
(March 1, 2005 3:20 p.m.)

MATLABOverview
Ed Overman

Department of Mathematics
The Ohio State University

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Scalar Calculations . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Simple Arithmetical Operations . . . . . . . . . . . . . . . . . . . 5
1.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Round-off Errors . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Formatting Printing . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Common Mathematical Functions . . . . . . . . . . . . . . . . . . 10
1.6 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Help! . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Be Able To Do . . . . . . . . . . . . . . . . . . . . . . . 14

2 Vector and Matrix Calculations . . . . . . . . . . . . . . . . . . 14
2.1 Generating Matrices . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Colon Operator . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Manipulating Matrices . . . . . . . . . . . . . . . . . . . . . 19
2.4 Simple Arithmetical Operations . . . . . . . . . . . . . . . . . . . 22
2.5 Be Careful! . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Common Mathematical Functions . . . . . . . . . . . . . . . . . . 27
2.7 Data Manipulation Commands . . . . . . . . . . . . . . . . . . . 27
2.8 Advanced Topic: Multidimensional Arrays . . . . . . . . . . . . . . . . 29
2.9 Be Able To Do . . . . . . . . . . . . . . . . . . . . . . . 30

3 Text Variables and Inline Functions . . . . . . . . . . . . . . . . 32
4 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Two-Dimensional Graphics . . . . . . . . . . . . . . . . . . . . 34
4.2 Three-Dimensional Graphics . . . . . . . . . . . . . . . . . . . 39
4.3 Advanced Graphics Techniques . . . . . . . . . . . . . . . . . . . 41
4.4 Be Able To Do . . . . . . . . . . . . . . . . . . . . . . . 46

5 Solving Linear Systems of Equations . . . . . . . . . . . . . . . . 46
5.1 Square Linear Systems . . . . . . . . . . . . . . . . . . . . . 47
5.2 Catastrophic Round-Off Errors . . . . . . . . . . . . . . . . . . . 49
5.3 Overdetermined and Underdetermined Linear Systems . . . . . . . . . . . . 50

6 File Input-Output . . . . . . . . . . . . . . . . . . . . . . 52
7 Some Useful Linear Algebra Commands . . . . . . . . . . . . . . . 54
8 Programming in MATLAB . . . . . . . . . . . . . . . . . . . 60

8.1 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Matrix Relational Operators and Logical Operators . . . . . . . . . . . . . 63
8.3 Script Files and Function Files . . . . . . . . . . . . . . . . . . . 66
8.4 Odds and Ends . . . . . . . . . . . . . . . . . . . . . . . 74
8.5 Advanced Topic: Vectorizing Code . . . . . . . . . . . . . . . . . . 75

9 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . 78
10 Ordinary Differential Equations . . . . . . . . . . . . . . . . . 81

10.1 Basic Commands . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Advanced Commands . . . . . . . . . . . . . . . . . . . . . 84

11 Polynomials and Polynomial Functions . . . . . . . . . . . . . . . 91
12 Numerical Operations on Functions . . . . . . . . . . . . . . . . 93
13 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 96
14 Mathematical Functions Applied to Matrices . . . . . . . . . . . . . 101
Appendix: Reference Tables . . . . . . . . . . . . . . . . . . . . 103
Solutions To Exercises . . . . . . . . . . . . . . . . . . . . . . 113
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115





Introduction

MATLAB is an interactive software package which was developed to perform numerical calculations
on vectors and matrices. Initially, it was simply a MATrix LABoratory. However, today it is much more
powerful:
• It can do quite sophisticated graphics in two and three dimensions.
• It contains a high-level programming language (a “baby C”) which makes it quite easy to code com-

plicated algorithms involving vectors and matrices.
• It can numerically solve nonlinear ordinary differential equations.
• It contains a wide variety of toolboxes which allow it to perform a wide range of applications from sci-

ence and engineering. Since users can write their own toolboxes, the breadth of applications is quite
amazing.

Mathematics is the basic building block of science and engineering, and MATLAB makes it easy to handle
many of the computations involved. You should not think of MATLAB as another complication pro-
gramming language, but as a powerful calculator that gives you fingertip access to exploring science and
engineering. And this access is available by entering only a small number of commands and operations
because its basic data element is a matrix. For an overview of the capabilities of MATLAB, type

>> demo
click on “Matrices”, double-click on “Basic matrix operations”, and then click on “Start”.

This document is designed to be a concise introduction to many of the capabilities of MATLAB. It
makes no attempt to cover either the range of topics or the depth of detail that you can find in a reference
manual, such as The Student Edition of MATLAB: User’s Guide or MATLAB: Using MATLAB. There
are numerous documents such as this floating around universities — some are even floating around the
internet. These were generally written to cover whatever topics the author felt students needed to know
in their coursework or research. This document is no different; it is being used in courses covering linear
algebra, mathematical modelling, and numerical analysis.

In this document MATLAB is first introduced as a calculator and then as a plotting package. Only af-
terwards are more technical topics discussed. We are taking this approach because most people are quite
familiar with calculators, and it is only a small step to understand how to apply these same techniques
to matrices rather than individual numbers or varibles. Since it is easy to forget some MATLAB com-
mands or operations, at the end of each section or subsection we provide a table which provides a brief
description of each of the MATLAB commands or operations covered. It all too frequently happens that
we know there is a command, or sequence of commands, that does exactly what we want — if only we
could just remember what it is. We also collect all these tables in the appendix and include additional
cross-referencing to show what commands and operations apply to various topics. In addition, the index is
designed to help in finding things that are “just on the tip of your tongue”. All the MATLAB commands
discussed in this document are listed at the beginning of the index, as well as alphabetically throughout
the index.
Warning: Usually we do not discuss the complete behavior of these commands, but only their most \use-

ful" behavior. Typing
>> help <command>

or
>> doc <command>

gives you complete information about the command.
Notation: help <command> means to enter whatever command you desire (without the braces).

help command means to type these two words as written.

Summary of Contents

Section 1 of this document discusses how to use MATLAB as a “scalar” calculator, and section 2 how
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to use it as a “matrix” calculator. Following this, you will be able to set up and solve the matrix equa-
tion Ax = b where A is a square nonsingular matrix. Section 4 discusses how to plot curves in two and
three dimensions and how to plot surfaces in three dimensions. These three sections provide a “basic” in-
troduction to MATLAB. At the end of each section there is a subsection entitled “Be Able To Do” which
contains sample exercises to make sure you understand the basic commands discussed. (Solutions are
included.)

The following sections delve more deeply into particular topics. Section 5 discusses how to find any and
all solutions of Ax = b where A ∈ Cm×n need not be a square matrix; there might be no solutions, one
solution, or an infinite number to this linear system. When no solution exists, it discusses how to calcu-
late a least-squares solution (i.e., the “best” approximation to a solution). In addition, it discusses how
round-off errors can corrupt the solution, and how to determine if this is likely to occur.

Section 6 is quite brief and discusses advanced commands to input data into MATLAB and output it
to a file. (The basic commands are discussed in subsection 4.1.) This is useful if the data is being shared
between various computer programs and/or software packages.

Section 7 discusses a number of commands which are standard linear algebra algorithms.
Section 8 discusses MATLAB as a programming language — really a “baby C”. It also discusses how

to create your own commands. Since the basic data element of MATLAB is a matrix, this programming
language is very simple to learn and to use.

Section 9 discusses how to generate sparse matrices (i.e., matrices where most of the elements are zero).
These matrices could have been discussed in section two, but we felt that it added too much complexity
at too early a point in this document. Unless the matrix is very large it is usually not worthwhile to
generate sparse matrices — however, when it is worthwhile the time and storage saved can be boundless.

Section 10 discusses how to use MATLAB to numerically solve ordinary differential equations. This sec-
tion is divided up into a “basic” part and an “advanced” part. It often requires very little effort to solve
even complicated odes; when it does we discuss in detail what to do and provide a number of examples.

Section 11 discusses how to numerically handle standard polynomial calculations such as evaluating
polynomials, differentiating polynomials, and finding their zeroes. Polynomials and piecewise polynomials
can also be used to interpolate data. Section 12 discusses how to numerically calculate zeroes, extrema,
and integrals of functions.

Section 13 discusses the discrete Fourier transform and shows how it arises from the continuous Fourier
transform. We also provide an example which shows how to recover a simple signal which has been
severely corrupted by noise.

Finally, section 14 discusses how to apply mathematical functions to matrices.
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1. Scalar Calculations

1.1. Simple Arithmetical Operations

MATLAB can be used as a scientific calculator. To begin a MATLAB session, type matlab or click
on a MATLAB icon and wait for the prompt, i.e., “ >> ”, to appear. (To exit MATLAB, type exit or
quit.) You are now in the MATLAB workspace.

You can calculate 3.17 · 5.7 + 17/3 by entering
>> 3.17*5.7 + 17/3

and 220 by entering
>> 2ˆ20A long expression can be continued to a new line by typing three periods followed by the “return” (or

“enter”) key. For example,
∑20

j=1 1/j can be entered as
>> 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12 + ...
1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20

although there are much better ways to obtain this same expression with many fewer keystrokes (as you
will see in subsection 2.7).

You can enter a number in scientific notation using the “ˆ” operator. For example, you can enter
2×10−20 by

>> 2*10ˆ-20MATLAB, however, uses “e” to represent “10ˆ” so that MATLAB displays
2.0000e-20

The “standard” way to input 2×10−20 is as 2e-20 or 2E-20 or 2.e-20 or 2.E-20 (even
2.0000000e-00020 is acceptable).
Warning: 10−20 cannot be input as e-20, but must be input as 1e-20 or 1E-20 or 1.e-20 or 1.E-20

or . . .
MATLAB can also handle complex numbers, where i or j represents

√
−1 . For example, 5i can be

input as 5i or as 5*i, while 5×1030i can be input as 5e30i or as 5e30*i or as 5*10ˆ30*i, but not
as 5*10ˆ30i (which MATLAB considers to be 5×1030i ). To calculate (2 + 2i)4 , enter

>> (2 + 2i)ˆ4and MATLAB returns −64.
You can also save all of your input to MATLAB and most of the output (plots are not saved) by using

the diary command. This archive of your work can be invaluable when you are solving homework prob-
lems. You can later use an editor to extract the part you want to turn in, while “burying” all the false
starts and typing mistakes that occur. Conversely, if you are involved in a continuing project, this archive
can be invaluable in keeping a record of your progress.

If you do not specify a file, this archive is saved to the file diary (no extension) in the present direc-
tory. If the file already exists, this is appended to the end of the file (i.e., the file is not overwritten).
Because of this feature you can use the diary command without fear that crucial work will be overwrit-
ten.

While your work is being archived, it is often valuable to include comments to explain what you are do-
ing. Each line of comments must begin with the percent character, i.e., “%”. Comments can appear alone
on a line or they can follow a statement that you have entered.
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1.2. Variables

Arithmetical Operations

a + b Addition.
a - b Subtraction.
a*b Multiplication.

a/b Division.
a\b Left division, (this is exactly the same as

b/a ).
aˆb Exponentiation (i.e., ab ).

diary Saves your input to MATLAB and most of the output to disk. This command toggles
diary on and off. (If no file is given, it is saved to the file diary in the current direc-
tory.)
diary on turns the diary on.
diary off turns the diary off.
diary ′<file name>′ saves to the named file.

... Continue an expression onto the next line.
% Begin a comment

1.2. Variables

Notation: We always use lowercase letters to denote scalar variables.
Variables can be used to store numerical values. For example, you can store the value 21/3 in the vari-

able x by entering
>> x = 2ˆ(1/3)This variable can then be used on the right-hand side of an equation such as
>> fx = 3*xˆ6 - 17*xˆ3 + 79

There can also be more than one command on a line. For example, if you type
>> x = 2ˆ(1/3); fx = 3*xˆ6 - 17*xˆ3 + 79; g = 3/fx;

then all three commands will be executed. Nothing will be printed out because semicolons follow each
command. If you want everything printed out then type

>> x = 2ˆ(1/3), fx = 3*xˆ6 - 17*xˆ3 + 79, g = 3/fx
Thus, you can separate statements on a line by commas or semicolons. If semicolons are used, the results
of the statement are not displayed, but if commas are used, the results appear on the computer screen.
Warning: A variable can be overwritten at will. For example, at present x = 21/3 . If you now type

>> x = x + 5

then x becomes 21/3 + 5. No warning messages are printed if a variable is overwritten, just as
in a programming language.

Although we do not discuss vectors and matrices until the next section, it is important to understand
that MATLAB considers scalar variables to be vectors of length one or matrices of size 1×1. For exam-
ple, if you type

>> fx
the number 57 is returned. But you can also type

>> fx(1)
or

>> fx(1,1)
and obtain the same result.

Text strings can also be stored in variables. For example, to store the string “And now for something
completely different” in a variable, enter

>> str = ′And now for something completely different′

Note: To put a single quote mark into the string, use two single quote marks.
You can change a variable from a scalar to a vector or a matrix whenever you desire — or whenever

you forget that the variable has already been defined. Unlike C, for example, variables do not needed to
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1.2. Variables

be declared (or typed). A variable springs into existence the first time it is assigned a value, and its type
depends on its context.

At start-up time, MATLAB also contains some predefined variables. Many of these are contained in the
table below. Probably the most useful of these is pi.
Warning: Be careful since you can redefine these predefined variables. For example, if you type

>> pi = 2
then you have redefined π — and no error messages will be printed out!

Another very useful predefined variable is ans, which contains the last calculated value which was not
put into a variable. For example, it sometimes happens that you forget to put a value into a variable.
Then MATLAB sets the expression equal to the variable ans. For example, if you type

>> (3.2*17.5 - 5/3.1)ˆ2but then realize that you wanted to save this value, simply enter
>> x = ans

and x now contains (3.2 · 17.5− 5/3.1)2 .
In MATLAB it is trivial to display a variable: simply type it. For example, if x has the value −23.6

then
>> x

returns

x =

-23.6000
It is sometimes useful to display the value of a variable or an expression or a text string without display-
ing the name of the variable or ans. This is done by using disp. For example,

>> disp(x)
>> disp(piˆ3)
>> disp(′And now for something completely different′)
>> disp(′------------------------------------------′)

displays
-23.6000

31.0063

And now for something completely different
------------------------------------------

(The command fprintf, which will be discussed in section 6, allows much finer formatting of variables.)
Note: When disp displays a variable or an array or an expression, it follows with a blank line. However,

when it displays a string or a string variable, it does not.
Variables can also be deleted by using clear. For example, to delete x type
>> clear x

Warning: This is a very dangerous command because it is so easy to lose a great deal of work.
If you mean to type

>> clear x
but instead you type

>> clear
you will delete all the variables you have created in the workspace!
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1.3. Round-off Errors

Predefined Variables

ans The default variable name when one has not been specified.
pi π.
eps Approximately the smallest positive real number on the computer such that

1 + eps 6= 1 .
Inf ∞ (as in 1/0 ). You can also type inf.
NaN Not-a-Number (as in 0/0 ). You can also type nan.
i

√
−1 .

j
√
−1 (the same as i because engineers often use these interchangeably).

realmin The smallest “usable” positive real number on the computer. This is “approximately”
the smallest positive real number that can be represented on the computer (on some
computer realmin/2 returns 0 ).

realmax The largest “usable” positive real number on the computer. This is “approximately” the
largest positive real number that can be represented on the computer (on most computer
2*realmax returns Inf ).

About Variables

Variables: are case sensitive (so xa is not the same as Xa ).
can contain up to 31 characters (but this is certainly “overkill”).
must start with a letter, and can then be followed by any number of letters, numbers,
and/or underscores (so z 0 is allowed).
do not need to be declared or typed.

To display a variable, type it alone on a line.
To delete a variable, type clear <variable>.
This is a very dangerous command | use it at your own risk.

disp Displays a variable or an expression without printing the variable name or ans.
, Separates multiple statements on the same line. The results appear on the screen.
; When this ends a MATLAB command, the result is not printed on the screen. This can

also separate multiple statements on the same line.

1.3. Round-off Errors

The most important principle for you to understand about computers is the following.

Principle 1.1. Computers cannot add, subtract, multiply, or divide correctly!

Computers do integer arithmetic correctly (as long as the numbers are not too large to be stored in the
computer). However, computers cannot store most floating-point numbers (i.e., real numbers) correctly.
For example, the fraction 1/3 is equal to the real number 0.3333 . . . Since a computer cannot store this
infinite sequence of threes, the number has to be truncated.
eps is “close to” the difference between the exact number 1/3 and the approximation to 1/3 used in

MATLAB. It is defined to be the smallest positive real number such that 1 + eps > 1 (although it is
not actually calculated quite this accurately). For example, in MATLAB 1 + 0.1 is clearly greater than
1; however, on our computer 1 + 1e-40 is not. To see this, when we enter

>> (1 + .1) - 1
we obtain 0.1000 as expected.
Note: MATLAB guarantees that the expression in parentheses is evaluated first, and then 1 is subtracted

from the result.

8



1.4. Formatting Printing

However, when we enter
>> (1 + 1.e-40) - 1

MATLAB returns 0 rather than 1.e-40. The smallest positive integer n for which
>> (1 + 10ˆ(-n)) - 1

returns 0 is computer dependent. (On our computer it is 16.) What is not computer dependent is that
this leads to errors in numerical calculations. For example, when we enter

>> n = 5; ( nˆ(1/3) )ˆ3 - n
MATLAB returns -1.7764e-15 rather than the correct result of 0. If you obtain 0, try some different
values of n. You should be able to rerun the last statement executed without having to retype it by us-
ing the up-arrow key. Alternatively, on a Mac or a PC use the copy command in the menu; in Unix enter

ˆp.
Note: It might not seem important that MATLAB does not do arithmetical operations precisely. However,

you will see in subsection 5.2 that there are simple examples where this can lead to very incorrect
results.

One command which is occasionally useful when you are just “playing around” is the input command,
which displays a prompt on the screen and waits for you to enter some input from the keyboard. For ex-
ample, if you want to try some different values of n in experimenting with the expression (n1/3)

3 − n,
enter

>> n = input(′n = ′); ( nˆ(1/3) )ˆ3 - n
The argument to the command input is the string which prompts you for input, and the input is stored
in the variable n; the semicolon keeps the result of this command from being printed out. You can easily
rerun this line for different values of n (as we described above) and explore how round-off errors can affect
simple expressions.
Warning: eps and realmin are very different numbers. realmin is approximately the smallest positive

number that can be represented on the computer, whereas eps is approximately the small-
est positive number on the computer such that 1 + eps 6= 1. ( eps/realmin is larger than the
total number of atoms in the known universe.)

Request Input

input(′<prompt>′) Displays the prompt on the screen and waits for you to enter whatever is
desired.

1.4. Formatting Printing

The reason that (n1/3)
3 − n can be nonzero numerically is that MATLAB only stores real numbers to a

certain number of digits of accuracy. Type
>> log10(1/eps)

and remember the integer part of this number. This is approximately the maximum number of dig-
its of accuracy of any calculation performed in MATLAB. For example, if you type 1/3 in MATLAB the
result is only accurate to approximately this number of digits. You do not see the decimal representation
of 1/3 to this number of digits because on start-up MATLAB only prints the result to four decimal digits
— or five significant digits if scientific notation is used (e.g., the calculation 1/30000 is displayed in sci-
entific notation). To change how the results are printed out, use the format command in MATLAB. Use
each of these four format commands and then type in 1/3 to see how the result is printed out.
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1.5. Common Mathematical Functions

Format Commands

format short The default setting.
format long Results are printed to approximately the maximum number of digits of accuracy

in MATLAB.
format short e Results are printed in scientific notation using five significant digits.
format long e Results are printed in scientific notation to approximately the maximum number

of digits of accuracy in MATLAB.

1.5. Common Mathematical Functions

MATLAB contains a large number of mathematical functions. Most are entered exactly as you would
write them mathematically. For example,

>> sin(3)
>> exp(2)
>> log(10)

return exactly what you would expect. As is common in programming languages, the trig functions are
evaluated in radians.†

Almost all the functions shown here are built-in functions. That is, they are coded in C so they execute
very quickly. The one exception is the factorial function, i.e., n! = 1 · 2 · 3 . . . n, which is calculated by

>> factorial(n)
This function is actually calculated by generating the vector (1, 2, . . . , n) and them multiplying all its
elements together by prod([1:n]).

There is an important principle to remember about computer arithmetic in MATLAB.

Principle 1.2. If all the numbers you enter into MATLAB to do some calculation are \rea-
sonably large" and the result of this calculation is one or more numbers which are \close to"
eps, it is very likely that the number or numbers should be zero.

As an example, enter
>> deg = pi/180; th = 40; 1 - ( cos(th*deg)ˆ2 + sin(th*deg)ˆ2 )

The result is 1.1102e-16. Clearly, all the numbers entered into this calculation are “reasonable” and the
result is approximately eps. Obviously, the result is supposed to be zero since, from the Pythagorean
theorem

cos2 θ + sin2 θ = 1

for all angles θ. MATLAB tries to calculate the correct result, but it cannot quite. It is up to you to
interpret what MATLAB is trying to tell you.
Note: If you obtained zero for the above calculation, try

>> th = input(′angle = ′); 1 - ( cos(th*deg)ˆ2 + sin(th*deg)ˆ2 )
for various angles.‡ Some of these calculations should be nonzero.

There are a number of occasions in this overview where we reiterate that MATLAB cannot usually cal-
culate results exactly. Sometimes these errors are small and unimportant — other times they are very
important.
Warning: There is one technical detail about functions that will trip you up occasionally: how does MAT-

LAB determine whether a word you enter is a variable or a function? The answer is that MAT-
LAB first checks if the word is a variable and only if it fails does it check if the word is a func-
tion. For example, suppose you enter

†A simple way to calculate sin 40◦ is to type

>> deg = pi/180; sin(40*deg)

‡Be sure to define deg = pi/180 beforehand.
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1.6. Complex Numbers

>> sin = 20
by mistake (possibly you meant bin = 20 but were thinking about something else). If you now
type

>> sin(3)
MATLAB will reply

??? Index exceeds matrix dimensions.
because it recognizes that sin is a variable. Since MATLAB considers a variable to be a vector
of length one, its complaint is that you are asking for the value of the third element of the vec-
tor sin (which only has one element). Similarly, if you enter

>> sin(.25*pi)
MATLAB will reply

Warning: Subscript indices must be integer values.
because it thinks you are asking for the .25π-th element of the vector sin. The way to undo
your mistake is by typing

>> clear sin

Some Common Real Mathematical Functions

abs(x) The absolute value of x.
acos(x) arccos x.
acosh(x) arccosh x.
asin(x) arcsin x.
asinh(x) arcsinh x.
atan(x) arctan x.
atan2(x, y) arctan y/x where the angle is

in (−π,+π].
atanh(x) arctanh x.
ceil(x) The smallest integer which is

≥ x.
cos(x) cos x.
cosh(x) cosh x.
exp(x) ex .
factorial(n) n! for n a non-negative

integer.
fix(x) If x ≥ 0 this is the largest inte-

ger which is ≤ x.
If x < 0 this is the smallest
integer which is ≥ x.

floor(x) This is the largest integer which is
≤ x.

log(x) The natural log of x, i.e., logex.
log10(x) The common log of x, i.e., log10x.
mod(x, y) The modulus after division. That is,

x− n ∗ y where n = floor(y/x).
rem(x, y) The remainder of x/y. This is al-

most the same as mod(x, y).
Warning: be careful if x < 0.

round(x) The integer which is closest to x.
sign(x) If x > 0 this returns +1,

if x < 0 this returns −1, and
if x = 0 this returns 0.

sin(x) sin x.
sinh(x) sinh x.
sqrt(x)

√
x.

tan(x) tan x.
tanh(x) tanh x.

1.6. Complex Numbers

MATLAB can work with complex numbers as easily as with real numbers. For example, to find the
roots of the quadratic polynomial x2 + 2x + 5 enter

>> a = 1; b = 2; c = 5;
>> x1 = ( -b + sqrt( bˆ2 - 4*a*c ) ) / (2*a)
>> x2 = ( -b - sqrt( bˆ2 - 4*a*c ) ) / (2*a)

The output is
-1.0000 + 2.0000i

and
-1.0000 - 2.0000i

As another example, to calculate eiπ/2 enter
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1.7. Help!

>> exp(i*pi/2)
and obtain

0.0000 + 1.0000i
There are standard commands for obtaining the real part, the imaginary part, and the complex conju-

gate† of a complex number or variable. For example,
>> x = 3 - 5i
>> real(x)
>> imag(x)
>> conj(x)

returns 3, -5, and 3.0000 + 5.0000i respectively.
Note that many of the common mathematical functions can take complex arguments. Above, MATLAB

has calculated eiπ/2 , which is evaluated using the formula

ez = ex+iy = ex(cos y + i sin y) .

Similarly,

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Some Common Complex Mathematical Functions

abs(z) The absolute value of z = x + iy.
angle(z) The angle of z. This is calculated

by atan2(y, x).

conj(z) z∗ = x− iy.
imag(z) The imaginary part of z, i.e., y.
real(z) The real part of z, i.e., x.

1.7. Help!

Before discussing how to obtain help in MATLAB, here is a good place to discuss a very frustrating
situation where you desperately need help: how do you abort a MATLAB command which is presently
executing. The answer is simply to type ˆC (that is, hold down the control key and type “c”).

The on-line help facility in MATLAB is quite extensive. If you type
>> help

you will get a list of all the topics that you can peruse further by typing help followed by the name of
the topic. If you want help on a specific command, simply type help followed by the name of the com-
mand, i.e.,

help <command>
For example, if you forget the exact form of the format command, just type

>> help format
and you will see all the various ways that the output can be formatted.
Note: Typing

>> help ?
gives you lots of information about arithmetical and relational and logical operators and special
characters.

There is a more general command that can help you determine which commands might be of use. The
command lookfor searches through the first line of all MATLAB help entries for a particular keyword.
It is case insensitive so capital letters need not be used. For example,

>> lookfor plot

†If a is a complex number, then its complex conjugate, denoted by a∗ is obtained by changing the sign of i
whenever it appears in the expression for a. For example, if a = 3 + 17i, then a∗ = 3− 17i; if a = eiπ/4 , then
a∗ = e−iπ/4 ; if a = (2 + 3i) sin(1 + 3i)/(3−

√
5 i), then a∗ = (2− 3i) sin(1− 3i)/(3 +

√
5 i).
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returns all the MATLAB commands that have something to do with plots. (There are over one hundred.)
This command may be useful — or it may not be. However, it is worth a try if you cannot remember the
name of the command you want to use.
Warning: All of the thousands of MATLAB commands have to be checked, so this command might run

slowly.
Note: The keyword need not be a complete word. For example, the keyword compl is contained in the

words “complement”, “complex”, “complete”, “completion”, and “incomplete” — and in the capi-
tals of all these words.

