A hyperplane in \mathbb{E}^n was already defined to be an $(n-1)$-dimensional flat; that is, a translate of an $(n-1)$-dimensional subspace of \mathbb{E}^n. A function $f : \mathbb{E}^n \to \mathbb{E}^m$ is said to be \textit{linear} if

\[f(x + y) = f(x) + f(y) \]
\[f(\lambda x) = \lambda f(x) \]

(additive)

(homogeneous)

for all $x, y \in \mathbb{E}^n$ and all $\lambda \in \mathbb{R}$.

A linear function $f : \mathbb{E}^n \to \mathbb{R}$ is called a \textit{linear functional}, in which case we denote by $[f : \alpha]$ the set

\[\{ x \in \mathbb{E}^n : f(x) = \alpha \} \quad (\alpha \in \mathbb{R}). \]

Theorem 3.2. Suppose H is a subset of \mathbb{E}^n. Then H is a hyperplane if and only if there is a non-trivial linear functional f and a number δ such that $H = [f : \delta]$.

Proof. First assume H is a hyperplane and let $x_0 \in H$. Then $V = H - x_0$ is the $(n-1)$-dimensional subspace of \mathbb{E}^n parallel to H. We denote by v_0 a unit vector orthogonal to V. For each $x \in \mathbb{E}^n$, denote by x_V the orthogonal projection of x onto V (i.e. the nearest point of V to x). We know, from linear algebra, that there is a number α such that

\[x = x_V + \alpha v_0. \]

It is clear that α is uniquely determined by x. We define $f : \mathbb{E}^n \to \mathbb{R}$ by $f(x) = \alpha$; so $[f]$ measures the distance of x to V.

Next we check that f is a linear functional. If $x, y \in \mathbb{E}^n$, we have

\[x = x_V + \alpha v_0 \quad \text{and} \quad y = y_V + \beta v_0 \]

and so

\[x + y = x_V + y_V + (\alpha + \beta)v_0. \]

Consequently,

\[f(x + y) = \alpha + \beta = f(x) + f(y). \]

Also, if $\lambda \in \mathbb{R}$, $\lambda x = \lambda x_V + \lambda \alpha v_0$ and so $f(\lambda x) = \lambda \alpha = \lambda f(x)$. So f is a linear functional.

Finally we show that $H = [f : \delta]$ where $\delta = f(x_0)$. If $h \in H$ then $h = h_0 + v$ where $v \in V$. Consequently $f(h) = f(x_0) + f(v) = f(x_0)$. Now $x_0 = w_0 + \delta v_0$ where $w_0 \in V$ and so if $f(x) = \delta$ then $x = x_V + \delta v_0$ and therefore $x - x_0 = x_V - w_0 \in V$ and so $x \in H ([f : \delta] \subset H)$. So we have proved a non-trivial linear functional f and a number δ such that $H = [f : \delta]$.

For the converse, note that, since f is non-trivial, $f : \mathbb{E}^n \to \mathbb{R}$ is surjective. Consequently, dim ker $f = n - 1$. Put $V = \ker f$, an $(n-1)$-dimensional subspace of \mathbb{E}^n. Now assume $f(x_0) = \delta$ and complete the proof by showing that $[f : \delta] = V + x_0$. If $v \in V$ then $f(v + x_0) = f(v) + f(x_0) = \delta$ and so $V + x_0 \subset [f : \delta]$. But $[f : \delta]$ is an affine set which is not the whole space. Consequently dim$[f : \delta] \leq n - 1$ and so $[f : \delta] = V + x_0$. □
Theorem 3.3. If \(f \) and \(g \) are linear functionals on \(\mathbb{F}^n \) such that \([f : \alpha] = [g : \beta] \) for some \(\alpha, \beta \in \mathbb{R} \) then there is a number \(\lambda \neq 0 \) such that \(f = \lambda g \) and \(\alpha = \lambda \beta \).

Proof. First assume \(g \) is trivial. Then \([g : \beta] = \mathbb{F}^n \) if \(\beta = 0 \) and \([g : \beta] = \emptyset \) if \(\beta \neq 0 \). So, if \(\beta = 0 \) we have \([f : \alpha] = \mathbb{F}^n \). Consequently \(\alpha = f(0) = 0 \) and \(f \) is trivial. In this case any \(\lambda \neq 0 \) works. If \(\beta \neq 0 \) we have \([f : \alpha] = \emptyset \) and so \(\alpha \neq f(0) = 0 \) and \(f \) is trivial since, if there were an \(x \in \mathbb{F}^n \) with \(f(x) \neq 0 \) then \(f(\frac{\alpha x}{f(x)}) = \alpha \), which is impossible. In this case put \(\lambda = \alpha/\beta \).

