
and assume χ(h) = ζu (0 ≤ u ≤ p − 2).

Let N (≥ 3) be odd if p = 2 and N = 1 if p > 2 and let G0 be Γ0(p)/Γ2(pN). Let

µ be the holomorphic representation of GL(2,C) whose signature is (2j + k, k). Then∑
i

(−1)i dimHi(X̃2(pN),O(Ṽµ −D))G0 is given by the following Mathematica function:

Siegel[p_,u_,j_,k_]:=Block[{a,lj,lk,ljk,lu,x,y},

mod[x_,y_]:=Mod[x,y]+1;

a=(p+1)*(p^2+1)*(2*j+1)*(2*j+k-1)*(2*j+2*k-3)*(k-2)/5/27/128;

a=a-(p+1)*(2*j+1)*(2*j+2*k-3)/9/16;

a=a+(2*j+1)/12;

(* contribution of φ1 *)

(* contribution of φ15(r) *)

(* contribution of φ22(1, r, t) *)

(* contribution of φ25(1, r, s, t) *)

lk={1,-1};

lu={1,-1};

a=a+If[p==2,15,(p+1)^2]*(2*j+k-1)*(k-2)/9/128*

lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a-If[p==2,9,2*(p+1)]*(2*j+2*k-3)/3/64*lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a+If[p==2,3,2]*lk[[mod[k,2]]]*lu[[mod[u,2]]]/16;

(* contribution of φ2 *)

(* contribution of φ16(r) *)

(* contribution of φ23(4, r, t) *)

a=a+If[p==2,7,(p+1)^2]*(2*j+k-1)*(k-2)/3/64*

lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a-If[p==2,5,2*(p+1)]*(2*j+2*k-3)/64*lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a+If[p==2,1/4,1/8]*lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a+1/8*If[Mod[p,4]==1,1,0]*lk[[mod[k,2]]]*lu[[mod[u,2]]];

a=a+1/8*If[Mod[p,4]==3,2,0]*lk[[mod[k,2]]]*lu[[mod[u,2]]];

(* contribution of φ3 *)

(* contribution of φ17(r) *)

(* contribution of φ22(3, r, t) *)

(* contribution of φ24(4, r, t) *)
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(* contribution of φ25(i, r, s, t) (i = 4, 5, 6) *)

lj={1,-1};

a=a+If[p==2,7,p+1]*(2*j+2*k-3)/3/64*lj[[mod[j,2]]];

a=a+If[Mod[p,4]==1,(2*j+2*k-3)/96*lj[[mod[j,2]]]*lu[[mod[u,2]]],0];

a=a-If[p==2,2,1]*lj[[mod[j,2]]]/8;

a=a-If[Mod[p,4]==1,lj[[mod[j,2]]]*lu[[mod[u,2]]],0]/8;

(* contribution of φ4 *)

(* contribution of φ23(2, r, t) *)

a=a+(p+1)*(2*j+2*k-3)/128*lj[[mod[j,2]]];

a=a+If[Mod[p,4]==1,(2*j+2*k-3)/64*lj[[mod[j,2]]]*lu[[mod[u,2]]],0];

a=a-lj[[mod[j,2]]]/8;

a=a-If[Mod[p,4]==1,lj[[mod[j,2]]]*lu[[mod[u,2]]],0]/8;

(* contribution of φ5 *)

(* contribution of φ24(2, r, t) *)

lj={1,0,-1};

lu={2,-1,-1};

a=a+If[p==3,7,p+1]*(2*j+2*k-3)*lj[[mod[j,3]]]/54;

a=a+If[Mod[p,3]==1,(2*j+2*k-3)*lj[[mod[j,3]]]*lu[[mod[u,3]]],0]/54;

a=a-If[p==3,1/2,1/3]*lj[[mod[j,3]]];

a=a-If[Mod[p,3]==1,lj[[mod[j,3]]]*lu[[mod[u,3]]],0]/6;

(* contribution of φ6 *)

(* contribution of φ25(2, r, s, t) and φ25(3, r, s, t) *)

ljk={{-2+k,1-2*j-k,2-k,-1+2*j+k},{2-k,1-2*j-k,-2+k,-1+2*j+k}};

a=a+If[p==2,ljk[[mod[j,2],mod[k,4]]],0]/32;

lu={2,0,-2,0};

a=a+(p+1)*If[Mod[p,4]==1,ljk[[mod[j,2],mod[k,4]]],0]*

lu[[mod[u,4]]]/96;

ljk={{-1,1,1,-1},{1,1,-1,-1}};

a=a+If[p==2,3*ljk[[mod[j,2],mod[k,4]]],0]/16;

a=a+If[Mod[p,4]==1,ljk[[mod[j,2],mod[k,4]]],0]*lu[[mod[u,4]]]/8;

(* contribution of φ7(1) and φ7(2) *)

(* contribution of φ18(1, r) and φ18(2, r) *)

a=a+If[p==2,ljk[[mod[j,2],mod[k,4]]],0]/16;

a=a+If[Mod[p,4]==1,ljk[[mod[j,2],mod[k,4]]],0]*lu[[mod[u,4]]]/8;
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(* contribution of φ19(1, r) and φ19(2, r) *)

ljk={{-3+2*j+2*k,1-2*j-k,2-k},{1+2*j,-1-2*j,0},

{-1+2*j+k,3-2*j-2*k,-2+k}};

lu={2,-1,-1};

a=a+(p+1)*If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,3]]],0]*

lu[[mod[u,3]]]/216;

a=a+If[p==3,ljk[[mod[j,3],mod[k,3,3]]],0]/54;

ljk={{-2,1,1},{0,0,0},{-1,2,-1}};

a=a+If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,3]]],0]*lu[[mod[u,3]]]/18;

a=a+If[p==3,ljk[[mod[j,3],mod[k,3]]],0]/18;

ljk={{-1,1,0},{0,0,0},{0,1,-1}};

a=a+If[p==3,ljk[[mod[j,3],mod[k,3]]],0]/9;

(* contribution of φ8(1) and φ8(2) *)

(* contribution of φ20(1, r) and φ20(2, r) *)

ljk={{-1-2*j,1-2*j-k,2-k,1+2*j,-1+2*j+k,-2+k},

{3-2*j-2*k,3-2*j-2*k,0,-3+2*j+2*k,-3+2*j+2*k,0},

{1-2*j-k,-1-2*j,-2+k,-1+2*j+k,1+2*j,2-k}};

lu={2,1,-1,-2,-1,1};

a=a+(p+1)*If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,6]]],0]*

lu[[mod[u,6]]]/72;

lu={1,-1};

a=a+If[p==3,ljk[[mod[j,3],mod[k,6]]],0]*lu[[mod[u,2]]]/18;

ljk={{0,-1,-1,0,1,1},{-2,-2,0,2,2,0},{-1,0,1,1,0,-1}};

lu={2,1,-1,-2,-1,1};

a=a-If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,6]]],0]*lu[[mod[u,6]]]/6;

lu={1,-1};

a=a-If[p==3,ljk[[mod[j,3],mod[k,6]]],0]*lu[[mod[u,2]]]/6;

(* contribution of φ8(3) and φ8(4) *)

(* contribution of φ20(3, r) and φ20(4, r) *)

ljk={{-1,1,0},{0,0,0},{0,1,-1}};

lu={2,-1,-1};

a=a+2/9*If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,3]]],0]*lu[[mod[u,3]]];

a=a+1/9*If[p==3,ljk[[mod[j,3],mod[k,3]]],0];

(* contribution of φ21(1, r) and φ21(2, r) *)

ljk={1,-1};
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lu={1,-1};

a=a+(p+1)*(2*j+1)/128*ljk[[mod[j+k,2]]];

a=a+If[Mod[p,4]==1,(2*j+1)/64*ljk[[mod[j+k,2]]]*lu[[mod[u,2]]],0];

(* contribution of φ9(1) *)

ljk={{1,1,-1,-1},{-1,1,1,-1},{-1,-1,1,1},{1,-1,-1,1}};

a=a+If[p==2,ljk[[mod[j,4],mod[k,4]]]/16,0];

lu={4,-2,0,-2};

a=a+If[Mod[p,8]==1,ljk[[mod[j,4],mod[k,4]]]*lu[[mod[u,4]]]/16,0];

lu={2,-2};

a=a+If[Mod[p,8]==3,ljk[[mod[j,4],mod[k,4]]]*lu[[mod[u,2]]]/16,0];

lu={2,0,-2,0};

a=a+If[Mod[p,8]==5,ljk[[mod[j,4],mod[k,4]]]*lu[[mod[u,4]]]/16,0];