If you want to find out more about a specific command, enter
>> type <command>

If the command is written in MATLAB’s programming language (as discussed in section 8), the entire
function will be typed out. (The type command does not work on internal MATLAB commands, called
built-in function, which are coded in C.)

MATLAB also has an entire reference manual on-line which can be accessed by entering
>> doc

or
>> helpdesk

This HTML documentation is displayed using your Web browser. It generally gives much more informa-
tion than the help command, and in a more easily understood format.

After working for a while, you may well forget what variables you have defined in the workspace. Sim-
ply type who or whos to get a list of all your variables (but not their values). who simply returns the
names of the variables you have defined, while whos also returns the size and type of each variable. To
see what a variable contains, simply type the name of the variable on a line.

By the way, the demonstrations available by running demo show many of the capabilities of MATLAB
and include the actual code used. This is always a good place to look if you are not sure how do do some-
thing.

Two commands that don’t quite fit in any category are save and load. However, since these com-
mands are occasionally very helpful, this is a good place to discuss them. Occasionally, you might need to
save one or more MATLAB variables: it might have taken you some time to generate these variables and
you might have to quit your MATLAB session without finishing your work — or you just might be afraid
that you will overwrite some of them by mistake. The save command saves the contents of all your vari-
ables to the file “ matlab.mat”. Use help or doc to learn how to save all the variables to a file of your
own choice and how to save just some of the variables. The load command loads all the saved variables
back into your MATLAB session.† (As we discuss in subsection 4.1, the load command can also be used
to input our own data into MATLAB.)

†These variables are saved in binary format; when loaded back in using load the variables will be exactly the
same as before. The contents of this file can be viewed by the user with an editor — but the contents will appear
to be gibberish. The contents can only be interpreted by the load command.
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2. Vector and Matrix Calculations

Getting Help

help On-line help.
help lists all the primary help topics.
help <command> displays information about the command.

doc On-line help reference manual in HTML format.
doc accesses the manual.
doc <command> displays information about the command.

helpdesk Accesses the main page of the on-line reference manual.
type <command> Displays the actual MATLAB code for this command.
lookfor <keyword> Searches all MATLAB commands for this keyword.
who Lists all the current variables.
whos Lists all the current variables in more detail than who.
demo Runs demonstrations of many of the capabilities of MATLAB.
save Saves all of your variables.
load Loads back all of the variables which have been saved previously.

ˆC Abort the command which is currently executing (i.e., hold down the control
key and type “c”).

1.8. Be Able To Do

After reading this section you should be able to do the following exercises. The MATLAB statements
are given on page 113.

1. Consider a triangle with sides a, b, and c and corresponding angles ∠ab, ∠ac, and ∠bc.
(a) Use the law of cosines, i.e.,

c2 = a2 + b2 − 2ab cos ∠ab ,

to calculate c if a = 3.7, b = 5.7, and ∠ab = 79◦ .
(b) Then show c to its full accuracy.
(c) Use the law of sines, i.e.,

sin∠ab

c
=

sin∠ac

b
,

to calculate ∠ac in degrees and show it in scientific notation.
(d) What MATLAB command should you have used first if you wanted to save these results to the file
triangle.ans?

2. Calculate 3
√

1.2×1020 − 1220i.

3. Analytically, cos 2θ = 2 cos2 θ − 1. Check whether this is also true numerically when using MATLAB by
using a number of different values of θ. Use MATLAB statements which make it as easy as possible to do
this.

4. How would you find out information about the fix command?

2. Vector and Matrix Calculations

Notation: Rm denotes all real column vectors with m elements and Cm denotes all complex column vec-
tors with m elements.
Rm×n denotes all real m×n matrices (i.e., having m rows and n columns) and Cm×n de-
notes all complex m×n matrices.
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2.1. Generating Matrices

Notation: In this overview the word “vector” means a column vector so that Cm = Cm×1 . Vectors are de-
noted by boldface letters, such as x; we will write a row vector as, for example, xT , where T

denotes the transpose of a matrix or vector (that is, the rows and columns are reversed.)
Notation: A = (aij) means that the (i, j)-th element of A (i.e., the element in the i-th row and the j-th

column) is aij .
x = (xi) means that the i-th element of x is xi .

Notation: We will always write matrices using capital letters and vectors using lower case letters.
This is also a good practice for you to use.

Note: MATLAB works with complex matrices as well as it does real matrices. To remind you of this
fact, we will use C rather than R unless there is a specific reason not to. If there is a distinction
between the real and complex case, we will first describe the real case and then follow with the
complex case in parentheses.

2.1. Generating Matrices

To generate the matrix

A =

 1 2 3
4 5 6
7 8 9


in MATLAB type

>> A = [1 2 3;4 5 6;7 8 9]
(where “ ” denotes one or more spaces) or

>> A = [ 1 2 3 ; 4 5 6 ; 7 8 9]
or

>> A = [1,2,3;4,5,6;7,8,9]
or

>> A = [ 1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9 ]
In other words, either spaces or commas can be used to delineate the elements of each row of a matrix;
semicolons are required to separate rows. (Any number of spaces can be put around commas or semicolons
to improve the readability of the expression.)
Notation: Since we prefer spaces, we will generally use them rather than commas to separate elements in a

row.
Rows can also be separated by beginning each on a separate line. For example, the matrix A can also

be entered by
>> A = [1,2,3
4,5,6
7,8,9]

However, we consider this to be more work than simply using semicolons and will not use it again. The
more complicated matrix

C =

 1 2 +
√

3 3 sin 1
e2 17/3 π + 3
1/3 2−

√
3 −7 cos π/7


can be entered by typing

>> C = [ 1 2+sqrt(3) 3*sin(1); exp(2) 17/3 pi+3; 1/3 2-sqrt(3) -7*cos(pi/7) ]
or

>> C = [ 1, 2+sqrt(3), 3*sin(1); exp(2), 17/3, pi+3; 1/3, 2-sqrt(3), -7*cos(pi/7) ]
Warning: When an element of a matrix consists of more than one term, it is important to enter all the

terms without spaces — unless everything is enclosed in parentheses. For example,
>> x1 = [1 pi+3]

is the same as
>> x2 = [1 pi+ 3]

and is the same as
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2.1. Generating Matrices

>> x3 = [1 (pi +3)]
but is not the same as

>> x4 = [1 pi +3] % not the same as the previous three statements
(Try it!) In other words, MATLAB tries to understand what you mean, but it does not always
succeed.

Definition
The transpose of a matrix A ∈ Cm×n , denoted by AT , is obtained by reversing the rows and columns
of A. That is, if A = (aij) then AT = (aji). (For example, the (2, 4) element of AT , i.e., i = 2 and
j = 4, is a42 .)
A square matrix A is symmetric if AT = A.

Note: In MATLAB AT is calculated by A.′ (i.e., a period followed by a single quote mark).
Definition

The conjugate transpose of a matrix A ∈ Cm×n , denoted by AH , is obtained by reversing the rows
and columns of A and then taking the complex conjugates of all the elements. That is, if A = (aij)
then AH = (a∗ji), where ∗ denotes the complex conjugate of a number.
A square matrix A is Hermitian if AH = A.

Note: In MATLAB AH is calculated by A′ (i.e., just a single quote mark.)
A vector can be entered in the same way as a matrix. For example, the vector

x =


1
2
3
4
5
6

 = (1, 2, 3, 4, 5, 6)T

can be entered as
>> x = [1;2;3;4;5;6]

However, this requires many semicolons; instead, take the transpose of a row vector by entering
>> x = [1 2 3 4 5 6].′

where the MATLAB command for the transpose, i.e., “ T”, is “ .′” (i.e., a period followed by a single
quote mark). There is one further simplification that is usually observed when entering a vector. The
MATLAB command for the conjugate transpose, i.e., “ H”, of a matrix is “ ′” (i.e., just a single quote
mark), which requires one less character than the command for the transpose. Thus, x is usually entered
as

>> x = [1 2 3 4 5 6]′

Warning: xT → x.′ while xH → x′ so that you can only calculate xT by x′ if x is real.
Aside: In fact, x should be entered as

>> x = [1:6]′

since this requires much less typing. (We will discuss the colon operator shortly.)
Sometimes the elements of a matrix are complicated enough that you will want to simplify the process

of generating the matrix. For example, the vector r =
(√

2/3 ,
√

2 ,
√

3 ,
√

6 ,
√

2/3
)T can be entered by

typing
>> s2 = sqrt(2); s3 = sqrt(3); r = [ s2/s3 s2 s3 s2*s3 s2/s3 ]′

We have now discussed how to enter matrices into MATLAB by using square parentheses, i.e., [...].
You work with individual elements of a matrix by using round parentheses, i.e., (...). For example, the
element aij of the matrix A is A(i,j) in MATLAB. Suppose you want to create the matrix

B =

 1 2 3
4 5 6
7 8 10


without having to enter all nine elements. If A (see the beginning of this section) has already been gener-
ated, the simplest way is to type
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>> B = A; B(3,3) = 10
Also, the element xi of the vector x is x(i) in MATLAB. For example, to create the column vector

x = (1, 2, 3, . . . , 47, 48, 49, 51)T ∈ R50

enter
>> x = [1:50]′; x(50) = 51

or
>> x = [1:50]′; x(50) = x(50) + 1

or
>> x = [1:50]′; x(length(x)) = x(length(x)) + 1

where length returns the number of elements in a vector.
MATLAB also has a number of commands that can generate matrices. For example,
>> C = zeros(5)

or
>> C = zeros(5, 5)

generates a 5×5 zero matrix. Also,
>> C = zeros(5, 8)

generates a 5×8 zero matrix. Finally, you can generate a zero matrix C with the same size as an already
existing matrix, such as A, by

>> C = zeros(size(A))
where size(A) is a row vector consisting of the number of rows and columns of A.

Similarly, you can generate a matrix with all ones by ones(n) or ones(m, n) or ones(size(D)).
You can also generate the identity matrix, i.e., the matrix with ones on the main diagonal and zeroes off of
it, by using the command eye with the same arguments as above.

Another useful matrix is a random matrix, that is, a matrix whose elements are all random num-
bers. This is generated by the rand command, which takes the same arguments as above. Specifically,
the elements are uniformly distributed random numbers in the interval (0, 1). To be precise, these are
pseudorandom numbers because they are calculated by a deterministic formula which begins with an ini-
tial “seed” . Every time that a new MATLAB session is started, the default seed is set, and so the same
sequence of random numbers will be generated. However, every time that this command is executed dur-
ing a session, a different sequence of random numbers is generated. If desired, a different seed can be set
at any time by entering

>> rand(′seed′, <seed number>)
Random matrices are often useful in just “playing around” or “trying out” some idea or checking out

some algorithm. The command randn generates a random matrix where the elements are normally dis-
tributed (i.e., Gaussian distributed) random numbers with mean 0 and standard deviation 1.

MATLAB also makes it convenient to assemble matrices in “pieces”, that is, to put matrices together to
make a larger matrix. That is, the original matrices are submatrices of the final matrix. For specificity, let
us continue with A (see the beginning of this section). Suppose you want a 5×3 matrix whose first three
rows are the rows of A and whose last two rows are all ones. This is easily generated by

>> [ A ; ones(2, 3) ]
(The semicolon indicates that a row has been completed and so the next rows consist of all ones. The fact
that A is a matrix in its own right is immaterial. All that is necessary is that the number of columns of A
be the same as the number of columns of ones(2, 3).) This matrix could also be generated by

>> [ A ; ones(1, 3) ; ones(1, 3) ]
or by

>> [ A ; [1 1 1] ; [1 1 1] ]
or even by

>> [ A ; [1 1 1;1 1 1] ]
Similarly, to generate a 3×4 matrix whose first three columns are the columns of A and whose last

column is (1, 5, 9)T type
>> [A [1 5 9]′]
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(The space following the A indicates that the next column is to follow. The fact that the next entry is
a column vector is immaterial. All that is necessary is that the number of rows of A be the same as the
number of rows in the new last column.)

Elementary Matrices

zeros(n) Generates an n×n matrix with all elements being 0.
zeros(m, n) Generates an m×n matrix.
zeros(size(A)) Generates a zero matrix with the same size as A.
ones Generates a matrix with all elements being 1.

The arguments are the same as for zeros.
eye Generates the identity matrix, i.e., the diagonal elements are 1 and the off-

diagonal elements are 0.
The arguments are the same as for zeros.

rand Generates a matrix whose elements are uniformly distributed random numbers
in the interval (0, 1). Each time that this function is called during a session it
returns different random numbers.
The arguments are the same as for zeros.
The initial seed is changed by rand(′seed′, <seed number>).

randn Generates a matrix whose elements are normally (i.e., Gaussian) distributed
random numbers with mean 0 and standard deviation 1. Each time that this
function is called during a session it returns different random numbers.
The arguments are the same as for zeros.

size(A) The size of a matrix as the row vector (m,n).
Also, size(A,1) returns the number of rows (the first element of A ) and size(A,2)
returns the number of columns (the second element of A ).

length(x) The number of elements in a vector.

A.′ Transpose, i.e., AT . A′ Conjugate transpose, i.e., AH .

2.2. The Colon Operator

For real numbers a and b the MATLAB command
>> [a:b]

or, more simply,
>> a:b

generates the row vector (a, a + 1, a + 2, . . . , a + k) where the integer k satisfies a + k ≤ b and
a + (k + 1) > b. Thus, the vector x = (1, 2, 3, 4, 5, 6)T should be entered into MATLAB as

>> x = [1:6]′

or even as
>> x = [1:6.9]′

(although we can’t imagine why you would want to do it this way). If c is also a real number the MAT-
LAB command

>> [a:c:b]
or

>> a:c:b
generates a row vector where the difference between successive elements is c. Thus, we can generate num-
bers in any arithmetic progression using the colon operator. For example, typing

>> [18:-3:2]
generates the row vector (18, 15, 12, 9, 6, 3). while typing
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>> [ pi : -.2*pi : 0 ]
generates the row vector (π, .8π, .6π, .4π, .2π, 0).
Warning: There is a slight danger if c is not an integer. As an oversimplified example, entering

>> x = [.02 : .001 : .98]′

should generate the column vector (0.02, 0.021, 0.022, . . . , 0.979, 0.98)T . However, because of
round-off errors in storing floating-point numbers, there is a possibility that the last element in
x will be 0.979. The MATLAB package was written specifically to minimize such a possibility,
but it still remains.† We will discuss the command linspace which avoids this difficulty in sec-
tion 4. An easy “fix” to avoid this possibility is to calculate x by

>> x = [20:980]′/1000

2.3. Manipulating Matrices

For specificity in this subsection we will mainly work with the 5×6 matrix

E =


1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

 ,

which can be generated by
>> E = [ 1:6 ; 7:12 ; 13:18 ; 19:24 ; 25:30 ]

Note: Spaces will frequently be used in MATLAB commands in this subsection for readability.
You can use the colon notation to extract submatrices from E. For example,
>> F = E( [1 3 5] , [1 2 3 4] )

extracts the elements in the first, third, and fifth rows and the second, third, fourth, and fifth columns
of E; thus,

F =

 2 3 4 5
14 15 16 17
26 27 28 29

 .

You can generate this submatrix more easily by typing
>> F = E( 1:2:5 , 2:5 )

There is an additional shortcut you can use: in a matrix a colon by itself represents an entire row or
column. For example, the second column of F is F(:,2) and the second row is F(2,:). To replace the
second column of F by two times the present second column minus four times the fourth column enter

>> F(:,2) = 2*F(:,2) - 4*F(:,4)
And suppose you now want to double all the elements in the last two columns of F. Simply type

>> F(:,3:4) = 2*F(:,3:4)
Entering E(:,:) prints out exactly the same matrix as entering E. This is not a very useful way of

entering E, but it shows how the colon operator can work. On the other hand, entering
>> G = E( : , 6:-1:1 )

generates a matrix with the same size as E but with the columns reversed, i.e.,

G =


6 5 4 3 2 1
12 11 10 9 8 7
18 17 16 15 14 13
24 23 22 21 20 19
30 29 28 27 26 25

 .

†This possiblity is much more real in the programming language C. For example, the statement

for ( i = 0.02; i <= 0.98; i = i + .001 )
generates successive values of i by adding 0.001 to the preceding value. It is possible that when i should have
the value 0.98, due to round-off errors the value will be slightly larger; the condition i <= 0.98 will be false
and the loop will not be evaluated when i should be 0.98.
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2.3. Manipulating Matrices

Finally, there is one more use of a colon. Entering
>> f = E(:)

generates a column vector consisting of the columns of E (i.e., the first five elements of f are the first
column of E, the next five elements of f are the second column of E, etc.).
Note: On the right side of an equation, E(:) is a column vector with the elements being the columns of

E in order. On the left side of an equation, E(:) reshapes a matrix. However, we will not discuss
this reshaping further because the reshape command described below is easier to understand.

The colon operator works on rows and/or columns of a matrix. A different command is needed to work
on the diagonals of a matrix. For example, you extract the main diagonal of E by typing

>> d = diag(E)
(so d is the column vector (1, 8, 15, 22, 29)T ), one above the main diagonal by typing

>> d1 = diag(E, 1)
(so d1 is the column vector (2, 9, 16, 23, 30)T ), and two below the main diagonal by typing

>> d2 = diag(E, -2)
(so d2 is the column vector (13, 20, 27)T ).

The MATLAB command diag transforms a matrix (i.e., a non-vector) into a column vector. The con-
verse also holds: when diag is applied to a vector, it generates a symmetric matrix. The command

>> F = diag(d)
generates a 5×5 matrix whose main diagonal elements are the elements of d, i.e., 1, 8, 15, 22, 29, and
whose off-diagonal elements are zero. Similarly, entering

>> F1 = diag(d1, 1)
generates a 6×6 matrix whose first diagonal elements (i.e., one above the main diagonal) are the elements
of d1, i.e., 2, 9, 16, 23, 30, and whose other elements are zero, that is,

F1 =


0 2 0 0 0 0
0 0 9 0 0 0
0 0 0 16 0 0
0 0 0 0 23 0
0 0 0 0 0 30
0 0 0 0 0 0

 .

Finally, typing
>> F2 = diag(d2, -2)

generates a 5×5 matrix whose −2-nd diagonal elements (i.e., two below the main diagonal) are the ele-
ments of d2, i.e., 13, 20, 27, and whose other elements are zero, i.e.,

F2 =


0 0 0 0 0
0 0 0 0 0
13 0 0 0 0
0 20 0 0 0
0 0 27 0 0

 .

You can also extract the upper triangular or the lower triangular part of a matrix. For example,
>> G1 = triu(E)

constructs a matrix which is the same size as E and which contains the same elements as E on and above
the main diagonal; the other elements of G1 are zero. This command can also be applied to any of the
diagonals of a matrix. For example,

>> G2 = triu(E, 1)
constructs a matrix which is the same size as E and which contains the same elements as E on and above
the first diagonal, i.e.,

G2 =


0 2 3 4 5 6
0 0 9 10 11 12
0 0 0 16 17 18
0 0 0 0 23 24
0 0 0 0 0 30

 .
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The similar command tril extracts the lower triangular part of a matrix.
As an example of the relationship between these three commands, consider the square random matrix F

generated by
>> F = rand(6)

All the following MATLAB commands calculate F anew:
>> triu(F) + tril(F) - diag(diag(F))
>> triu(F, 1) + diag(diag(F)) + tril(F, -1)
>> triu(F) + tril(F, -1)
>> triu(F, 2) + diag(diag(F, 1), 1) + tril(F)

Note: Numerically the first command might not generate exactly the same matrix as the following three
because of round-off errors.

By the way, diag, triu and tril cannot appear on the left-hand side of an equation. Instead, to
zero out all the diagonals above the main diagonal of F enter

>> F = F - triu(F, 1)
and to zero out just the first diagonal above the main diagonal enter

>> F = F - tril(triu(F, 1), 1)
MATLAB has a command which is useful in changing the shape of a matrix while keeping the same

numerical values. The statement
>> K = reshape(H, m, n)

reshapes the matrix H ∈ Cp×q into K ∈ Cm×n where m and n must satisfy mn = pq (or an error mes-
sage will be generated). A column vector is generated from H, as in H(:), and the elements of K are
taken columnwise from this vector. That is, the first m elements of this column vector go in the first col-
umn of K, the second m elements go in the second column, etc. For example, the matrix E which has
been used throughout this subsection can be easily (and quickly) generated by

>> E = reshape([1:30], 6, 5)′

Occasionally, there is a need to delete elements of a vector or rows or columns of a matrix. This is easily
done by using the null matrix []. For example, entering

>> x = [1 2 3 4]′

>> x(2) = []
results in x = (1, 3, 4)T . As another example, you can delete the even rows of G by

>> G( : , 2:2:6 ) = []
The result is

G =


6 4 2
12 10 8
18 16 14
24 22 20
30 28 26

 .

Also, occasionally, there is a need to replicate or tile a matrix. That is, the command
>> B = repmat(A, m, n)

generates a matrix B which contains m rows and n columns of copies of A. (If n = m then repmat(A,
m) is sufficient.) If A is a p by q matrix, then B ∈ Rmp×nq . This even works if A is a scalar, in which
case this is the same as

>> B = A*ones(m, n)
(but it is much faster if m and n are large since no multiplication is involved).
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Manipulating Matrices

A(i,j) ai,j .
A(:,j) the j-th column of A.
A(i,:) the i-th row of A.
A(:,:) A itself.
A(?1,?2) There are many more choices than we care to describe:

?1 can be i or i1:i2 or i1:i3:i2 or : or [i1 i2 ... ir] and
?2 can be j or j1:j2 or j1:j3:j2 or : or [j1 j2 ... jr].

A(:) On the right-hand side of an equation, this is a column vector containing the
columns of A one after the other.

diag(A) A column vector of the main diagonal of the matrix (i.e., non-vector) A.
diag(A, k) A column vector of the k-th diagonal of the matrix (i.e., non-vector) A.
diag(d) A square matrix with the main diagonal being the vector d.
diag(d, k) A square matrix with the k-th diagonal being the vector d.
triu(A) A matrix which is the same size as A and consists of the elements on and

above the main diagonal of A.
triu(A, k) A matrix which is the same size as A and consists of the elements on and

above the k-th diagonal of A. ( triu(A, 0) is the same as triu(A).)
tril(A)
tril(A, k)

} The same as the command triu except it uses the elements on and below the
main diagonal or the k-th diagonal.

repmat(A, m, n) Generates a matrix with m rows and n columns of copies of A. (If n = m
the third argument is not needed.)

reshape(A, m, n) Generates an m×n matrix whose elements are taken columnwise from A.
Note: The number of elements in A must be mn.

[] The null matrix. This is also useful for deleting elements of a vector and rows
or columns of a matrix.

2.4. Simple Arithmetical Operations

Matrix Addition:
If A, B ∈ Cm×n then the MATLAB operation

>> A + B
means A + B = (aij) + (bij) = (aij + bij). That is, the (i, j)-th element of A + B is aij + bij .

Matrix Subtraction:
If A, B ∈ Cm×n then the MATLAB operation

>> A - B
means A− B = (aij)− (bij) = (aij − bij).

Matrix Multiplication by a scalar:
If A ∈ Cm×n then for any scalar c the MATLAB operation

>> c*A
means cA = c(aij) = (caij). For example, the matrix q = (0, .1π, .2π, .3π, .4π, .5π)T can be gener-
ated by

>> q = [ 0 : .1*pi : .5*pi ]′

but more easily by
>> q = [ 0 : .1 : .5 ]′*pi

or
>> q = [0:5]′*.1*pi

Matrix Multiplication:
If A ∈ Cm×` and B ∈ C`×n then the MATLAB operation

>> A*B
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2.4. Simple Arithmetical Operations

means AB = (aij)(bij) =
(∑`

k=1 aikbkj

)
. That is, the (i, j)-th element of AB is ai1b1j + ai2b2j +

. . . + ai`b`j .
Matrix Exponentiation:

If A ∈ Cn×n and p is a positive integer, then the MATLAB operation
>> Aˆpmeans Ap = AA . . .A︸ ︷︷ ︸

p times

.

Matrix Exponentiation is also defined when p is not an integer. For example,
>> A = [1 2;3 4]; B = Aˆ(1/2)calculates a complex matrix B whose square is A. (Analytically, B2 = A, but numerically
>> Bˆ2 - A

returns a non-zero matrix — however, all of its elements are less than 10 · eps in magnitude.)
Note: For two values of p there are equivalent MATLAB commands:

A1/2 can also be calculated by sqrtm(A) and
A−1 can also be calculated by inv(A).

Matrix Division:
The expression

A

B

makes no sense in linear algebra: if B is a square non-singular matrix it might mean B−1A or it
might mean AB−1 . Instead, use the operation

>> A\b
to calculate the solution of the linear system Ax = b (where A must be a square non-singular ma-
trix) by Gaussian elimination. This is much faster computationally than calculating the solution of
x = A−1b by

>> x = inv(A)*b
Similarly,

A\B
solves Ax = b repeatedly where b is each column of B in turn.

Elementwise Multiplication:
If A, B ∈ Cm×n , then the MATLAB operation

>> A.*B
means (aijbij). That is, the (i, j)-th element of A.*B is aijbij . Note that this is not a matrix
operation, but it is sometimes a useful operation. For example, suppose y ∈ Rn has been defined pre-
viously and you want to generate the vector z = (1y1, 2y2, 3y3, . . . , nyn)T . You merely type

>> z = [1:n]′ .* y
(where the spaces are for readability). Recall that if y ∈ Cn you will have to enter

>> z = [1:n].′ .* y
because you do not want to take the complex conjugate of the complex elements of y.

Elementwise Division:
If A, B ∈ Cm×n , then the MATLAB operation

>> A./B
means (aij/bij).

Elementwise Left Division:
If A, B ∈ Cm×n , then the MATLAB operation

>> B.\A
means the same as A./B

Elementwise Exponentiation:
If A ∈ Cm×n , then

>> A.ˆpmeans (ap
ij) and

>> p.ˆA
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means (paij ). Also, if A, B ∈ Cm×n , then
A.ˆB

means
(
a

bij

ij

)
.

