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Introduction 

In this paper we explicitly construct vector valued Siegel modular forms of degree 
two and the automorphic factor detk| for even k where St denotes the 
standard representation of GL(2,C). As an application, we prove some con- 
gruences between eigenvalues of Hecke operators. 

For a positive integer n, let F, be the full Siegel modular group of degree n and 
H, the Siegel upper half plane of degree n. For M ~ F, and Z ~ H,, we put 

M ( Z ) = ( A Z + B ) ( C Z + D )  -1 where M = (  A B ) .  

Let V(k,r) be a representation space of the holomorphic representation 
detkQSym~St of GL(2, C). A C~-Siegel modular form f of type (k, r) and degree 
two is a V(k, r) valued C~-function on He satisfying the equation 

f (M ( Z )  ) = (detk| + D) f (Z) 

and the usual growth rate condition (see Borel [4, Sect. 7]), which is satisfied for f 
treated in this paper. We denote by M~,,(F2) the C-vector space of all such 
functions. We put 

Mk,r(F2) = { f  ~ M~,(F2)If is holomorphic on H2}. 

Ifr = 0, the subscript k, r is abbreviated as k and type (k, r) is mentioned as weight k 
for simplicity. Let S 2 be the C-vector space of complex symmetric matrices of size 
two. The action of G e GL(2, C) defined by 

A~det(G)kGAtG (A �9 S2) 

is equivalent to detk| where tG is the transpose of G. Henceforth, we set 

V(k, 2) = $2. For the variable Z = z l on H2 and f �9 MR(F2) = Mk, o(F2), we 
Z 3 Z2 
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define the differential operator V = V k by 

where 

k (2iY)_lf  + 1 d Vf= ~ ~ f, 

d ( 0, (1/2)03~ O 
d-Z-  ,(1/2)03 02 ) with 0 j - 0 ~  j 

and Y= I ( Z - Z ) .  By Shimura [24, (4.5)], we see that 

f e  MR(Fz) and 9 �9 Mj(F2), we put 

l d  1 d f  1 ( ] f ~ z g - ~ 9 ~ -  ~ )" If ,  g]  = 

By (0.1), we have 

(0.1) 

Vf~ M~,2(F2). For 

(0.2) 

[f,g] = fVg-- ~gVf. (0.3) 

Hence [f, g] is a holomorphic function [by (0.2)] belonging Mff+j, 2(F2) by (0.3), so 

( we obtain [f, 0] e Mk+~,E(F2). This also follows from If, 9] = f~ (if+ 1~ok- 1) 

dZ (9k/ff)" Our result (Theorem 2.2) is that @ MR, 2(/'2) is spanned by f[9, hi 
k:even 

where f, g and h are (usual) scalar valued modular forms. There we obtain a 
minimal generator set over C. Unfortunately, Mk, 2(F2) for an odd k is not spanned 
by such forms. We have dimM21,z(F2)= 1 by Tsushima [25, Theorem 4] whereas 
the least odd integer k such that nonzero f [g ,  h] belongs to MR,2(F2) is 39. Using 
our structure theorem, we prove some congruence formulas between eigenvalues 
of Hecke operators in Sect. 4. In principle, this is done by comparison of Fourier 
coefficients. However on congruences between eigen functions of different type, say 
type (k, 2) and weight k + 2  (=type (k+2,0)), we cannot compare them 
immediately. For this purpose, we construct a map from Mk, 2(F2) to M~+ 2(F2) in 
Sect. 3. This is essentially the particular case considered abstractly in Harris and 
Jakobsen [9, Sect. 1]. But our result is so explicit that each Fourier coefficient can 
be computed effectively (and we can prove congruences). 

Notation 

If R is a ring with 1, we denote by M(n, R) the ring of matrices of size n whose 
entries belong to R and by GL(n, R) the unit group ofM(n, R). For a holomorphic 
function f on H, satisfying f(Z+S)=f(Z) for all Z~H,, and all symmetric 
integral matrices S of size n, we denote the Fourier expansion of f by 

f (Z) = ~.. a(N, f) exp(2ni Tr(NZ)), (0.4) 
N 

where N runs over all semi-integral matrices and a(N, f) stands for the Fourier 
coefficient of f at N. 
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1. Supplement to the Dimension Formula 

We denote by Sk,r(F2) the space of cusp forms of type (k, r): 

Sk, r(/'2) = { f  ~ Mk, ~(F2)[ q~ f = 0}, 

where ~0 is the Siegel-~ operator. The dimension formula of Sk,,(Fz) for r = 0 and 
k > 4  or r->_l and k > 5  is obtained by Tsushima [25, 26]. Here we show 
dim Sk, 2 ( F 2 )  = 0 for k < 6. The proof is technical and a reader may skip this section 
except for the statement of Corollary 1.3. 

For  a complex matrix A of size n, we define its norm IIALI by ~ .  The 
following properties are easily verified. 

[IU-1AUI[ = [IA[L for a unitary matrix U of size n. 

[IAII <Tr(A) if A is real positive definite. (1.1) 

If S ~ M(n, R) is a symmetric matrix satisfying I[ S 2 - E II < e with 0 < e < 1, then 

(1 -e)Ilhll  < IISASll <(1 +e)Ilall �9 (1.2) 

We denote the identity matrix by E. We put A |176 = E and A | = A s(' 1)| for an 
integer r > 1 where | is the Kronecker product. 