(* contribution of φ9(2) and φ9(3) *)

ljk={{0,-1,1},{-1,1,0},{1,0,-1}};

a=a+If[p==3,1,p+1]*(2*j+1)*ljk[[mod[j,3],mod[k,3]]]/108;

lu={2,-1,-1};

a=a+If[Mod[p,3]==1,(2*j+1)*ljk[[mod[j,3],mod[k,3]]],0]*

lu[[mod[u,3]]]/108;

(* contribution of φ10(1) and φ10(2) *)

ljk={{1,-1},{-2,2},{1,-1}};

a=a+If[p==2,ljk[[mod[j,3],mod[k,2]]],0]/36;

lu={4,-1,1,-4,1,-1};

a=a+If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,2]]],0]*lu[[mod[u,6]]]/108;

lu={1,-1};

a=a+If[p==3,ljk[[mod[j,3],mod[k,2]]],0]*lu[[mod[u,2]]]/108;

(* contribution of φ10(3) *)

ljk={{2,1,-1,-2,-1,1},{-1,1,2,1,-1,-2},{-1,-2,-1,1,2,1}};

a=a+If[p==2,ljk[[mod[j,3],mod[k,6]]],0]/18;

lu={4,-1,1,-4,1,-1};

a=a+If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,6]]],0]*lu[[mod[u,6]]]/27;

lu={1,-1};

a=a+If[p==3,ljk[[mod[j,3],mod[k,6]]],0]*lu[[mod[u,2]]]/27;

(* contribution of φ10(i) (i = 4, 5, 6, 7) *)

ljk={{0,1,-1},{-1,1,0},{-1,0,1},{0,-1,1},{1,-1,0},{1,0,-1}};
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a=a+If[(p-2)*(p-3)==0,ljk[[mod[j,6],mod[k,3]]],0]/12;

lu={4,-3,1,0,1,-3};

a=a+If[Mod[p,12]==1,ljk[[mod[j,6],mod[k,3]]],0]*lu[[mod[u,6]]]/12;

lu={2,-2};

a=a+If[Mod[p,12]==5,ljk[[mod[j,6],mod[k,3]]],0]*lu[[mod[u,2]]]/12;

lu={2,-1,-1};

a=a+If[Mod[p,12]==7,ljk[[mod[j,6],mod[k,3]]],0]*lu[[mod[u,3]]]/12;

(* contribution of φ10(8) and φ10(9) *)

ljk={{1,0,0,0,-1,0,-1,0,0,0,1,0},{-1,0,0,0,1,0,1,0,0,0,-1,0}};

lu={4,0,2,0,-2,0,-4,0,-2,0,2,0};

a=a+If[Mod[p,12]==1,ljk[[mod[j,2],mod[k,12]]],0]*lu[[mod[u,12]]]/12;

ljk={{0,0,0,1,0,1,0,0,0,-1,0,-1},{0,-1,0,-1,0,0,0,1,0,1,0,0},

{0,1,0,0,0,-1,0,-1,0,0,0,1}};

a=a-If[Mod[p,12]==1,ljk[[mod[j,3],mod[k,12]]],0]*lu[[mod[u,12]]]/12;

(* contribution of φ11(i) (i = 1, 2, 3, 4) *)

ljk={{1,-1},{-2,2},{1,-1}};

a=a+If[p==2,ljk[[mod[j,3],mod[k,2]]],0]/36;

lu={4,-1,1,-4,1,-1};

a=a+If[Mod[p,3]==1,ljk[[mod[j,3],mod[k,2]]],0]*lu[[mod[u,6]]]/36;

lu={1,-1};

a=a+If[p==3,ljk[[mod[j,3],mod[k,2]]],0]*lu[[mod[u,2]]]/36;

(* contribution of φ12 *)

lj={1,-1,-1,1};

lk={1,-1};

a=a+If[p==2,lj[[mod[j,4]]]*lk[[mod[k,2]]],0]/16;

lu={4,-2,0,-2};

a=a+If[Mod[p,8]==1,lj[[mod[j,4]]]*lk[[mod[k,2]]]*lu[[mod[u,4]]],0]/16;

lu={2,-2};

a=a+If[Mod[p,8]==3,lj[[mod[j,4]]]*lk[[mod[k,2]]]*lu[[mod[u,2]]],0]/16;

lu={2,0,-2,0};

a=a+If[Mod[p,8]==5,lj[[mod[j,4]]]*lk[[mod[k,2]]]*lu[[mod[u,4]]],0]/16;

(* contribution of φ13 *)

ljk={{1,0,0,-1,0},{-1,1,0,0,0},{0,0,0,0,0},{0,0,0,1,-1},{0,-1,0,0,1}};

lu={4,-1,-1,-1,-1};

a=a+If[Mod[p,5]==1,ljk[[mod[j,5],mod[k,5]]],0]*lu[[mod[u,5]]]/5;
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a=a+If[p==5,ljk[[mod[j,5],mod[k,5]]],0]/5;

(* contribution of φ14(i) (i = 1, 2, 3, 4) *)

Return[a];

]

From the above theorem and the vanishing theorem (Theorem 6.1), we have the following

Corollary 4.12. Let p, χ and u be as in the above theorem. If j = 0 and k ≥ 4 or if

j > 0 and k ≥ 5, the dimension of Sµ(Γ0(p), χ) is equal to Siegel[p_,u_,j_,k_].

§5. Vector Bundle Ṽµ

Let N ≥ 3 and µ a holomorphic representation of GL(2,C). Let X2(N), X2(N), X̃2(N)

and Ṽµ be as in §2. X̃2(N) has a natural morphism s: X̃2(N) → X2(N) which is the identity

on X2(N). X2(N) is set theoretically a disjoint union of X2(N), copies of X1(N)’s which

are called cusps of degree one and finite number of points which are called cusps of degree

zero.

Let f be an element of Mµ(Γ2(N)) ≃ H0(X2(N),O(Vµ)). Then f has an extension

f̃ ∈ H0(X̃2(N),O(Ṽµ)), since f has a Fourier expansion:

f(Z) =
∑
S≥O

a(S) exp(2πiTr(SZ)/N)

at every cusp of degree one ([Gd]). Hence we have another isomorphism:

Mµ(Γ2(N)) ≃ H0(X̃2(N),O(Ṽµ)).

We return to the case of general degree g in the following

Example 5.1. Let Z ∈ Sg and put Z = (Zij), and let

ω =
∑
i≤j

fij(Z)dZij

be a holomorphic 1-form on Sg. We put fji(Z) = fij(Z) and define a symmetric matrix

valued holomorphic function f such that the (i, j)-coefficient of f(Z) is equal to fij(Z), if

i = j and fij(Z)/2, otherwise. Then ω is represented as Tr f(Z)(dZij). We putW =M ⟨Z⟩.

Then since we have

(dWij) =
t(CZ +D)−1(dZij)(CZ +D)−1,
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ω is invariant under the action of Γg(N), i. e.,∑
i≤j

fij(M ⟨Z⟩)dWij =
∑
i≤j

fij(Z)dZij ,

for any M ∈ Γg(N), if and only if f satisfies

f(M ⟨Z⟩) = (CZ +D)f(Z)t(CZ +D)

for any M . Therefore in this case, f belongs to Ms2(Γg(N)), where s2 is the symmetric

tensor representation of degree two of GL(g,C). The 1-form ω̃ which corresponds to the

extended section f̃ ∈ H0(X̃g(N),O(Ṽs2)) of f may have logarithmic poles along the divisor

at infinity D ([Mu]). Therefore we have the following isomorphism of vector bundles:

O(Ṽs2) ≃ Ω1(logD).

Remark 5.2. If µ(CZ + D) = det(CZ + D)k, Vµ and Ṽµ are line bundles which we also

denote by L2 and L̃2, respectively. L2 can be extended to a holomorphic line bundle L2

on X2(N), and L̃2 is the pullback of L2 by s. But in general Vµ cannot be extended onto

X2(N). The closure of a cusp of degree one of X2(N) is biholomorphic to X1(N) and the

restriction of L2 to X1(N) is isomorphic to L1.