Where needed in these arithmetic operations, MATLAB checks that the matrices have the correct size.
For example,

>> A + B
will return an error message if A and B have different sizes, and

>> A*B
will return an error message if the number of columns of A is not the same as the number of rows of B.
Note: There is one exception to this rule. When a scalar is added to a matrix, as in A + c, the scalar is

promoted to the matrix cJ where J has the same size as A and all its elements are 1. That is,
>> A + c

is evaluated as
>> A + c*ones(size(A))

This is not a legitimate expression in linear algebra, but it is a very useful expression in MATLAB.
For example, you can represent the function

y = 2 sin(3x + 4)− 5 for x ∈ [2, 3]

by 101 data points using
>> x = [2:.01:3]′;
>> y = 2*sin(3*x + 4) - 5

This is much more intelligible than calculating y using
>> y = 2*sin(3*x + 4*ones(101, 1)) - 5*ones(101, 1)

In some courses that use vectors, such as statics courses, the dot product of the real vectors ~a and ~b is
defined by

~a q~b =
n∑

i=1

aibi .

In linear algebra this is called the inner product and is defined for vectors a, b ∈ Rn by aTb. It is calcu-
lated by

>> a′*b
(If a, b ∈ Cn the inner product is aHb and is calculated by a′*b.) The outer product of these two vectors
is defined to be abT and is calculated by

>> a*b′

(If a, b are complex the outer product is abH and is calculated by a*b′ .) It is important to keep these
two products separate: the inner product is a scalar, i.e., aTb ∈ R (if complex, aHb ∈ C ), while the outer
product is an n×n matrix, i.e., abT ∈ Rn×n (if complex, abH ∈ Cn×n ).

In linear algebra we often work with “large” matrices and are interested in the amount of “work” re-
quired to perform some operation. Previously, MATLAB kept track of the number of flops, i.e., the num-
ber of floating-pointoperations, performed during the MATLAB session. Unfortunately, this disappeared
in version 6. Instead, we can calculate the amount of CPU time† required to execute a command by us-
ing cputime. This command returns the CPU time in seconds that have been used since you began your
MATLAB session. This time is frequently difficult to calculate, and is seldom more accurate than to
1/100-th of a second. Here is a simple example to determine the CPU time required to invert a matrix.

>> n = input(′n = ′); time = cputime; inv(rand(n)); cputime - time
Warning: Remember that you have to subtract the CPU time used before the operation from the CPU

time used after the operation.
By the way, you can also calculate the wall clock time required for some sequence of commands by using

tic and toc . For example,

†The CPU, Central Processing Unit, is the “guts” of the computer, that is, the hardware that executes the
instructions and operates on the data.
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>> tic; <sequence of commands>; tic
returns the time in seconds for this sequence of commands to be performed.
Note: This is very different from using cputime. tic followed by toc is exactly the same as if you had

used a stopwatch to determine the time. Since a timesharing computer can be running many dif-
ferent processes at the same time, the elapsed time might be much greater than the CPU time.
Normally, the time you are interested in is the CPU time.

Arithmetical Matrix Operations

A + B Matrix addition.
A - B Matrix subtraction.
A*B Matrix multiplication.
Aˆn Matrix exponentiation.
A\b The solution to Ax = b by Gaussian

elimination when A is a square non-
singular matrix.

b/A Does not exist.

A.*B Elementwise multiplication.
A.ˆp Elementwise exponentiation.
p.ˆA
A.ˆB
A./B Elementwise division.
B.\A Elementwise left division, i.e., B.\A is

exactly the same as A./B.

cputime Approximately the amount of CPU time (in seconds) used during this session.
tic, toc Returns the elapsed time between these two commands.

2.5. Be Careful!

Be very careful: occasionally you might misinterpret how MATLAB displays the elements
of a vector or matrix. For example, the MATLAB command eig calculates the eigenvalues of a square
matrix. (We discuss eigenvalues in section 7.) To calculate the eigenvalues of the Hilbert matrix of or-
der 5, i.e., 

1 1/2
1/3

1/4
1/5

1/2
1/3

1/4
1/5

1/6
1/3

1/4
1/5

1/6
1/7

1/4
1/5

1/6
1/7

1/8
1/5

1/6
1/7

1/8
1/9

 ,

(we discuss this matrix in detail in subsection 5.2) enter
>> format short
>> eig(hilb(5))

MATLAB displays the eigenvalues as the column vector
ans =

0.0000
0.0003
0.0114
0.2085
1.5671

You might think the the first element of this vector is 0. However, if it was zero MATLAB would display
0 and not 0.0000. Entering

>> format short e
>> ans

displays
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ans =

3.2879e-06
3.0590e-04
1.1407e-02
2.0853e-01
1.5671e+00

which makes it clear that the smallest eigenvalue is far from zero.
On the other hand, if you enter
>> format short
>> A = [1 2 3;4 5 6;7 8 9]
>> eig(A)

MATLAB displays
ans =

16.1168
-1.1168
-0.0000

It might appear from our previous discussion that the last eigenvalue is not zero, but is simply too small
to appear in this format. However, entering

>> format short e
>> ans

displays
ans =

1.6117e+01
-1.1168e+00
-8.0463e-16

Since the last eigenvalue is close to eps, but all the numbers in the matrix A are of “reasonable size”,
you can safely assume that this eigenvalue is zero analytically. It only appears to be nonzero when calcu-
lated by MATLAB because computers cannot add, subtract, multiply, or divide correctly!

As another example of how you might misinterpret the display of a matrix, consider the Hilbert matrix
of order two

H =
(

1 1/2
1/2

1/3

)
.

We write H100 as

H100 ≈ 1010

(
1.5437 0.8262
0.8262 0.4421

)
,

while in MATLAB entering
>> format short
>> H = hilb(2)
>> Hˆ100displays
ans =

1.0e+10 *

1.5437 0.8262
0.8262 0.4421

It is very easy to miss the term “ 1.0e+10 *” because it stands apart from the elements of the matrix.
Similarly, entering
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>> format short
>> H = hilb(2)
>> ( Hˆ(1/2) )ˆ2 - H

should result in the zero matrix, since (H1/2)
2

= H. However, MATLAB displays
ans =

1.0e-15 *

0.2220 0
0 0

where, again, it is easy to miss the term “ 1.e-15 *” and not realize that this matrix is very small — in
fact, it should be zero.

2.6. Common Mathematical Functions

In linear algebra mathematical functions cannot usually be applied to matrices. For example, eA and
sin A have no meaning unless A is a square matrix. (We will discuss their mathematical definitions in
section 14.)

Here we are interested in how MATLAB applies common mathematical functions to matrices and vec-
tors. For example, you might want to take the sine of every element of the matrix A = (aij) ∈ Cm×n , i.e.,
B = (sin aij). This is easily done in MATLAB by

>> B = sin(A)
Similarly, if you want C = (eaij ), enter

>> C = exp(A)

Also, if you want D =
(√

aij

)
type

>> C = sqrt(A)
or

>> C = A.ˆ(1/2)All the common mathematical functions in the table entitled “Some Common Real Mathematical Func-
tions” in subsection 1.5 can be used in this way.

As we will see in the section on graphics, this new interpretation of mathematical functions makes it
easy in MATLAB to graph functions without having to use the MATLAB programming language.

2.7. Data Manipulation Commands

MATLAB has a number of “simple” commands which are used quite frequently. Since many of them
are quite useful in analyzing data, we have grouped them around this common “theme”.

To calculate the maximum value of the vector x, type
>> m = max(x)

If you also want to know the element of the vector which contains this maximum value, type
>> [m, i] = max(x)

If the elements of the vector are all real, the result of this command is the element which has the maxi-
mum value. However, if any of the elements of x are complex (i.e., non-real), this command has no math-
ematical meaning. MATLAB defines this command to determine the element of the vector which has the
maximum absolute value of the elements of x.
Warning: Make sure you understand the description of max if you every apply it to non-real vectors. For

example, if x = (−2, 1)T then max(x) returns 1 as expected. However, if x = (−2, i)T then
max(x) returns −2. This is because the element which has the largest absolute value is −2.
Thus, if x is a non-real vector, then max(x) is not the same as max(abs(x)).

Since the columns of the matrix A can be considered to be vectors in their own right, this command
can also be applied to matrices. Thus,

>> max(A)
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returns a row vector of the maximum element in each of the columns of A if all the elements of A are
real. If any of the elements of A are non-real, this command returns the element in each column which
has the maximum absolute value of all the elements in that column.

To find the maximum value of an entire real matrix, type
>> max(max(A))

or
>> max(A(:))

and to find the maximum absolute value of an entire real or complex matrix, type
>> max(max(abs(A)))

or
>> max(abs(A(:)))

The command min acts similarly to max except that it finds the minimum value (or element with the
minimum absolute value) of the elements of a vector or the columns of a matrix.

To calculate the sum of the elements of the vector x, type
>> sum(x)

sum behaves similarly to max when applied to a matrix. That is, it returns the row vector of the sums
of each column of the matrix. This command is sometimes useful in adding a deterministic series. For
example,

>> 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12 + ...
1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20

is entered much more easily as
>> sum(ones(1, 20)./[1:20])

or even as
>> sum(1./[1:20])

The mean, or average, of these elements is calculated by
>> mean(x)

where mean(x) = sum(x)/length(x).
std calculates the standard deviation of the elements of a vector. The standard deviation is a measure

of how much a set of numbers “vary” and is defined as

std(x) =

√√√√ 1
n

n∑
i=1

(
xi − 〈 x 〉

)2
where 〈 x 〉 is the mean of the elements.

MATLAB can also sort the elements of the vector x in increasing order by
>> sort(x)

If the vector is non-real, the elements are sorted in increasing absolute value. (If two elements have the
same absolute value, the one with the smaller absolute angle in polar coordinates is used.)

The MATLAB command diff calculates the difference between successive elements of a vector. For
example, if x ∈ Rn then the command

>> s = diff(x)

generates the vector s ∈ Rn−1 which is defined by si = xi+1 − xi . There are a number of uses for this
command. For example,
• if s has been sorted, then diff(s) == 0 can be used to test if any elements of s are repeated (or

the number that are repeated.
• similarly, all(diff(x)) > 0 tests if the elements of s are monotonically increasing.
• a numerical approximation to the derivative of y = f(x) can be calculated by diff(y)./diff(x).
The MATLAB function which is almost the inverse of diff is cumsum which calculates the cumu-

lative sum of the elements of a vector or matrix. For example, if s ∈ Rn−1 has been generated by s =
diff(x), then

>> c = cumsum(s)

generates the vector c ∈ Rn−1 where ci =
∑i

j=1 sj . We can recover x by
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>> xrecovered = zeros(length(x),1)
>> xrecovered(1) = x(1)
>> xrecovered(2:length(x)) = x(1) + c

There are also a number of MATLAB commands which are particularly designed to plot data. The
commands we have just discussed, such as the average and standard deviation, give a coarse measure of
the distribution of the data. To actually “see” what the data looks like, it has to be plotted. Two particu-
larly useful types of plots are histograms (which show the distribution of the data) and plots of data which
include error bars. These are both discussed in subsection 4.1.

Although it does not quite fit here, sometimes you want to know the length of a vector x, which is√
x2

1 + x2
2 + . . . x2

n . (Note that this is not length(x) which returns the number of elements in x, i.e.,
n.) This length, which is often called the Euclidean length, can be calculated by entering

>> sqrt( x′*x )
but it can be entered more easily by

>> norm(x)
(As we discuss in section 7, the norm of a vector is a more general concept than simply the Euclidean
length.)

Data Manipulation Commands

max(x) The maximum element of a real vector.
[m, i] = max(x) also returns the element which contains the maximum value in i.

max(A) A row vector containing the maximum element in each column of a matrix.
[m, i] = max(A) also returns the element in each column which contains the maxi-
mum value in i.

min(x)
min(A)

} The sum of the elements of a vector, or a row vector containing the sum of the ele-
ments in each column in a matrix.

mean(x)
mean(A)

} The mean, or average, of the elements of a vector, or a row vector containing the mean
of the elements in each column in a matrix.

norm(x) The Euclidean length of a vector.
norm(A) The matrix norm of A.

Note: the norm of a matrix is not the Euclidean length of each column in the matrix.
prod(x)
prod(A)

} The product of the elements of a vector, or a row vector containing the product of the
elements in each column in a matrix.

sort(x)
sort(A)

} Sorts the elements in increasing order of a real vector, or in each column of a real
matrix.

std(x)
std(A)

} The standard deviation of the elements of a vector, or a row vector containing the
standard deviation of the elements in each column in a matrix.

sum(x)
sum(A)

} The sum of the elements of a vector, or a row vector containing the sums of the ele-
ments in each column in a matrix.

diff(x)
diff(A)

} The difference between successive elements of a vector, or between successive elements
in each column of a matrix.

cumsum(x)
cumsum(A)

} The cumulative sum between successive elements of a vector, or between successive
elements in each column of a matrix.

2.8. Advanced Topic: Multidimensional Arrays

We have already discussed 1-D arrays (i.e., vectors) and 2-D arrays (i.e., matrices). Since these are two
of the most fundamental objects in linear algebra, there are many operations and functions which can be
applied to them. In MATLAB you can also use multidimensional arrays (i.e., n-D arrays).
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A common use for multidimensional arrays is simply to hold data. For example, suppose a company
produces three products and we know the amount of each product produced each quarter; the data nat-
urally fits in a 2-D array, i.e., (product, amount). Now suppose the company has five sales regions so we
split the amount of each product into these regions; the data naturally fits in a 3-D array, i.e., (product,
region, amount). Finally, suppose that each product comes in four colors; the data naturally fits in a 4-D
array, i.e., (product, color, region, amount).

For another example, a 3-D array might be the time evolution of 2-D data. Suppose we record a grey
scale digital image of an experiment every minute for an hour. Each image is stored as a matrix M with
mi,j denoting the value of the pixel positioned at (xi, yj). The 3-D array Mall can contain all these im-
ages: Mall(i,j,k) denotes the value of the pixel positioned at (xi, yj) in the k-th image. The entire
k-th image is Mall(:,:,k) and it is filled with the k-th image M by

>> Mall(:,:,k) = M
If you want to multiply M by another matrix A, you can use M*A or Mall(:,:,k)*A; if you want to
average the first two images you can use .5*(Mall(:,:,1)+Mall(:,:,2)).

Many MATLAB functions can be used in n-D, such as ones, rand, sum, and size. The cat func-
tion is particularly useful in generating higher-dimensional arrays. For example, suppose we have four
matrices A, B, C, and D ∈ R2×7 which we want to put into a three-dimensional array. This is easily done
by

>> ABCD = cat(3, A, B, C, D)
which concatenates the four matrices using the third dimension of ABCD. (The “3” denotes the third di-
mension of ABCD.) And it is much easier than entering

>> ABCD(:,:,1) = A;
>> ABCD(:,:,2) = B;
>> ABCD(:,:,3) = C;
>> ABCD(:,:,4) = D;

If instead, we enter
>> ABCD = cat(j, A, B, C, D)

then the four matrices are concatenated along the j-th dimension of ABCD. That is,
cat(1, A, B, C, D) is the same as [A, B, C, D] and cat(2, A, B, C, D) is the same as
[A; B; C; D].

Another useful command is squeeze which squeezes out dimensions which only have one element. For
example, if we enter

>> E = ABCD(:,2,:)
(where the array ABCD was created above), then we might think that E is a matrix whose columns consist
of the second columns of A, B, C, and D. However, size(E) = 2 1 4 so that E is a three-dimensional
array, not a two-dimensional array. We obtain a two-dimensional array by squeeze(E).

Multidimensional Array Functions

cat Concatenates arrays; this is useful for putting arrays into a higher-dimensional
array.

squeeze Removes (i.e., squeezes out) dimensions which only have one element.

2.9. Be Able To Do

After reading this section you should be able to do the following exercises. The answers are given on
page 113.

1. Consider the matrix

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .
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(a) Enter it in the following three ways:
(i) type in all 16 elements directly.
(ii) since each row is in arithmetic progression, use the colon operator to enter each row.
(iii) since each column is in arithmetic progression, use the colon operator (and the transpose opera-

tor) to enter each column.
(b) Multiply the second row of A by −9/5 , add it to the third row, and put the result back in the second
row. Do this all using one MATLAB statement.

2. Generate the tridiagonal matrix

A =


4 −1

0−1 4 −1
−1 4 −1

. . .
. . .

. . .
−1 4 −10 −1 4

 ∈ Rn×n

where the value of n has already been entered into MATLAB.

3. Generate the tridiagonal matrix

A =


1 −1

0e1 4 −1
e2 9 −1

. . .
. . .

. . .
en−1 (n− 1)2 −10 en n2

 ∈ Rn×n

where the value of n has already been entered into MATLAB.

4. Consider the matrix

A =


1 1 1 1 0 0 0 0 0 −5
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0

 .

(a) Enter it using as few keystrokes as possible. (In other words, don’t enter the elements individually.)
(b) Zero out all the elements of A below the diagonal.

5. Enter the column vector
x = (0, 1, 4, 9, 16, 25, . . . , 841, 900)T

using as few keystrokes as possible. (In other words, don’t enter the elements individually.)

6. (a) Generate a random 5×5 matrix R.
(b) Determine the largest value in each row of R and the element in which this value occurs.
(c) Determine the average value of all the elements of R.
(d) Generate the matrix S where every element of S is the sine of the corresponding element of R.
(e) Put the diagonal elements of R into the vector r.
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7. Generate the matrix

A =

 1 2 3
4 5 6
7 8 10

 .

(a) Calculate a matrix B which is the square root of A. That is, B2 = A. Also, calculate a matrix C each
of whose elements is the square root of the corresponding element of A.
(b) Show that the matrices you have obtained in (a) are correct by substituting the results back into the
original formulas.

3. Text Variables and Inline Functions

Text variables are a very minor part of MATLAB, which is mainly designed to perform numerical calcu-
lations. However, they perform some very useful tasks which are worth discussing now.

It is often important to combine text and numbers on a plot. Since we discuss graphics in the next sec-
tion, now is a good time to discuss how characters are stored in MATLAB variables. A character variable,
such as

>> str = ′And now for something completely different′

is simply a row vector with each character (actually its ASCII representation) being a single element.
MATLAB knows that this is a text variable, not a “regular” row vector, and so converts the numerical
value in each element into the corresponding character when it is printed out. For example, to see what is
actually contained in the vector str enter

>> str + 0
or

>> 1*str
Character variables are handled the same as vectors or matrices. For example, to generate a new text

variable which adds “– by Monty Python” to str, i.e., to concatenate the two strings, enter
>> str2 = [str ′ - by Monty Python′]

or
>> str2 = [str, ′ - by Monty Python′]

(which might be easier to read). To convert a scalar variable, or even a vector or a matrix, to a character
variable use the function num2str. For example, suppose you enter

>> x = linspace(0, 2*pi, 100)′

>> c1 = 2
>> c2 = -3
>> y = c1*sin(x) + c2*cos(x)

and want to put a description of the function into a variable. This can be done by
>> s = [ num2str(c1), ′*sin(x) + ′, num2str(c2), ′*cos(x)′]

without explicitly having to enter the values of c1 and c2.
A text variable can also contain more than one line if it is created as a matrix. For example,
>> str = [′And now for′

′something ′

′completely ′

′different ′]
is four lines long. Since str is a matrix, each row must have the same number of elements and so we have
to pad all but the longest row.

If desired, you can have more control over how data is stored in strings by using the sprintf command
which behaves very similarly to the C command. (This is discussed in detail in section 6.) Note that the
data can be displayed directly on the screen by using disp. That is, sprintf(...) generates a text
string and disp(sprintf(...)) displays it on the screen.
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3. Text Variables and Inline Functions

There also is a str2num command to convert a text variable to a number and sscanf to do the same
with more control over how the data is read. (This is also very similar to the C command, as discussed in
section 6.)

In MATLAB it is common to define a mathematical function in a separate file as we discuss in sub-
section 8.3. (This is similar to writing a function or subroutine or subprogram in a high-level computer
language.) However, if the mathematical function is particularly simple, that is, it can be written as one
simple expression, we can define it in MATLAB using the inline command. If our function is

f(< arg1 >,< arg2 >, . . . ) = < expression >

the MATLAB statement is
>> f = inline(′<expression>′, ′<arg1>′, ′<arg2>′, ...)

For example, we can define the function

f(t) = t5e−2t cos(3t)

by
>> f = inline(′t.ˆ5 .* exp(-2*t) .* cos(3*t)′, ′t′)

and then evaluate it by
>> x = [0:.01:1]′

>> fx = f(x)
>> A = rand(5)
>> fA = f(A)

More generally, we can define
g(x, y, a, b, c) = xae−bx cos(cy)

by
>> g = inline(′x.ˆa .* exp(-b*x) .* cos(c*y)′, ′x′, ′y′, ′a′, ′b′, ′c′)

or if we want g to have one vector argument, say x = (x, y, a, b, c)T by
>> g = inline(′x(1).ˆx(3) .* exp(-x(4)*x(1)) .* cos(x(5)*x(2))′, ′x′)

Since it is quite easy to forget to put dots (i.e., . ) before the mathematical operations of multiplication
(i.e., * ), division (i.e., / ), and exponentiation (i.e., ˆ), the MATLAB command vectorize does it for
you. To continue the first example,

>> f = vectorize( inline(′tˆ5 * exp(-2*t) * cos(3*t)′, ′t′) )
is equivalent to the f defined above but does not require you to remember all the dots.

Text Variable Commands

inline Creates a mathematical function.
vectorize Modifies a mathematical function created by inline so that it can

evaluate vectors or matrices.
num2str(x) Converts a variable to a string. The argument can also be a vector or

a matrix.
str2num(str) Converts a string to a variable. The argument can also be a vector or

a matrix string.
sscanf Behaves very similarly to the C command in reading data from a file

using any desired format. (See fscanf for more details.)
sprintf Behaves very similarly to the C command in writing data to a string

using any desired format. (See fprintf for more details.)
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4. Graphics

A very useful feature of MATLAB is its ability to generate high quality two- and three-dimensional
plots using simple and flexible commands. All graphical images are generated in a “graphics window”,
which is completely separate from the “text window” in which MATLAB commands are typed. Thus,
non-graphical and graphical commands can be completely intermixed.

Graphical images can be generated both from data calculated in MATLAB and from data which has
been generated outside of MATLAB. In addition, these images can be output from MATLAB and printed
on a wide variety of output devices, including color ink-jet printers and black-and-white and color laser
printers.

There are a number of demonstrations of the graphical capabilities in MATLAB which are invoked by
>> demo

Since the MATLAB commands which generate the plots are also shown, this demo makes it quite easy to
generate your own graphics. You also can have very fine control over the appearance of the plots. We be-
gin by considering only the basic commands; more advanced graphics commands are discussed in the next
section.
Note: Most MATLAB commands which take vectors as arguments will accept either row or column vec-

tors.

4.1. Two-Dimensional Graphics

The MATLAB command plot is used to constructing basic two-dimensional plots. For example, sup-
pose you want to plot the functions y1 = sin x and y2 = ecos x for x ∈ [0, 2π]; also, you want to plot
y3 = sin

(
cos(x2 − x)

)
for x ∈ [0, 8]. First, generate n data points on the curve by

>> n = 100;
>> x = 2*pi*[0:n-1]′/(n-1);
>> y1 = sin(x);
>> y2 = exp(cos(x));
>> xx = 8*[0:n-1]/(n-1);
>> y3 = sin( cos( xx.ˆ2 - xx ) );

We plot these data points by
>> plot(x, y1)
>> plot(x, y2)
>> plot(xx, y3)

Note that the axes are changed for every plot so that the curve just fits inside the axes. We can generate
the x coordinates of the data points more easily by

>> x = linspace(0, 2*pi, n);
>> xx = linspace(0, 8, n);

The linspace command has two advantages over the colon operator:
(1) the endpoints of the axis and the number of points are entered directly as

>> x = linspace(<first point>, <last point>, <number of points>)
so it is much harder to make a mistake; and

(2) round-off errors are minimalized so you are guaranteed that x has exactly n elements, and its first
and last elements are exactly the values entered into the command.†

To put all the curves on one plot, type
>> plot(x, y1, x, y2, xx, y3)

†As we discussed previously, it is very unlikely (but it is possible) that round-off errors might cause the
statement

>> x = [0: 2*pi/(n-1): 2*pi]′;

to return n− 1 elements rather than n. This is why we used the statement

>> x = 2*pi*[0:n-1]′/(n-1);

above, which does not suffer from round-off errors because the colon operator is only applied to integers.
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Each curve will be a different color — but this will not be visible on a black-and-white output device.
Instead, you can change the type of lines by

>> plot(x, y1, x, y2, ′--′, xx, y3, ′:′)
where “ --” means a dashed line and “ :” means a dotted line. (We discuss these symbols in detail in
subsection 4.3.) In addition, you can use small asterisks to show the locations of the data points for the
y3 curve by

>> plot(x, y1, x, y2, ′--′, xx, y3, ′:*′)
These strings are used to modify the color of the line, to put markers at the nodes, and to modify the type
of line as shown in the table below. (As we discuss later in this section, the colors are defined by giving
the intensities of the red, green, and blue components.)

Customizing Lines and Markers

Symbol Color (R G B)

r red (1 0 0)
g green (0 1 0)
b blue (0 0 1)
y yellow (1 1 0)
m magenta (1 0 1)

(a deep purplish red)
c cyan (0 1 1)

(greenish blue)
w white (1 1 1)
k black (0 0 0)

Symbol Line Style

- solid line (default)
-- dashed line
: dotted line
-. dash-dot line

Marker Description

+ plus sign
o circle
* asterisk
. point
x cross
s square
d diamond

ˆ upward pointing
triangle

v downward pointing
triangle

> right pointing triangle
< left pointing triangle
p pentagram
h hexagram
(none) no marker

For example,
>> plot(x, y1, ′r′, x, y2, ′g--o′, x, y3, ′mp′)

plots three curves: the first is a red, solid line; the second is a a green, dashed line with circles at the data
points; the third has magenta pentagrams at the data points but no line connecting the points.

We can also plot the first curve, and then add the second, and then the third by
>> plot(x, y1)
>> hold on
>> plot(x, y2)
>> plot(xx, y3)
>> hold off

Note that the axes can change for every new curve. However, all the curves appear on the same plot.
In addition, you can also change the endpoints of the axes by
>> axis([-1 10 -4 4])

The general form of this command is axis([xmin xmax ymin ymax]). If you only want to set some of
the axes, set the other or others to ±Inf (−Inf if it is the minimum value and +Inf if it is the maxi-
mum). Also, you can force the two axes to have the same scale by

>> axis equal
or

>> axis image
and to have the same length by

>> axis square
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To learn about all the options for these commands, use the help or doc command.
Note: The command axis is generally only in effect for one plot. Every new plot turns it off, so it must

be called for every plot (unless hold is on ).
The plot command generates linear axes. To generate logarithmic axes use semilogx for a logarith-

mic axis in x and a linear axis in y, semilogy for a linear axis in x and a logarithmic axis in y, and
loglog for logarithmic axes in both x and y.