Proposition 1.1 (Maximum principle). Let D be a simply connected domain in C and 
C a simple closed curve of finite length L contained in D. Let f ' D ~ M ( n ,  C) be a 
holomorphic function. Put 

M =  sup Ilf(z)ll. 
zEC 

If  z lies in the inside of C, then 

I[f(z)ll < M .  (1.3) 

Proof. Let d > 0 be the distance between C and z. For  any positive integer r, we 
have 

f (z)| 2~t ! 1 f (w)| z 

by the holomorphy of f, hence, 

ilf(z)| L Max [If(w)| . 
= 2red w+c 

Since I[A| = IIAII" Ilnll for square matrices A and B, we obtain 

IIf(z)ll < \2~-dJ m .  

Since r is arbitrary, we obtain (1.3). Q.E.D. 

Let I2, = F, \H,  be the fundamental domain specified in Maass [17, p. 169]. We 
put 

a, = sup Tr( Im(Z)-  1). 
Z~F2n 
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It is known that tr, is finite for all n > 1 (see Maass [17, p. 178]). For a real positive 
definite matrix A, we denote by ] /~  a unique positive definite matrix satisfying 
(.1~)2 = A. Further, we denote by S, the set of all complex symmetric matrices of 
s i z e  n. 

Theorem 1.2. Let n> 2 be an integer. Let f :  H,~S .  be a holomorphic function 
satisfying 

f (M(Z))  = ICZ + DIk(CZ + D) f (Z)'(CZ + D) (1.4) 

for all Z e H ,  and all M = (  A BD)eF,. (In other words, f is a holomorphic 

modular form of type detk| and degree n.) I f  a (T , f )=0  for all T>O 
k+2  

satisfying T r ( r ) <  ~ ~., then f = 0 .  

Proof. We closely follow Maass [17, pp. 189-194]. As in [17, p. 191], it is sufficient 
to prove this theorem when a(T, f ) =  0 unless T> 0 (i.e. f is a cusp form). In this 
case, we obtain 

lim ~b(Z)=0 for Z=X+iYe f2 , ,  

where 
~b( Z) = I Y] k/2 l i ve r  (z)l /~l[ ,  

as in [17, p. 192]. We see that ~b(Z) is invariant under F, by (1.4). Therefore ~b(Z) 
attains its maximum value M at some point W = U + iV~ 12, where U and V are 
real. Let z=x+iy~C.  Set Z =  W+zE, t=exp(2rciz) and 

g(t) = exp( -  i2 Tr (Z)) ]/fff  (Z) ]fV, 

where 2 is defined by 

We have the expansion 

[ k + 2  I (1.5) 2n = 1 +  a. 

9(t)=~'-V(~a(T,f)exp(2niTr(TW)--i2Tr(W))tTr(T)-2~-~"~)~/-~, 

2n 
T runs over all semi-integral matrices T>0  satisfying T r ( T ) > ~ .  where 

Therefore exponents of t are positive integers. There exists ~ > 0 such that Z ~ H, 
for y > - e .  The function g(t) is holomorphic in a disk Itl =< e for some Q satisfying 
e ' > o >  1. By Proposition 1.1, there exists t with Itl=o such that Ilg(t)ll > Ilg(1)l[, 
i.e., 

IVIk/2lllf-Vf(Z)l/ffllexp(2Tr(V+yE))~Mexp(2Tr(V)). (1.6) 

Since Y=V+yE,  matrices V ~ and V ~ - 1  commute. Hence 1/~]//-~-1 is 
symmetric and II Y V-  x _ E tl = [Y[ II V -  x ll. Therefore, using (1.2) and maximality of 



Vector Valued Siegel Modular Forms 339 

M, we have 

ivik/2 I I I /Tf(z)I /V ii < 1 iVl~/2 IIV~f(Z)I/~ i I 
= 1 - 1 y l  IIV-1II 

1 
< IVI k/2 IYI-k/ZM. 
= I--lYl IlV-Xll 

Combining (1.6) and (1.7), we obtain 

M < M exp(~p(y)), 

1 
where y =  - ~ - l o g Q < 0  and 

k 11 vg(y) = n 2 y  - l o g ( 1  - lY[ II V -a II) - ~ log IE + y V- . 

Noting ~o(0)= 0 and 

(1.7) 

k 
~'(0) ~ n ~ -  II V- X ll - ~ Tr(V- x) 

> n 2 -  (1 + ~) Tr(V-1)>0 

by (1.1) and (1.5), we have ~o(y) <0 if Q> 1 is sufficiently close to 1. This proves 
M = 0 and consequently f = 0. Q.E.D. 

Corollary 1.3, Let k < 6 be an integer. Then dim Sk. 2(F2)= 0. 

16 
Proof. Note that o-2< ~ from Maass [17, pp. 195-196] and that Tr(T)>2 for 

semi-integral T>0.  Hence this corollary follows from the preceding 
theorem. Q.E.D. 

2. Construction of Vector Valued Modular Forms of Type (k, 2) 

In this section, we determine the structure of Mk.a(F2) in Theorem 2.2 and prove 
the integrality of eigenvalues in Corollary 2.3. Recall that the graded C-algebra 
~ Mk(F2) where k runs over even integers is generated over C by four 

algebraically independent elements. [We understand that Mk(F2)= {0} for a 
negative k.] They are ~o 4 e M4(_F2), (P6 E M 6 ( F 2 )  , ~(10 E S lO(F2)  and ~(12 U $ 1 2 ( F 2 )  �9 
For an odd k, we have Mk(-F2)-~ z35Mk_ 35(F2) where Z35 is a cusp form of weight 
35 (see Igusa [10] and Maass [18]). We prepare one lemma concerning linear 
independency of derivatives of modular forms. 

