7. Homework

Read Sec. 8.1., 8.2, 10.1, 10.2 .
Work the problems
Sec. 8.1. \#'s: 16, 32;
Sec. 8.2. \#'s: 8, 28;
Sec. 10.1 \#'s 16, 24;;
Sec. 10.2 \#'s 8, 27;;
and the additional problems:
1) Find the arc length functions of the graph given by $f:[0, \infty)$ with

$$
f(x)=\int_{0}^{x} \sqrt{\cos ^{2}(x)-4 \cos x+3} .
$$

2) Find the area of the the rotational surface which is obtained when the the branch of the hyperbola given by

$$
y^{2}-x^{2}=1, \text { for } x \in[1,2]
$$

is rotated about the x-axis.
3) Find the Arc length of the graph of the function given by $f=\ln \left(x+\sqrt{x^{2}-1}\right):[0, \infty)$ for $x \in[1,2]$

4) Find the area of the the rotational surface which is obtained when graph of

$$
f(x)=\frac{1}{x}, \text { for } x \in[1, b]
$$

is rotated about the x-axis.
5) Sketch the parametric curve C given by

$$
x(t)=t^{3}-4 t, y(t)=t^{2}-1, \text { for } t \text { in }(-\infty, \infty)
$$

For five different values of t specify the corresponding point on the curve.
Determine the intervals for t for which the corresponding part of the curve is concave up.