Polar plots can also be generated by the polar command. There is also an “easy” command for gener-
ating polar plots, namely ezpolar. For example,

>> ezpolar(f)
plots r = f(θ) for θ ∈ (0, 2π). You can also specify the endpoints as with ezplot.

Yet another command which can plot a function is ezplot. This command has three distinct uses.
First, it is “roughly” equivalent to fplot. This command is easier to use than fplot because it does
not even require you to enter the endpoints. If you do not enter them, it plots the curve in the interval
[−2π,+2π]. It does not always show quite same curve as fplot. For example, in

>> s = ′log(x)′

>> fplot(s, [-1 1])
>> ezplot(s, [-1 1])

fplot generates a spurious plot for x ∈ [−1, 0) because it plots the real part of log x while ezplot only
plots the function for x ∈ (0, 1]. Also, in

>> f = inline(′x ./ (x.ˆ2 + 0.01)′, ′x′)
>> fplot(f, [-2*pi +2*pi])
>> ezplot(f)

the vertical axis is different and fplot shows more of the curve.
For every version of MATLAB there are many functions which are not plotted “correctly” by ezplot,

especially if there are asymptotes lurking around. For example,
f = inline(′xˆ3/(xˆ2 + 3*x - 10)′, ′x′) ezplot(f, [-10, +10])

the full curve for x ∈ (−5, 2) is not shown.
Second, ezplot can plot x = x(t) and y = y(t) by
>> ezplot(x, y)

where the plot is for t ∈ [0, 2π] or
>> ezplot(x, y, [tmin, tmax])

Third, ezplot can plot implicit functions, i.e., f(x, y) = 0. For example,
>> f = inline(′(x.ˆ2 + y.ˆ2).ˆ2 - (x.ˆ2 - y.ˆ2)′, ′x′, ′y′)
>> ezplot(f)

plots the lemniscate of Bernoulli (basically an “∞” symbol). (In the above inline command, you do
not actually need the “.”’s to indicate a vector operation because ezplot uses vectorize.) To give the
endpoints of the axis, enter

>> ezplot(f, [xmin, xmax, ymin, ymax])
Again, be careful when using this command because implicit functions can be really nasty and occa-
sionally MATLAB may not get it “completely correct”.

Since you often want to label the axes and put a title on the plot, there are specific commands for each
of these. Entering

>> xlabel(<string>)
>> ylabel(<string>)
>> title(<string>)

put labels on the x-axis, on the y-axis, and on top of the plot, respectively.
There are also a number of ways to plot data, in addition to the commands discussed above. The two

we discuss here are histograms and error bars. To plot a histogram of the data stored in the vector x,
type

>> hist(x)
which draws ten bins between the minimum and maximum values of the elements in x. For example, to
see how uniform the distribution of random numbers generated by rand is, type
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>> x = rand(100000, 1);
>> hist(x)

To draw a histogram with a different number of bins, type
>> hist(x, <number of bins>)

and to draw a histogram with the centers of the bins given by the vector c, type
>> hist(x, c)

As another example, to see how uniform the distribution of Gaussian random numbers generated by
randn is, type

>> x = randn(1000, 1);
>> hist(x)

Clearly you need more random numbers to get a “good” histogram — but, at the moment, we are inter-
ested in a different point. If you rerun this command a number of times, you will find that the endpoints
of the histogram fluctuate. To avoid this “instability”, fix the endpoints of the histogram by

>> xmax = 4;
>> nrbin = 20;
>> nrdata = 1000;
>> c = xmax*[ -1+1/nrbin : 2/nrbin : 1-1/nrbin ];
>> x = randn(nrdata, 1);
>> hist(x, c)

Note that c contains the midpoints of each bin and not their endpoints. Another way to calculate c,
which might be clearer, is

>> c = linspace(-xmax+xmax/nrbin, xmax-xmax/nrbin, nrbin);
Of course, to get a “good” histogram you should increase nrbin, say to 100, and nrdata, say to
100,000. If you now rerun this code you will see a much smoother histogram.

We have already seen how to plot the vector x vs. the vector y by using the plot command. If, ad-
ditionally, you have an error bar of size ei for each point yi , you can plot the curve connecting the data
points along with the error bars by

>> errorbar(x, y, e)
Sometimes the error bars are not symmetric about the y values. In this case, you need vectors l and u
where at xi the error bars extend from yi − li to yi + ui . This is done by

>> errorbar(x, y, l, u)
Note: All the elements of l and u are non-negative.

Data can also be entered into MATLAB from a separate data file. For example,
>> M = csvread(′<file name>′)

reads in data from a file one row per line of input. The numbers in each line must be separated by com-
mas. The data can then be plotted as desired. The command csvwrite writes the elements of a matrix
into a file using the same format. (If desired, you can have much more control over how data is input and
output by using the fscanf and fprintf commands, which are similar to their C counterparts. These
commands are discussed in detail in section 6.)

The load command can also be used to read a matrix into MATLAB from a separate data file. The
data must be stored in the data file one row per line. The difference between this command and csvread
is that the numbers can be separated by commas or by spaces. The matrix is input by entering

>> load(′<file name>′)
and it is stored in the matrix named <file name-no extension> (i.e., drop the extension, if any, in the
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file name).†

Graphics can also be easily printed from within MATLAB. You can print directly from the graphics
window by going into the “File” menu item. If desired, the plot can be sent to a file rather than to an
output device. You can also store the plot in the text window by using the command print. There are
an innumerable number of printer specific formats that can be used. (See help print or doc print for
details.) If you want to save a file in postscript, you can save it in black-and-white postscript by

>> print -deps <file name b&w>
or in color postscript by

>> print -depsc <file name color>
There is a minor, but important, difference between these two files if they are printed on a black-and-
white laser printer. When the black-and-white file is printed, all the non-white colors in the plot become
black. However, when the color file is printed, the colors are converted to different grayscales. This makes
it possible to differentiate lines and/or regions.

Input-Output

csvread(′<file name>′) Reads data into MATLAB from the named file, one row per line of
input; the numbers in each line must be separated by commas.

load(′<file name>′) Reads data into MATLAB from the named file, one row per line
of input; the numbers in each line can be separated by spaces or
commas. The name of the resulting matrix is <file name>.

csvwrite(′<file name>′, A) Writes out the elements of a matrix to the named file using the same
format as csvread.

print Prints a plot or saves it in a file using various printer specific for-
mats.
For example, print -deps <file name> saves the plot in the file
using encapsulated PostScript (so it can be plotted on a PostScript
laser printer).

†The load command is a little tricky because it can read in files generated both by MATLAB (using the save
command) and by the user. For example,

>> save allvariables;

>> clear

or

>> save allvariables.mat;

>> clear

saves all the variables to the file allvariables.mat in binary format and then deletes all the variables. Entering

>> load allvariables

or

>> load allvariables.mat
loads all these variables back into MATLAB using the binary format. On the other hand, if you create a file, say
mymatrix.dat, containing the elements of a matrix and enter it into MATLAB using

>> load(′mymatrix.dat′)
you obtain a new matrix, called mymatrix, which contains these elements. Thus, the load command determines
how to read a file depending on the extension.
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Two-Dimensional Graphics

plot(x, y) Plots the data points in Cartesian coordinates. The general form of this
command is plot(x1, y1, s1, x2, y2, s2, ...) where s1, s2, . . .
are optional character strings containing information about the type of
line, mark, and color to be used.
Some additional arguments that can be used:
plot(x) plots x vs. the index number of the elements.
plot(Y) plots each column of Y vs. the index number of the elements.
plot(x,Y) plots each column of Y vs. x.
If z is complex, plot(z) plots the imaginary part of z vs. the real
part.

semilogx The same as plot but the x axis is logarithmic.
semilogy The same as plot but the y axis is logarithmic.
loglog The same as plot but both axes are logarithmic.
ezplot(′<function>′) Generates an “easy” plot (similar to fplot ) given the function f(x).

It can also plot a parametric function, i.e.,
(
x(t), y(t)

)
, or an implicit

function, i.e., f(x, y) = 0. Limits can also be specified if desired.
polar(r, theta) Plots the data points in polar coordinates.
ezpolar(′<function>′) Generate an “easy” polar plot of r = f(θ).
xlabel(<string>) Puts a label on the x-axis.
ylabel(<string>) Puts a label on the y-axis.
title(<string>) Puts a title on the top of the plot.
axis Controls the scaling and the appearance of the axes. axis equal and

axis([xmin xmax ymin ymax]) are two common uses of this command.
hold Holds the current plot ( hold on ) or release the current plot ( hold

off ).
linspace(a, b, n) Generates n equally-spaced points between a and b (inclusive).
hist(x) Plots a histogram of the data in a vector using 10 bins.

hist(x, <number of bins>) changes the number of bins.
hist(x, c) lets you choose the midpoint of each bin.

errorbar(x, y, e) Plots the data points x vs. y with error bars given by e.
errorbar(x, y, l, u) plots error bars which need not be symmetric
about y.

4.2. Three-Dimensional Graphics

The MATLAB command plot3 plots curves in three-dimensions. For example, to generate a helix
enter

>> t = linspace(0, 20*pi, 1000);
>> c = cos(t);
>> s = sin(t);
>> plot3(c, s, t)

and to generate a conical helix enter
>> t = [0 : pi/100 : 20*pi];
>> c = cos(t);
>> s = sin(t);
>> plot3(t.*c, t.*s, t)

Also, you can put a label on the z-axis by using the zlabel command. There is also an “easy” plot3
command. It generates the curve

(
x(t), y(t), z(t)

)
for t ∈ (0, 2π) by
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>> ezplot3(x, y, z)
Again, you change the domain of t by specifying the additional argument [tmin, tmax].

MATLAB also plots surfaces z = f(x, y) in three-dimensions with the hidden surfaces removed. First,
the underlying mesh must be created. The easiest way is to use the command meshgrid. This combines
a discretization of the x axis, i.e., {x1, x2, . . . , xm }, and the y axis, i.e., { y1, y2, . . . , yn }, into the rect-
angular mesh

{
(xi, yj)

∣∣ i = 1, 2, . . . ,m , j = 1, 2, . . . , n
}

in the x–y plane. The function f can then be
evaluated at these mesh nodes. For example,

>> x = [-3:0.1:3]′;
>> y = [-2:0.1:2]′;
>> [X, Y] = meshgrid(x, y);
>> F = (X + Y).*exp( -X.*X - 2*Y.*Y );
>> mesh(X, Y, F)

generates a colored, wire-frame surface whereas
>> surf(X, Y, F)

generates a colored, filled-in surface. We discuss how to change the colors, and even how to use the colors
as another variable, in the next section.

You can change the view of a three-dimensional plot by using the view command. This command is
called in either of two ways:
• First, you can give the angles from the origin of the plot to your eye by

view(<azimuth>, <elevation>)
where the azimuth is the angle in degrees in the x–y plane measured from the −y axis (so 0◦ is the
−y axis, 90◦ is the x axis, 180◦ is the y axis, etc.) and the elevation is the angle in degrees up
from the x–y plane toward the +z axis (so 0◦ is in the x–y plane, 90◦ is on the +z axis, etc.).

• Second, you can give the coordinates of a vector pointing from the origin of the plot to your eye by
view([x y z]), where you enter the coordinates of the vector.

If you type
>> contour(X, Y, F)

you will see contour plots of the surface. That is, you will be looking down the z axis at curves which
represent lines of constant elevation (i.e., constant z values). If we type

>> contour3(X, Y, F)
you will see contour plots of the surface in three dimensions. You can again change your view of these
curves by using the view command.

If you do not want to bother with generating the mesh explicitly, you can generate “easy” plots by
ezcontour, ezcontour3, ezmesh, and ezsurf.
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Three-Dimensional Graphics

plot3(x, y, z) Plots the data points in Cartesian coordinates. The general form of this com-
mand is plot(x1, y1, z1, s1, x2, y2, z2, s2, ...) where s1, s2,
. . . are optional character strings containing information about the type of
line, mark, and color to be used.

ezplot3 Generates an “easy” plot in 3-D.
mesh(X, Y, Z) Plots a 3-D surface using a wire mesh.
ezmesh Generates an “easy” 3-D surface using a wire mesh.
surf(X, Y, Z) Plots a 3-D filled-in surface.
ezsurf Generates an “easy” 3-D filled-in surface.
view Changes the viewpoint of a 3-D surface plot by

view(<azimuth>, <elevation>) or view([x y z]).
meshgrid(x, y) Generates a 2-D grid given the x-coordinates and the y-coordinates of the

mesh lines.
zlabel(<string>) Puts a label on the z-axis.
axis Controls the scaling and the appearance of the axes.

axis([xmin xmax ymin ymax zmin zmax]) changes the endpoints of the
axes.

contour(X, Y, Z) Plots a contour looking down the z axis.
ezcountour Generates an “easy” contour looking down the z axis.
contour3(X, Y, Z) Plots a contour in 3-D.
ezcontour3 Generates an “easy” contour in 3-D.

4.3. Advanced Graphics Techniques

In the previous subsections we have discussed how to use “simple” graphics commands to generate ba-
sic plots. MATLAB can also do much more “interesting” graphics, and even publication quality graphics.
Here we discuss some of the more useful advanced features. By the way, the demonstration program shows
many more of the graphics capabilities of MATLAB. Enter demo and then click on “Visualization” or on
“Language/Graphics”.

MATLAB can also plot a function instead of a set of points using two different commands. We are dis-
cussing these commands here in the advanced section because, as we will show, they do not always work
as you would wish — although they are very easy to use. The first command we discuss is fplot, which
can be executing by simply entering

>> fplot(′<function>′, <limits>)
You have great flexibility in choosing the function. For example, it can be a MATLAB function, such as

>> fplot(′tan′, [0 2])
or a string containing a valid MATLAB expression with the variable being x, such as

>> fplot(′sin(2*x) + 2*cos(sqrt(x))′, [0 10])
or even as

>> F = ′sin(2*x) + 2*cos(sqrt(x))′

>> fplot(F, [0 10])
In addition, you can code your own inline function or MATLAB function (as described in section 8.3) and
plot it. The limits are either

[xmin xmax]
in which case the y-axis just encloses the curve or

[xmin xmax ymin ymax]
in which case you are also specifying the endpoints on the y-axis.

This function generates as many data points as it considers necessary to plot the function accurately.
You can also store the data points by
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>> [x, y] = fplot(′<function>′, <limits>)
rather than having the function plotted. You then have complete control over how to plot the curve using
the plot function.
Warning: This command does not always generate the correct curve.

It is also possible to obtain the current position of the cursor within a plot by using the ginput com-
mand. For example, to collect any number of points enter

>> [x, y] = ginput
Each position is entered by pressing any mouse button or any key on the keyboard except for the carriage
return (or enter) key. To terminate this command press the return key. To enter exactly n positions, use
ginput(n). You can terminate the positions at any time by using the return key. Finally, to determine
which mouse button or key was entered, use

>> [x, y, button] = ginput
The vector button contains integers specifying which mouse button (1 = left, 2 = center, and 3 = right)
or key (its ASCII representation) was pressed.

Labels can also be added to a plot. Text can be placed anywhere inside the plot using
>> text(xpt, ypt, <string>)

The text is placed at the point (xpt,ypt) in units of the current plot. The default is to put the center of
the left-hand edge of the text at this point. There are many properties of the text that can be changed in
the text command by

>> text(xpt, ypt, <string>, ′<Name 1>′, <Value 1>, ′<Name 2>′, <Value 2>, . . . )
The name of the desired property is given first, and then its value. As many properties as desired can be
entered. Some of the properties are shown in the table below.

Text Properties

Clipping on — (default) Any portion of the text that extends outside the axes rect-
angle is clipped
off — No clipping is done.

FontName The name of the font to use. (The default is Helvetica.)
FontSize The font point size. (The default is 10 point.)
HorizontalAlignment left — (default) Text is left-justified

center — Text is centered.
right — Text is right justified.

Rotation The text orientation. The property value is the angle in degrees.
VerticalAlignment top — The top of the text rectangle is at the point.

cap — The top of a capital letter is at the point.
center — (default) The text is centered vertically at the point.
baseline — The baseline of the text is placed at the point.
bottom — The bottom of the text rectangle is placed at the point.

You can also use the mouse to place text inside the plot using
>> gtext(<string>)

or
>> gtext(<string>, ′<Name 1>′, <Value 1>, ′<Name 2>′, <Value 2>, . . . )

The text is fixed by depressing a mouse button or any key.
You can also change the default properties for xlabel, ylabel, zlabel, and title. For example, to

add a large title, enter
>> title(′And now for something completely different′, ′FontSize′, 16)

If more than one curve appears on a plot, you might want to label each curve. This can be done directly
using the text or gtext command. Alternatively, a legend can be put on the plot by

>> legend(<string1>, <string2>, . . . )

42



4.3. Advanced Graphics Techniques

Each string appears on a different line preceded by the type of line (so you should use as many strings as
there are curves). The entire legend is put into a box and it can be moved within the plot by using the
left mouse button.

TEX commands can be used in these strings to modify the appearance of the text. The results are
similar, but not quite identical, to the appearance of the text from the TEX program (so do some exper-
imenting). Most of the “common” TEX commands can be used, including Greek letters; also, “ˆ” and
“ ” are used for superscripts and subscripts. For example, the x-axis can be labelled α2 and the y-axis∫ α

0
f(x) dx by
>> xlabel(′\alphaˆ2′)
>> ylabel(′\int 0ˆ\pi\betaf(x) dx′)

To see the complete list of TEX commands, enter
>> doc text

and then click on the highlighted word “string”.
Note: For you TeXers note the funny control sequence “\betaf(x)” which generates βf(x). If you would

have typed “\beta f(x)” you would have obtained β f(x) because MATLAB preserves spaces. If
typing “\betaf(x)” sets your teeth on edge, try “\beta{}f(x)” instead.

It is frequently important for the title to include important information about the plot. For example,
suppose you enter

>> x = linspace(0, 2*pi, 100)
>> c1 = 2
>> c2 = -3
>> p1 = 1
>> p2 = 3
>> y = c1*sin(x).ˆp1 + c2*cos(x).ˆp2
>> plot(x, y)

and you want to “play around” with the two coefficients to obtain the most “pleasing” plot. Then you
probably should have the title include a definition of the function — and you should not have to modify
the title every time you change the coefficients. This can be done by

>> t = [ num2str(c1), ′*sinˆ{ ′, num2str(p1), ′ } (x) + ′, num2str(c2), ...
′*cosˆ{ ′, num2str(p2), ′ } (x)′]
>> title(t)

where we create the text variable t simply to make the example easier to read. (Alright, this isn’t a great
example, but it’s better than nothing.)

You can display m plots horizontally and n plots vertically in one graphics window by
>> subplot(m, n, p)

This divides the graphics window into mn rectangles and selects the p-th rectangle for the current plot.
All the graphics commands work as before, but now apply only to this particular rectangle in the graphics
window. You can “bounce” between these different rectangles by calling subplot repeatedly for different
values of p.

You can also put plots in a new graphics window by entering
>> figure

This creates a new window and makes it the current target for graphics commands. You can “bounce”
between graphics windows by entering

>> figure(n)
where n is the number of the graphics window you want to make current. (The number of each window
appears at the top.)

Occasionally, it is useful to clear a figure. For example, suppose you divide a window into a 2×2 ar-
ray of plotting regions and use subplot to put a plot into each region; you then save the figure into a
file. Next, you only want to put plots into two of these four regions. The difficulty is that the other two
regions will still contain the previous plots. You can avoid this difficulty by clearing the figure using clf
which clears the current figure. You can clear a particular figure by clf(n).

All the above MATLAB commands can be used for 3-D graphics except for gtext. The text com-
mand is the same as described above except that the position of the text requires three coordinates, i.e.,
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>> text(x, y, z, <string>)
or

>> text(x, y, z, <string>, ′<Name 1>′, <Value 1>, ′<Name 2>′, <Value 2>, . . . )
The new command

>> zlabel(<string>)
is needed to label the z-axis.

If the need arises, the user can obtain much finer control over the display of the plot. This is docu-
mented in Using MATLAB Graphics by The MathWorks, Inc.

As we discussed in the previous section, the mesh and surf commands allow us to plot a surface in
three dimensions where the colors on the surface represent its height. We can add a rectangle which con-
tains the correspondence between the color and the height of the surface by adding

>> colorbar
We can also let the colors represent a separate quantity C, which is also defined at each mesh point, by
changing the command to

>> mesh(X, Y, F, C)
or

>> surf(X, Y, F, C)
Each graphics window has a separate color map associated with it. This color map is simply an n×3

matrix, where each element is a real number between 0 and 1 inclusive. In each row the first column
gives the intensity of the color red, the second column green, and the third column blue; these are called
the RGB components of a color. For example, we show the RGB components of cyan, magenta, yellow,
red, blue, green, white, and black in the table “Customizing Lines and Markers” at the beginning of this
section. The value input to this color map is the row representing the desired color. (If this value is not
an integer, it is truncated to an integer. If this integer is < 1 the value 1 is used; if it is > n the value
n is used.) For mesh or surf the value of F (or of C if there is a fourth argument) is linearly rescaled
so its minimum value is 1 and its maximum value is n. To see the current color map, enter

>> colormap
To change the color map, enter

>> colormap(<color map>)
where <color map> can be an explicit n×3 matrix of the desired RGB components or it can be a string
containing the name of an existing color map. The existing color maps can be found by typing

>> help graph3d
A useful color map for outputting to laser printers is ′gray′ . In this colormap all three components of
each row have the same value so that the colors change gradually from black through gray (RGB compo-
nents [.5 .5 .5]) to white.

MATLAB can also plot a two-dimensional image (i.e., a picture) which is represented by a matrix
X ∈ Rm×n . The (i, j)-th element of X specifies the color to use in the current color map. This color
appear in the (i, j)-th rectilinear patch in the plot. For example, to display the color image of a clown
enter

>> load clown
>> image(X);
>> colormap(map)

The image command inputs the matrix X and the colormap map from clown.mat. Then the image is
displayed using the new color map. Similarly,

>> load earth
>> image(X);
>> colormap(map);
>> axis image

displays an image of the earth. (The axis command forces the earth to be round, rather than elliptical.)
(In the demonstration program, after clicking on “Visualization” double-click on “Image colormaps” to see
the images which you can access in MATLAB and the existing color maps.)

MATLAB can also fill-in two-dimensional polygons using fill or three-dimensional polygons using
fill3. For example, to draw a red circle surrounding a yellow square, enter
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>> t = linspace(0, 2*pi, 100);
>> s = 0.5;
>> xsquare = [-s s s -s]′;
>> ysquare = [-s -s s s]′;
>> fill(cos(t), sin(t), ′r′, xsquare, ysquare, ′y′)
>> axis equal;

To obtain a more interesting pattern replace the above fill command by
>> colormap(′hsv′);
>> fill(cos(t), sin(t), [1:100], xsquare, ysquare, [100:10:130])

Rather than entering polygons sequentially in the argument list, you can enter
>> fill(X, Y, <color>)

where each column of X and Y contain the endpoints of a different polygon. Of course, in this case the
number of endpoints of each polygon must be the same, by padding if necessary. For example, to draw a
cube with all the faces having a different solid color, input the matrices

X =


0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 1
0 1 1 0 0 0

 , Y =


0 0 1 1 0 0
0 1 1 0 0 0
0 1 1 0 1 1
0 0 1 1 1 1

 , Z =


0 0 1 0 0 1
0 0 1 0 0 1
1 1 1 1 0 1
1 1 1 1 0 1

 .

Then enter
>> fill3(X, Y, Z, [1:6])
>> axis equal

Change your orientation using view to see all six faces. Read the documentation on fill and fill3 for
more details.

Advanced Graphics Features: Plots

clf Clear a figure (i.e., delete everything in the figure
colorbar Adds a color bar showing the correspondence between the value

and the color.
colormap Determines the current color map or choose a new one.
demo Runs demonstrations of many of the capabilities of MATLAB.
figure Creates a new graphics window and makes it the current tar-

get.
figure(n) makes the n-th graphics window the current target.

fill(x, y, <color>) Fills one or more polygons with the color or colors specified by
the vector or string <color>.

fill3(x, y, z, <color>) Fills one or more 3D polygons with the color or colors specified
by the vector or string <color>.

fplot(′<function>′, <limits>) Plots the specified function within the limits given. The limits
can be [xmin xmax] or [xmin xmax ymin ymax].

image Plots a two-dimensional image.
subplot(m, n, p) Divides the graphics window into m×n rectangles and selects

the p-th rectangle for the current plot.
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Advanced Graphics Features: Text and Positioning

ginput Obtains the current cursor position.
text(x, y, <string>)
text(x, y, z, <string>)

} Adds the text to the location given in the units of the current plot.
Its properties can be changed by
text(x, y, <string>, ′<Name 1>′, <Value 1>, ...).

gtext(<string>) Places the text at the point given by the mouse. Its properties can be
changed by
gtext(<string>, ′<Name 1>′, <Value 1>, ...).

legend(<string 1>, ...) Places a legend on the plot using the strings as labels for each type of
line used. The legend can be moved by using the mouse.

4.4. Be Able To Do

After reading this section you should be able to do the following exercises. The answers are given on
page 113.

1. Plot ex and one of its Taylor series approximations.
(a) Begin by plotting ex for x ∈ [−1,+1].
(b) Then plot

1 +
x

1!
+

x2

2!
+

x3

3!
on the same graph.
(c) Also plot the difference between ex and this cubic polynomial on the same graph.
(d) Finally, generate a new graph containing all three curves by using only one plot command, force the
axes to be to the same scale, and let all three curves have different colors. Put labels on the x and y
axes and a silly title on the entire plot.

2. Consider the function
f(x, y) = (x2 + 4y2) sin(2πx) sin(2πy) .

(a) Plot this function for x, y ∈ [−2,+2].
Note: Make sure you use the “ .∗” operator in front of each sine term. What does the surface look like if

you don’t?
(b) This surface has high peaks which interfere with your view of the surface. Change your viewpoint so
you are looking down at the surface at such an angle that the peaks do not block your view of the central
valley.
Note: There are an infinite number of answers to this part.

5. Solving Linear Systems of Equations

One of the basic uses of MATLAB is to solve the linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

..

.
..
.

aj1x1 + aj2x2 + . . . + ajnxn = bj

..

.
..
.

am1x1 + am2x2 + . . . + amnxn = bm ,
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or the equivalent matrix equation
Ax = b .

Note that there are m equations in n unknowns so that there may be zero solutions to this linear sys-
tem, one solution, or an infinite number of solutions. We will discuss the case where m 6= n in detail in
subsection 5.3. Here we concentrate on m = n.

