Proofs of Pythagorean Theorem

1 Proof by Pythagoras (ca. $570 \mathrm{BC}-\mathrm{ca} .495 \mathrm{BC}$) (on the left) and by US president James Garfield (1831-1881) (on the right)

Proof by Pythagoras: in the figure on the left, the area of the large square (which is equal to $\left.(a+b)^{2}\right)$ is equal to the sum of the areas of the four triangles $\left(\frac{1}{2} a b\right.$ each triangle) and the area of the small square $\left(c^{2}\right)$:

$$
(a+b)^{2}=4\left(\frac{1}{2} a b\right)+c^{2} \quad \Rightarrow \quad a^{2}+2 a b+b^{2}=2 a b+c^{2} \quad \Rightarrow \quad a^{2}+b^{2}=c^{2}
$$

2 Proof by Bhaskara (1114-1185)

3 Proof by similar triangles

Let CH be the perpendicular from C to the side AB in the right triangle $\triangle \mathrm{ABC}$.

Observation 1: $\triangle \mathrm{ABC} \sim \triangle \mathrm{CBH}$, therefore $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{CB}}{\mathrm{CH}}$, i.e., $\frac{c}{a}=\frac{a}{e}$, hence $e=\frac{a^{2}}{c}$.
Observation 2: $\triangle \mathrm{ABC} \sim \triangle \mathrm{ACH}$, therefore $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{AH}}$, i.e., $\frac{c}{b}=\frac{b}{d}$, hence $d=\frac{b^{2}}{c}$.
Finally, $\mathrm{AB}=\mathrm{BH}+\mathrm{AH}$, i.e, $c=e+d$. Using (1) and (2), we rewrite this as $c=\frac{a^{2}}{c}+\frac{b^{2}}{c}$, which is equivalent to $c^{2}=a^{2}+b^{2}$.

References

The book
Elisha Scott Loomis, The Pythagorean Proposition: Its Demonstrations Analyzed and Classified, and Bibliography of Sources for Data of the Four Kinds of "Proofs", Second edition, 1940, available at http://files.eric.ed.gov/fulltext/EDO37335.pdf
contains 370 proofs of the Pythagorean Theorem.