Lemma 2.1. Let k be an integer. For j=4 ,  6, 10, and 12, let fjE Mk_j(F2). I f  

d d d d 
A ~-~ ~4 +f6 ~ ~6 + A o  ~ Xlo +f l~  ~ z,~ = 0 ,  (2. l) 
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then we have 

f4 =f6 =f ,0  =f ,= =0 .  (2.2) 

Proof. In the case of an odd k, all thefj are divisible by Z35- Therefore it is enough to 

prove the case of an even k. Let M =  ( A B)~F2. Forf~Mk(FE),wehave 

from Shimura [24, (4.2) and (4.3)]. Hence considering (2.1) at M(Z) ,  we see that 

4f4r 4 + 6f6~06 + 10flOZlO + 12f,2Z12 = 0. (2.3) 

From (2.1) and (2.3) we have P'(f4 f6.1"1o f12) =0 where 

/ 4(P4 6q96 10Zlo 12~12\ 
/~1 (P4 ~1~06 ~lZl0 ~1Z12 / 

P =  ~d2~o4 02q~6 d2ZlO 02Z12] 
\03~/) 4 03~06 33~10 03~12/ 

0 
with di = ~z/" Using values of Fourier coefficients in Resnikoff and Saldafia [20, 

( 3  1/22) Tables III, IV, V], we see that the Fourier coefficient of [PI at 1/2 is 

6912n3i. We note that [PI is holomorphic on H 2. Therefore there exists an open 
domain f2ffH2 such that [PI(Z)~0 for Z~f2. Then f: for j=4 ,  6, 10, and 12 
identically vanish on f2, hence on H2 by the holomorphy of fj. Q.E.D. 

Theorem 2.2. For each even integer k, we have (as a C-vector space) 

Mk, 2(F2)--Mk- 10(/'2) [(P4, tP6] O)Mk- 14(/'2) [(P4, ZlO] 

GM,_ 16(F2) [~0,,, ZlzJG Vk- 16(F2) [~~ ZlO] 

@ Vk- is(F2) [q~6, Z12] O Wk- 22(F2) [Zlo, Z12], (2.4) 

where 

and 

K(F2) = MR(F2)nC [q~6, Z1 o, Z12] 

Wk(F2) = Mk(F2) ~ C [•1 o, Z 12]. 

Proof. The inclusion 3 is clear. We show that subspaces appearing in the right 
hand side of (2.4) are mutually linearly independent. Suppose 

F4, 6[r q~6] + F4,10[~04, ~10] + F4,12 [q~4, Z12] 

+ F6,1 o[(P6, Zlo] -[- F6,12[q~6, Z12] "q- Flo, 12[ZlO, Z12] -~-0 

with 

F4,/~Mk_a_j(F2),F6o~Vk_6_/(F2) and FlO,12~I/Vk_22(F2). (2.5) 
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Then we have 

1 F d 
~(--F4,6~06 -- 4, loZlo--F4,12Z12) ~-Z g~ 

d 
+ l ( F 4 ,  6(P4 - F 6 , 1 0 ; ( 1 0 - F 6 , 1 2 ; ( 1 2 )  ~ ~06 (2.6) 

d 
+ ~0 (F4,10r + F6,10(P6 - Flo, 12;(12) ~ Zlo (2.7) 

d 
-]-l-~(F4,12q)4+F6,12q)6+Flo,12;(lO) ~ ;(12 -~-- 0 .  (2.8) 

By (2.5), (2.8) and Lemma 2.1, we have F4,12~04 = - - F 6 , 1 2 ~ 6 - F l o ,  12;(12, i.e. 
F4,12~o4~C[(~6,;(lO,;(12]. This m e a n s  F 4 , 1 2 = 0  since ~o 4, ~o 6, Zlo, and /(12 are 
algebraically independent. Then we have F6,12q96=-F1o,12Z12 and F6,12 
= F l o ,  1 2 = 0  by the same reason. Similarly, from (2.7) we obtain F4,1o~O4= 
- -  F6,1 oq~6 and F4,1 o = F6,1 o ----- 0. Finally, from (2.6) we have F, ,  6 = 0. Thus linear 
independency is proved. 

Now we show that the equality holds in (2.4). Let d R be the dimension of the the 
right hand side of (2.4). By the linear independency we have 

TlO+ T14+ T 16 T t6+  Tls 
Y~ dk Tk= 

k ..... ( 1 - T ' * ) ( 1 - T 6 ) ( 1 - T ~ ~  ~2) + ( 1 - T 6 ) ( 1 - T I ~  ~2) 
T22 

+ (1 - T~~ (1 - T 12) 

TlO+ T l a + 2 T 1 6 +  T i s _  T20_ T 26 _ T2s+ T 32 
= (1 -- T*) (1 -- T 6) (1 - T 1~ (1 - T '2) - - '  (2.9) 

where T is an indeterminate. On the other hand, by Arakawa [3, Proposition 1.3] 
we have 

Mk, 2(F2) = Ek, 2(F2)�9 Sk, 2(F2), 

where ER,2 is the space of Eisenstein series of type (k, 2) and 

T~O 
~ dimEk'2(FE)rk= (1 -- r*)(1 T6) " (2.10) 

k=0 

By Tsushima [25, Theorem 4-] (cf. Tsushima [26, Table 1-]) and Corollary 1.3 we 
obtain 

r 1 4  16 18 22 26 28 �9 k + 2 T  + T  + T  - T  - T  
k:~endlmSk, 2(F2)T = ~ _ T , ) ( I _ T 6 ) ( i _ T l O ) ( I _ T 1 2  ) . (2.11) 

Comparing (2.9), (2.10), and (2.11) we see that d k = dim Mk, 2(F2) for each even k, so 
the right hand side of (2.4) spans the left hand side. Q.E.D. 