Let (
Z11 Z12

Z12 Z22

)
be the coordinate system of S2. Let C

0 be a cusp of degree one in X2(N) and C its closure

in X2(N). Cusps of degree one in X2(N) are equivalent to each other under the action of

Γ2(1)/Γ2(N). So we assume that C0 is defined by ImZ22 = ∞. Let D0
1 be s−1(C0) and D1

the closure of D0
1 in X̃2(N). We denote the restriction of s to D1 by π. L̃2 | D1 is isomorphic

to the pullback of L1 on C ≃ X1(N) by π. D1 has a structure of an elliptic surface over C

and D0
1 has the structure of the universal family of elliptic curves with level N ([Ig], [Nm]

and [AMRY] Chapter I, §4).

We need to study the structure of Ṽµ | D1. Let p : S1 → X1(N) ≃ C0 be the covering

map. The universal covering space of D0
1 is S1 ×C. Let P (N) be the subgroup of Γ2(N)

consisting of elements which map C into itself. The set

B(N) :=




1 0 0 0
0 1 0 t
0 0 1 0
0 0 0 1

∣∣∣∣∣ t ∈ NZ
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is a normal subgroup of P (N). P (N)/B(N) is isomorphic to the covering transformation

group of the covering space p̃ : S1 ×C → D0
1. Let M ∈ P (N). Then it is known that M is

equivalent modulo B(N) to an element such as
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1




1 0 0 n
m 1 n 0
0 0 1 −m
0 0 0 1

 =


a 0 b an− bm
m 1 n 0
c 0 d cn− dm
0 0 0 1

 ,

where (
a b
c d

)
∈ Γ1(N) and m, n ∈ NZ.

The coset MB(N) acts on S1 ×C as

(z1, z2) 7−→
(
az1 + b

cz1 + d
,
z2 +mz1 + n

cz1 + d

)
,

for (z1, z2) ∈ S1 × C. Let π̃ : S1 × C → S1 be the projection to the first factor. Then

π | D0
1 : D0

1 → X1(N) is associated with π̃ and we have the following commutative diagram:

S1 ×C
p̃−−−−→ D0

1

π̃

y yπ|D0
1

S1 −−−−→
p

C0.

Ṽµ | D0
1 is constructed directly as a quotient space of S1 × C × Cr by P (N)/B(N) as

follows. Let M be as above. Then the coset MB(N) acts on S1 ×C×Cr as

MB(N)((z1, z2), ξ) =

(
MB(N)(z1, z2), µ

(
cz1 + d cn− dm

0 1

)
ξ

)
,(1)

for (z1, z2) ∈ S1 × C and ξ ∈ Cr. Ṽµ | D0
1 is biholomorphic to the quotient space of

S1 ×C×Cr by this action.

Let (j + k, k) be the signature of µ where j and k are integers with j ≥ 0. Then µ is of

degree j + 1 and equivalent to sj ⊗ detk. We have

sj

(
a b
0 1

)
=



aj
(
j

1

)
aj−1b

(
j

2

)
aj−2b2 · · · bj

0 aj−1

(
j − 1

1

)
aj−2b · · · bj−1

0 0 aj−2 · · · bj−2

...
...

...
. . .

...
0 0 0 · · · 1


.
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If j ≥ 1, this is written as  aj ∗

0 sj−1

(
a b
0 1

)
 .

Therefore from the explicit construction (1) of Ṽµ | D0
1, we see that Ṽsj−1 | D0

1 is a quotient

bundle of Ṽsj | D0
1 and the kernel is the line bundle which corresponds to the automorphic

factor (cz1 + d)j . Obviously this line bundle is isomorphic to the pullback of L⊗j
1 by π | D0

1.

Hence we have the following exact sequence of vector bundles:

0 → L̃⊗j
2 | D0

1 → Ṽsj | D0
1 → Ṽsj−1 | D0

1 → 0.(2)

Let µ and σ be sj ⊗ detk and sj−1 ⊗ detk, respectively. Then multiplying by L̃⊗k
2 | D0

1, we

have another exact sequence:

0 → L̃
⊗(j+k)
2 | D0

1 → Ṽµ | D0
1 → Ṽσ | D0

1 → 0.(3)

We can easily see that this exact sequence is extended onto D1. So we have the following

exact sequence:

0 → L̃
⊗(j+k)
2 | D1 → Ṽµ | D1 → Ṽσ | D1 → 0.(4)

Therefore we derive

ch(Ṽµ | D1) = ch(L̃
⊗(j+k)
2 | D1) + ch(Ṽσ | D1),

where ch means the Chern character and by induction we obtain the following

Theorem 5.3.

c1(Ṽµ | D1) =

j∑
i=0

(i+ k)c1(L̃2 | D1)(5)

= (1/2)(j + 1)(j + 2k)c1(L̃2 | D1).

c2(Ṽµ | D1) = 0.(6)

Remark 5.4. Since det(µ(CZ +D)) = det(CZ +D)(j+1)(j+2k)/2, we have

c1(Ṽµ) = (1/2)(j + 1)(j + 2k)c1(L̃2).
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So as to the first Chern class, (5) in the theorem holds without restricting to D1. The author

proved a similar exact sequence of vector bundles as (4) in the case of the Siegel upper half

plane of degree three and µ = s2 by a different method (proof of [T1] Theorem (5.2)).

We used that exact sequence to compute the dimension of Sk(Γ3(N)) with N ≥ 3. Such

exact sequences are very important when we use the Riemann-Roch-Hirzebruch’s formula

(cf. proof of Theorem 5.10, below).

Let f̃ ∈ H0(X̃2(N),O(Ṽµ)) be the extension of f ∈ H0(X2(N),O(Vµ)), and let f̃ | D1 ∈

H0(D1,O(Ṽµ | D1)) be the restriction of f̃ to D1. Now we have the following

Theorem 5.5. In the above sequence (4), f̃ | D1 is mapped to 0, i. e.,

f̃ | D1 ∈ H0(D1,O(L̃
⊗(j+k)
2 | D1)).

Proof. Let τ ∈ S1. Then p̃ ({τ}×C) is isomorphic to the elliptic curve Eτ := C/N(Zτ+Z).

(NZ)2 acts on C×C(j+1) as

(m,n) (w, ξ) =

(
w +mτ + n, µ

(
1 −m
0 1

)
ξ

)
,

for w ∈ C, ξ ∈ C(j+1) and m, n ∈ NZ. Ṽµ | Eτ is biholomorphic to the quotient space of

C×C(j+1) by this action. If j = 0, µ(CZ +D) = det(CZ +D)k and

µ

(
1 −m
0 1

)
= 1.

So Ṽµ | Eτ is a trivial line bundle. This is the reason why L2 is extended to X2(N) and

L̃2 | D1 is isomorphic to π∗(L1). Let j ≥ 1. Then we have the following exact sequence of

vector bundles from (4):

0 → Eτ ×C → Ṽµ | Eτ → Ṽσ | Eτ → 0,(7)

where Eτ ×C means the trivial line bundle on Eτ . So to prove Theorem 5.5, it suffices to

prove the following

Lemma 5.6. The restriction f̃ | Eτ of f̃ is mapped to 0 by the above sequence (7).

Proof. Let ϕ = p̃ | {τ} ×C. Then ϕ∗(f̃ | Eτ ) is a section of ϕ∗(Ṽµ | Eτ ) which is identified

with a holomorphic map a of C to C(j+1) satisfying the following equalities:

µ

(
1 −m
0 1

)
a(w) = a(w +mτ + n),
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where

a(w) =


aj(w)

...

a1(w)

a0(w)

 .

We prove the assertion by induction on j. Let j = 1. Then we have the following relations:

a1(w +mτ + n) = a1(w)−ma0(w),

a0(w +mτ + n) = a0(w).

From the second relation we derive that a0(w) is constant which we denote by α. Hence it

follows that

a1(w +mτ + n) = a1(w)−mα.

Differentiating by w, we derive

a′1(w +mτ + n) = a′1(w).

Therefore a′1(w) is a constant which we denote by β. So we have

a1(w) = βw + γ,

where γ is a constant. Hence it follows that for any w ∈ C and m, n ∈ NZ,

β(w +mτ + n) + γ = βw + γ −mα.

So we have α = β = 0. Thus we proved that

a(w) =

(
γ

0

)
.

