10.	Fill in the blanks in the proof of the following theorem.
	THEOREM: $A \subseteq B$ iff $A \cup B = B$.
	Proof: Suppose that $A \subseteq B$. If $x \in A \cup B$, then $x \in A$ or
	$x \in \underline{\hspace{1cm}}$. Since $A \subseteq B$, in either case we have $x \in B$. Thus
	\subseteq On the other hand, if $x \in$
	then $x \in A \cup B$, so \subseteq Hence $A \cup B = B$.
	Conversely, suppose that $A \cup B = B$. If $x \in A$, then $x \in A$
	But $A \cup B = B$, so $x \in$ Thus
	⊆ ♦
11.	Fill in the blanks in the proof of the following theorem.
	THEOREM: $A \subseteq B$ iff $A \cap B = A$.
	Proof: Suppose that $A \subseteq B$. If $x \in A \cap B$, then clearly $x \in A$. Thus
	$A \cap B \subseteq A$. On the other hand,
	Thus $A \subseteq A \cap B$, and we conclude that $A \cap B = A$.
	Conversely, suppose that $A \cap B = A$. If $x \in A$, then
	Thus $A \subseteq B$. \blacklozenge

•