We recall some properties on a Hecke operator (in a classical language). For 
each positive integer m, we put 

G,,, = {M ~ M(4, Z)ItMJM = m J}, 
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where J = ( ?  E E)  with E =  (10 01). We define the m-th Hecke operator Tk.,(m) 

acting on Mk,,(F2) by 

(Tk.,(m)f) (Z) = m 2k+'-a ~2 ((detk| ( f (M(Z}) ) ,  
M~r2\G,. (2.1 2) 

B 
whereM= ( A D) runs over (finitely many) complete representatives of the coset 

F2\G m. We shall omit subscripts k, r if there arises no confusion. It is known that we 
can take representatives satisfying C = 0  (cf. Andrianov [1, (1.3.12)]). In what 

( nl n3/2~ be asymmetric follows we always take such representatives. Let N = n3/2 n2 / 

matrix of size two. For integers p and q, we put 

If 
(N, f )  if N is semi-integral, 

~7(p, q, N, f )  = n 1 = n 3 =0 modp, n2 = 0 modpq, 

otherwise. 

By the similar method to Andrianov [1, (2.1.11)], we obtain 

a(N, Tk.,(p~) f )  = E plk-2)#+t2k+,-3~r 
a,#,r>=0 ((:, o)) 
• F, (Sym'St) a(pLp#,p-tD~#UNtUD~#,f), 

WRap#) (2.13) 
where o.,:(: ; . )  

R(P#)= { ( :  ~)eSL(2,Z)l(c,d)modp#}. 

A modular form f e  M~r(FZ) is said to be an eigenform i f f  is a non zero common 
eigen function of all Hecke operators. Let f be an eigenform. We denote the 
eigenvalue of T(m) by 2(m, f )  and put Q(f )  = Q(2(m, f)lm > 1). For a subring R of 
C, we put 

Mk(F2)R=(feMk(F2)Ia(N,f)eR for all N > 0 } ,  

Mk,2(F2)R={feMk,2(F2)Ia(N,f)eM(2,R) for all N>0} 

and 

Sk,,(F2)a = Sk,,(/"2) n Mk,,(/"2) R 

for r = 0 and 2. 

Corollary 2.3. Let feMk,2(F2) be an eigenform for an even integer k. Then, 
Q(f) /Q is a totally real finite extension, and the eigenvalues 2(m, f )  are algebraic 
integers for all m >- 1. For a subring R of C, the R module Mk, 2(F2)R is stable under 
T(m) for all m >= 1. 
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Proof. Since Hecke operators are Hermitian with respect to the Petersson inner 
product by Arakawa [3, (2.3)], eigenvalues are real. By Igusa [11] we have 
~o4 e M4(F2)z, ~o6 e M6(F2)z, 4;(lo ~ $1 o(F2)z and 12;(12 ~ S12(F2)z. Hence it holds 
that 

Mk,2 (F2)Z ~ Mk - t  o (F2)z 12 [Cp4, ~06] + Mk -14(iV2)z 20 [r 4;(1 o] 

+ M k - t6(F2)z 12 [tp4, 12;(12] + M k_ 16(FE)Z30 [q~6, 4Zlo] 

+ Mk- 18(Fz)z 12 [~o6, 12;(12] + Ma- zz(Fa)z60 [4;(lo, 12;(12] - 

So, by using Theorem 2.2 we have, 

Mk, 2(Fz)z | zC = Mk, 2(F2) �9 (2.14) 

Since f4=0 we obtain k >  10 from Theorem 2.2. Using k>  10 and (2.13) we see that 

T(m)Mk,2(IVz)zCMk, z(F2)z for all m ~ l .  (2.15) 

We obtain the last assertion from (2.15) and 

Mk, 2(F2)R = Mk, 2(r2)z| zg  �9 

The other assertions follow from (2.14) and (2.15) by the same argument as 
Kurokawa [15, p. 48]. Q.E.D. 

Remark 2.4. Let k > 39 be an odd integer, R a subring of C. By the same reason as 
above, we see that Mk,2(F2)R is a non-zero R-submodule of Mk,2(/'2) and that 
Mk,2(/'2)R is stable under T(m) for all m > 1. 

3. Nonholomorphic Scalar Valued Realization 

In this section, we construct a map from M k ,  2(/"2) to M~+ 2(F2) which commutes 
Hecke operators upto constants. Following Maass [16], we define a differential 
operator t~ k acting on a C~ f on H2 by 

6kf = (2hi)- Ely [ - k +tl/2) d~  ([ y[k 

l [2nYl- lk  k -  f - ~  k -  ]2ny[-XTr Y f + f . (3 .1)  
4 

By Harris [8, 1.5.3], 6 k maps M~(F2) to MR~ 2(F2). We define a subspace PM~ (F2) 
of M~ (F2) by 

PM~ (/2) = Mk(/'2) q- (~k -- 2Mk - 2(/2) 

+ { f 6 f l l f e  Mk- 2- j(F2), 9 ~ Mj(F2)}c, 

where { }c stands for a C-linear span. 