Now assume \(g \) is not trivial and choose \(x_0 \in \mathbb{F}^n \) with \(g(x_0) \neq 0 \). Put \(\lambda = f(x_0)/g(x_0) \) and \(V = [g : 0] \), the kernel of \(g \). Note that \(V \) is an \((n-1)\)-dimensional subspace \(\mathbb{F}^n \). We have

\[
v + \frac{\beta}{g(x_0)} x_0 \in [g : \beta] \quad \text{for all } v \in V.
\]

Hence

\[
v + \frac{\beta}{g(x_0)} x_0 \in [f : \alpha] \quad \text{for all } v \in V,
\]

equivalently

\[
f(v) + \frac{\beta}{g(x_0)} f(x_0) = \alpha \quad \text{for all } v \in V.
\]

Thus

\[
f(v) + \lambda \beta = \alpha \quad \text{for all } v \in V.
\]

The fact that \(v \) is a subspace means \(v \in V \) and therefore \(\alpha = \lambda \beta \). Furthermore, if \(x \in \mathbb{F}^n \), there is a \(\mu \in \mathbb{R} \) such that \(x = v + \mu x_0 \) for some \(v \in V \); this follows from the fact that \(\dim V = n - 1 \) and \(x_0 \in V \). Hence

\[
f(x) = f(v) + \mu f(x_0) = \mu f(x_0) = \mu \lambda g(x_0) = \lambda (g(v) + \mu g(x_0)) = \lambda g(x)
\]

as required.

\(\square \)

Theorem 3.4 and 3.5. Let \(f \) be a linear functional defined on \(\mathbb{F}^n \).

a) There is a \(z \in \mathbb{F}^n \) such that \(f(x) = \langle x, z \rangle \) for all \(x \in \mathbb{F}^n \);

b) \(f \) is continuous;

c) Each set of \([f : \alpha]\) is closed and therefore every hyperplane is closed.

Proof.

a) If \(f \) is trivial put \(z = o \). Otherwise put \(V = [f : 0] \). Then \(V \) is an \((n-1)\)-dimensional subspace of \(\mathbb{F}^n \) and we may choose a vector \(u \) orthogonal to \(V \). We put \(g(x) = \langle x, u \rangle \) for each \(x \in \mathbb{F}^n \). Then \(g \) is a linear functional on \(\mathbb{F}^n \) and \([f : 0] = [g : 0]\). It follows from Theorem 3.3 that there is a \(\lambda \in \mathbb{R} \) with \(f = \lambda g \). If we put \(z = \lambda u \) then \(f(x) = \langle x, z \rangle \) for each \(x \in \mathbb{F}^n \).

b) It follows from a) that

\[
|f(x) - f(y)| = |\langle x - y, z \rangle| \leq \|x - y\| \|z\| \quad \text{for all } x, y \in \mathbb{F}^n.
\]
So if \(\varepsilon > 0 \) is given, we choose \(\delta > 0 \) so that

\[
\delta \|z\| < \varepsilon.
\]

Then, if \(y \in B(x, \delta) \) we have \(f(y) \in B(f(x), \varepsilon) \). Consequently \(f \) is continuous.

c) It follows from b) that

\[
\{ x : f(x) > a \} \cup \{ x : f(x) < a \} = f^{-1}(a, \infty) \cup f^{-1}(-\infty, a,)
\]

is open. Now \([f : a] \) is the complement of this set and must therefore be closed. We learned in Theorem 3.2 that each hyperplane is of the form \([f : a] \) for some linear functional \(f \) and some member \(a \). So each hyperplane is closed.

\[\square\]

We note that we have shown that if \(H \) is a hyperplane then there is a \(\gamma \in \mathbb{R} \) and a vector \(z \in \mathbb{E}^n \) such that

\[
H = \{ x \in \mathbb{E}^n : \langle x, z \rangle = \gamma \}.
\]

We also know that \(z \) is orthogonal to all vectors parallel to \(H \) since it is orthogonal to all vectors in the subspace parallel to \(H \). We could choose \(z \) to be a unit vector, in which case \(\gamma \) measures that distance from \(o \) to \(H \).