5.1. Square Linear Systems

As we discussed previously, when m = n the MATLAB operation
>> x = A\b

calculates the unique solution x by Gaussian elimination when A is nonsingular. However, when A is
singular there are either zero solutions or an infinite number of solutions to this equation and a different
approach is needed.

In this case the appropriate MATLAB command system is rref. It begins by applying Gaussian elim-
ination to the linear system of equations. However, it doesn’t stop there; it continues until it has zeroed
out all the elements it can, both above the main diagonal as well as below it. When done, the linear sys-
tem is in reduced row echelon form:
• The first nonzero coefficient in each linear equation is a 1 (but a linear equation can be simply 0 = 0

in which case it has no nonzero coefficient).
• The first nonzero term in a particular linear equation occurs later than in any previous equation.

That is, if the first nonzero term in the j-th equation is xkj
and in the j+1-st equation is xkj+1 ,

then kj+1 > kj .
To use rref, the linear system must be written in augmented matrix form, i.e.,


x1 x2 . . . xn = rhs

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

..

.
..
. . . . ..

.
..
.

am1 am2 . . . amn bm

 .

Warning: It is very important to realize that an augmented matrix is not a matrix (because the
operations we apply to augmented matrices are not the operations we apply to matrices). It is
simply a linear system of equations written in shorthand: the first column is the coefficients of
the x1 term, the second column is the coefficients of the x2 term, etc., and the last column is
the coefficients on the right-hand side. The vertical line between the last two columns repre-
sents the equal sign. Normally, an augmented matrix is written without explicitly writing the
header information; however, the vertical line representing the equal sign should be included to
explicitly indicate that this is an augmented matrix.

rref operates on this augmented matrix to make as many of the elements as possible zero by using al-
lowed operations on linear equations — these operations are not allowed on matrices, but only on linear
systems of equations. The result is an augmented matrix which, when written back out as a linear system
of equations, is particularly easy to solve. For example, consider the system of equations

x1 + 2x2 + 3x3 = −1
4x1 + 5x2 + 6x3 = −1
7x1 + 8x2 + 10x3 = 0 ,

which is equivalent to the matrix equation Ax = b where

A =

 1 2 3
4 5 6
7 8 10

 and b =

−1
−1
0

 .
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The augmented matrix for this linear system is


x1 x2 x3 = rhs
1 2 3 −1
4 5 6 −1
7 8 10 0

 .

(We have included the header information for the last time.) Entering
>> rref([A b])

returns the augmented matrix  1 0 0 2
0 1 0 −3
0 0 1 1

 .

Clearly, the solution of the linear system is x1 = 2, x2 = −3, and x3 = 1.
Of course, you could just as easily have found the solution by
>> x = A\b

so let us now consider the slightly different linear system

x1 + 2x2 + 3x3 = −1
4x1 + 5x2 + 6x3 = −1
7x1 + 6x2 + 9x3 = −1 ,

This is equivalent to the matrix equation Ax = b where

A =

 1 2 3
4 5 6
7 8 9

 and b =

−1
−1
−1

 .

Since A is a singular matrix, the linear system has either no solutions or an infinite number of solutions.
The augmented matrix for this linear system is 1 2 3 −1

4 5 6 −1
7 8 9 0

 .

Entering
>> rref([A b])

returns the augmented matrix  1 0 −1 1
0 1 2 −1
0 0 0 0

 ,

so the solution of the linear system is x1 = 1 + x3 and x2 = −1− 2x3 for any x3 ∈ R (or C if desired).
In vector form, the solution isx1

x2

x3

 =

 1 + x3

−1− 2x3

x3

 =

 1
−1
0

+

 x3

−2x3

x3

 =

 1
−1
0

+ x3

 1
−2
1

 .

Suppose you modify the matrix equation slightly by letting b = (−1,−1, 0)T . Now entering
>> rref([A b])

results in the augmented matrix  1 0 −1 1
0 1 2 −1
0 0 0 1

 .
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Since the third equation is 0 = 1, there is clearly no solution to the linear system.
Warning: The command rref does not always give correct results. For example, if

C =
(

0.95 0.03
0.05 0.97

)
then the matrix I− C is singular (where I is the identity matrix). However, if you solve
(I− C)x = 0 by

>> C = [0.95 0.03; 0.05 0.97];
>> rref([eye(size(C))-C [0 0]′])

MATLAB displays
ans =

1 0 0
0 1 0

which indicates that the only solution is x = 0. On the other hand, if you enter
>> C = [0.95 0.03; 0.05 0.97]; b = 1;
>> rref([eye(size(C))-C [b 0]′])

then MATLAB realizes that I− C is singular. Clearly there is some value of b between 0
and 1 where MATLAB switches between believing that I− C is non-singular and singular.†

Solving Linear Systems

rref Calculates the reduced row echelon form of a matrix or an augmented matrix.

5.2. Catastrophic Round-Off Errors

We have mentioned repeatedly that computers cannot add, subtract, multiply, or divide cor-
rectly! Up until now, the errors that have resulted have been very small. Now we present two examples
where the errors are very large.

In this first example, the reason for the large errors is easy to understand. Consider the matrix

Aε =

 1 2 3
4 5 6
7 8 9 + ε

 ,

which is singular when ε = 0 and nonsingular otherwise. But how well does MATLAB do when ε � 1?
Enter

>> eps = input(′eps = ′); A = [1 2 3;4 5 6;7 8 9+eps]; inv(A)*A - eye(size(A))

†To understand this “switch”, look at the actual coding of rref. It uses the variable tol to determine
whether an element of the augmented matrix„

0.05 −0.03 b1

−0.05 0.03 b2

«
is “small enough” that it should be set to 0. tol is (essentially) calculated by

tol = max(size(<augmented matrix>)) * eps * norm(<augmented matrix>, inf);
The maximum of the number of rows and columns of the augmented matrix, i.e., max(size(...)), is multiplied
by eps and this is multiplied by the “size” of the augmented matrix. ( norm in section 7.) Since b is the last
column of the augmented matrix, the “size” of this matrix depends on the size of the elements of b. Thus, the
determination whether a number “should” be set to 0 depends on the magnitude of the elements of b.

You can obtain the correct answer to the homogeneous equation by entering

>> rref([eye(size(C))-C [0 0]′], eps)

which decreases the tolerance to eps.
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so that the final matrix should be O. Begin by letting ε = 0 and observe that the result displayed is
nowhere close to the zero matrix! However, note that MATLAB is warning you that it thinks something is
wrong with the statement

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.055969e-18.

( RCOND is its estimate of the inverse of the condition number. See cond in section 7 for more details.)
Now choose some small nonzero values for ε and see what happens. How small can ε be before MAT-
LAB warns you that the matrix is “close to singular or badly scaled”? In this example, you know that the
matrix is “close to singular” if ε is small (but nonzero) even if MATLAB does not. The next example is
more interesting.

For the second example, consider the Hilbert matrix of order n, i.e.,

Hn =


1 1/2 1/3 . . . 1/n

1/2 1/3 1/4 . . . 1/(n + 1)
1/3 1/4 1/5 . . . 1/(n + 2)
..
.

..

.
..
. . . . ..

.

1/n 1/(n + 1) 1/(n + 2) . . . 1/(2n− 1)

 ,

which is generated in MATLAB by
>> H = hilb(n)

There does not seem to be anything particularly interesting, or strange, about this matrix; after all,
hij = 1/(i + j − 1) so the elements are all of “reasonable” size. If you type

>> n = 10; H = hilb(n); ( Hˆ(1/2) )ˆ2 - H
the result is not particularly surprising. The resulting matrix should be the zero matrix, but, because of
round-off errors, it is not. However, every element is in magnitude less than 10−15 , so everything looks
fine.

However, suppose you solve the matrix equation

Hx = b

for a given b. How close is the numerical solution to the exact solution? Of course, the problem is: how
can you know what the analytical solution is for a given b? The answer is to begin with x and calcu-
late b by b = Hx. Then solve Hx = b for x and compare the final and initial values of x. Do this in
MATLAB by

>> x = rand(n, 1); b = H*x; xnum = H\b
and compare x with xnum by calculating their difference, i.e.,

>> x - xnum
The result is not very satisfactory: the maximum difference in the elements of the two vectors is usually
somewhere between 10−5 and 10−3 . That is, even though all the calculations have been done to approx-
imately 16 significant digits, the result is only accurate to three to �ve significant digits! (To see how
much worse the result can be, repeat the above commands for n = 12.)

It is important to realize that most calculations in MATLAB are very accurate. It is not that solving
a matrix equation necessarily introduces lots of round-off errors; instead, Hilbert matrices are very “un-
stable” matrices — working with them can lead to inaccurate results. On the other hand, most matrices
are quite “stable”. For example, if you repeat the above sequence of steps with a random matrix, you find
that the results are quite accurate. For example, enter

>> n = 200; R = rand(n); x = rand(n, 1); b = R*x; xnum = R\b; max(abs(x - xnum))
The results are much more reassuring, even though n is 20 times as large for this random matrix as for
the Hilbert matrix — and even though there are over 7000 times as many floating point operations needed
to calculate x by Gaussian elimination for this random matrix.
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5.3. Overdetermined and Underdetermined Linear Systems

If A ∈ Cm×n where m > n, Ax = b is called an overdetermined system because there are more equa-
tions than unknowns. In general, there are no solutions to this linear equation. (However, to be sure use
rref.) However, you can find a “best” approximation by finding the solution for which the vector

Ax− b

is smallest in Euclidean length; that is, norm(A*x - b) is minimized. This is called the least-squares
solution. This best approximation is calculated in MATLAB by typing

>> A\b
Analytically, the approximation can be calculated by solving

ATAx = ATb .

However, numerically this is less stable than the method used in MATLAB.
Note that this is the same command used to find the solution to a square linear system. This cannot be

the intent here since A is not a square matrix. Instead, MATLAB interprets this command as asking for
the least-squares solution. Again, this command only makes sense if there is a unique solution which mini-
mizes the length of the vector Ax− b. If there are an infinite number of least-squares solutions, MATLAB
warns you of this fact and then returns one of the solutions. For example, if

A =


1 2 3
4 5 6
7 8 9
10 11 12

 and b =


2
1
2
4


then Ax = b has no solutions, but has an infinite number of least-square approximations. If you enter

>> A\b
the response is

Warning: Rank deficient, rank = 2 tol = 1.4594e-14.
It also returns the solution (−1/4 , 0, 29/60)T (after using the MATLAB command rats which we discuss
below), which is one particular least-squares approximation. To find all the solutions, you can use rref
to solve ATAx = ATb. (If A is complex, solve AHAx = AHb.)

Occasionally, if there are an infinite number of least-squares approximations, the solution desired is the
“smallest” one, i.e., the x for which the length of the vector x is minimized. This can be calculated using
the pseudoinverse of A, denoted by A+ . Since A is not square, it cannot have an inverse. However, the
pseudoinverse is the unique n×m matrix which satisfies the Moore-Penrose conditions:
• AA+A = A
• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A
In particular, if A is a square nonsingular matrix, then A+ is precisely A−1 . This pseudoinverse is calcu-
lated in MATLAB by entering

>> pinv(A)
The reason for mentioning the pseudoinverse of A is that the least-squares approximation to Ax = b can
also be calculated by

>> pinv(A)*b
If there are an infinite number of least-squares approximations, this returns the one with the smallest
length.

Next, suppose that A ∈ Cm×n with m < n. Ax = b is called an underdetermined system because there
are less equations than unknowns. In general, there are an infinite number of solutions to this equation.
We can find these solutions by entering

>> rref([A b])
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and solving the result for x. We can find one particular solution by entering
>> A\b

This solution will have many of its elements being 0. We can also find the solution with the smallest
length by entering

>> pinv(A)*b
Warning: It is possible for an overdetermined system to have one or even an infinite number of solutions

(not least-squares approximations). It is also possible for an underdetermined system to have
no solutions. The way to check the number of solutions is to use the rref command.

One command which is occasionally useful is rats. If all the elements of A and b are rational num-
bers, then the solution and/or approximation obtained is usually a rational number, although stored as
a floating-point number. This command displays a “close” rational approximation to the floating-point
number, which may or may not be the exact answer. For example, entering

>> rats(1/3 - 1/17 + 1/5)
results in the text variable 121/255, which is the correct answer.

Solving Linear Systems

A\b When Ax = b is an overdetermined system, i.e., m > n where A ∈ Cm×n , this is the
least-squares approximation; when it is an underdetermined solution, i.e., m < n, this is
a solution which has 0 in many of its elements.

pinv(A) The pseudoinverse of A.

rats(x) Calculates a “close” approximation to the floating-point number x. This is frequently
the exact value.

6. File Input-Output

In section 4.1 we discussed the csvread and csvwrite commands which allow simple input from and
output to a file. The MATLAB commands fscanf and fprintf, which behave very similarly to their C
counterparts, allow much finer control over input and output. Before using them a file has to be opened
by

>> fid = fopen(′<file name>′, <permission string>)
where the file identifier fid is a unique nonnegative integer attached to the file. (Three file identifiers al-
ways exist as in C: 0 is the standard input, 1 is the standard output, and 2 is the standard error.) The
permission string specifies how the file is to be accessed:

′r′ read only from the file.
′w′ write only to the file (anything previously contained in the file is overwritten). If necessary, the

file is created.
′a′ append to the end of the file (everything previously contained in the file is retained).

′r+′ read from and write to the file (anything previously contained in the file is overwritten).
′w+′ read from and write to the file (anything previously contained in the file is overwritten). If neces-

sary, the file is created.
If the fopen command fails, −1 is returned in the file identifier. Enter

>> fclose(fid)
if a file needs to be closed.

To write formatted data to a file, enter
>> fprintf(fid, <format string>, <variable 1>, <variable 2>, ...)

The elements contained in the variables are written to the file specified in a previous fopen command ac-
cording to the format string. If fid is omitted, the output appears on the screen. The format string is
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very similar to that of C, with the exception that the format string is cycled through until the end of the
file is reached or the number of elements specified by size is attained.

To briefly review some of the C format specifications, the conversion characters are:
d – The argument is converted to decimal notation.
c – The argument is a single character.
s – The argument is a string.
e – The argument is a floating-point number in “E” format.
f – The argument is a floating-point number in decimal notation.
g – The argument is a floating-point number in either “E” or decimal notation.

Each conversion character is preceded by “%”. The following may appear between the “%” and the con-
version character:
• A minus sign which specifies left adjustment rather than right adjustment.
• An integer which specifies a minimum field width.
• If the maximum field width is larger than the minimum field width, the minimum field width is pre-

ceded by an integer which specifies the maximum field width, and the two integers are separated by a
period.

fprintf can also be used to format data on the screen by omitting the fid at the beginning of the
argument list. Thus, it is possible to display a variable using as little or as much control as desired. For
example, if x contains −23.6 three different ways to display it are

>> x
>> disp([′x = ′, num2str(x)])
>> fprintf(′%12.6e\n′, x)

and the results are

x =

-23.6000

x = -23.6000
-2.360000e+01

To read formatted data from a file, enter
>> A = fscanf(fid, <format string>, <size>)

The data is read from the file specified in a previous fopen command according to the format string and
put into the matrix A. The size argument, which puts an upper limit on the amount of data to be read, is
optional. If it is a scalar, or is not used at all, A is actually a vector. If it is m n], then A is a matrix of
this size.

Advanced Input-Output

fopen(′<file name>′,
<permission string>)

Opens the file with the permission string determining how the
file is to be accessed. The function returns the file identifier,
which is a unique nonnegative integer attached to the file.

fclose(fid) Closes the file with the given file identifier.
fscanf(fid, <format string>) Behaves very similarly to the C command in reading data from

a file using any desired format.
fprintf(fid, <format string>,
<variable 1>,...)

Behaves very similarly to the C command in writing data to a
file using any desired format.

fprintf(<format string>, <vari-
able 1>,...)

Behaves very similarly to the C command in displaying data on
the screen using any desired format.
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7. Some Useful Linear Algebra Commands

We briefly describe in alphabetical order some of the MATLAB commands that are most useful in lin-
ear algebra. Most of these discussions can be read independently of the others. Where this is not true, we
indicate which should be read first.

chol

Let A ∈ Rn×n be symmetric and positive definite†. Then there exists an upper triangular matrix R
such that RTR = A. R is calculated by

>> R = chol(A)

If A is not positive definite, an error message is printed. (If A ∈ Cn×n then RHR = A.)

cond

Note: Read the discussion on norm below first.
The condition number of A ∈ Cn×n , which is denoted by cond(A), is a positive real number which is

always ≥ 1. It measures how “stable” A is: if cond(A) = ∞ the matrix is singular, while if cond(A) = 1
the matrix is as nice a matrix as you could hope for — in particular, cond(I) = 1. To estimate the num-
ber of digits of accuracy you might lose in solving the linear system Ax = b, enter

log10(cond(A))
In subsection 5.2 we discussed the number of digits of accuracy you might lose in solving Hx = b where

H is the Hilbert matrix of order 10. In doing many calculations it was clear that the solution was only ac-
curate to 3 to 5 significant digits. Since cond(H) is 1.6×1013 , it is clear that you should lose about 13 of
the 16 digits of accuracy in this calculation. Thus, everything fits.

If A is nonsingular, the condition number is defined by

condp(A) = ‖A‖p ‖A−1‖p for p ∈ [1,∞]
or

condF(A) = ‖A‖F ‖A−1‖F .

It is calculated in MATLAB by
>> cond(A, p)

where p is 1, 2, Inf, or ′fro′ . If p = 2 the command can be shortened to
>> cond(A)

Note that the calculation of the condition number of A requires the calculation of the inverse of A.
The MATLAB command condest approximates the condition number without having to calculate this
inverse. See the discussion of this command below for further information on when it might be preferable.
Note: Sometimes we want to solve, or find the “best” approximation to, Ax = b when A ∈ Cm×n is not

a square matrix. (This is discussed in detail in subsection 5.3.) Since we still want to know the ac-
curacy of any solution, we want to generalize the condition number to nonsquare matrices. This is
done by defining the condition number of a nonsquare matrix in the 2-norm to be the ratio of the
largest to the smallest singular value of A, i.e., σ1/σmin{m,n} .

condest

Note: Read the discussion on cond above first.
The calculation of the condition number of A ∈ Cn×n requires the calculation of its inverse. There are

two reasons this might be inadvisable.
• The calculation of A−1 requires approximately 2n3 flops, which might take too long if n is very

large.

†A ∈ Rn×n is positive definite if xTAx ≥ 0 for all x ∈ Rn and xTAx = 0 only if x = 0. In practical terms, it
means that all the eigenvalues of A are positive. ( A ∈ Cn×n is positive definite if xHAx ≥ 0 for all x ∈ Cn and
xTAx = 0 only if x = 0.)
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• If A is a sparse matrix (i.e., most of its elements are zero), we discuss in section 9 how to store only
the nonzero elements of A to conserve storage. (For example, if n = 10,000 and A is tridiagonal†,
the number of nonzero elements in A is approximately 30,000 but the total number of elements in A
is 100,000,000.) Since the inverse of a sparse matrix is generally much less sparse (in fact it may have
no zero elements at all), MATLAB may not be able to store A−1 .

The command condest calculates a lower bound to the condition number of a matrix in the 1-norm with-
out having to determine its inverse. This approximation is almost always within a factor of ten of the
exact value.

When MATLAB calculates A\b or inv(A), it also calculates condest(A). It checks if its estimate
of the condition number is large enough that A is likely to be singular. If so, it returns an error message
such as

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.055969e-18.

where RCOND is the inverse of condest(A).

det

Let A ∈ Cn×n . The determinant of A is calculated by
>> det(A)

det(A) = 0 if and only if A is singular. However, due to round-off errors it is very unlikely that you will
obtain 0 numerically unless all the entries to A are integers. For example, consider the matrix

C =
(

0.95 0.03
0.05 0.97

)
.

I− C is singular (where I is the identity matrix) but
>> C = [0.95 0.03; 0.05 0.97]; det( eye(size(C)) - C )

does not return 0. However, the number it returns is much smaller than eps and so it seems “reason-
able” that I− C is singular. On the other hand,

>> det(hilb(10))
returns 2.2×10−53 , but the Hilbert matrix is not singular for any n. (The singular value decomposition,
which is described below, is a much better method for determining if a square matrix is singular.)

eig

Let A ∈ Cn×n . A scalar λ ∈ C is an eigenvalue of A if there exists a nonzero vector v ∈ Cn such that

Av = λv ;

v is called the eigenvector corresponding to λ. There are always n eigenvalues of A, although they need
not all be distinct. MATLAB will very happily calculate all the eigenvalues of A by

>> eig(A)
It will also calculate all the eigenvectors by

>> [V, D] = eig(A)

D ∈ Cn×n is a diagonal matrix containing the n eigenvalues on its diagonal and the corresponding eigen-
vectors are found in the same columns of the matrix V ∈ Cn×n .

A matrix is defective if it has less eigenvectors than eigenvalues. MATLAB normally cannot determine
when this occurs. For example, the matrix

B =
(

1 1
0 1

)
is defective since it has two eigenvalues, both of which are 1, but it only has one eigenvector, namely
(1, 0)T . If you enter

†A matrix is tridiagonal if its only nonzero elements occur on the main diagonal or on the first diagonal above
or below the main diagonal
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>> B = [1 1; 0 1]; [V, D] = eig(B)
MATLAB calculates the two eigenvalues correctly, but it finds the two eigenvectors (1, 0)T and
(−1, 2.2×10−16)T . Clearly the latter eigenvector should be (−1, 0)T so that, in fact, there is only one
eigenvector.
Note: If A is a sparse matrix (see Section 9), you cannot use eig. You either have to use the function

eigs or do eig(full(A)).

eigs

Note: Read the discussion on eig above first.
Frequently, you do not need all the eigenvalues of a matrix. For example, you might only need the

largest ten in magnitude, or the five with the largest real part, or the one which is smallest in magnitude,
or . . . In addition, you might need some eigenvalues of the generalized eigenvalue problem

Ax = λBx

where B is a symmetric positive definite matrix. (If B is complex, it must be Hermetian.) eigs can do
all of this. Of course, this means that there are numerous possible arguments to this function so read the
documentation carefully.

Why not just use eig anyway? Calculating all the eigenvalues of A ∈ Rn×n requires (very) approx-
imately 10n3 flops, which can take a very long time if n is very large. On the other hand, calculating
only a few eigenvalues requires many, many fewer flops. If A is a full matrix, it requires cn2 flops where
c is of “reasonable” size; if A is a sparse matrix (see Section 9), it requires cn flops.
Note: If A is sparse, you cannot use eig — you will first have to do eig(full(A)).

Also, this command generates lots of diagnostic output. To calculate the largest 3 eigenvalues of A in
magnitude without generating any diagnostics, enter

>> op.disp = 0
>> eigs(A, 3, ′LM′, op)

(If you know C or C++, disp is a variable whose value has been set to 0 in the structure op.)

inv

To calculate the inverse of the square matrix A ∈ Cn×n enter
>> inv(A)

The inverse of A, denoted by A−1 , is a matrix such that AA−1 = A−1A = I, where I ∈ Rn×n is the iden-
tity matrix. If such a matrix exists, it must be unique.

MATLAB cannot always tell whether this matrix does, in fact, exist. For example, the matrix

A =
(

1 2
2 4

)
does not have an inverse. If you try to take the inverse of this matrix, MATLAB will complain that

Warning: Matrix is singular to working precision.
It will display the inverse matrix, but all the entries will be Inf.

The above matrix was very simple. The matrix

A =

 1 2 3
4 5 6
7 8 9

 (7.1)

also does not have an inverse. If you ask MATLAB to calculate the inverse of A, it will complain that
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.055969e-18.
( RCOND is the inverse of a numerical approximation to the condition number of A; see condest above.)
That is, MATLAB is not positive that A is singular, because of round-off errors, but it thinks it is likely.
However, MATLAB still does try to calculate the inverse. Of course, if you multiply this matrix by A
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the result is nowhere close to I. (Try it!) In other words, be careful — and read (and understand) all
warning messages.

lu

Let A ∈ Cn×n . Then there exists an upper triangular matrix U, a unit lower triangular matrix L †, and
a permutation matrix P ‡ such that

LU = PA .

The MATLAB command lu calculates these matrices by entering
>> [L, U, P] = lu(A)

If A is invertible, all the elements of U on the main diagonal are nonzero. If you enter
>> A = [1 2 3; 4 5 6; 7 8 9]; [L, U, P] = lu(A)

where A is the singular matrix defined earlier, u33 should be zero. Entering
>> U(3,3)

displays 1.1102e-16, which clearly should be zero as we discussed in subsection 1.5.
Note: This is the first time we have had a function return more than one argument. We discuss this no-

tation in detail in section 8.3. For now, we simply state that when [V, D] occurs on the right side
of the equal sign it means the matrix whose first columns come from V and whose last columns
come from D. However, on the left side of the equal sign it means that the function returns two
arguments where the first is stored in the variable V and the second in D.

norm

The norm of a vector or matrix is a nonnegative real number which gives some measure of the “size” of
the vector or matrix. The p-th norm of a vector is defined by

‖x‖p =


(

n∑
i=1

|xi|p
)1/p

if p ∈ [1,∞)

max
1≤i≤n

|xi| if p = ∞ .

For p = 1, 2, or ∞ it is calculated in MATLAB by entering
>> norm(x, p)

where p is 1, 2, or Inf. If p = 2 the command can be shortened to
>> norm(x)

The p-th norm of a matrix is defined by

‖A‖p = max
x 6=0

‖Ax‖p

‖x‖p
for p ∈ [1,∞]

and is calculated in MATLAB by entering
>> norm(A, p)

where again p is 1, 2, or Inf. If p = 2 the command can be shortened to
>> norm(A)

There is another matrix norm, the Frobenius norm, which is defined for A ∈ Cm×n by

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

and is calculated in MATLAB by entering

†A unit lower triangular matrix is lower triangular and, in addition, all the elements on the main diagonal are
1.

‡P is a permutation matrix if its columns are a rearrangement of the columns of I.
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>> norm(A, ′fro′)

null

Let A ∈ Cn×n . We can calculate an orthonormal basis for the null space of A by
>> null(A)

orth

Let A ∈ Cn×n . We can calculate an orthonormal basis for the columns of A by
>> orth(A)

qr

Let A ∈ Rm×n . Then there exists an orthogonal matrix Q ∈ Rm×m † and an upper triangular matrix
R ∈ Rm×n such that

A = QR .