Theorem 3.1. Let F ~ MR,2(~'2) for an even integer k. Then there exists the unique 
element D(F) of t PMk + 2(F2) satisfyin9 the followin9 conditions (a) and (b): 

(a) With respect to the Petersson inner product, D(F) lies in the orthooonal 
PMk+2(rO. complement of Sk + 2(/2) in 1 
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(b) The function H(F) defined by 

H(F) =D(F)  - �89 -~ Tr(2n YF) (3.2) 

is a holomorphic function having Fourier expansion of the following form 

H(F) (Z) = Z a(N, H(F)) exp(2niTr(NZ)), (3.3) 
N>0 

where N runs over all positive definite semi integral matrices of size two. 

Proof We first prove the uniqueness. Let D 1, Dz~PM~+2(Fz) be functions 
satisfying conditions (a) and (b). Then D1 - D2 ~ PM~+ 2(F2) is holomorphic on H 2 
by (3.2) and moreover is a holomorphic cusp form of weight k + 2 by (3.3). Using 
(a), we have that 

D 1 - O 2 e S k + 2(F2)C~Sk + 2(F2) • = {0}. 

Hence D1 = Dz. By Theorem 2.2, it is enough to show the existence of D(F) when 
F = f [g, h] for f E Mp(F2), g e Mq(F2), h e M,(F2) with k = p + q + r. Using (3.1), we 
observe 

2 2 
q(2q-  1) hfiqg r (2r -  1~) gfirh = �89 1 Tr(2nY[g, h]) + G(h, g), (3.4) 

where 

G(h, g ) -  q (2q-  1~ h g r (2r -  1) g h. (3.5) 

We note that a(N, G(h, g)) = 0 unless N > 0 [cf. (0.4)]. Put 

A = �89 ~ Tr(2~t YF) +fG(h,  g). 

PM k + 2(/"2). Therefore we can take By (3.4), we have A e 1 

D(f )  = �89 ~ Tr(2nYF) + H(F) 

with 

H(F) = f G ( h , g ) -  ~ (A~'IPx~ (3.6) 
i= 1 (~ i ,  ~i> ~ i ,  

where {~Pl, I~2 . . . . .  l~d } is an eigen basis Of Sk+2(F2) and ( , ) is the Petersson inner 
product. Q.E.D. 

Corollary 3.2. Let k be an even integer. I f  F ~ Mk.2(F2) is an eigenform, then 
D(F) e PM~+ 2(/'2) is an eigenform satisfying 

2(m, D(F)) = mA(m, F) 

for all m > 1. 

Proof. Since F:~0, clearly D(F)+-O. Fix representatives of the coset F2\Gm 
satisfying C = 0  in (2.12). By Shimura [24, (4.2)], we see that 

Tk+ 2(m)(12rcyl - t  Tr(2rcYF))=ml2rcY1-1 Tr(2rcYTk,2(m)F ) . (3.7) 
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(Hence in fact the left hand side does not depend on the choice of representatives 
satisfying C=0.)  Therefore T(m)D(F)-m2(m,F)D(F)  is a holomorphic cusp 
form lying in Sk+E(Fz) • hence is zero. Q.E.D. 

Remark 3.3. Let F E Mk, 2(F2) be an eigenform for an even k. Suppose there is a 
positive integer m satisfying 

m2(m, F) # 2(m, ~p) for each eigen form ~p E S k + 2(/"2). (3.8) 

Then the following method is useful in the actual computation of D(f).  Write F as 
the form 

F -- Z f j [ g j ,  h j ] ,  
J 

where fj, g j, and hj are suitable modular forms (preferably having integral 
coefficients). Let {~01, ~Pa ... .  , lpa} be a basis of Sk+2(/"2). Then D(F) is given by 

d 
�89 Tr(2z tYF)  + ~_,f jG(hj,  gj) + Y~. cilpi, (3.9) 

3 i=1 

where c~ ~ C are uniquely determined so that (3.9) is the eigen function of T(m) with 
d 

eigenvalue m2(m, F). Since Z ci~pi belongs to Sk(F2), without loss of generality we 

may assume that {lpl,~p2 ... . .  ~0d} is an eigen basis of Sk(/"2). In this case, the 
existence follows from (3.6) and uniqueness is shown by 

d 
m2(m, F) ~. f~[gj, hj] - T(m) ~'~ f j [ g j ,  h j] = ~'~ ci(m,~(m, F) - 2(m, lpi))ll) i . 

j j i - 1  

Theorem 3.4. Let k be even. Let T be the H ecke ring for/"2 over  C. As a T module, we 
have 

PM~(/"2) =Mk(F2)@6k_ EMk_ 2(F2)GD(MR_ 2,2(F2)). (3.10) 

Especially, PM~ (F2) is stable under T. 

Proof. Put Ok=(k--�89 . Let f~Mk-j -2( /"2)  and g~Mj(F2). By (3.1), we have 

fog + gO f -  O(fg) ~ Sk(/"2) . 