Now let j ≥ 2. Then a(w) is mapped to
aj−1(w)

...

a1(w)

a0(w)

 .

By the assumption of the induction we have

a0(w) ≡ a1(w) ≡ · · · ≡ aj−2(w) ≡ 0.
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Hence aj(w) and aj−1(w) satisfy the following relations:

aj(w +mτ + n) = aj(w)−mjaj−1(w),

aj−1(w +mτ + n) = aj−1(w).

So similarly as before we have

aj−1(w) ≡ 0,

and aj(w) is a constant.

Let j = 0. Then we have the following isomorphism:

H0(D1,O(L̃⊗k
2 | D1)) ≃ H0(X1(N),O(L

⊗k

1 )).(8)

For f ∈ H0(X2(N),O(L⊗k
2 )), we denote by Φ(f) the element of H0(X1(N),O(L

⊗k

1 )) corre-

sponding to f̃ | D1 by the above isomorphism (8). Let j ≥ 1, and f ∈ H0(X2(N),O(Vµ)).

Then by Theorem 5.5, f̃ | D1 belongs to H0(D1,O(L̃
⊗(j+k)
2 | D1)). We denote by Φ(f) the

element of H0(X1(N),O(L
⊗(j+k)

1 )) which corresponds to f̃ | D1 by the above isomorphism

(8).

Definition 5.7. The linear map:

Φ :Mµ(Γ2(N)) ≃ H0(X2(N),O(Vµ)) → H0(X1(N),O(L
⊗(j+k)

1 )) ≃Mj+k(Γ1(N))

is called Φ-operator. Φ-operator is defined for each cusp of degree one and f ∈Mµ(Γ2(N)) is

called a cusp form, if f belongs to the kernel of Φ-operator for each cusp of degree one. We

denote by Sµ(Γ2(N)) the subspace of Mµ(Γ2(N)) consisting of cusp forms. If Γ ⊃ Γ2(N),

Sµ(Γ) is defined to be Mµ(Γ) ∩ Sµ(Γ2(N)).

Remark 5.8. In [Gd] Φ-operator is defined by a different method. We return to the general

case of degree g and recall the definition of Φ-operator there. Let F
(g)
µ be the representation

space of a holomorphic representation µ of GL(g,C). Let F
(g′)
µ be the subspace of F

(g)
µ

consisting of elements which are fixed by

µ

(
1g′ M1

0 M2

)
,

for any M1 and M2 with detM2 = 1. Then we have

F (g)
µ ⊇ F (g−1)

µ ⊇ · · · ⊇ F (1)
µ ⊇ F (0)

µ .
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F
(g′)
µ is stable under the action of

µ(g′)(M) := µ

(
M 0
0 1g−g′

)
,

for any M ∈ GL(g′,C). Φ(g−1) is defined by

Φ(g−1)f(Z1) = lim
Im Zgg→∞

f

(
Z1 u
tu Zgg

)
,

for Z1 ∈ Sg−1. Φ(g′) is defined inductively for general g′. If Z ∈ Sg′ , Φ(g′)f(Z) belongs to

F
(g′)
µ and Φ(g′)f is an automorphic form of type µ(g′) with respect to Γg′(N).

In the case of degree two, our Φ-operator coincides with Φ(1). If j = 0, F
(2)
µ , F

(1)
µ and F

(0)
µ

coincide with each other, and if j ≥ 1, F
(1)
µ is one-dimensional and F

(0)
µ is zero-dimensional.

The following proposition is obvious from the observation above.

Proposition 5.9. f ∈ H0(X2(N),O(Vµ)) is a cusp form if and only if f̃ vanishes along

D. Therefore we have

Sµ(Γ2(N)) ≃ H0(X̃2(N),O(Ṽµ −D)),

where O(Ṽµ − D) is the subsheaf of O(Ṽµ) consisting of germs of sections of Ṽµ which

vanish along D.

Now we can calculate dimSµ(Γ2(N)) (N ≥ 3).

Theorem 5.10. Let N ≥ 3. If j = 0 and k ≥ 4 or if j ≥ 1 and k ≥ 5, then the dimension

of Sµ(Γ2(N)) is equal to

2−83−35−1((j + 1)(k − 2)(j + k − 1)(j + 2k − 3)N10 − 60(j + 1)(j + 2k − 3)N8

+ 360(j + 1)N7)
∏

p|N, p:prime

(1− p−2)(1− p−4).

Proof. Let [D] be the line bundle on X̃2(N) which is associated with the divisor D. Then

by the vanishing theorem (Theorem 6.1, below), we have

dimSµ(Γ2(N)) = dimH0(X̃2(N),O(Ṽµ −D))

= dimH0(X̃2(N),O(Ṽµ ⊗ [D]⊗(−1)))

= χ(X̃2(N),O(Ṽµ ⊗ [D]⊗(−1))),
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where χ means the Euler-Poincaré characteristic. Let ci be the i-th Chern class of X̃2(N)

and let ci be the i-th logarithmic Chern class of X2(N) with respect to X̃2(N) ([T1]) and

S2(D) the second fundamental symmetric polynomial of (the cohomology classes of) the

irreducible divisors in D. Then from [T1] Proposition (1.2), we have

c1 = c1 +D

c2 = c2 + c1D + S2(D),

where we denote the divisor D and its cohomology class by the same notation. By the

formula of Riemann-Roch-Hirzebruch, we have

χ(X̃2(N),O(Ṽµ ⊗ [D]⊗(−1)))

=
1

24
(4c1(Ṽµ)

3 + 12c3(Ṽµ)− 12c1(Ṽµ)c2(Ṽµ) + 6c1(Ṽµ)
2c1 − 12c2(Ṽµ)c1

+ 2c1(Ṽµ)c
2
1 + 2c1(Ṽµ)c2 + (j + 1)c2c1)

+
1

24
(12c2(Ṽµ)− 6c1(Ṽµ)c1 − 6c21 − (j + 1)(c21 + c2))D

+
1

24
((j + 1)c1D

2 + 2c1(Ṽµ)D
2) +

1

24
(2c1(Ṽµ)S

2(D) + (j + 1)c1S
2(D))

− 1

24
(j + 1)DS2(D).

Since

c̄j = (−1)jcj(Ṽs2)

by Example 5.1, the terms in the first and the second lines are proportional to the invariant

volume of Γ2(N)\S2 ([Mu]). (In [Mu] Theorem 3.2, it is stated that a polynomial of ci(Ṽµ)’s

for a single representation µ is proportional. But moreover a polynomial of ci(Ṽµ)’s for

various representations is also proportional. Proof is the same.) Therefore these terms are

calculated by [Is] Theorem 4. Note that “the canonical factor of automorphy” in [Is] is

t(CZ + D)−1 by our notation and [Is] Theorem 4 ii) is misprinted. “σ′
◦
+ δK

◦
” should be

“σ′
◦
− δK

◦
”.

The terms in the third line and the second term in the fourth line vanish by Theorem

5.3. Next from (5) in Theorem 5.3, we have

c1(Ṽµ)D
2 = (1/2)(j + 1)(j + 2k)c1(L̃2)D

2.

and it holds that c1 = −3c1(L̃2). Hence the first term in the fourth line is equal to

(1/24)(j + 1)(j + 2k − 3)c1(L̃2)D
2.
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This and the term in the fifth line are similarly calculated as in [T1].

§6. Proof of the Vanishing Theorem

In this section we prove the vanishing theorem:

Theorem 6.1. Let µ be an irreducible holomorphic representation of GL(2,C) and let

(j + k, k) be its signature. If j = 0 and k ≥ 4 or if j ≥ 1 and k ≥ 5 and if p > 0, then

Hp(X̃2(N),O(Ṽµ −D)) ≃ 0.

We reduce the proof of this theorem to the case of the cohomology group of a certain line

bundle of a P1-bundle over X̃2(N) and apply the vanishing theorem of Kawamata-Viehweg

([Ka] and [V]). But this proof is a rather makeshift one. The vector bundle Vµ on S2

has a Sp (2,R)-invariant hermitian metric which induces a metric on Ṽµ ⊗ [D]⊗(−1). This

metric “degenerates” along the divisor at infinity D. If one develop a theory of harmonic

integrals with respect such a degenerating metric (cf. [Z] for one dimensional case), then

our vanishing theorem can be proved by applying the vanishing theorem of Nakano directly

to the vector bundle Ṽµ ⊗ [D]⊗(−1). Before the proof of Theorem 6.1, we present a proof

(which uses the vanishing theorem of Nakano ([Nk])) of the vanishing theorem in case Γ\Sg

is compact, because we have to use the positivity of the Sp (2,R)-invariant metric in the

proof of Theorem 6.1.