(If A ∈ Cm×n then there exists an unitary matrix Q ∈ Cm×m and an upper triangular matrix R ∈ Cm×n

such that A = QR.) We calculate Q and R in MATLAB by entering
>> [Q, R] = qr(A)

It is frequently preferable to add the requirement that the diagonal elements of R be decreasing in magni-
tude, i.e., |ri+1,i+1| ≤ |ri,k| for all i. In this case

AE = QR

for some permutation matrix E and
>> [Q, R, E] = qr(A)

One reason for this additional requirment on R is that you can immediately obtain an orthonormal ba-
sis for the range of A and the null space of AT . If rk,k is the last nonzero diagonal element of R, then
the first k columns of Q are an orthonormal basis for the range of A and the final n−k columns are
an orthonormal basis for the null space of AT . The command orth is preferable if all you want is an
orthonormal basis for R(A).

rank

Let A ∈ Cm×n . The rank of A is the number of linearly independent columns of A and is calculated by
>> rank(A)

This number is calculated by using the singular value decomposition, which we discuss below.

svd

Let A ∈ Rm×n . A can be decomposed into

A = UΣVT

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix (although
not necessarily square) with real nonnegative elements in decreasing order. That is,

σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ≥ 0 .

(If A ∈ Cm×n then U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is a diagonal matrix
with real nonnegative elements in decreasing order.) These matrices are calculated by

>> [U, S, V] = svd(A)
The diagonal elements of Σ are called the singular values of A. Although A need not be a square ma-

trix, both ATA ∈ Rn×n and AAT ∈ Rm×m are square symmetric matrices. (If A is complex, AHA and

†Q ∈ Rm×m is orthogonal if Q−1 = QT . ( Q ∈ Cm×m is unitary if Q−1 = QH .)
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AAH are both square Hermitian matrices.) Thus, their eigenvalues are nonnegative.† Their nonzero eigen-
values are the squares of the singular values of A.‡ In addition, the eigenvectors of ATA are the columns of
V and those of AAT are the columns of U. (If A is complex, the eigenvectors of AHA are the columns of
V and those of AAH are the columns of U.)

The best numerical method to determine the rank of A is to use its singular values. For example, to see
that

A =

 1 2 3 4
5 6 7 8
9 10 11 12


has rank 2, use the svd command to find that the singular values of A are 25.4368, 1.7226,
and 7.1857×10−16 . Clearly the third singular value should be 0 and so A has 2 nonzero singular values
and so has a rank of 2. On the other hand, the Hilbert matrix of order 15 has singular values

1.8×100, 4.3×10−1, 5.7×10−2, 5.6×10−3, 4.3×10−4, 2.7×10−5, 1.3×10−6, 5.5×10−8,

1.8×10−9, 4.7×10−11, 9.3×10−13, 1.4×10−14, 1.5×10−16, 9.7×10−18, and 8.1×10−18

according to MATLAB. Following Principle 1.2, you can see there is no separation between the singular
values which are clearly not zero and the ones which are “close to” eps. Thus, you cannot conclude that
any of these singular values should be set to 0. Our “best guess” is that the rank of this matrix is 15.§

Some Useful Functions in Linear Algebra

chol(A) Calculates the Cholesky decomposition of a symmetric, positive definite square
matrix.

cond(A) Calculates the condition number of a square matrix.
cond(A, p) calculates the condition number in the p-norm.

condest(A) Calculates a lower bound to the condition number of A in the 1-norm.
det(A) Calculates the determinant of a square matrix.
eig(A) Calculates the eigenvalues, and eigenvectors if desired, of a square matrix.
eigs Calculates some eigenvalues, and eigenvectors if desired, of a square matrix. There

are numerous possible arguments to this function so read the documentation
carefully.

inv(A) Calculates the inverse of a square invertible matrix.
lu(A) Calculates the LU decomposition of a square invertible matrix.
norm(v) Calculates the norm of a vector.

norm(v, p) calculates the p-norm.
norm(A) Calculates the norm of a matrix.

norm(A, p) calculates the p-norm.
null(A) Calculates an orthonormal basis for the null space of a matrix.
orth(A) Calculates an orthonormal basis for the range of a matrix.
qr(A) Calculates the QR decomposition of a matrix.
rank(A) Estimates the rank of a matrix.
svd(A) Calculates the singular value decomposition of a matrix.

†The eigenvalues of a real square symmetric matrix are nonnegative. (The eigenvalues of a complex square
Hermitian matrix are real and nonnegative.)

‡For example, if m > n there are n singular values and their squares are the eigenvalues of ATA. The m
eigenvalues of AAT consist of the squares of these n singular values and m−n additional zero eigenvalues.

§In fact, it can be proven that the Hilbert matrix of order n is nonsingular for all n, and so its rank is
truly n. However, if you enter

>> rank( hilb(15) )

you obtain 12, so that MATLAB is off by three.
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8. Programming in MATLAB

Using the commands we have already discussed, MATLAB can do very complicated matrix operations.
However, sometimes there is a need for finer control over the elements of matrices and the ability to test,
and branch on, logical conditions. Although prior familiarity with a high-level programming language is
useful, MATLAB’s programming language is so simple that it can be learned quite easily and quickly.

8.1. Control Flow

MATLAB has four control flow and/or branching instructions: for loops, while loops, if-else
branching tests, and switch branching tests.

The general form of the for loop is
>> for <variable> = <expression>

<statement>
...
<statement>

end
where the variable is often called the index of the loop. The elements of the row vector <expression> are
stored one at a time in the variable and then the statements up to the end statement are executed.† For
example, you can define the vector x ∈ Rn where xi = i sin(i2π/n) by

>> x = zeros(n, 1);
>> for i = 1:n

x(i) = i * sin( iˆ2 *pi/n );
end

(The first line is not actually needed, but it allows MATLAB to know exactly the size of the final vector
before the for loops begin. This saves computational time and makes the code more understandable.) In
fact, the entire for loop could have been entered on one line as

>> for i = 1:n x(i) = i * sin( iˆ2 *pi/n ); end
However, for readability it is best to split it up and to indent the statements inside the loop. Of course,
you can also generate the vector by

>> x = [1:n]′ .* sin( [1:n]′ .ˆ2 *pi/n )
which is certainly “cleaner” and executes much faster in MATLAB.
Warning: In using i as the index of the for loop, i has just been redefined to be n instead of

√
−1 .

Caveat emptor!
A more practical example of the use of a for loop is the generation of the Hilbert matrix of order n,

which we have already discussed a number of times. This is easily done using two for loops by
>> H = zeros(n);
>> for i = 1:n

for j = 1:n
H(i,j) = 1/(i + j - 1);

end
end

Warning: In using i and j as the indices of the for loops, i and j have just been redefined to be n
instead of

√
−1 . Caveat emptor!

for loops often have branches in them. For this we need the if branch, which we now describe. The
simplest form of the if statement is

>> if <logical expression>
<statement>
...
<statement>

end

†<expression> can be a matrix in which case each column vector is stored one at a time in i.
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where the statements are evaluated as long as the <logical expression> is true. The
<logical expression> is generally of the form

<arithmetic expression-left> rop <arithmetic expression-right>

where rop is one of the relational operators shown below. Some examples of logical expressions are
i == 5
x(i) >= i
imag(A(i,i)) ˜= 0
sin(1) - 1 > x(1) + x(i)ˆ3Warning: String variables cannot be easily compared by == or ˜=.† Instead, if a and b are text vari-

ables, enter
>> strcmp(a, b)

The result is true if the two character strings are identical and false otherwise.

Relational Operators

< Less than.
<= Less than or equal to.
== Equal.

> Greater than.
>= Greater than or equal to.

˜= Not equal to.
strcmp(a, b) Compares strings.

A second form of the if statement is
>> if <logical expression>

<statement group 1>
else

<statement group 2>
end

where statement group 1 is evaluated if the <logical expression> is true and statement group 2 is
evaluated if it is false. The final form of the if statement is

>> if <logical expression 1>
<statement group 1>

elseif <logical expression 2>
<statement group 2>

elseif <logical expression 3>
<statement group 3>

...
elseif <logical expression r>

<statement group r>
else

<statement group r+1>
end

where statement group 1 is evaluated if the <logical expression 1> is true, statement group 2 is evalu-
ated if the <logical expression 2> is true, etc. The final else statement is not required. If it occurs
and if none of the logical expressions is true, statement group r+1 is evaluated. If it does not occur and if
none of the logical expressions is true, then none of the statement groups are executed.

†Compare the results of

>> ′Yes′== ′yes′

and

>> ′Yes′== ′no′
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When a logical expression such as
>> i == 5

is evaluated, the result is either “TRUE” or “FALSE”. MATLAB calculates this as a numerical value
which is returned in the variable ans. The value is 0 if the expression is false and 1 if it is true.

MATLAB also contains the logical operators “AND” (denoted by “&”), “OR” (denoted by “ |”),
“NOT” (denoted by “˜”), and “EXCLUSIVE OR” (invoked by the function xor ). These act on false
or true statements which are represented by numerical values: zero for false statements and nonzero for
true statements. Thus, if a and b are real numbers then
• the relational equation

>> c = a & b
means that c is true (i.e., 1 ) only if both a and b are true (i.e., nonzero); otherwise c is false
(i.e., 0 ).

• the relational equation
>> c = a | b

means that c is true (i.e., 1 ) if a and/or b is true (i.e., nonzero); otherwise c is false (i.e., 0 ).
• the relational equation

>> c = ˜ameans that c is true (i.e., 1 ) if a is false (i.e., 0 ); otherwise c is false (i.e., 0 ).
• the relational command

>> c = xor(a, b)
means that c is true (i.e., 1 ) if exactly one of a and b is true (i.e., nonzero); otherwise c is false
(i.e., 0 ).

Logical Operators

A & B AND.
A | B OR. ˜A NOT.

xor(A, B) EXCLUSIVE OR.

The second MATLAB loop structure is the while statement. The general form of the while loop is
>> while <logical expression>

<statement>
...
<statement>

end
where the statements are executed repeatedly as long as the <logical expression> is true. For exam-
ple, eps can be calculated by

>> eps = 1;
>> while 1 + eps > 1

eps = eps/2;
end

>> eps = 2*eps
It is possible to break out of a for loop or a while loop from inside the loop. This is not normally

needed. However, as in C the break command does exactly this: it terminates the execution of the inner-
most for loop or while loop.

The continue statement is related to break, but is used even less frequently. It causes the next itera-
tion of the for or while loop to begin immediately.

The switch command executes particular statements based on the value of a variable or an expression.
Its general form is
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>> switch <variable or expression>
case <Value 1>,

<statement group 1>
case {<Value 2a>, <Value 2b>, <Value 2c>, ..., <Value 2m>},

<statement group 2>
...
case <value n>,

<statement group r>
otherwise,

<statement group r+1>
end

where statement group 1 is evaluated if the variable or expression has <Value 1>, where statement group
2 is evaluated if the variable or expression has values <Value 2a> or <Value 2b> or <Value 2c>, etc.
(Note that if a case has more than one value, then all the values must be surrounded by curly brackets.)
The final otherwise is not required. If it occurs and if none of the values match the variable or expres-
sion, then statement group r+1 is evaluated. If it does not occur and if none of the values match, then
none of the statement groups are executed.
Warning: The switch command is different in MATLAB than in C in two ways:

First, in MATLAB the case statement can contain more than one value; in C it can only con-
tain one.
And, second, in MATLAB only the statements between the selected case and the following one
or the following otherwise or end (whichever occurs first) are executed; in C all the state-
ments following the selected case are executed up to the next break or the end of the block.

Flow Control

break Terminates execution of a for or while loop.
case Part of the switch command. The statements following it are executed if

its value or values are a match for the switch expression.
continue Begins the next iteration of a for or while loop immediately.
else Used with the if statement.
elseif Used with the if statement.
end Terminates the scope of the for, if, switch, and while statements.
for Repeats statements a specific number of times.
if Executes statements if certain conditions are met.
otherwise Part of the switch command. The statements following it are executed if

no case value is a match for the switch expression.
switch Selects certain statements based on the value of the switch expression.
while Repeats statements as long as an expression is true.

8.2. Matrix Relational Operators and Logical Operators

Although MATLAB does have a quite powerful programming language, it is needed much less fre-
quently than in typical high-level languages. Many of the operations and functions that can only be
applied to scalar quantities in other languages can be applied to vector and matrices in MATLAB. For
example, MATLAB’s relational and logical operators can also be applied to vectors and matrices. In this
way, algorithms that would normally require flow control for coding in most programming languages can
be coded using simple MATLAB commands.

If A, B ∈ Rm×n then the relational equation
>> C = A rop B
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is evaluated as cij = aij rop bij , where rop is one of the relational operators defined previously. The
elements of C are all 0 or 1: 0 if aij rop bij is a false statement and 1 if it is a true one. Also, the
relational equation

>> C = A rop c
is defined when c is a scalar. It is evaluated as if we had entered

>> C = A rop c*ones(size(A))
Similar behavior holds for logical operators:
>> C = A & B

means cij = aij & bij ,
>> C = A | B

means cij = aij | bij ,
>> C = ˜Ameans cij =˜aij , and
>> C = xor(A, B)

means cij = xor(aij , bij). Again the elements of C are all 0 or 1.
To show the power of these MATLAB commands, suppose we have entered
>> F = rand(m, n)

and now we want to know how many elements of F are greater than 0.5. We can code this as
>> nr elements = 0;
>> for i = 1:m

for j = 1:n
if F(i,j) > 0.5

nr elements = nr elements + 1;
end

end
end

>> nr elements
However, it can be coded much more simply, quickly, and efficiently since the relational expression

>> C = F > 0.5
or, to make the meaning clearer,

>> C = (F > 0.5)
generates the matrix C where

cij =
{ 1 if fij > 0.5

0 otherwise.

Since the number of ones is the result we want, simple enter
>> sum( sum( F > 0.5 ) )

And suppose we want to replace all the elements of F which are ≤ 0.5 by zero. This is easily done by
>> F = F.*(F > 0.5)

The relational expression F > 0.5 generates a matrix with zeroes in all the locations where we want to
zero the elements of F and ones otherwise. Multiplying this new matrix elementwise with F zeroes out all
the desired elements of F. We can also replace all the elements of F which are ≤ 0.5 by −π using

>> C = (F > 0.5)
>> F = F.*C - pi*(˜C)Shortly we will present two easier ways to do this.

There is even a MATLAB function which determines the location of the elements of a vector or a ma-
trix where some property is satisfied. The command

>> find(x)
generates a column vector containing the indices of x which are nonzero. (Recall that nonzero can also
mean “TRUE” so that this command finds the elements where some condition is true.) For example, if
x = (0, 4, 0, 1,−1, 0, π)T then the resulting vector is (2, 4, 5, 7)T . Suppose we want to add 10 to every
nonzero element of x. Simply enter

>> ix = find(x); x(ix) = x(ix) + 10
Note: If no element of the vector is nonzero, the result is the empty matrix [].

64



8.2. Matrix Relational Operators and Logical Operators

find can also be applied to a matrix. The command
>> find(A)

first transforms A to a column vector (i.e., A(:) ) and then determines the locations of the nonzero ele-
ments. Instead we can work with the matrix directly by entering

>> [iA, jA] = find(A)
The two column vectors iA and jA contain the rows and columns, respectively, of the nonzero elements.
We can also find the locations of the nonzero elements and their values by

>> [iA, jA, valueA] = find(A)
As a simple example of the power of this command we can add 10 to every nonzero element of A by

>> ijA = find(A); A(ijA) = A(ijA) + 10
Note: ijA contains the locations of the nonzero elements of A when considered to be a column vector.

Since A(k) has no meaning in linear algebra if k is a scalar (since an element of A requires both
a row and a column number), MATLAB assumes that this is the element number of A as a column
vector.

We can also find the elements of a vector or a matrix which satisfy a more general property than being
nonzero. For example, to find the locations of all the elements of x which are greater than 5 enter

>> find(x > 5)
and to find the locations of all the elements of x which are greater than 5 and less than 8 enter

>> find( (x > 5) & (x < 8) )
We can find the number of elements which satisfy this last property by entering

>> length( find( (x > 5) & (x < 8) ) )
Previously, we showed how to replace all the elements of F which are ≤ 0.5 by −π. A method which

does not require any multiplication is
>> ijF = find(F <= 0.5);
>> F(ijF) = -pi

or even
>> F( find(F <= 0.5) ) = -pi

The “beauty” of MATLAB commands such as these is they are so easy to use and to understand (once
you get the hang of it) and they require so few keystrokes.

Another, slightly different method uses the matrix
>> D = (F <= 0.5)

rather than the vector ijF. Recall that ijF is a vector which contains the actual locations of the el-
ements we want to zero out, whereas D is a matrix of ones and zeroes which explicitly shows which el-
ements should be zeroed. We can use D to determine which elements of F should be replaced by zero
by

>> F(D) = -pi
(We can even use

>> F(F <= 0.5) = -pi
to combine everything into a single statement.) This requires some explanation. D is being used here as
a “mask” to determine which elements of F should be replaced by −π: for every element of D which is
nonzero, the corresponding element of F is replaced by −π; for every element of D which is zero, nothing
is done.
Note: How does MATLAB know that D should be used to “mask” the elements of F? The answer is that

D is a logical matrix because it was defined using a logical operator, and only logical matrices and
vectors can be used as “masks”. To see that D is a logical variable and F is not, enter

>> islogical(D)
>> islogical(F)

And to see what happens when you try to use a non-logical variable as a “mask”, enter
>> F(2*D)

We can also convert a non-logical variable to a logical one by using the MATLAB command
logical.

MATLAB also has two functions that test vectors and matrices for logical conditions. The command
>> any(x)
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returns 1 if any element of the vector x is nonzero (i.e., “TRUE”); otherwise 0 is returned. When
applied to a matrix, it operates on each column and returns a row vector. For example, we can check
whether or not a matrix is tridiagonal by

>> any( any( triu(A, 2) + tril(A, -2) ) )
Here we check all the elements of A except those on the main diagonal and on the two adjacent ones. A
result of 1 means that at least one other element is nonzero. If we want a result of 1 to mean that A is
tridiagonal we can use

>> ˜any( any( triu(A, 2) + tril(A, -2) ) )
instead. The command

>> any(A)
operates columnwise and returns a row vector containing the result of any as applied to each column.

The complementary function all behaves the same as any except it returns 1 if all the entries are
nonzero (i.e., “TRUE”). For example, you can determine if a matrix is symmetric by

>> all( all(A == A.′) )
A result of 1 means that A is identical to AT .

For completeness we mention that MATLAB has a number of other functions which can check the
status of variables, the status of the elements of vectors and matrices, and even of their existence. For ex-
ample, you might want to zero out all the elements of a matrix A which are Inf or NaN. This is easily
done by

>> A( find( ˜isfinite(A) ) ) = 0
where isfinite(A) generates a matrix with 1 in each element for which the corresponding element of A
is finite. To determine if the matrix A even exists, enter

exist(′A′)
See the table below for more details and more functions.

Logical Functions

all True if all the elements of a vector are true; operates on the columns of a matrix.
any True if any of the elements of a vector are true; operates on the columns of a

matrix.
exist(′<name>′) False if this name is not the name of a variable or a file. If it is, this function re-

turns:
1 if this is the name of a variable,
2 if this is the name of an M-file,
5 if this is the name of a built-in MATLAB function.

find The indices of a vector or matrix which are nonzero.
logical Converts a numeric variable to a logical one.
ischar True for a character variable or array.
isempty True if the matrix is empty, i.e., [].
isfinite Generates a matrix with 1 in all the elements which are finite (i.e., not Inf or

NaN ) and 0 otherwise.
isinf Generates a matrix with 1 in all the elements which are Inf and 0 otherwise.
islogical True for a logical variable or array.
isnan Generates a matrix with 1 in all the elements which are NaN and 0 otherwise.

8.3. Script Files and Function Files

Up until now we have always entered MATLAB statements directly into the text window so that they
are executed immediately. There are two difficulties with this approach when using flow control com-
mands. First, MATLAB does not execute the statements until it encounters the final end command. Any
typographical error will invalidate the entire sequence of statements and so require retyping them all over
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again (unless all the statements are typed on one line, since editing can be done later on a single line).
Second, this sequence of statements must be retyped every time it is needed.

The solution is to type the sequence of statements in a separate file named <file name>.m. It is easy
to edit this file to remove any errors, and the sequence can be executed whenever desired by typing

>> <file name>
The MATLAB statements themselves are not printed out, but the result of each statement is unless
a semicolon ends it. This type of file is called a script file: when MATLAB executes the command
<file name> the contents of the file “ <file name>.m” are executed just as if you had typed them into
into the text window.

Function files, on the other hand, are similar to functions or procedures or subroutines or subprograms
in other programming languages. Ordinarily, variables which are created in a function file exist only inside
the file and disappear when the execution of the file is completed — these are called local variables. Thus
you do not need to understand the internal workings of a function file; you only need to understand what
the input and output arguments represent.
Note: The generic term for script files and function files is M-files, because the extension is “m”.

Since the results of these statements can “zip by” on the computer screen, there is often a need to slow
down the output. The pause command stops the M-file until some key is pressed. This can be particu-
larly useful when graphics commands are executed because we can look at each plot before it is overwrit-
ten by the next one.

Unlike script files, function files must be constructed in a specific way. The first line of the file
<file name>.m must begin with the keyword function. Without this word, the file is a script file. The
complete first line, called the function definition line, is

function <out> = <function name>(<in 1>, ..., <in n>)
or

function [<out 1>, ..., <out m>] = <file name>(<in 1>, ..., <in n>)
where the name of the function must be the same as the name of the file (but without the extension). The
input arguments are <in 1>, etc. The output arguments must appear to the left of the equal sign: if
there is only one output argument, i.e., <out>, it appears by itself; if there is more than one, i.e., <out
1>, etc., they must be separated by commas and must be enclosed in square brackets.

There is great flexibility in the number and type of input and output arguments; we discuss this topic in
great detail later. The only detail we want to mention now is that the input arguments are all passed “by
value” as in C. (That is, the values of the input arguments are stored in temporary variables which are
local to the function.) Thus, the input arguments can be modified in the function without affecting any
input variables in the calling statement.†

Warning: The name of the �le and the name of the function must agree. This is also the name of the com-
mand that executes the function.

Comment lines should immediately follow. A comment line begins with the percent character, i.e., “%”.
All comment lines which immediately follow the function definition line constitute the documentation for
this function; these lines are called the online help entry for the function. When you type

>> help <function name>
all these lines of documentation are typed out. If you type

type <function name>
the entire file is printed out. In addition, the first line of documentation, i.e., the second line of the file,
can be searched for keywords by entering

>> lookfor <keyword>
Make sure this first comment line contains the name of the command and important keywords which de-
scribe its purpose.

†If you are worried because passing arguments by value might drastically increase the execution time of the
function, we want to reassure you that this does not happen. To be precise, MATLAB does not actually pass all
the input arguments by value. Instead, an input variable is only passed by value if it is modified by the func-
tion. If an input variable is not modified, it is passed “by reference”. (That is, the input argument is the actual
variable used in the calling statement and not a local copy.) In this way you get the benefit of “call by value”
without any unnecessary overhead.
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Note: Comments can be placed anywhere in an M-file, including on a line following a MATLAB state-
ment. The initial comment lines in a script file and the comment lines in a function file which
immediately follow the first line are special: they appear on the screen when you type

>> help <function name>
Before discussing functions in great detail, there is one detail it is important to consider before it trips

you up: how does MATLAB find the M-files you have created? Since MATLAB contains thousands of
functions, this is not an easy task. Once MATLAB has determined that the word is not a variable, it
searches for the function in a particular order. We show the order here and then discuss the items in de-
tail throughout this subsection.
(1) It checks if <function> is a built-in function (i.e., coded in C).
(2) It checks if <function> is a function (the primary function or a subfunction) in the current file.
(3) It checks if the file <function>.m exists in the current directory.
(4) It checks if the current directory has a subdirectory called “private”; if it does, MATLAB checks if

the file <function>.m exists in this subdirectory.
(5) It searches the directories in the search path for the file <function>.m.

Note from item three that MATLAB searches in the current directory for the function by searching for
the M-file with the same name. If the M-file is not in the current directory, the simplest way to enable
MATLAB to find it is have the subdirectory in your search path. If you type

>> path
you will see all the directories that are searched. If you have created a subdirectory called “matlab” in
your main directory, this is usually the first directory searched (unless the search path has been modified).
Thus, you can put your M-files in this subdirectory and be sure that MATLAB will find them. You can
also add directories to the search path by

>> path(′new directory′, path)
or

>> path(path, ′new directory′)
(The former puts “new directory” at the beginning of the search path while the latter puts it at the end.)
Warning: When you begin a MATLAB session, it always checks if the subdirectory “matlab” exists in

your main directory. If you create this subdirectory after you start a MATLAB session, it will
not be in the search path.

Now we return to our discussion of creating functions. We begin with a simple example of a function file
which constructs the Hilbert matrix (which we have already used a number of times).

function H = hilb local(n)
% hilb local: Hilbert matrix of order n (not from MATLAB)
% hilb local(n) constructs the n by n matrix with elements 1/(i+j-1).
% This is one of the most famous examples of a matrix which is
% nonsingular, but which is very badly conditioned.
H = zeros(n);
for i = 1:n

for j = 1:n
H(i,j) = 1/(i+j-1);

end
end

The input argument is n and the output argument is H. The first line of the documentation includes the
name of the function as well as a brief description that lookfor uses. The following lines of documenta-
tion also appear on the screen if we enter

>> help hilb local
Note: The above code is not presently used in MATLAB (although it was in early versions.) The actual

MATLAB code for this function is shown in subsection 8.5.
We follow by defining H to be an n×n matrix. Although not essential, this statement can greatly in-

crease the speed of the function because space can be preallocated for the matrix. For example, consider
the following code.
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function a = prealloc(n, which)
% prealloc: testing how well preallocating a vector works
% n = the size of the vector
% which = 1 - preallocate the vector
% = 2 - do not
if ( which == 1 )

a = zeros(n,1);
end
a(1) = 1;
for i = 2:n

a(i) = a(i-1) + 1;
end

If which = 0 the vector a is not preallocated, while if which = 1 it is. We find that
>> prealloc(50000, 1)

runs over 200 times as fast as
>> prealloc(50000, 0)

Note that i and j are redefined from
√
−1 since they appear as for loop indices. However, since i

and j are local to this function, this does not have any effect when this command is executed. Also, the
variable H is local to the function. If we type

>> Z = hilb local(12)
then the matrix Z contains the Hilbert matrix and H is undefined.

Normally functions are completed when the end of the file is reached (as above). If the flow control in a
function file is complicated enough, this might be difficult to accomplish. Instead, you can use the return
command, which can appear anywhere in the function and force an immediate end to the function. In
addition, you can force the function to abort by entering

error(<string>)
If the string is not empty, the string is displayed on the terminal and the function is aborted; if the string
is empty, the statement is ignored.