On the other hand, using (3.4) we have 

1 1 
_fOg -- - -  gOf - D([f, g]) E Sk(F2) . 
j k - 2 - j  

Therefore f~f l  = ( j - � 8 9  belongs to the right hand side of (3.10), so we have 
(3.10) as a C-vector space using the uniqueness of the Fourier coefficient. We see 
that D(M k_ 2, 2(/"2)) is stable under T by Corollary 3.2. Let A be the adele ring of Q. 
Then, commutation of Hecke operators acting on functions on Sp(2, A) and 
differential operators induced from the universal enveloping algebra of Sp(2, R) is 
well known. Since b k corresponds to such a differential operator by Harris [8, 
Theorem 6.8], we see that for f ~  Mk-2(/"2) 

Tk(m) bk - 2 f  = m2 b* - 2 Tk- 2(m)f (3.11 ) 
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using the correspondence between automorphic functions on Sp(2, A) and 
modular forms on H 2 (see e.g. Yoshida [27, Sect. 61). Any way, 6k_2Mk_2(F2) is 
stable under T by (3.11). Therefore all the C-subspaces appearing in the right hand 
side of (3.10) is stable under T, so we obtain (3.10) as a T module. Q.E.D. 

4. Congruence Formulas 

We prove some congruence formulas between eigenvalues of Hecke operators. 
Unfortunately, the method is not so systematic as that of Serre [22]. We denote by 
Ek the Eisenstein series of degree one and weight k normalized as a(1, Ek) = 1. Let 
Sk(/'l) be the space of cusp forms of degree one and weight k. If dim Sk(/'l)= 1, we 
denote by Ak the eigen cusp form of weight k normalized as a(1, Ak)= 1. For 

simplicity, we put E =  (10 ~), P =  (11/2 112 ) ,  Q= (10 00)and qx4=[Zlo, q~4]. 

For a cusp form f ~ Sk + 2(F1), we denote by [ f ]  2 e Mk, 2(F2) the Klingen type 
Eisenstein series attached to f defined by I f ]  2 (Z) = Ek, 2(Z, f, Q) in the notation of 
Arakawa [3, (1.4)]. If f e S k + z(F1) is an eigenform, we see that [f]2 is determined 
as the unique eigenform satisfying ( r  by the same method as 
Kurokawa [14, Theorem 2]. We also have 

2(p, [f]2) = (1 + pk- 2)2(p ' f )  (4.1) 

for a rational prime p by Arakawa [3, Proposition 2.1]. Using Theorem 2.2 we see 
that an eigen basis of M14.2(F2) is {[A 1612, th4}, while an eigen basis of $16(F2) is 
{)~), ;((x6 )} where 

Z]~6~= 185-4)Cloq~ 6 + (-- 128 -t- ~ )  12z12q~4, 

respectively by Kurokawa [12, Sect. 3]. 

Theorem 4.1. The following congruences hold for all m >= 1 : 

2(m, th4 ) = 2(m, [A 1612) mod 373, (4.2) 

and 

Nr/Q(m2(m, qx4)-- 2(m, )~:~))) -= 0 mod 13, (4.3) 

where K = Q (g5i3-4-9) and NK/Q is the norm map. 

Proof As to (4.2), we follow the proof of Kurokawa [13, Theorem 1]. Since 

1 d d 
~ [~o6, ~08] ~_ (gE6 ~z z 1 E8-- 6E8 dzzg6] o 

= 144/I 16Q, 

there is a constant c satisfying 

[A 1612 ~-- "i'~4 [(P6, (~8] "]- C~/14. �9 

Calculating Fourier coefficients of [q~6, q~s] and the we have 

a(P, [A 1612) = (-- 28 + 4A6c)P 
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and 

a(2P, [A, 6] 2) = ( -  344736 - 480c) P .  

Using (4.1) and (2.13) we obtain 

a(P, T(2) [A1612) = (1 + 2t 2))~(2, d 16)a(P, [z~ X612) 

= 884952a(P, [d  16]2) 

and 
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a(P, T(2) [A 1612) = a(2P, [A ,6]z) ,  

respectively. These yield 

( - 344736 - 480c) P = 884952 ( -  28 + zt6o c) P .  

Consequently,  we have 

[q~6, (P8] = [A16] 2 - ~ q l , -  (4.4) 

Considering 2(m, [A 1612) ( 4 . 4 ) -  T(m) (4.4), we obtain 

2(m, [A 16]2) a(P, ~ [q)6, ~08]) - -  a (P, 1-~ T(m) [(/)6, (/08]) 

= --  (,~(m, [A 1612) - - ) . (m,  7114)) a(P,~nx4). (4 .5 )  

Let R=Z(av3) be the localization of Z at 373. Since (P6EM6(/'2)Z and 
~0 s e Ms(F2)z, we have 144- ' [~o6, ~Os] e M14,E(F2)R. By Corol lary  2.3, the left hand 
side of (4.5) belongs to M(2,  R). Since a(P,403200th,O=lOO80P belongs to 
GL(2,  R), we have (4.2). 

Let us prove (4.3). We first determine H(ql ,0  and O(t/14). Noting Remark 3.3, 
we put  

4H(q 14) = G(~o4, 4Xlo) + c 14j(loq~6 + c 212Z12q~4. 

left (3.5)]. T o  determine c 1 and c 2 we use the following table. 

N a(N, G(q,4, 4Zlo)) a(N, 4Z~otP6) a(N, 12Z~ ztPa) a(N, ~h4) 

E 2/95 2 10 ( - 1/20) E 
2E -267968/95 280192 283520 (6848/5) E 
P - 3/380 - 1 1 (1/40) P 

2P 11808/19 -47616 23424 --480P 

Since a(2P,  r h 4 ) = 2 ( 2  , rh4)a(p  , rh4), we have 2~.(2, r h 4 ) = - 3 8 4 0 0 .  Therefore  we 
put m = 2 in (3.8). [Note  that  2(2, Z~  )) are not  rat ional integers.] Using relations 

and 

a(2P, H(qx4)) = a(P, T(2)H(rh4))  

a(2E, H(~/14)) = a(E, T(2)H(r/14)) - 2 1 4 a ( E ,  H(r/14)) 
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we obtain 

- ~ + 280192cl + 283520c 2 = ( - 38400 - 214) ( 2  + 2cl + 10c2), 

1 x~o 8 _ 47616c ~ + 23424c2 = - 38400 ( -  ~ - c 1 + c2). 

