| 10. | Fill in the blanks in the proof of the following theorem. | |-----|--| | | THEOREM: $A \subseteq B$ iff $A \cup B = B$. | | | Proof: Suppose that $A \subseteq B$. If $x \in A \cup B$, then $x \in A$ or | | | $x \in \underline{\hspace{1cm}}$. Since $A \subseteq B$, in either case we have $x \in B$. Thus | | | \subseteq On the other hand, if $x \in$ | | | then $x \in A \cup B$, so \subseteq Hence $A \cup B = B$. | | | Conversely, suppose that $A \cup B = B$. If $x \in A$, then $x \in A$ | | | But $A \cup B = B$, so $x \in$ Thus | | | ⊆ ♦ | | 11. | Fill in the blanks in the proof of the following theorem. | | | THEOREM: $A \subseteq B$ iff $A \cap B = A$. | | | Proof: Suppose that $A \subseteq B$. If $x \in A \cap B$, then clearly $x \in A$. Thus | | | $A \cap B \subseteq A$. On the other hand, | | | Thus $A \subseteq A \cap B$, and we conclude that $A \cap B = A$. | | | Conversely, suppose that $A \cap B = A$. If $x \in A$, then | | | Thus $A \subseteq B$. \blacklozenge | •