One feature of function files which is occasionally very useful is that they can have a variable number of
input and output variables. For example, the norm of a vector x can be calculated by entering

>> norm(x, p)
if p = 1, 2, or inf or, more simply, by

>> norm(x)

if p = 2. Similarly, if only the eigenvalues of a matrix A ∈ Cn×n are desired, enter
>> eigval = eig(A)

However, if both the eigenvalues and eigenvectors are desired, enter
>> [V, D] = eig(A)

where D ∈ Cn×n is a diagonal matrix containing the n eigenvalues on its diagonal and the corresponding
eigenvectors are found in the same columns of the matrix V ∈ Cn×n .
Note: On the right side of an equation, [V D] or [V, D] is the matrix whose initial columns come from

V and whose final columns come from D. This requires that V and D be matrices which have the
same number of rows. On the left side, [V, D] denotes the two output arguments which are re-
turned by a function. V and D can be completely different variables. For example, one can be a
character variable and the other a matrix.

MATLAB can also determine the number of input and output arguments: nargin returns the number
of input arguments and nargout returns the number of output arguments. For example, suppose we want
to create a function file which calculates

f(x, ξ, a) = e−a(x−ξ)2 sinx .

We can “spruce” this function up to have default values for ξ and a and also to calculate its derivative
with the following function file.

69



8.3. Script Files and Function Files

function [out1, out2] = spruce(x, xi, a)
% spruce: a silly function to make a point, f(x,b,a) = sin(x)*exp(-a*(x-b)ˆ2)
% if only x is input, xi = 0 and a = 1
% if only x and xi are input, a = 1
% if only one output argument, f(x,xi,a) is calculated
% if two output arguments, f(x,xi,a) and f’(x,xi,a) are calculated
if nargin == 1

xi = 0;
a = 1;

elseif nargin == 2
a = 1;

end
out1 = exp(-a.*(x-xi).ˆ2).*sin(x);
if nargout == 2

out2 = exp(-a.*(x-xi).ˆ2).*(cos(x) - 2.*a.*(x-xi).*sin(x));
end

If there is only one input argument then ξ is set to 0 and a is set to 1 (which are useful default val-
ues) while if there are only two input arguments then a is set to 1. If there is only one output argument
then only f(x) is calculated, while if there are two output arguments then both f(x) and f ′(x) are
calculated.

Also, note that x can be a scalar (i.e., a single value) or it can be a vector. Similarly, ξ and a can
each be a scalar or a vector. If x is a vector, i.e., (x1, x2, . . . , xn)T , while ξ and a are scalars, then the
function is

f(xi, ξ, a) = sin(xi)e−a(xi−ξ)2 for i = 1, 2, . . . , n ,

and all the values can be calculated in one call to spruce. If, on the other hand, x, ξ, and a are all vec-
tors, then the function is

f(xi, ξi, ai) = sin(xi)e−ai(xi−ξi)
2

for i = 1, 2, . . . , n ,

and, again, all the values can be calculated in one call to spruce.
We have now presented all the essential features of the MATLAB programming language, and it cer-

tainly is a “minimal” language. MATLAB can get away with this because most matrix operations can
be performed directly — unlike in most other programming languages. You only need to write your own
function if MATLAB cannot already do what you want. If you want to become proficient in this language,
simply use the type command to look at the coding of some functions.

The echo command is useful for debugging script and function files. Typing
>> echo on

turns on the echoing of statements in all script files, and echo off turns it back off. However, this does
not affect function files. To turn echoing on for a particular function, type

>> echo <function> on
To turn echoing on for all functions, type

>> echo on all
Using echo you can easily determine if the control flow instructions are correct in an M-file. In addi-

tion, by removing a semicolon following a statement you can see exactly what is being computed by the
statement. Normally, the result will “fly by” on the terminal, but following the statement with a pause
will stop the display.

The keyboard command is also very useful for debugging M-files. It stops execution of the M-file,
similar to the pause command. However, it returns complete control to the user to enter any and all
MATLAB commands. In particular, you can examine any variables in the function’s workspace. If de-
sired, you can also change the value of any of them variables. The only way you will recognize this is not a
“standard” MATLAB session is that the prompt is

K>>
for Keyboard. To terminate the “keyboard” session and return control to the M-file, enter
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K>> return
To terminate both the “keyboard” session and the execution of the M-file, enter

K>> dbquit
We will not discuss the commands in this debugger in detail, but only provide a brief description of

each one, because these are similar to commands in any debugger. If you have experience with using a
debugger, help or doc will give you complete details.

Debugging Commands

keyboard Turns debugging on.
dbstep Execute one or more lines.
dbcont Continue execution.
dbstop Set a breakpoint.
dbclear Remove a breakpoint.
dbup Change the workspace to the calling function or the base workspace.
dbdown Change the workspace down to the called function.
dbstack Display all the calling functions.
dbstatus List all the breakpoints.
dbtype List the current function, including the line numbers.
dbquit Quit debugging mode and terminate the function.
return Quit debugging mode and continue execution of the function.

The arguments in a MATLAB function are somewhat different than in any other programming lan-
guage. For example, in

function out = funct1(a, t)
a and t are the input arguments and out is the output argument. Any and all input variables are lo-
cal to the function and so can be modified without affecting the arguments when the function funct1 is
called. (This is true no matter what type of variables they are.) In

function [out1, out2, out3] = funct2(z)
z is the only input argument and there are three output arguments, each of which can be any type of vari-
able. There is no requirement that all three of these output arguments actually be used. For example, the
calling statement might be any of the following:

>> art = funct2(1.5)
>> [physics, chemistry] = funct2([1 2 3])
>> [math, philosophy, horticulture] = funct2(reshape([1:30], 6, 5))

(just to be somewhat silly).
In a programming language such as C, Fortran, or Pascal funct1 would be written in a form such as
function funct1(a, t, out)

or even as
function funct1(a, out, t)

Similarly, funct2 would be written as
function funct2(z, out1, out2, out3)

or even as
function funct2(out3, out2, z, out1)

It would be up to the user to control which were the input arguments, which were the output arguments,
and which were both (i.e., one value on input and another on output). In MATLAB input arguments oc-
cur on the right side of the equal sign and output arguments occur on the left. Arguments which are to be
modified by the function must occur on both sides of the equal sign in the calling statement. For example,
in funct2 if z is modified and returned in out1 then the calling sequence should be

>> [a, b, c] = funct2(a)
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where a appears on both sides of the equal sign. (There is an alternative to this awkward use of param-
eters which are modified by the function: you can make a variable global, as we discuss at the end of this
section.)

There is another difference between MATLAB and most other programming languages where the type
of each variables has to be declared, either explicitly or implicitly. For example, a variable might be an
integer, a single-precision floating-point number, a double-precision floating-point number, a character
string, etc. In MATLAB, on the other hand, there is no such requirement. For example, the following
statements can follow one another in order and define x to be a string variable, then a vector, then a
scalar, and finally a matrix.

>> x = ′WOW?′

>> x = x + 0
>> x = sum(x)
>> x = x*[1 2; 3 4]

It is particularly important to understand this “typelessness” when considering output arguments. For ex-
ample, there are three output arguments to funct2 and any of them can contain any type of variable. In
fact, you can let the type of these arguments depend on the value or type of the input argument. This is
probably not something you should want to do, but sometimes you have no alternative, as in the function
gravity which can be found at the end of subsection 10.2.

Occasionally, there is a need to pass values from the workspace to a function or to pass values between
different functions without using the input arguments. (As we discussed earlier, this may be desirable if a
variable is modified by a function.) In C this is done by using global variables. MATLAB also has global
variables which are defined by declaring the variables to be global using

>> global <variable 1> <variable 2> <variable 3> ...
Warning: Spaces, not commas, must separate the variables.
This statement must appear in every function which is to share the variables. If the workspace is also to
share these variables, you must type this statement (or be put into a script file which you execute) before
these variables are used.

Also, in a MATLAB function there is occasionally a need to save the value of a local variable. Normally,
local variables come into existence when the function is called and disappear when the function is com-
pleted. Once in a while, it is very convenient to be able to “save” the value of a local variable between
calls to the function. (It is possible to make the variable global or pass it as a parameter which is modified
by the function, but these are not recommended.) In C, this is done by declaring the variable static. In
MATLAB it is done by declaring the variable persistent using

>> persistent <variable 1> <variable 2> <variable 3> ...
Warning: Spaces, not commas, must separate the variables.
Note: The first time you enter the function, a persistent variable will be empty, i.e., [], and you can test

for this by using isempty.
The final point concerns an important element of programming style in any computer language. It fre-

quently happens that programs and/or functions grow large enough to be unwieldy and inefficient. The
remedy is to split the code up into a number of functions, each of which can be easily understood and de-
bugged. In MATLAB functions normally have to be separated into different files so that each function
and its file name agree; otherwise, MATLAB cannot find the function. This can be annoying if a number
of files have to be created: for example, it can be difficult to remember the purpose of all these functions,
and it can be difficult to debug the primary function. MATLAB has a feature to handle this prolifera-
tion of files; function M-files can contain more than one function. The first function in the file is called the
primary function and its name must agree with the name of the file. Any remaining functions are called
subfunctions. (At the end of subsection 10.2 we code the function gravity using one function and then
code the function gravity2 using a number of subfunctions. You can compare the readability of these
two functions.)
Note: The primary function or a subfunction begins with the function definition line (i.e., the line which

begins with the keyword function ). Since there is no “endfunction” statement in MATLAB, this
also ends the previous function in the file.
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Subfunctions are only visible to the primary function and to other subfunctions in the same file. Thus,
different M-files can contain subfunctions with the same name. Also, the help command can only access
the primary file.

Now let us return to the topic of how MATLAB finds a function. As we stated previously (but did not
discuss), when a function is called from within an M-file, MATLAB first checks if the function named is
the primary function or a subfunction in the current file. If it is not, MATLAB searches for the M-file in
the current directory. Then MATLAB searches for a private function by the same name (described below).
Only if all this fails does MATLAB use your search path to find the function. Because of the way that
MATLAB searches for functions, you can replace a MATLAB function by a subfunction in the current
M-file — but make sure you have a good reason for doing so!†

In the previous paragraph we described how to create a subfunction to replace one function by another
of the same name. There is another, more general, way to handle this replacement: you can create a sub-
directory in your current directory with the special name “private”. Any M-files in this subdirectory are
visible only to functions in the current directory. The functions in this subdirectory are called private
functions. For example, suppose we are working in the directory “personal” and have created a number of
files which use rref to solve linear systems. And suppose we have written our own version of this com-
mand, because we think we can calculate the reduced row echelon of a matrix more accurately. The usual
way to test our new function would be to give it a new name, say myrref, and to change the call to rref
in every file in this directory to myrref. This would be quite time-consuming, and we might well miss
some. Instead, we can code and debug our new function in the subdirectory “private”, letting the name of
our new function be rref and the name of the M-file be rref.m. All calls in the directory to rref will
use the new function we are testing in the subdirectory “private”, rather than MATLAB’s function. Even
more important, any function in any other directory which calls rref will use the MATLAB function and
not our “new, improved version”.

Function Commands

function Begins a MATLAB function.
error(′<message>′) Displays the error message on the screen and terminates the M-file

immediately.
echo Turns echoing of statements in M-files on and off.
global Defines a global variable (i.e., it can be shared between different functions

and/or the workspace).
persistent Defines a local variable whose value is to be saved between calls to the

function.
keyboard Stops execution in an M-file and returns control to the user for debugging

purposes. The command return continues execution and dbquit aborts
execution.

return Terminates the function immediately.
nargin Number of input arguments supplied by the user.
nargout Number of output arguments supplied by the user.
pause Halts execution until you press some key.

†Since MATLAB contains thousands of functions, this means you do not have to worry about one of your sub-
functions being “hijacked” by an already existing function. When you think up a name for a primary function
(and, thus, for the name of the M-file) it is important to check that the name is not already in use. However,
when breaking a function up into a primary function plus subfunctions, it would be very annoying if the name of
every subfunction had to be checked — especially since these subfunctions are not visible outside the M-file.
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8.4. Odds and Ends

In MATLAB it is possible for a program to create or modify statemennts “on the fly”, i.e., as the pro-
gram is running. Entering

>> eval(<string>)
executes whatever statement or statements are contained in the string. For example, entering

>> s = ′x = linspace(0, 10, n); y = x.*sin(x).*exp(x/5); plot(x, y)′

>> eval(s)
executes all three statements contained in the string s. In addition, if an executed statement generates
output, this is the output of eval. For example, if we type

>> A = zeros(5,6);
>> [m, n] = eval(′size(A)′);

then m is 5 and n is 6.
There is a very practical applications for this command since it can can combine a number of state-

ments into one. For example, suppose we want to work with the columns of the Hilbert matrix of size n
and we want to create variables to hold each column, rather than using H(:,i). We can do this by hand
by typing

>> c1=H(:,1);
>> c2=H(:,2);

...
which gets tiring very quickly. Instead, we can do this by typing

>> for i = 1:n
eval( [′c′ num2str(i) ′=H(:,i)′] )

end
This requires some explanation. It might be a little clearer if we separate the statement inside the for
loop into two statements by

s = [′c′, num2str(i), ′=H(:,i)′]
eval(s)

(where we include commas in the first statement for readability). s is a text variable which contains
c1=H(:,1) the first time the loop is executed, then c2=H(:,2) the second time, etc. (To understand
how s is created, recall that s is really just a row vector with each element containing the ASCII repre-
sentation of the corresponding character.)

Another, much more esoteric, application for this command is that a MATLAB function can create or
modify statements during execution. For example, since text variables can be constructed piece by piece,
it is possible for a (quite simple) MATLAB function to create almost any imaginable inline function.

Finally, there is a very esoteric application for this command that allows it to catch errors. This is sim-
ilar to the “catch” and “throw” commands in C++ and Java. To use this feature of eval, call it using
two arguments as

>> eval(<try string>, <catch string>)
The function executes the contents of <try string> and ignores the second argument if this execution
succeeds. However, if it fails then the contents of <catch string> are executed. (This might be a call
to a function which can handle the error.) If there is an error, the command lasterr returns a string
containing the error message generated by MATLAB.

A MATLAB command which is occasionally useful in a function is feval. It executes a function, usu-
ally defined by an M-file, whose name is contained in a string by

>> feval(<string>, x1, x2, ..., xn)
(See below for other ways to pass the function in the argument list.) Here x1, x2, ..., xn are the
arguments to the function. For example, the following two statements are equivalent

>> A = zeros(5,6)
>> A = feval(′zeros′, 5, 6)

Suppose that in the body of one function, say sample, we want to execute another function whose
name we do not know. Instead, the name of the function is to be passed as an argument to sample.
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Then feval can be used to execute this text variable. For example, suppose in function sample we want
to generate either linear or logarithmic plots. We can input the type of plot to use by

function sample(type of plot)
...
feval(type of plot, x, y1, x, y2, ′--′, xx, y3, ′:′)
...

There are two alternative ways to pass the function in the argument list. The first way is to create a
function handle, which is the name of the function immediately preceded by the character ’ @’. For exam-
ple, ′zeros′ is replaced by @zeros (without quotes surrounding it) so you can enter

>> A = feval(@zeros, 5, 6)
The advantage of a function handle is that it contains more information about the function than just
simply its name, and so the evaluation can be done faster.

The second way to pass the function is to use an inline function. For example, another way to obtain
zeros(5,6) is

>> silly function = inline(′zeros(x,6)′, ′x′)
>> A = feval(silly function, 5)

Note that the function silly function is now being passed directly, i.e., without turning it into either a
character string or a function handle.
Note: eval and feval serve similar purposes since they both evaluate something. In fact, feval can al-

ways be replaced by eval since, for example, feval( ′ zeros ′ , 5, 6) can always be replaced by
eval( ′ zeros(5,6) ′ ). However, there is a fundamental difference between them: eval requires
the MATLAB interpreter to completely evaluate the string, whereas feval only requires MATLAB
to evaluate an already existing function. feval is much more efficient, especially if the string must
be evaluated many times inside a loop.

Odds and Ends

eval Executes MATLAB statements contained in a text variable. Can also
“catch” an error in a statement and try to fix it.

feval Executes a function specified by a string. (Can be used to pass a function
name by argument.)

lasterr If eval “catches” an error, it is contained here.

8.5. Advanced Topic: Vectorizing Code

As long as your MATLAB code executes “quickly”, there is no need to try to make it faster. However, if
your code is executing “slowly”, you might be willing to spend some time trying to speed it up.† There are
three standard methods to speed up a code:
(0) Preallocate matrices as shown in the function prealloc on page 68. This is very simple and very

effective if the matrices are “large”.
(1) Use MATLAB functions, whenever possible, rather than writing your own. If a MATLAB function is

built-in, then it has been written in C and is much faster than anything you can do. Even if it is not,
much time has been spent optimizing the functions that come with MATLAB; you are unlikely to do
better.

(2) Replace control flow instructions with vector operations. We have already discussed this topic at
length in subsection 8.2. Here we will focus on some advanced techniques.

†We have put “quickly” and “slowly” in quotes because this is quite subjective. Remember that your time is
valuable: if it takes you longer to optimize your code than you will save in running it more quickly, stifle the urge
to muck around with it. Also remember that the amount of time it actually takes to optimize a code is usually a
factor of two or three or . . . longer than the time you think it will take before you get started.
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As a simple example of method (1), consider the function hilb on page 68. Although the Hilbert
matrix can be easily generated by that code, no flow control statements appear in the actual MATLAB
function hilb:†

J = 1:n; % J is a row vector
J = J(ones(n, 1),:); % J is now an n by n matrix with each row being 1:n
I = J′; % I is an n by n matrix with each column being 1:n
E = ones(n, n);
H = E./(I+J-1);

You can see this by entering
>> type hilb

Although this code requires two additional matrices, it is nearly 20 times as fast. However, unless you are
a MATLAB “expert” and n is in the hundreds or thousands, use the for loops.

As a realistic example of method (2), suppose you have a large vector y which is the discretization of
a smooth function and you want to know some information about it. In particular, consider the inter-
vals in y where yi > R. What is the average length of these intervals and what is their standard devia-
tion? Also, only include intervals which lie completely within y (i.e., ignore any intervals which begin or
end y ). It is not difficult to write such a code using control flow statements:

†This code was written before the command repmat was added to MATLAB. Now we can easily generate J
by J = repmat([1:n], n, 1).
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function ylen intvl = get intervals slow(y, R)
n = length(y);
if y(1) > R % check if the first point is in an interval

in intvl = 1; % yes
intvl nr = 1;
yin(intvl nr) = 1;

else
in intvl = 0; % no
intvl nr = 0;

end
for i = [2: n] % check the rest of the points

if in intvl == 1 % we are currently in an interval
if y(i) <= R % check if this point is also in the interval

yout(intvl nr) = i; % no, so end the interval
in intvl = 0;

end
else % we are currently not in an interval

if y(i) > R % check if this point is in the next interval
intvl nr = intvl nr + 1; % yes, so begin a new interval
yin(intvl nr) = i;
in intvl = 1;

end
end

end
if y(1) > R % check if we have begun in an interval

yin(1) = []; % yes, so delete it
yout(1) = [];

end
if length(yin) > length(yout) % check if we have ended in an interval

yin( length(yin) ) = []; % yes, so delete it
end
ylen intvl = yout - yin;

When completed, yin and yout contain the element numbers where an interval begins and where it
ends, respectively. This is straightforward — but very slow if y has millions of elements.

To write a vectorized code, we have to think about the problem differently:
(1) We do not care about the actual values in y, only whether they are greater than R or not. So we

construct a logical matrix corresponding to y by yr = (y > R).
(2) We do not actually care about the 0’s and 1’s — only about where the value changes because these

mark the boundaries of the intervals. So we take the difference between adjacent elements of yr by
yd = diff(yr).

(3) We actually only need to know the elements which contain nonzero values so we find the element
numbers by ye = find(yd).

(4) We do not care about the actual locations of the beginning and end of each interval, only the lengths
of these intervals. So we take the difference again by ylen = diff(ye).

(5) Finally, ylen contains the lengths of both the intervals and the distances between successive inter-
vals. So we take every other element of ylen. We also have to be a little careful and check whether
y begins and/or ends in an interval.

Here is the code:
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function ylen intvl = get intervals fast(y, R)
yr = (y > R); % (1)
yd = diff(yr); % (2)
ye = find(yd); % (3)
ylen = diff(ye); % (4)
if y(1) > R % (5), check if we begin in an interval

ylen(1) = []; % yes end
ylen intvl = ylen( 1:2:length(ylen) ); % get every other length

Finally, the question remains: is the time savings significant? For “large” y the CPU time is reduced by
approximately 40. And if y has 107 elements then the slow code takes a couple of minutes and the fast
code a couple of seconds on a “reasonably fast” PC.

9. Sparse Matrices

Many matrices that arise in applications only have a small proportion of nonzero elements. For exam-
ple, if T ∈ Cn×n is a tridiagonal matrix, then the maximum number of nonzero elements is 3n−2. This
is certainly a small proportion of the total number of elements, i.e., n2 , if n is “large” (which commonly
means in the hundreds or thousands or . . . )

For full matrices (i.e., most of the elements are nonzero) MATLAB stores all the elements, while for
sparse matrices (i.e., most of the elements are zero) MATLAB only stores the nonzero elements: their
locations (i.e., their row numbers and column numbers) and their values. Thus, sparse matrices require
much less storage space in the computer. In addition, the computation time for matrix operations is sig-
nificantly reduced because zero elements can be ignored.

Once sparse matrices are generated, MATLAB is completely responsible for handling all the details
of their use: there are no special commands needed to work with sparse matrices. However, there are a
number of commands which are inappropriate for sparse matrices, and MATLAB generally generates a
warning message and refers you to more appropriate commands. For example, cond(S) has to calculate
S−1 , which is generally a full matrix; instead, you can use condest which estimates the condition number
by using Gaussian elimination. You have two alternatives: first, use full to generate a full matrix and
use the desired command; or, second, use the recommended alternative command.

There are two common commands in MATLAB for creating sparse matrices. You can enter all the
nonzero elements of S ∈ Cm×n individually by

>> S = sparse(i, j, s, m, n)
where i and j are vectors which contain the row and column indices of nonzero elements and s is the
vector which contains the corresponding values. For example, the square bidiagonal matrix

S =


n −2

0n− 1 −4
n− 2 −6

. . .
. . .
2 −2n + 20 1


has the following nonzero elements

i j si,j

1 1 n
2 2 n− 1
3 3 n− 2
..
.

..

.
..
.

n− 1 n− 1 2
n n 1

i j si,j

1 2 −2
2 3 −4
3 4 −6
..
.

..

.
..
.

n− 2 n− 1 −2n + 4
n− 1 n −2n + 2

78



9. Sparse Matrices

A simple way to generate this matrix is by entering
>> S = sparse([1:n], [1:n], [n:-1:1], n, n) + ...
sparse([1:n-1], [2:n], [-2:-2:-2*n+2], n, n)

We could, of course, generate S using one sparse command, but it would be more complicated. The
above command is easier to understand, even if it does require adding two sparse matrices. Since the out-
put from this command is basically just the above table, it is difficult to be sure that S is precisely what
is desired. We can convert a sparse matrix to full by

>> full(S)
and check explicitly that S is exactly what is shown in the above matrix.

In addition, a full (or even an already sparse) matrix A can be converted to sparse form with all zero
elements removed by

>> S = sparse(A)
Finally, a zero m×n matrix can be generated by

>> SZ = sparse(m, n)
which is short for

>> SZ = sparse([], [], [], m, n)
The second common command for generating sparse matrices is
>> S = spdiags(B, d, m, n)

which works with entire diagonals of S. B is an min{m,n }×p matrix and its columns become the di-
agonals of S specified by d ∈ Cp . (For example, if d = (0, 1)T then the first column of B contains the
elements on the main diagonal and the second column contains the elements on the diagonal which is one
above the main diagonal.) Thus, we can also generate the matrix S given above by

>> B = [ [n:-1:1]′ [0:-2:-2*n+2]′ ]
>> S = spdiags(B, [0 1]′, n, n)

Warning: Be Careful! The command spdiags is somewhat similar to diag but must be handled more
carefully. Note that the element b1,2 is 0, which does not appear in S. The difficulty is that
the number of rows of B is generally larger than the lengths of the diagonals into which the
columns of B are to be placed and so some padding is required in B. The padding is done so
that all the elements in the k-th row of B come from the k-th column of S.
For example, the matrix

S1 =


0 0 6 0 0
1 0 0 7 0
0 2 0 0 8
0 0 3 0 0
0 0 0 4 0


can be generated as a sparse matrix by

>> A = diag([1:4], -1) + diag([6:8], 2)
>> S1 = sparse(A)

or by
>> B = [ [1:4] 0; 0 0 [6:8] ]′

>> S1 = spdiags(B, [-1 2], 5, 5)
In the latter case note that the columns of B have to be padded with zeroes so that each col-
umn has five elements, whereas in the former case the vector which becomes the particular
diagonal precisely fits into the diagonal. The element s1,3 of S1 contains the value 6. It ap-
pears in the 3-rd row of B because it occurs in the 3-rd column of S1. Note that the element
bn,2 is not used since it would go into the element sn,n+1 .

A slight variation of the above command is
>> T = spdiags(B, d, S)

where T is equated to S and then the columns of B are placed in the diagonals of T specified by d.
Thus, a third way to generate the matrix S given above is

>> S = spdiags([n:-1:1]′, [0], n, n)
>> S = spdiags([0:-2:-2*n+2]′, [1], S)
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Just as with the diag command, we can also extract the diagonals of a sparse matrix by using
spdiags. For example, to extract the main diagonal of S, enter

>> B = spdiags(S, [0])
The number of nonzero elements in the sparse matrix S are calculated by
>> nnz(S)

(Note that this is not necessarily the number of elements stored in S because all these elements are
checked to see if they are nonzero.) The locations and values of the nonzero elements can be obtained
by

>> [iA, jA, valueA] = find(A)
The locations of the nonzero elements is shown in the graphics window by entering

>> spy(S)
These locations are returned as dots in a rectangular box representing the matrix which shows any struc-
ture in their positions.

All of MATLAB’s intrinsic arithmetic and logical operations can be applied to sparse matrices as well
as full ones. In addition, sparse and full matrices can be mixed together. The type of the resulting matrix
depends on the particular operation which is performed, although usually the result is a full matrix. In
addition, intrinsic MATLAB functions often preserve sparseness.