Solving these equations, we obtain 

1 ~ o 4 2 ~ / d  1 4 2 ~ / ~ 1  d[  4n(rh4) = 4 Z l o -  ]~ Zlo q~4 

1 1 
-~ 4 .5 .13  4ZlOfP6-[- 4'  5" 13" 19 12Z~zq~4 

and 

24. 5 .7 .13 -  19D(q14) = 22. 7.13tp4~SxoZ1 o - 2 .  5.13.19.4Z1o64~o4 

--22. 13.4ZloCP6 + (135 T ~ ) 1 2 x ~ 2 q ~ 6  + Z~+-6 ) 

Since Nr/Q(135 + ~ ) = 0  modl3,  we have 

Nr/Q(a(E, 138320H(r/14)) - a(E, Z~))) = 0 mod 13 

using the uniqueness of Fourier coefficients. On the other hand, we obtain 

(4.6) 

a(e, T(m)H(t114) ) = m2(m, th4)a(E, H(th4)) (4.7) 

from (3.2) and Corollary 3.2. Hence noting that eigenvalues are algebraic integers, 
we have 

Nr/o((m2(m, t/14 ) - 2(m, Z~+-6)))a(E, 138320H(th4)) ) - 0 mod 13 

by (4.6) and (4.7). Since a(E, 138320H(th4))=1064-11 modl3,  we have 
(4.3). Q.E.D. 

With respect to congruences of eigenvalues between eigen cusp forms of type (k, 2) 
and weight k, we have the following general result. We denote by Z ( f )  the integer 
ring of Q(f ) .  

Lemma 4.2. Let fSSk(F2) be an eigenform. Then there exists an eigenform 
F E Sk(F2)z(f) satisfying 

X(m,f)=2(m,F) for all m>__l (4.8) 

and 

F (E Sk(FE)~Ztf ) for any prime ideal E of Z ( f ) .  (4.9) 

Proof. Note that SR(F2)z| = Sk(F2) for all non-negative integers k. By the same 
argument as the proof of Kurokawa [15, Theorem 2], there exists an eigenform 
g ~ Sk(F2)ztl) satisfying 2(m,f) = 2(m, g) for all m > 1. Take a semi-integral matrix 
N of size two such that a(N, 9)4= O. Since a(N, 9) is contained in finitely many 
prime ideals, we can take c- lg  as F with a suitable constant c e Z ( f ) .  Q.E.D. 
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Theorem 4.3. Let F ~ Sk(F2) be an eigenform. Let :o be a prime number dividin9 k 

satisfying : o 4= 2, 3, 5 if k is even, 

v: o 4= 5, 7 if k is odd. 

Let d be a prime ideal of Z(F) lying above do. Then, there exists an eigenform 
G ~ Sk, 2(/"2) such that 

NrtG)/r(2(m, G)-ra2(m,F))--O mode for all m> l ,  

where K = Q(F) and K(G)= K(2(m, G)lm> 1). 

Proof. Noting Lemma 4.2, we may assume that F satisfies F e Sk(F2)Z(F) and 
condition (4.9). Let R be the localization of Z(F) at d. Suppose a(N, F) ~ dR for all 
semi integral positive definite N satisfying N ,  0 mod:o  in R. Note that 2(d~,f) is 
an algebraic integer for each positive integer 6 by Corollary 2.3. Using (2.13) with 
r = 0, we obtain 

a(d~N,f) = 2 ( :~o , f )a (S , f ) -  ~ c(Q)a(Q,f) ,  
Q 

where Q runs over finitely many semi integral positive definite matrices and 
c(Q) e z is non zero only for Q ~ 0 mod:~0. Therefore we have a(:~N, f )  e :R  for all 
6 and for all N ~g 0 mod:0  by induction on ft. This contradicts to (4.9). Hence there 
exists N satisfying 

a(N, F) N ~ 0 mod #. (4.10) 

In the case of the even k, using F e Sk(FZ)R, we can put 

F = Z l O f l  + g l z f 2 ,  

where f l  e Mk-lo(Fz)R and fz e Mk-~2(Fz)R. (See, Igusa [11, Theorem 1].) Then 
we have 

~ V F -  f117Zlo - f2V)~2 k - 1 0  k - 1 2  -- k [Zlo,f,]+ ~ D(t2, f2] ,  

namely 
FF= H +k@6f, Vz,o + ~-~f2Vz,2) e M~,2(F2), (4.11) 

where 

H =  ( k -  10) [Zxo,A] + ( k -  12) [Z12,f2] e Mk, 2(F2)R. 
In the case of the odd k, we have 

VF=H + k fv4iz35 ~ M~,2(F2) ~D 

with 

(4.12) 

H = ( k -  35) [4iz35,f] s Mk. 2(Fz)R, 

where f e  M k_ 35(FE)R is determined by F = 4i)~35 f. In both cases, by the conditions 
on :o and (4.10)-(4.12) we have 

a(N, H) =- a(N, F) N ~ 0 rood g. (4.13) 
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So the coefficient wise reduction mod d of H is non-zero. Using the same method to 
the proof of (3.7), we see that VF is an eigenform with 2(m, VF) = m2(m, F) for all 
m > 1. Hence by (4.13) we see that H is an common eigen function of T(m) mod E for 
all m > 1 in the sense of Deligne and Serre [7, 6.6]. Since H is a cusp form, the 
existence of the desired cusp form G follows from Deligne and Serre [7, 
Lemme 6.11] and Corollary 2.3 and Remark 2.4. Q.E.D. 