Remark 6.2. In the case of compact quotients, the vanishing theorem holds when k = 4

(Theorem 6.6). So it is expected that the vanishing theorem also holds when k = 4 in the

case of non-compact quotients.

Now we prove the vanishing theorem for the case of compact quotients by using Nakano’s

vanishing theorem. First we recall the positivity of holomorphic vector bundles in the sense

of Nakano. Let X be a complex manifold of dimension n, V a holomorphic vector bundle

of rank r on X and h a hermitian metric on V . Put

θ = h−1∂h and Θ = ∂̄θ.

θ is the connection form and Θ is the curvature form. Θ is a r× r matrix whose coefficients

are (1, 1)-forms. Let (z1, z2, . . . , zn) be the local coordinate in X and let∑
1≤i,j≤n

H(Θ)σi,ρjdz
idz̄j
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be the (ρ, σ)-coefficient of hΘ. Since it holds that

H(Θ)σi,ρj = H(Θ)ρj,σi,

we can define a hermitian form:

Θ(ξ, ξ) =
∑

1≤σ,ρ≤r
1≤i,j≤n

H(Θ)σi,ρjξ
σiξ̄ρj

for a vector ξ = (ξσi)1≤σ≤r,1≤i≤n.

Definition 6.3. ([Nk]). If the hermitian form Θ(ξ, ξ) is positive (resp. non-negative or

negative) for every non-zero ξ, V is said to be positive (resp. semi-positive or negative5)

and written as

V > 0 (resp. V ≥ 0 or V < 0).

In the case of the line bundle this notion of positivity coincides with the positivity in the

sense of Kodaira ([Ko]).

Now we return to the case of the Siegel upper half plane. Let µ be the representation of

GL(g,C) on Cg with the standard action. In this case we denote Vµ, Vµ and Ṽµ by V, V

and Ṽ , respectively. Let Z ∈ Sg. For u, v ∈ VZ , we put

H = Im Z and ⟨u, v⟩ = tūHv.

Then since it holds that

ImM ⟨Z⟩ = t(CZ +D)
−1

(ImZ)(CZ +D)−1,

for any Z ∈ Sg and M ∈ Sp (g,R), we have

⟨Mu,Mv⟩ = ⟨u, v⟩ ,

i. e., this hermitian metric H is Sp (g,R)-invariant. Therefore for any torsion free discrete

subgroup Γ of Sp (g,R), this metric H induces a hermitian metric h on V := Γ\V. In

case µ(CZ + D) = det(CZ + D) we also denote Vµ by Lg. Similarly as before, we define

⟨u, v⟩ = ū(detH)v for Z ∈ Sg and u, v ∈ (Lg)Z , and this metric is also Sp (g,R)-invariant.

Therefore this metric induces a metric on Lg := Γ\Lg.

5The definition of the negativity was false. V is said to be negative if V ∗ is positive.
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Proposition 6.4. With respect to the above metric, we have

V ≥ 0,(9)

Lg > 0.(10)

Proof. Since the metric H is Sp (g,R)-invariant, it suffices to prove the positivity at a single

point Z ∈ Sg. We put Z =
√
−11g. Let Y = ImZ. Then

(Θij) = ∂̄(Y −1∂Y )

= Y −1∂̄∂Y − Y −1∂̄Y Y −1∂Y

= −(1/4)(
∑
k

dZik ∧ dZkj).

We introduce variables ξσ(i,j) for 1 ≤ σ, i, j ≤ g and i ≤ j, and put ξσ(j,i) = ξσ(i,j). Then

for ξ = (ξσ(i,j)) it holds that

Θ(ξ, ξ) = (1/4)
∑

1≤i,j,k≤g

ξj(j,k)ξ̄i(i,k)

= (1/4)
∑

1≤k≤g

∑
1≤i,j≤g

ξj(j,k)ξ̄i(i,k)

= (1/4)
∑

1≤k≤g

 ∑
1≤i≤g

ξi(i,k)
2

≥ 0.

So (9) is proved. (10) is well known, since
√
−1∂̄∂ log(detH) defines the Bergmann metric

on Sg.

The following lemma is proved similarly as in [Gr2] p.209, although the positivity in [Gr2]

is different from our positivity. (Actually the positivity in [Gr2] is weaker than ours.)

Lemma 6.5. Let V1 and V2 be holomorphic vector bundles on a complex manifold X. If

V1 ≥ 0 and V2 ≥ 0 with respect to some hermitian metrics h1 and h2, V1 ⊗ V2 ≥ 0 with

respect to the metric h1 ⊗ h2. Moreover if V2 > 0, then V1 ⊗ V2 > 0.

Let µ be an irreducible holomorphic representation of GL(g,C) and (f1, f2, . . . , fg) with

f1 ≥ f2 ≥ · · · ≥ fg its signature. Let Γ be a discrete subgroup of Sp (g,R) without torsion

elements such that Γ\Sg is compact. In this case, we have the following
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Theorem 6.6. If fg ≥ g + 2 and if p > 0, then

Hp(Γ\Sg,O(Vµ)) ≃ 0.

Proof. Let K be the canonical line bundle on Γ\Sg. Then it is known that

K ≃ L⊗(g+1)
g .

Let σ be the irreducible representation of GL(g,C) whose signature is

(f1 − g − 2, f2 − g − 2, . . . , fg − g − 2).

Then µ = σ⊗det(g+2). Since fg − g−2 ≥ 0, V ⊗f contains a vector bundle isomorphic to Vσ

as its direct summand, where f is equal to
∑g

i=1(fi − g − 2). Therefore it suffices to prove

that

Hp(Γ\Sg,O(V ⊗f ⊗ L⊗(g+2)
g )) ≃ 0.

Since V ⊗f ⊗ L
⊗(g+2)
g is isomorphic to V ⊗f ⊗ Lg ⊗ K, this is proved by Proposition 6.4,

Lemma 6.5 and the following

Theorem 6.7. ([Nk]) Let X be a compact complex manifold, V a holomorphic vector bundle

on X and K the canonical line bundle on X. If V > 0 and if p > 0, then

Hp(X,O(V ⊗K)) ≃ 0.

Remark 6.8. Theorem 6.6 was proved for general bounded symmetric domains in [Is]

and [MM]. The dimension of the spaces of vector valued automorphic forms in the case of

compact quotients was calculated in [Is] for general bounded symmetric domain (and also

in [L] by the Selberg’s trace formula).

Now we return to the proof of Theorem 6.1. Let W be a holomorphic vector bundle of

rank r on a compact complex manifold X and let W ∗ be its dual vector bundle. We identify

X with the zero section of W ∗. Then P(W ) := (W ∗ −X)/C∗ is a Pr−1 bundle on X and

W ∗ − X is a C∗ bundle on P(W ). We denote by H(W )∗ the tautological line bundle on

P(W ) which is the line bundle associated with this C∗ bundle and we denote by H(W ) its

dual line bundle.
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Definition 6.9. Let L be a holomorphic line bundle on a projective manifoldX. L is said to

be numerically semi-positive if for any non-singular compact curve B and any holomorphic

map f : B → X, the degree of f∗(L) is non-negative. LetW be a holomorphic vector bundle

on X. W is said to be numerically semi-positive if H(W ) is numerically semi-positive.

