Volume of a ball of radius R in \mathbb{R}^n

The ball of radius R in \mathbb{R}^n is defined as

$$B_n(R) := \{ \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 \le R^2 \} ,$$

and the sphere of radius B in \mathbb{R}^n is its boundary:

$$S_n(R) := \partial B_n(R) = \{ \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 = R^2 \} .$$

Let $V_n(R)$ and $A_n(R)$ stand for the volume of $B_n(R)$ and the area of $S_n(R)$, respectively:

$$V_n(R) :=$$
 Volume of $B_n(R)$, $A_n(R) :=$ Area of $S_n(R)$

Observation: Just by looking at the units of volume and area in \mathbb{R}^n – which are (length)ⁿ and (length)ⁿ⁻¹, respectively – we see that

$$V_n(R) = V_n(1) R^n$$
, $A_n(R) = A_n(1) R^{n-1}$. (1)

Observation: If the radius R of a ball in \mathbb{R}^n increases by a small amount h, the volume of the ball increases approximately by the area of the surface of the ball multiplied by h, which implies that

$$V'_n(R) = \lim_{h \to 0} \frac{V_n(R+h) - V_n(R)}{h} \approx \lim_{h \to 0} \frac{A_n(R)h}{h} = A_n(R) ,$$

hence

$$V_n'(R) = A_n(R) \tag{2}$$

Since $V_n(0) = 0$, this implies that

$$V_n(R) = \int_0^R A_n(\rho) \,\mathrm{d}\rho \;. \tag{3}$$

More generally, if $f : \mathbb{R}^n \to \mathbb{R}$ is a function that depends only on the distance $|\mathbf{x}|$ from \mathbf{x} to the origin $\mathbf{0} \in \mathbb{R}^n$, i.e., $f(\mathbf{x}) = \tilde{f}(|\mathbf{x}|)$, the same reasoning yields

$$\int \cdots \int_{\mathbb{R}^n} f(\mathbf{x}) \, \mathrm{d}V = \int_0^R \tilde{f}(\rho) \, A_n(\rho) \, \mathrm{d}\rho \, , \qquad \rho := |\mathbf{x}| \, . \tag{4}$$

Computation of $V_n(1)$: Because of (1), it is clear that to find $V_n(R)$, it is enough to compute the volume $V_n(1)$ of the unit ball in \mathbb{R}^n . One can obtain this by computing the value of the integral

$$J_a := \int \cdots \int_{\mathbb{R}^n} e^{-a|\mathbf{x}^2|} \,\mathrm{d}V \tag{5}$$

in two different ways. Here a is a positive constant, dV is the volume element in \mathbb{R}^n , and the integration is performed over the whole space \mathbb{R}^n .

First way of computing J_a : The integral in the definition (5) of J_a is a product of n onedimensional integrals:

$$J_a = \int \cdots \int_{\mathbb{R}^n} e^{-a|\mathbf{x}^2|} dV = \int_{\mathbb{R}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-a(x_1^2 + x_2^2 + \dots + x_n^2)} dx_1 dx_2 \cdots dx_n$$
$$= \int_{\mathbb{R}} e^{-ax_1^2} dx_1 \int_{\mathbb{R}} e^{-ax_2^2} dx_2 \cdots \int_{\mathbb{R}} e^{-ax_n^2} dx_n$$
$$= \left(\int_{\mathbb{R}} e^{-ax^2} dx \right)^n =: (I_a)^n .$$

To compute I_a , we use polar coordinates in \mathbb{R}^2 in the expression for $(I_a)^2$:

$$(I_a)^2 = \left(\int_{\mathbb{R}} e^{-ax^2} dx\right) \left(\int_{\mathbb{R}} e^{-ay^2} dy\right) = \iint_{\mathbb{R}^2} e^{-a(x^2+y^2)} dA$$

= $\int_0^{2\pi} \int_0^\infty e^{-ar^2} r \, dr \, d\theta = 2\pi \int_0^\infty e^{-ar^2} r \, dr = \frac{\pi}{a} \int_0^\infty e^{-\xi} \, d\xi = \frac{\pi}{a}$ (6)

