Problem 1. Let d and t be the following statements:
d : You drive over 65 mph .
t : You get a speeding ticket.
["mph" stands for "miles per hour"] Write the following statements using d and t and logical connectives $(\sim, \wedge, \vee, \Rightarrow, \Leftrightarrow)$.
(example) You do not drive over $65 \mathrm{mph} . \quad \sim d$
(a) You drive over 65 mph , but you do not get a speeding ticket. $d \wedge \sim t$
(b) You get a speeding ticket if you drive over $65 \mathrm{mph} . \quad d \Rightarrow t$
(c) Driving over 65 mph is a sufficient condition for getting a speeding ticket. $d \Rightarrow t$
(d) You get a speeding ticket iff you drive over $65 \mathrm{mph} . \quad t \Leftrightarrow d$
(e) Whenever you get a speeding ticket, you are driving over $65 \mathrm{mph} . \quad t \Rightarrow d$
(f) Driving over 65 mph is a necessary condition for getting a speeding ticket. $\quad t \Rightarrow d$
(g) Write down the contrapositive of the statement

If you drive over 65 mph , you get a speeding ticket.
Contrapositive: If you do not get a speeding ticket, then you do not drive over 65 mph .

Problem 2. In each of the following cases, determine whether a statement is true or false. If it is true, explain briefly; it is false, give a counterexample. Always think of x and y as real numbers.
(a) $\forall x \forall y, x^{2}+y^{2}>0 \quad$ False: For $x=0$ and $y=0, x^{2}+y^{2}=0 \ngtr 0$.
(b) $\exists x$ s.t. $\forall y, x<y^{2} \quad$ True: Since $y^{2} \geq 0 \forall y$, we can take, $x=-5$, then $\forall y,-5=x<y^{2}$.

Problem 3. Let the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(n)=n^{2}$.
(a) Determine $f(C)$ if $C=\{-2,0,1,2\} . \quad f(C)=\{0,1,4\}$
(b) Determine $f^{-1}(D)$ if $D=\{-2,-1,0,1,2,3,4,5,6,7,8,9,10\} . \quad f^{-1}(D)=\{-3,-2,-1,0,1,2,3\}$
(c) Is f surjective (i.e., onto)? Explain briefly. No, because there there is no $n \in \mathbb{Z}$ so that $f(n)$ is negative (hence, $\operatorname{rng} f=f(\mathbb{Z})=\{0,1,2,3, \ldots\}$).
(d) Is f bijective? Explain briefly why or why not. No, because f is not surjective. (Incidentally, f is also not injective.)