The following isomorphism is well known:

Hp(X,O(Sj(W ))⊗F) ≃ Hp(P(W ),O(H(W )⊗j)⊗ϖ∗F),(11)

where F is a coherent sheaf on X and ϖ : P(W ) → X is the projection. Let KX and KP(W )

be the canonical line bundles on X and P(W ), respectively. Then we have the following

isomorphism ([Gr2] p.202 or [KO]):

KP(W ) ≃ H(W )⊗(−r) ⊗ϖ∗(KX ⊗ (det(W ))).(12)

In the following we denote Ṽµ for the standard representation µ of GL(2,C) on C2 by

Ṽ . Let µ be sj ⊗ detk. Then Ṽµ is isomorphic to Sj(Ṽ )⊗ L̃⊗k
2 . The case of j = 0 is easily

proved by the ampleness of L2 ([Ba]) and Kodaira vanishing theorem ([Ko]). So we assume

that j ≥ 1. Then O(Ṽµ − D) is isomorphic to O(Ṽµ ⊗ [D]⊗(−1)). So this is isomorphic to

O(Sj(Ṽ ) ⊗ L̃⊗k
2 ⊗ [D]⊗(−1)). Let K be the canonical line bundle on X̃2(N). Then K is

isomorphic to L̃⊗3
2 ⊗ [D]⊗(−1). So the above sheaf is isomorphic to O(Sj(Ṽ )⊗ L̃⊗(k−3)

2 ⊗K).

By the isomorphism (9), we have the following isomorphism:

Hp(X̃2(N),O(Sj(Ṽ )⊗ L̃
⊗(k−3)
2 ⊗K)) ≃ Hp(P(Ṽ ),O(H(Ṽ )⊗j ⊗ϖ∗(L̃

⊗(k−3)
2 ⊗K))).

Since L̃2 = det(Ṽ ), this is isomorphic to

Hp(P(Ṽ ),O(H(Ṽ )⊗(j+2) ⊗ϖ∗(L̃
⊗(k−4)
2 )⊗KP(Ṽ ))),(13)

from (12). We prove that this cohomology group vanishes by the following theorem of

Kawamata-Viehweg:

Theorem 6.10. ([Ka], [V]). Let X be a projective manifold of dimension n, L a holomor-

phic line bundle on X, c1(L) the first Chern class of L and K the canonical line bundle on

X. If L is numerically semi-positive and c1(L)
n[X] is positive, then we have

Hp(X,O(L⊗K)) ≃ 0,
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for p > 0.

So we have to prove the numerical semi-positivity of L := H(Ṽ )⊗(j+2) ⊗ ϖ∗(L̃
⊗(k−4)
2 )

and the positivity of c1(L)
4[P(Ṽ )] for k ≥ 5. Since L2 is an ample line bundle on X2(N)

and ϖ∗(L̃2) is the pullback of L2 by s ◦ϖ : P(Ṽ ) → X̃2(N) → X2(N), this is numerically

semi-positive. Therefore it suffices to prove the numerical semi-positivity of H(Ṽ ) and the

positivity of c1(L)
4[P(Ṽ )].

First we calculate c1(L)
4[P(Ṽ )]. Put a = j + 2 and b = k − 4, and let e1 and e2 be the

first and the second Chern classes of Ṽ , respectively. Then by [Gr1] (A.9), we have

c1(H(Ṽ ))2 −ϖ∗(e1)c1(H(Ṽ )) +ϖ∗(e2) = 0.

Since e1 = c1(Ṽ ) = c1(L̃2), we have

c1(L)
4[P(Ṽ )] = (ac1(H(Ṽ )) + bϖ∗(c1(L̃2)))

4[P(Ṽ )]

= ϖ∗((a4 + 4a3b+ 6a2b2 + 4ab3)e31 − 2(a4 + 2a3b)e1e2)c1(H(Ṽ ))[P(Ṽ )]

= ((a4 + 4a3b+ 6a2b2 + 4ab3)e31 − 2(a4 + 2a3b)e1e2)[X̃2(N)]

Let h be the metric on V which is induced by the Sp (2,R)-invariant metric H, and let

Θ be the curvature form of h. Put

det

(
12 +

1

2πi
Θ

)
= ω0 + ω1 + ω2,

where ωi is (i, i)-form. Since h degenerates along D, h does not define the metric on Ṽ .

But h is good on X̃2(N) in the sense of [Mu] p.242. Namely h is dominated by the Poincaré

metric on X̃2(N) ([Mu] p.240). Hence ωi is locally integrable on X̃2(N) and this defines a

current [ωi] on X̃2(N), and this current represents the cohomology class ei ([Mu]). Since h

is induced by the Sp (g,R)-invariant metric H, ω1 and ω2 are induced by Sp (g,R)-invariant

differential forms Ω1 and Ω2 on S2, respectively. From [BH] §16.4, we have Ω1 ∧Ω1 = 2Ω2.

(We can prove this directly. At Z =
√
−112, we have

Ω1 =
1

8πi

(
dZ11 ∧ dZ11 + 2 dZ12 ∧ dZ12 + dZ22 ∧ dZ22

)
,

Ω2 =

(
1

8πi

)2 (
dZ11 ∧ dZ11 ∧ dZ22 ∧ dZ22 + 2 dZ11 ∧ dZ11 ∧ dZ12 ∧ dZ12

+2 dZ12 ∧ dZ12 ∧ dZ22 ∧ dZ22

)
,

(cf. proof of Proposition 6.4).) Hence we have ω1 ∧ ω1 = 2ω2 and ω1 ∧ ω1 ∧ ω1 = 2ω1 ∧ ω2.

Since Ω1∧Ω1∧Ω1 is a multiple of the invariant volume form by a constant, we can calculate
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e31[X̃2(N)] from the invariant volume of the fundamental domain of Γ2(N) in S2 . This is

essentially the Hirzebruch proportionality ([Mu]). Therefore from [T1] Corollary (1.6), we

have

e31[X̃2(N)] = 2e1e2[X̃2(N)] = 2−63−25−1N10
∏

(1− p−2)(1− p−4),

where
∏

means
∏

p|N, p:prime. So c1(L)
4[P(Ṽ )] is equal to

2−53−25−1ab(a+ b)(a+ 2b)N10
∏

(1− p−2)(1− p−4).

Therefore c1(L)
4[P(Ṽ )] is positive if k ≥ 5.

Now we prove the numerical semi-positivity of H(Ṽ ). Let Ṽ ∗ be the dual vector bundle

of Ṽ . If Z ∈ X2(N), then Ṽ ∗
Z has a hermitian form h∗ := th−1. Let u be a non-zero

element of Ṽ ∗
Z . We define a positive function ĥ on Ṽ ∗ | X2(N) minus its zero section by

ĥ(Z, u) = tūh∗u. For λ ∈ C∗, it holds that ĥ(Z, λu) = |λ|2ĥ(Z, u). Since H(Ṽ )∗ minus its

zero section is naturally biholomorphic to Ṽ ∗ minus its zero section, ĥ defines a metric on

H(Ṽ )∗ | ϖ−1(X2(N)). We also denote this metric by ĥ. Since Ṽ | X2(N) ≥ 0 with respect

to the metric h by Proposition 6.4, we have Ṽ ∗ | X2(N) ≤ 0 with respect to h∗. Therefore

H(Ṽ )∗ | ϖ−1(X2(N)) ≤ 0 with respect to ĥ. These facts are similarly proved as in [Gr2] or

[KO].

We regard ϖ−1(D) as the boundary (or points at infinity) of ϖ−1(X2(N)). Since h∗ is

induced from the Sp (2,R)-invariant metric H∗ := tH−1, we can easily see that the metric

ĥ is good on P(Ṽ ). Namely ĥ is dominated by the Poincaré metric on P(Ṽ ). Let

ω =
1

2πi
∂∂̄ log ĥ(Z, u).

Then ω is locally integrable on P(Ṽ ) and the current [ω] represents the first Chern class of

H(Ṽ )∗.

Let B be a compact smooth curve and f : B → P(Ṽ ) a holomorphic map. We prove

that the degree of f∗(H(Ṽ )) is non-negative. First we assume that f(B) ̸⊂ D. We put

B0 = f−1(ϖ−1(X2(N))). We regard B − B0 as the boundary of B0. We define a metric

hB on f∗(H(V )∗) | B0 as the pullback of ĥ by f . Let ω(p) be the Poincaré metric on P(Ṽ ).

Then f∗(ω(p)) is dominated by the Poincaré metric on B0 and so is hB. Therefore hB is

good on B. Hence

ωB :=
1

2πi
∂∂̄ log hB (= f∗(ω))
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is locally integrable on B and the current [ωB ] represents the first Chern class of f∗(H(Ṽ )∗).

So we have

deg f∗(H(Ṽ )∗) =

∫
B0

ωB .

Since H(Ṽ )∗ | ϖ−1(X2(N)) ≤ 0 with respect to ĥ, we have f∗(H(Ṽ )∗) | B0 ≤ 0 with

respect to hB . Hence the above integral is non-positive. Therefore the degree of f∗(H(Ṽ ))

is non-negative.