(with the substitution $\xi := ar^2$). This implies that $I_a = \sqrt{\frac{\pi}{a}}$, and

$$J_a = \left(\frac{\pi}{a}\right)^{n/2} \,. \tag{7}$$

Second way of computing J_a : From (2) and (1), we see that

$$A_n(R) = V'_n(R) = \frac{\mathrm{d}}{\mathrm{d}R} [V_n(1) R^n] = nV_n(1) R^{n-1}$$

This observation and (4) allow us to write

$$J_{a} = \int \cdots \int_{\mathbb{R}^{n}} e^{-a|\mathbf{x}^{2}|} dV = \int_{0}^{\infty} e^{-a\rho^{2}} A_{n}(\rho) d\rho$$

= $nV_{n}(1) \int_{0}^{\infty} e^{-a\rho^{2}} \rho^{n-1} d\rho = nV_{n}(1) \frac{1}{2} a^{-\frac{n}{2}} \int_{0}^{\infty} e^{-t} t^{\frac{n}{2}-1} dt$ (8)
= $V_{n}(1) \frac{n}{2} \Gamma\left(\frac{n}{2}\right) a^{-\frac{n}{2}} = V_{n}(1) \Gamma\left(\frac{n}{2}+1\right) a^{-\frac{n}{2}}$

(in computing the value of the integral, we used the substitution $t := a\rho^2$). Here we used the definition (9) and the property (10) of the Gamma function. Putting everything together: Comparing the right-hand sides of (7) and (8), we see that

$$V_n(1) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)} ,$$

therefore the volume of the n-dimensional ball of radius R is

$$V_n(R) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)} R^n$$

Check that this works in the well-known cases: $V_1(R) = 2R$, $V_2(R) = \pi R^2$, $V_3(R) = \frac{4}{3}\pi R^3$.

Gamma function

Definition:

$$\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt \quad \text{for } x > 0 .$$
(9)

Basic property:

$$\Gamma(x+1) = x \,\Gamma(x) \qquad \text{for } x > 0 \ , \tag{10}$$

which can be obtained directly by setting $u := t^x$ and $v := e^{-t}$ and integrating by parts:

$$\begin{split} \Gamma(x+1) &= \int_0^\infty e^{-t} t^x \, dt = -\int_{t=0}^\infty u \, dv = -uv \big|_{t=0}^\infty + \int_{t=0}^\infty v \, du \\ &= -\left(t^x e^{-t}\right) \big|_{t=0}^\infty + \int_{t=0}^\infty e^{-t} x t^{x-1} \, dt = x \int_{t=0}^\infty e^{-t} t^{x-1} \, dt = x \, \Gamma(x) \; . \end{split}$$

Particular values

(a)
$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty e^{-t} t^{-1/2} dt = 2 \int_0^\infty e^{-s^2} ds = \int_{-\infty}^\infty e^{-s^2} ds = I_1 = \sqrt{\pi} \text{ (recall (6)).}$$

(b) $\Gamma(1) = \int_0^\infty e^{-t} dt = 1.$

(c) For any integer $m \ge 1$, using (10) and the value of $\Gamma(1)$, we obtain

$$\Gamma(m) = (m-1)\Gamma(m-1) = (m-1)(m-2)\Gamma(m-2)$$
$$= \dots = (m-1)(m-2)\dots(2)(1)\Gamma(1) = (m-1)!$$

(d) For any integer $m \ge 0$, using (10) and the value of $\Gamma(\frac{1}{2})$, we obtain

$$\begin{split} \Gamma(m+\frac{1}{2}) &= (m-\frac{1}{2})\,\Gamma(m-\frac{1}{2}) = (m-\frac{1}{2})(m-\frac{3}{2})\,\Gamma(m-\frac{3}{2}) = \cdots \\ &= (m-\frac{1}{2})(m-\frac{3}{2})\cdots(\frac{3}{2})(\frac{1}{2})\,\Gamma(\frac{1}{2}) = \frac{(2m-1)(2m-3)\cdots(3)(1)}{2^m}\,\sqrt{\pi} \\ &= \frac{(2m)(2m-1)(2m-2)(2m-3)(2m-4)\cdots(4)(3)(2)(1)}{2^m\,[2m][2(m-1)]\cdots[2\cdot2][2\cdot1]}\,\sqrt{\pi} = \frac{(2m)!}{4^m\,m!}\,\sqrt{\pi} \;. \end{split}$$