As an example, let F=)(,14~S14(F2), K = Q ,  E=7  and R=Z(7 ). Here 
X~4=tp4Xxo is the eigen cusp form of weight 14. Then G=q~4 since 
dimS14,z(F2) = 1 and we have 

2(m, q 14) = m2(m, Xx4) mod 7. 

In this case we have moreover 

using 

2(m, r /1,)-  m2(m, Zt4) mod 35 (4.14) 

V4Xl,-  ~4~1o V(o4 = - 10.4rh,  

and a(N, ~04)-0 mod240 for all non-zero semi integral N. 
We notice some interpretation concerning the above congruences. Let 

f e  Sk(Fx) be an eigenform. We denote by Z ( f )  the integer ring of Q ( f )  and by 
Z(f )e  its d adic completion where f is a prime ideal of Z( f ) .  Let d o be the rational 
prime satisfying d n Z  = (do). Then there exists an E-adic representation attached 
to f 

ee(f) : Gal(O/Q)~GL(2, Z(f)e) 

in the sense of Deligne I6]. We may conjecture that for each eigenform 
f ~  Mk, r(F2), there exists an d-adic representation attached to f 

Qe(f) : Gal(Q/Q)~GL(4, Z(f)e).  

We note that we can take 

=Qe(f)@ze | for each eigenform f e  Sk+2(IV'I) ee([f]z) k-2 

and 
-2 k- @ee(f) for each eigenform fES2k_2(/'l), ee (ak ( f ) )=~  ~Xe 1 

where ak : M2k_ 2(FI)~Mk(F2) is the Saito-Kurokawa lifting (cf. Kurokawa [12] 
and Andrianov [2]) and Ze is the cyclotomic fo-adic character. Assume the 
existence of Qe(q14)- [In this case Q(r]14)= Q and d is a rational prime.] Then, for 
example, congruences (4.2) and (4.14) are ascribed to 

~ ,.~ ~ ~14 ~ 
Q373(?~14)~- Q373( A 1 6 ) ( ~ 3 7 3 |  Z] 16) 

and 

Q t , ( ~ 1 4 ) ~ ' ~ ' ~ I S @ ~ 6 @ ~ d |  with ~ = 5  or 7, 

where Qe(f) and Ze are reduction modulo f of Qe(f) and Xe, respectively. In 
particular, the image of ~e(q14) would not be so large for ~ = 5, 7, and 373. See Serre 
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[21, 22] for the elliptic modular case. Moreover the congruence (4.2) would be 
related to a special value of the second L-function of A 16. Let f ~ Sk(F1) be an eigen 
form, L2(s, f )  the second L-function attached to f and ( f ,  f >  its Petersson inner 
product normalized as in Shimura [23, (2.1)]. Put  

L *(s, f )  = Lz(s, f )  (2~)-~2s-k + 2) r(s)/ ( f, f ) . 

Then, L*(s,f)  belongs to Q ( f )  for an even integer s with k < s < 2 k - 2  by Zagier 
[28, Theorem 2]. Using this theorem we have 

29. 373 
L*(28, A 16)-  31527211 " 

In the computation, we use the following value of the function H(r, N) defined by 
Cohen [5, Sect. 2]: H(13 ,0 )=-657931 /12 ,  H(13,3)=111202/3 and H(13,4) 
=2702765/2. Here we note 2 8 = 2 ( k + r ) - 2 - r  with k =1 4  and r = 2 .  More 
generally we expect that ~ ( 2 ( k + r ) - 2 - r , f )  appears in the denominator of 
Fourier coefficients of Ek.,(Z, f, Vo) with suitable choice of Vo in Arakawa [-3, (1.4)]. 
We notice that the case r = 0  is proved in Mizumoto 1-19] (cf. Kurokawa 1-13]). 

Appendix: Eigenvalues of q14 

Using a computer calculation we obtain six eigenvalues of 014 in the following 
table. From this table we see that Euler factors of the Andrianov's L-function 
L(s, q~4) (see Arakawa 1,3, p. 173]) at 2, 3, and 5 satisfy the Ramanujan conjecture. 
We first compute Fourier coefficients of go 4 and X~o by the method of Maass [18], 
then those of q~4= [-Xlo, rP4]. In the computation of eigenvalues, we employ the 
device of Kurokawa [,12, Sect. 7] to reduce amount of a computation. (The 
program is about 1000 line long using the C-language.) 

m 2(rn, q14) 

2 - 19200 
3 2251800 
4 35454976 
5 --311252100 
9 --4797957991599 

25 1336090571170425625 
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Note added in proof. Prof. T. Oda pointed out to the author that the proof of Theorem 2.2 also 
gives the structure of Sk,2(F2) for an even k. The result is: 

Sk, 2(/'2) = Sk- xo(F2) [r ~P6] OMk- 1,(F2) E~P4, Zxo]OMk- x 6(F2) [r Zx2] 

~ -  16(~r2) E(P6, ~XO]~K- 18(F2) [-~~ Zx2]~ Wk- 22(F2) [Zxo, Zx2]. 