Next we assume that f(B) ⊂ D. LetD1 be the irreducible component ofD which contains

f(B). Then as we saw in §5, we have the following exact sequence of vector bundles:

0 → L̃2 | D1 → Ṽ | D1 → D1 ×C → 0,

where D1 ×C means the trivial line bundle on D1. We need to prove the numerical semi-

positivity of Ṽ | D1. This is proved by the following

Theorem 6.11. Let X be a projective manifold and let

ϕ

0 → V1 → V2

ψ

→ V3 → 0.

be an exact sequence of holomorphic vector bundles on X. If V1 and V3 are numerically

semi-positive, then V2 is also numerically semi-positive.

Proof. (due to T. Fujita). A holomorphic vector bundle V on X is numerically semi-positive

if and only if for any compact smooth curve B, any holomorphic map f : B → X and any

quotient line bundle L of f∗(V ), the degree of L is non-negative. This is similarly proved as

[F] Proposition (2.8). Let f : B → X be as above, L a line bundle on B and

θ : f∗(V2) → L → 0

an exact sequence. Let θ ◦ f∗(ϕ) be the composition of θ and f∗(ϕ) where f∗(ϕ) is the

pullback of ϕ by f and let r be the rank of V1. First we assume that θ ◦ f∗(ϕ) is not

identically zero. Then θ ◦ f∗(ϕ) is written locally as

(v1, v2, . . . , vr) 7−→ h1(x)v1 + h2(x)v2 + · · ·+ hr(x)vr,

where h1, h2, . . . , hr are local holomorphic functions. If h1(x) = h2(x) = · · · = hr(x) = 0

at x = p, then θ ◦ f∗(ϕ) degenerates at p. Let n be the order of zero of θ ◦ f∗(ϕ) which
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is defined to be the minimum of the orders of zeros of hi’s at p and let t(x) be a local

coordinate around p. We put h′i(x) = hi(x)t(x)
−n. Then the following map

(v1, v2, . . . , vr) 7−→ h′1(x)v1 + h′2(x)v2 + · · ·+ h′r(x)vr

does not degenerate at p. Let {pi} be the set of points where θ ◦ f∗(ϕ) degenerates and ni
be the order of zero at pi. Let R be the divisor

∑
i nipi. We modify the map θ ◦ f∗(ϕ) at

each point pi as above, then we have an exact sequence:

f∗(V1) → L⊗ [R]⊗(−1) → 0.

Since V1 is numerically semi-positive, the degree of L ⊗ [R]⊗(−1) is non-negative. So the

degree of L is non-negative. If θ ◦ f∗(ϕ) is identically zero, then θ factors through f∗(V3).

So similarly as above we can prove that the degree of L is non-negative.

§7. Dimension Formula for the Full Modular Group

In this section we present the dimension of Sµ(Γ2(1)) by a Mathematica function and the

generating function of them. This result was announced in [T3]. But it is rather difficult to

evaluate them from the expression in [T3].

Theorem 7.1. Let N ≥ 3 and µ the holomorphic representation of GL(2,C) whose sig-

nature is (2j + k, k). Then χjk :=
∑
i

(−1)i dimHi(X̃2(N),O(Ṽµ −D))G(N) is given by the

following Mathematica function:

SiegelFull[j_,k_]:=Block[{a,lj,lk,ljk,x,y},

mod[x_,y_]:=Mod[x,y]+1;

a=(2*j+1)*(2*j+k-1)*(2*j+2*k-3)*(k-2)/5/27/128;

a=a-(2*j+1)*(2*j+2*k-3)/9/32;

a=a+(2*j+1)/48;

(* contribution of φ1 *)

(* contribution of φ15(r) *)

(* contribution of φ22(1, r, t) *)

(* contribution of φ25(1, r, s, t) *)

lk={1,-1};

a=a+(2*j+k-1)*(k-2)/9/128*lk[[mod[k,2]]];
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a=a-(2*j+2*k-3)/3/64*lk[[mod[k,2]]];

a=a+lk[[mod[k,2]]]/32;

(* contribution of φ2 *)

(* contribution of φ16(r) *)

(* contribution of φ23(4, r, t) *)

a=a+(2*j+k-1)*(k-2)/3/64*lk[[mod[k,2]]];

a=a-(6*j+6*k-7)/3/64*lk[[mod[k,2]]];

a=a-1/12*lk[[mod[k,2]]];

a=a+1/32*lk[[mod[k,2]]];

a=a+1/8*lk[[mod[k,2]]];

(* contribution of φ3 *)

(* contribution of φ17(r) *)

(* contribution of φ22(3, r, t) *)

(* contribution of φ24(4, r, t) *)

(* contribution of φ25(i, r, s, t) (i = 4, 5, 6) *)

lj={1,-1};

a=a+(2*j+2*k-3)/3/64*lj[[mod[j,2]]];

a=a-lj[[mod[j,2]]]/16;

(* contribution of φ4 *)

(* contribution of φ23(2, r, t) *)

a=a+(2*j+2*k-3)/128*lj[[mod[j,2]]];

a=a-lj[[mod[j,2]]]/16;

(* contribution of φ5 *)

(* contribution of φ24(2, r, t) *)

lj={1,0,-1};

a=a+(2*j+2*k-3)*lj[[mod[j,3]]]/54;

a=a-lj[[mod[j,3]]]/6;

(* contribution of φ6 *)

(* contribution of φ25(2, r, s, t) and φ25(3, r, s, t) *)

ljk={{-2+k,1-2*j-k,2-k,-1+2*j+k},{2-k,1-2*j-k,-2+k,-1+2*j+k}};

a=a+ljk[[mod[j,2],mod[k,4]]]/96;

ljk={{-1,1,1,-1},{1,1,-1,-1}};

a=a+ljk[[mod[j,2],mod[k,4]]]/16;

(* contribution of φ7(1) and φ7(2) *)



54 RYUJI TSUSHIMA

(* contribution of φ18(1, r) and φ18(2, r) *)

a=a+ljk[[mod[j,2],mod[k,4]]]/16;

(* contribution of φ19(1, r) and φ19(2, r) *)

ljk={{-3+2*j+2*k,1-2*j-k,2-k},{1+2*j,-1-2*j,0},

{-1+2*j+k,3-2*j-2*k,-2+k}};

a=a+ljk[[mod[j,3],mod[k,3]]]/216;

ljk={{-2,1,1},{0,0,0},{-1,2,-1}};

a=a+ljk[[mod[j,3],mod[k,3]]]/36;

(* contribution of φ8(1) and φ8(2) *)

(* contribution of φ20(1, r) and φ20(2, r) *)

ljk={{-1-2*j,1-2*j-k,2-k,1+2*j,-1+2*j+k,-2+k},

{3-2*j-2*k,3-2*j-2*k,0,-3+2*j+2*k,-3+2*j+2*k,0},

{1-2*j-k,-1-2*j,-2+k,-1+2*j+k,1+2*j,2-k}};

a=a+ljk[[mod[j,3],mod[k,6]]]/72;

ljk={{0,-1,-1,0,1,1},{-2,-2,0,2,2,0},{-1,0,1,1,0,-1}};

a=a-ljk[[mod[j,3],mod[k,6]]]/12;

(* contribution of φ8(3) and φ8(4) *)

(* contribution of φ20(3, r) and φ20(4, r) *)

ljk={{-1,1,0},{0,0,0},{0,1,-1}};

a=a+ljk[[mod[j,3],mod[k,3]]]/9;

(* contribution of φ21(1, r) and φ21(2, r) *)

ljk={1,-1};

a=a+(2*j+1)/128*ljk[[mod[j+k,2]]];

(* contribution of φ9(1) *)

ljk={{1,1,-1,-1},{-1,1,1,-1},{-1,-1,1,1},{1,-1,-1,1}};

a=a+ljk[[mod[j,4],mod[k,4]]]/16;

(* contribution of φ9(2) and φ9(3) *)

ljk={{0,-1,1},{-1,1,0},{1,0,-1}};

a=a+(2*j+1)*ljk[[mod[j,3],mod[k,3]]]/108;

(* contribution of φ10(1) and φ10(2) *)

ljk={{1,-1},{-2,2},{1,-1}};

a=a+ljk[[mod[j,3],mod[k,2]]]/108;

