Proofs of Pythagorean Theorem

1 Proof by Pythagoras (ca. 570 BC–ca. 495 BC) (on the left) and by US president James Garfield (1831–1881) (on the right)

Proof by Pythagoras: in the figure on the left, the area of the large square (which is equal to $(a + b)^2$) is equal to the sum of the areas of the four triangles $(\frac{1}{2}ab$ each triangle) and the area of the small square (c^2) :

$$(a+b)^2 = 4\left(\frac{1}{2}ab\right) + c^2 \quad \Rightarrow \quad a^2 + 2ab + b^2 = 2ab + c^2 \quad \Rightarrow \quad a^2 + b^2 = c^2$$

2 Proof by Bhaskara (1114–1185)

3 Proof by similar triangles

Let CH be the perpendicular from C to the side AB in the right triangle \triangle ABC.

Observation 1:
$$\triangle ABC \sim \triangle CBH$$
, therefore $\frac{AB}{BC} = \frac{CB}{CH}$, i.e., $\frac{c}{a} = \frac{a}{e}$, hence $e = \frac{a^2}{c}$. (1)

Observation 2:
$$\triangle ABC \sim \triangle ACH$$
, therefore $\frac{AB}{AC} = \frac{AC}{AH}$, i.e., $\frac{c}{b} = \frac{b}{d}$, hence $d = \frac{b^2}{c}$. (2)

Finally, AB = BH + AH, i.e, c = e + d. Using (1) and (2), we rewrite this as $c = \frac{a^2}{c} + \frac{b^2}{c}$, which is equivalent to $c^2 = a^2 + b^2$.

References

The book

Elisha Scott Loomis, The Pythagorean Proposition: Its Demonstrations Analyzed and Classified, and Bibliography of Sources for Data of the Four Kinds of "Proofs", Second edition, 1940, available at http://files.eric.ed.gov/fulltext/ED037335.pdf

contains 370 proofs of the Pythagorean Theorem.