(* contribution of φ10(3) *)



Siegel Cusp Forms and Exponential Sum 55

ljk={{2,1,-1,-2,-1,1},{-1,1,2,1,-1,-2},{-1,-2,-1,1,2,1}};

a=a+ljk[[mod[j,3],mod[k,6]]]/27;

(* contribution of φ10(i) (i = 4, 5, 6, 7) *)

ljk={{0,1,-1},{-1,1,0},{-1,0,1},{0,-1,1},{1,-1,0},{1,0,-1}};

a=a+ljk[[mod[j,6],mod[k,3]]]/12;

(* contribution of φ10(8) and φ10(9) *)

ljk={{1,0,0,0,-1,0,-1,0,0,0,1,0},{-1,0,0,0,1,0,1,0,0,0,-1,0}};

a=a+ljk[[mod[j,2],mod[k,12]]]/12;

ljk={{0,0,0,1,0,1,0,0,0,-1,0,-1},{0,-1,0,-1,0,0,0,1,0,1,0,0},

{0,1,0,0,0,-1,0,-1,0,0,0,1}};

a=a-ljk[[mod[j,3],mod[k,12]]]/12;

(* contribution of φ11(i) (i = 1, 2, 3, 4) *)

ljk={{1,-1},{-2,2},{1,-1}};

a=a+ljk[[mod[j,3],mod[k,2]]]/36;

(* contribution of φ12 *)

lj={1,-1,-1,1};

lk={1,-1};

a=a+lj[[mod[j,4]]]*lk[[mod[k,2]]]/16;

(* contribution of φ13 *)

ljk={{1,0,0,-1,0},{-1,1,0,0,0},{0,0,0,0,0},

{0,0,0,1,-1},{0,-1,0,0,1}};

a=a+ljk[[mod[j,5],mod[k,5]]]/5;

(* contribution of φ14(i) (i = 1, 2, 3, 4) *)

Return[a];

]

From the above theorem and the vanishing theorem (Theorem 6.1), we have the following

Corollary 7.2. If j = 0 and k ≥ 4 or if j > 0 and k ≥ 5, then the dimension of Sµ(Γ2(1))

is equal to SiegelFull[j_,k_].

Table 7.3. Let χjk be as in Theorem 7.1. Then the generating function

∞∑
j,k=0

χjk s
jtk
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of χjk (k ≥ 0) is a rational function of s and t whose denominator is

(1− s3)(1− s4)(1− s5)(1− s6)(1− t4)(1− t5)(1− t6)(1− t12).

Let f(s, t) be the numerator. f(s, t) is of degree 17 with respect to s and of degree 26 with

respect to t. The coefficients of sjtk (0 ≤ j ≤ 17, 0 ≤ k ≤ 26) are given by the following

matrix:

0 0 0 0 0 0 −1 −1 −1 −1 0 0 2 0 1 0 0 −1

0 1 0 0 −1 −1 −1 −1 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 −1 0 0 1 0 1 0 0 0 0 0

−1 0 0 1 1 1 1 −1 −1 −2 −1 −1 1 1 1 1 0 0

0 0 0 0 0 0 1 1 1 1 0 0 −1 0 0 0 1 0

0 −1 0 0 1 1 2 2 1 2 0 0 −2 0 −1 0 0 1

0 −1 0 0 1 2 3 3 2 1 −1 0 −3 0 −1 0 0 1

1 −1 0 −1 0 1 1 4 2 3 0 1 −3 −1 −1 −1 0 0

1 0 0 0 0 0 0 2 2 2 1 1 −2 −1 −2 −1 −1 1

1 0 0 −1 0 0 0 1 1 1 0 1 −1 −1 −1 −1 −1 0

1 1 1 0 0 −1 −2 −1 −1 −1 0 0 0 0 0 0 −1 0

0 1 0 1 0 −1 −1 −2 −1 −2 0 −1 1 −1 0 0 0 0

0 1 1 1 1 0 0 −2 −2 −2 −2 −1 −1 1 0 1 0 1

−1 −1 0 1 2 2 2 0 −1 −3 −3 −3 −1 0 1 1 1 0

−1 1 1 2 1 2 −1 −2 −4 −3 −3 −1 1 1 2 1 1 −1

0 0 0 0 0 1 0 1 0 0 −1 −1 −1 −1 0 0 1 0

0 1 1 1 0 0 −3 −3 −3 −2 0 1 3 1 1 0 −1 −1

−1 1 0 1 0 1 −1 −2 −2 −4 −2 −2 2 0 2 1 1 −1

1 2 1 1 −2 −3 −6 −5 −4 −1 2 2 5 1 2 −1 0 −2

−1 0 0 1 1 0 1 −3 −2 −4 −2 −3 1 1 1 2 1 1

0 0 1 0 0 −1 −1 −3 −3 −2 −1 0 2 2 2 1 1 −1

−1 −1 0 1 1 1 2 0 −1 −2 −2 −3 −1 1 1 2 2 1

0 0 0 0 0 −1 0 −1 0 1 1 2 1 1 0 0 0 0

0 −1 0 −1 1 1 2 2 1 1 −1 0 −2 1 0 1 0 1

1 0 0 −1 −1 −2 −1 1 2 3 3 3 0 0 −1 −1 −1 0

0 0 −1 0 0 1 1 2 1 1 0 0 −1 −1 0 0 0 1

1 0 0 −1 −1 −1 −1 1 2 2 2 2 0 0 −1 −1 −1 0
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Corrections to Theorem 3.2

2) τ(φ2,Φ2) should be 2−73−2(−1)k((k − 2)(2j + k − 1)N6

−6(2j + 2k − 3)N5 + 36N4)
∏
(1− p−2)2.

16) τ(φ16(r),Φ16) should be 2−53−1(−1)k
(
12− (2j + 2k − 3)N

(1− ζr)

)
N2∏(1− p−2).
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17) τ(φ17(r),Φ17) should be (−1)k
(
8− (2j + 2k − 3)N

(1− ζr)
+

4

(1− ζr)2

)
N2∏(1− p−2)

×

{
2−5, if 2 - N

2−33−1, if 2 | N
.

Corrections to [T2]

p.849, line 12 from the bottom: “3π/3” should read “3π/2”.

p.862, line 12: “i∗(∆(Φ3))” should read “ψ
∗
(∆(Φ3))”.

p.877, line 1 from the bottom: “ z2+mz2+n
(cz1+d)u ” should read “ z2+mz1+n

(cz1+d)u ”.

p.870, line 5: The (3,3) coefficient of the matrix shoud be 1.

p.871, line 5: “2−33−1)k” should read “2−33−1(−1)k”.

p.872, line 8: “Lemma (4.)” should read “Lemma (4.9)”.

p.877, line 7: “rt ̸≡ 0 mod ℓ ” should read “r ̸≡ 0, t ̸≡ 0 mod ℓ ”.

p.877, line 9: “±ζ(r+t)/2 ” should read “±ζ(r+t)/2, −1 ”.

p.877, line 10: “rt ̸≡ 0 mod ℓ ” should read “r ̸≡ 0, t ̸≡ 0 mod ℓ ”.

p.877, line 10: “ζr, ζt ” should read “ζr, ζt, −1 ”.

p.877, line 11: “±ζ(r+t)/2 ” should read “±ζ(r+t)/2, −1 ”.

p.877, line 12: “rt ̸≡ 0 mod ℓ ” should read “r ̸≡ 0, t ̸≡ 0 mod ℓ ”.

p.877, line 12: “ζr, ζt ” should read “ζr, ζt, −1 ”.

p.877, line 13: “(r+s)(s+ t)s ̸≡ 0 mod ℓ ” should read “r+s ̸≡ 0, s+ t ̸≡ 0, s ̸≡ 0 mod ℓ ”.

p.877, line 15: “(r + 2s+ t)s ̸≡ 0 mod ℓ ” should read “r + 2s+ t ̸≡ 0, s ̸≡ 0 mod ℓ ”.

p.878, line 3: “τ(ϕ22(2, r, t),Φ22)” should read “τ(ϕ22(3, r, t),Φ22)”.

e-mail address: tsushima@math.meiji.ac.jp

http://www.meiji.ac.jp/severs/math/tsushima.html6

6This is false. The correct one is http://www.math.meiji.ac.jp/˜tsushima