You can generate sparse random patrices by sprand and sparse, normally distributed random matri-
ces by sprandn. There are a number of different arguments for these functions. For example, you can
generate a random matrix with the same sparsity structure as S by

>> sprand(S)
or you can generate an m×n matrix with the number of nonzero random elements being approximately
ρmn by

>> sprand(m, n, rho)
Finally, you can generate sparse random symmetric matrices by sprandsym; if desired, the ma-
trix will also be positive definite. (There is no equivalent command for non-sparse matrices so use
full(sprandsym(...))

Additionally, sparse matrices can be input from a data file with the spconvert command. Use
csvread or load to input the sparsity pattern from a data file into the matrix <sparsity matrix>.
This data file should contain three columns: the first two columns contain the row and column indices of
the nonzero elements, and the third column contains the corresponding values. Then type

>> S = spconvert(<sparsity matrix>)
to generate the sparse matrix S. Note that the size of S is determined from the maximum row and the
maximum column given in <sparsity matrix>. If this is not the size desired, one row in the data file
should be “ m n 0” where the desired size of S is m×n. (This element will not be used, since its value is
zero, but the size of the matrix will be adjusted.)
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Sparse Matrix Functions

speye Generates a sparse identity matrix. The arguments are the same as for
eye.

sprand Sparse uniformly distributed random matrix.
sprand Sparse uniformly distributed random symmetric matrix; the matrix can

also be positive definite.
sprandn Sparse normally distributed random matrix.
sparse Generates a sparse matrix elementwise.
spdiags Generates a sparse matrix by diagonals or extracts some diagonals of a

sparse matrix.
full Converts a sparse matrix to a full matrix.
find Finds the indices of the nonzero elements of a matrix.
nnz Returns the number of nonzero elements in a matrix.
spfun(′<function>′, A) Applies the function to the nonzero elements of A.
spy Plots the locations of the nonzero elements of a matrix.
spconvert Generates a sparse matrix given the nonzero elements and their indices.
sprandsym Generates a sparse uniformly distributed symmetric random matrix; the

matrix can also be positive definite.

10. Ordinary Differential Equations

Most initial-value ordinary differential equations cannot be solved analytically. Instead, using MATLAB
we can obtain a numerical approximation to the ode system

d

dt
y = f(t, y) for t ≥ t0

with initial condition y(t0) = y0 . The basic MATLAB commands are easily learned. However, the com-
mands become more involved if we want to explore the trajectories in more detail. Thus, we divide this
section into the really basic commands which are needed to generate a simple trajectory and into a more
advanced section that goes into many technical details. We also provide a large number of examples, many
more than in other sections of this overview, to provide a template of how to actually use the advanced
features. For more details, consult MATLAB — The Language of Technical Computing: Using MATLAB
by The MathWorks, Inc. There is an entire chapter on this topic.

10.1. Basic Commands

In this subsection we focus on the particular example

y′′ + αy′ − y(1− βy2) = Γ cos ωt ,

which is called Duffing’s equation. This ode has many different types of behavior depending on the values
of the parameters α, β, Γ, and ω.

As written, this is not in the form of a first-order system. To transform it we define y1 = y and
y2 = y′1 = y′ so that

y′1 = y2

y′2 = y′′1 = y′′ = −y1(1− βy2
1)− αy2 + Γ cos ωt

or
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y1

y2

)′
=
(

y2

−y1(1− βy2
1)− αy2 + Γ cos ωt

)
.

Note: This same “trick” can be applied to an n-th order by defining y1 = y, y2 = y′1, y3 = y′2, . . . ,
yn = y′n−1 .

Then we create a MATLAB function file which calculates the right hand side of this ode system.
function deriv = duffing1(t, y)
% duffing1: Duffing’s equation, first try
% y′′ + alpha*y′ - y*(1 - beta*yˆ2) = Gamma*cos(omega*t)
alpha = 0.05;
beta = 1.0;
Gamma = 0.5;
omega = 1.0;
deriv = [ y(2) ; y(1)*(1-beta*y(1)ˆ2)-alpha*y(2)+Gamma*cos(omega*t) ];

Note that all the parameters are defined in the M-file so that it will have to be modified whenever we want
to modify the parameters. (In the advanced subsection we will show how to pass the parameters to the
M-file in the argument list to the ode solver.)
Warning: Recall that no spaces are allowed in an element of a matrix and so in the statement

deriv = [ y(2) ; ... ]
there cannot be any spaces in entering the second row (except between parentheses).

To obtain a numerical solution to an ode system, enter
>> [t, Y] = <ode solver>(′<function name>′, tspan, y0)

First, we have to choose which of the ode solvers shown in the table below to use. It is possible for MAT-
LAB itself to decide which numerical method to use. However, there are good reasons (which we will
discuss shortly) why the decision should be left in the hand of the user.

All of the solvers use the same input and output arguments, which we now discuss. The input parame-
ters are:
function The name of the function file that calculates f(t, y).

tspan The vector that specifies the time interval over which the solution is to be calculated. If this
vector contains two elements, these are the initial time and the final time; in this case the
ode solver determines the times at which the solution is output. If this vector contains more
than two elements, these are the times at which the solution is output.
Note: the final time can be less than the initial time, in which case the trajectory is moving
backwards in time.

y0 The vector of the initial conditions for the ode.
The output parameters are:

t The column vector of the times at which the solution is calculated.†

Y The matrix which contains the numerical solution at the times corresponding to t.‡ The
first column of y contains y1 , the second column y2 , etc.

Note: If you do not include a left-hand side, then t and Y cannot be returned. Since MATLAB assumes
that it should output the numerical trajectory somehow, it plots the solution as y1, y2, . . . , yn

vs. t. (For more control over the plot, see OutputFcn and OutputSel in the table “ODE Solver
Parameters” in the advanced section.)

†The t in [t, Y] is unrelated to the t argument in the function duffing1.
‡We have capitalized the Y in [t, Y] to indicate that the output is a matrix whereas the argument y is a

vector in the function. It might be helpful to write the function as

function deriv = duffing1(tnow, ynow)
.....
deriv = [ ynow(2) ; -ynow(1)*(1-beta*y(1)ˆ2)-alpha*ynow(2)+Gamma*cos(omega*tnow) ];

to indicate that ynow is y at the present time, i.e., tnow.
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ODE Solvers

ode45 Non-stiff ode solver; fourth-order, one-step method.
ode23 Non-stiff ode solver; second-order, one-step method.
ode113 Non-stiff ode solver; variable-order, multi-step method.
ode15s Stiff ode solver; variable-order, multi-step method.
ode23s Stiff ode solver; second-order, one-step method.
ode23t Stiff ode solver; trapezoidal method.
ode23tb Stiff ode solver; second-order, one-step method.

All these ode solvers use an adaptive step size to control the error in the numerical solution. Each time
step is chosen to try to keep the local error within the prescribed bounds as determined by the relative er-
ror and the absolute error tolerances (although it does not always succeed). That is, ei , which is the error
in yi , is supposed to satisfy

ei ≤ max{ RelTol · |yi|, AbsTol(i) }

where the default value of RelTol is 10−3 and of the vector AbsTol is 10−6 for each element. (How-
ever, there is no guarantee that the error in the numerical calculation actually satisfies this bound.)

It is up to you to decide which ode solver to use. As a general rule, unless you believe that the ode
is stiff† try ode45 or ode113. For a given level of accuracy, these methods should run “fast”. (Which
one runs faster is very dependent on the ode.) If you know (or believe) that the ode is stiff, or if these
two non-stiff solvers fail, then try ode15s. The difficulty with a stiff solver is that you may well have to
supply the Jacobian of the ode yourself. The Jacobian of f(t, y) is the n×n matrix

J(t, y) =
(

∂fi

∂yj
(t, y)

)
,

i.e., the element in the i-th row and j-th column of J is

∂fi

∂yj
.

Any of the stiff methods can approximate this matrix numerically. However, if the ode is “bad” enough,
this may not be enough. You may have to calculate all these partial derivatives yourself and include them
in your function file — we show an example of this later.

The reason for this large choice of ode solvers is that some odes are very, very, very nasty. It is possi-
ble that most of the ode solvers will fail and only one, or maybe two, will succeed. If you discover such an
ode, check the reference book; it discusses and contrasts each of the methods in detail.

†There is no precise definition of when an ode is stiff. Instead, we say it is stiff if the time step required to
obtain a stably and accurate solution is “unreasonably” small. For example, the solution to the ode

y′′ +

„
1

ε
− 1

«
y′ − 1

ε
y = 0 for t ∈ [0, 1]

with boundary conditions y(0) = 0 and y(1) = 1 is

y(t) =
et − e−t/ε

e− e−1/ε
.

If ε� 1 the trajectory quickly approaches et/(e− e−1/ε) for t ' ε because e−t/ε quickly becomes negligible
compared to et . We would like to choose the time step based on the et term so that we want the time step
∆t� 1. However, unless we use a stiff ode solver, we will have to choose ∆t� ε because of numerical instabil-
ities that arise in non-stiff ode solvers. (In chemical reaction models, it is not uncommon for ε to be 10−5 or
even 10−10 .) A stiff solver allows us to use a “reasonable” ∆t but at a cost: the Jacobian of f (which we will
discuss shortly) must be calculated repeatedly and a linear system of equations must be solved repeatedly.
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To conclude this subsection, we return to Duffing’s equation. Suppose we want to solve the ode for
t ∈ [0, 100] with initial conditions y = (2, 1)T and plot the results. Since this is a very well behaved ode
for the parameters given, enter

>> [t, Y] = ode45(′duffing1′, [0 100], [2 1]);
>> figure(1)
>> plot(t, Y)
>> figure(2)
>> plot(Y(:,1), Y(:,2))

This results in a plot of y and y′ vs. t † and a separate plot of y′ vs. y. If we only want to plot the
trajectory, enter

>> ode45(′duffing1′, [0 100], [2 1])
(This plot is rather “cluttered” because, not only is the trajectory plotted, but in addition markers are put
at each of the points of the numerical solution.)
Note: The function duffing1 can also be passed as a function handle, i.e., as @duffing1. Although

rarely used, the right hand side of the ode can also be created as an inline function.

10.2. Advanced Commands

There are a number of parameters that we can use to “tune” the particular ode solver we choose. The
MATLAB function odeset is used to change these parameters from their default values by

>> params = odeset(′<Name 1>′, <Value 1>, ′<Name 2>′, <Value 2>, ...)
where each parameter has a particular name and it is followed by the desired value. The result of this
command is that the parameters are contained in the variable params. You include these parameters in
the ode solver by adding this variable to the argument list of the ode solver function as

>> [t, Y] = <ode solver>(′<function name>′, tspan, y0, params)
Some of the more common parameters are shown in the table below; they will be discussed further later.
To determine all the parameters, their possible values and the default value, enter

>> odeset

†The only difficulty is remembering which curve is y and which is y′ . The ordering of the colors is: blue,
green, red, blue-green, purple.
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ODE Solver Parameters

odeset(′<Name 1>′,
<Value 1>, ...)

Assigns values to properties; these are passed to the ode solver when it is
executed.

AbsTol The absolute error tolerance. This can be a scalar in which case it applies to all the
elements of y or it can be a vector where each element applies to the corresponding
element of y. (Default value: 10−6 .)

Events The times and locations of certain events are calculated (value: ′on′ ) or they are not
(value: ′off′ ). (Default value: ′off′ .)

Jacobian Whether the analytical Jacobian is contained in the function file which calculates f
(value: ′on′ ) or not (value: ′off′ ). (Default value: ′off′ .)

JPattern The numerically calculated Jacobian is sparse (value: ′on′ ) or it is full (value: ′off′ ).
(Default value: ′off′ .)

OutputFcn How the output, i.e., [t Y], should be handled. For example, a plot of the trajectory
can be generated automatically as it is being calculated.
The value of this parameter is the name of a user-defined or a MATLAB function. Use-
ful MATLAB functions are:
′odeplot′ which generates a plot of time versus all the components of the trajectory,
i.e., t vs. y1, y2, . . . , yn ;
′odephas2′ which generates a plot of y1 vs. y2 , i.e., Y(:,1) vs. Y(:,2);
′odephas3′ which generates a plot of y1 vs. y2 vs. y3 , i.e., Y(:,1) vs. Y(:,2)
vs. Y(:,3).
It is possible to plot different components of y using OutputSel.

OutputSel A vector containing the components of Y which are to be passed to the function speci-
fied by the OutputFcn parameter.

Refine Refines the times which are output in t. This integer value increases the number of
times by this factor. (Default value: 1 for all ode solvers except ode45, 4 for ode45.)

RelTol The relative error tolerance. (Default value: 10−3 ).
Stats Whether statistics about the run are returned (value: ′on′ ) or they are not (value:

′off′ ). (Default value: ′off′ .)

For example, if you want to use ode45 with the relative error tolerance set to 10−6 for Duffing’s equa-
tion, enter

>> params = odeset(′RelTol′, 1.e-6)
>> [t, Y] = ode45(′duffing1′, tspan, y0, params)

The trajectory will be more accurate — but the command will run slower.
If you also want the statistics on the performance of the particular ode solver used, enter
>> params = odeset(′RelTol′, 1.e-6, ′Stats′, ′on′)
>> [t, Y, s] = ode45(′duffing1′, tspan, y0, params)

and the vector s will contain:
s(1) – the number of successful steps.
s(2) – the number of failed attempts.
s(3) – the number of times f(t, y) was evaluated.
s(4) – (if the ode is stiff) the number of times the Jacobian was evaluated.
s(5) – (if the ode is stiff) the number of LU decompositions calculated.
s(6) – (if the ode is stiff) the number of times a linear system had to be solved.

This might be useful in “optimizing” the performance of the ode solver if the command seems to be run-
ning excessively slowly.

The ode solver can also record the time and the location when the trajectory satisfies a particular con-
dition: this is called an event. For example, if we are calculating the motion of the earth around the sun,
we can determine the position of the earth when it is closest to the sun and/or farthest away; or, if we are
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following the motion of a ball, we can end the calculation when the ball hits the ground — or we can let it
continue bouncing. Enter

>> ballode
to see a simple example.

As a specific example, suppose we want to record where and when a specific solution to Duffing’s equa-
tion passes through y1 = ±0.5. That is, we define an “event” to be whenever the first component of y
passes through −0.5 or +0.5. The function, which we discuss in detail below, follows.

>> params = odeset(′RelTol′, 1.e-6, ′Events′, ′on′)
>> [t, Y, tevent, Yevent, indexevent] = ode45(′duffing2′, tspan, y0, params)

where we have to create a new file duffing2.m as
function [out1, out2, out3] = duffing2(t, y, flag)
% duffing2: Duffing’s equation with events set
% y′′ + alpha*y′ - y*(1 - beta*yˆ2) = Gamma*cos(omega*t)
if strcmp(flag, ′′) % calculate f(t,y)

alpha = 0.05;
beta = 1.0;
Gamma = 0.5;
omega = 1.0;
out1 = [ y(2) ; y(1)*(1-beta*y(1)ˆ2)-alpha*y(2)+Gamma*cos(omega*t) ];

elseif strcmp(flag, ′events′) % set up the events
out1 = [y(1)+0.5; y(1)-0.5]; % check whether y(1) passes through ±0.5
out2 = [0; 0]; % do not halt when this occurs
out3 = [0; 0]; % an event occurs when y(1) passes through

% zero in either direction
end

Note that every time this function is called, either the right-hand side of the ode is calculated or the event
is described — never both.

There are a number of steps we have to carry out to turn “events” on. First, we have to use the odeset
command. However, this only tells the ode solver that it has to watch for one or more events; it does not
state what event or events to watch for. Instead, we describe what an event is in the same function which
calculates the right-hand side. (It would be possible to write a separate function to describe the event
or events. However, it is simpler to keep everything in one place, even though this makes the function
somewhat more complicated to code and read.) Thus, the function duffing2 has to serve two purposes:
sometimes it calculates the right-hand side of the ode, and other times it describes what an event is. The
input argument flag is a text variable which determines the purpose of the function: if flag is empty,
the function returns the value of the right-hand side; if flag consists of the word events, then the event
is described.

Note that there are three output argument for the function duffing2.m. If flag is empty, only
the first argument is used; it is used exactly as in the function duffing1 above. If flag is the string
events, three vector arguments are output:

out1 – A vector of values which are checked to determine if they pass through zero during a time
step. No matter how we describe the event, as far as the ode solver is concerned an event only
occurs when an element of this vector passes through zero. In some cases, such as this exam-
ple it is easy to put an event into this form. In other cases, such as determining the apogee
and perigee of the earth’s orbit, the calculation will be quite involved.

out2 – A vector determining whether the ode solver should terminate when this particular event
occurs: 1 means yes and 0 means no.

out3 – A vector determining how the values in out1 should pass through zero for an event to oc-
cur:

1 means the value must be increasing through zero for an event to occur,
−1 means the value must be decreasing through zero for an event to occur, and

0 means that either direction triggers an event.
The final step is that the left-hand side of the calling statement must be modified to
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[t, Y, tevent, Yevent, index event]
Any and all events that occur are output by the ode solver through these three additional variables:

tevent is a vector containing the time of each event,
Yevent is a matrix containing the location of each event, and
index event is a vector containing which value in the vector out1 passed through zero.

Since the function duffing2 might appear confusing, we will discuss how an event is actually calcu-
lated. At the initial time, t and y are known, say t(0) and y(0) . duffing2 is called with flag set to
events so that the vector

e(0) =
(

y
(0)
1 + 0.5

y
(0)
1 − 0.5

)
,

i.e., out1, is generated, and so is out2 and out3. Next, duffing2 is called with flag empty and the
solution y(1) is calculated at time t(1) . duffing2 is called again with flag set to events and e(1) is
calculated and compared elementwise to e(0) . If the values have different signs in some row, then out3
is checked to determine if the values are passing through zero in the correct direction or if either direc-
tion is allowed. If so, the time at which the element is exactly zero is estimated and duffing2 is called
again with flag empty to calculate the solution at this time, say t(z,1) and y(z,1) . Again, duffing2 is
called with flag set to events and e(z,1) is generated. It is compared to e(0) as before and the time
at which the element is exactly zero is estimated again, say t(z,2) . Again, y(z,2) is calculated and then
e(z,2) is generated. This procedure continues until the zero is found to the desired accuracy. The calls to
duffing2 always follow this pattern: the function is called to calculate the solution y at the time t †;
then it is called once to generate e, and also out2 and out3.

We want to discuss a few more parameters which are passed to the ode solver. However, there is an im-
portant subject that has been left hanging long enough: it is very inconvenient that the parameters in
Duffing’s equation are determined in the function. We should be able to “explore” the rich behavior of
Duffing’s equation without having to constantly modify the function — in fact, once we have the function
exactly as we want it, we should never touch it again. (This is not only true for esthetic reasons; the more
we fool around with the function, the more likely we are to screw it up!)

This is easily done by adding parameters to the ode solver itself as
[t, Y] = ode45(′duffing3′, tspan, y0, [], alpha, beta, Gamma, omega);

where the function file duffing3.m is
function deriv = duffing3(t, y, flag, al, be, Ga, om)
% duffing3: Duffing’s equation, with coefficients passed through arguments
% y′′ + alpha*y′ - y*(1 - beta*yˆ2) = Gamma*cos(omega*t)
deriv = [ y(2) ; y(1)*(1-be*y(1)ˆ2)-al*y(2)+Ga*cos(om*t) ];

where we have changed the parameter names in duffing3.m just to show that there is does not need to
be any relationship between the names in the calling statement and the names in the function file. Note
that we are not passing any parameters to the ode solver, just to the function duffing3. We could have
added this flexibility to the function duffing2 rather than returning to duffing1, but we feel it is bet-
ter to keep the functions as simple as possible. However, we waited until now to discuss this topic because
we have to leave space for the input argument params and flag, which we have now discussed. That
is, if there are four or more arguments passed to the ode solver, the fourth argument must be param (or
whatever you want to call it). The fifth, and any following arguments, are passed directly to the func-
tion. Similarly, if the function has three or more input arguments, the third must be flag (or whatever
you want to call it). The fourth, and any following arguments, are passed directly from the ode solver.
Whether or not any parameters are passed to the ode solver, arguments must be set aside for them. In the
present example, the fourth argument to ode45 is empty, i.e., [], but it has to be there. Also, the third
argument to duffing3 is unused in the function, but it has to be there.

To see a sampling of the different type of behavior in Duffing’s equation, enter
>> [t, Y] = ode45(′duffing3′, [0 200], [0 1], [], 0.15, 1, 0.3, 1) plot(t, Y(:,1))

†For some of the ode solvers the function need only be called once. However, for others, such as ode45 the
function has to be called a number of times.

87



10.2. Advanced Commands

so that α = 0.15, β = 1, Γ = 0.3 and ω = 1. The initial condition is y(0) = (0, 1)T . After a short time,
the solution looks completely regular: it appears to be exactly periodic with a period of 2π due to the
0.3 cos t term. (In fact, to the accuracy of the computer it is exactly periodic.) However, if we merely
change the initial condition to y = (1, 0)T by

>> [t, Y] = ode45(′duffing3′, [0 200], [1 0], [], 0.15, 1, 0.3, 1) plot(t, Y(:,1))
the behavior appears to be chaotic. If we increase the time we plot by

>> [t, Y] = ode45(′duffing3′, [0 1000], [1 0], [], 0.15, 1, 0.3, 1) plot(t, Y(:,1))
the behavior appears to still be completely irregular. Here is an example of a ode which has periodic mo-
tion for one initial condition and is chaotic for another! If we change α from 0.15 to 0.22 by

>> [t, Y] = ode45(′duffing3′, [0 200], [0 0.5], [], 0.22, 1, 0.3, 1) plot(t, Y(:,1))
we find periodic motion with a period of 6π. This is just a sampling of the behavior of Duffing’s equation
in different parameter regions.

Another interesting ode is van der Pol’s equation

y′′ − µ(1− y2)y′ + y = 0

where µ > 0 is the only parameter. As a first order system it is(
y1

y2

)′
=
(

y2

µ(1− y2
1)y2 − y1

)
and its Jacobian is

J =
(

0 1
−2µy1y2 − 1 µ(1− y2

1)

)
.

The right-hand side is coded as
function deriv = vdp1(t, y, flag, mu)
% vdp1: van der Pol’s equation
% y′′ - mu*(1 - yˆ2)*y′ + y = 0
deriv = [ y(2) ; mu*(1-y(1)ˆ2)*y(2)-y(1) ];

and is called by
>> [t, Y] = <ode solver>(′vdp1′, tspan, y0, [], mu)

This is not stiff unless µ is “large”.†

There is no need to use the ode solver parameters JPattern or Jacobian in this example because this
ode is so “nice”. However, since they might be needed for a nastier ode, we include them in vdp2 by

function out = vdp2(t, y, flag, mu)
% vdp2: van der Pol’s equation
% y′′ - mu*(1 - yˆ2)*y′ + y = 0
if strcmp(flag, ′′)

out = [ y(2) ; mu*(1-y(1)ˆ2)*y(2)-y(1) ];
elseif strcmp(flag, ′jacobian′)

out = [ 0 1; -2*mu*y(1)*y(2)-1 mu*(1-y(1)ˆ2) ];
elseif strcmp(flag, ′jpattern′)

out = sparse([1 2 2], [2 1 2], [1 1 1], 2, 2);
end

This function can be called by
>> params = odeset(′Jacobian′, ′on′);
>> [t, Y] = ode15s(′vdp2′, [0 1000], [1 0], params, 100)

in which case the Jacobian is calculated numerically in vdp2.

†For example, using µ = 1 solve the ode with initial conditions y(0) = 1 and y′(0) = 0 for t ∈ [0, 100] using
ode45. Then, plot the result and note the number of elements in t. Repeat this procedure using µ = 1000 (but
you might want to reduce the final time to 10 or even 1 if the time for the calculation seems excessive). Then
use ode15s and see the difference in the time required.
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Warning: Plotting the trajectory by
>> plot(t, Y)

is not very instructive. Instead, use
>> figure(1)
>> plot(t, Y(:,1))
>> figure(2)
>> plot(t, Y(:,2))

If we use
>> params = odeset(′JPattern′, ′on′);
>> [t, Y] = ode15s(′vdp2′, [0 1000], [1 0], params, 100)

then the Jacobian is approximated numerically, but only for the elements J 1,2, J 2,1, and J 2,2 . In vdp2
if flag is empty, then f(t, y) is calculated and returned in the output variable out as before; if flag
contains the string ′jacobian′ , then the Jacobian matrix is returned; and if flag contains the string
′jpattern′ then a sparse matrix is returned with 1 in all the elements where the Jacobian has non-zero
elements.

There are occasions when it is inconvenient to continually input tspan, y0, and/or params. This fre-
quently happens when we want to solve a particular ode repeatedly for different values of some parameter.
In this case we would like the function itself to define as many of the parameters as possible so that we do
not have to continually enter them ourselves.

For example, suppose we kick a ball into the air with initial speed s and at an angle of α, and we want
to follow its motion until it hits the ground. Let the x axis be the horizontal axis along the direction of
flight and z be the vertical axis. Using Newton’s laws we obtain the ode system

x′′ = 0 and z′′ = −g

where g = 9.8 meters/second is the acceleration on the ball due to the earth’s gravity. The initial condi-
tions are

x(0) = 0 , x′(0) = s cos α , z(0) = 0, and z′(0) = s sinα

where we assume, without loss of generality, that the center of our coordinate system is the initial location
of the ball. We also want to determine two “events” in the ball’s flight: the highest point of the trajectory
of the ball and the distance it travels.

Although these odes can be solved analytically (consult any calculus book), our aim is to give an ex-
ample of how to use many of the advanced features of MATLAB’s ode solvers. (If we would include the
effects of air resistance on the ball, then these odes would become nonlinear and would not be solvable
analytically.) We convert Newton’s laws to the first-order system


y1

y2

y3

y4


′

=


y2

0
y4

−g


by letting y1 = x, y2 = x′ , y3 = z , and y4 = z′ The initial conditions are

y1(0) = 0 , y2(0) = s cos α , y3(0) = 0 , and y4(0) = s sinα .

One complication with solving this system numerically is that we do not know when the ball will hit
the ground, so we cannot give the final time. Instead, we use a time, 10s/g which is much greater than
needed and we let the program stop itself when the ball hits the ground. In addition, we want the relative
error to be 10−6 . Finally, we want the trajectory (i.e., z vs. x ) to be plotted automatically.

The function which does all of this is the following.
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function [out1, out2, out3] = gravity(t, y, flag, speed, angle)
% gravity: the trajectory of a ball thrown from (0,0) with initial
% speed and angle (in degrees) given
g = 9.8;
if strcmp(flag, ′init′) % set initial parameters

out1 = [0 10*speed/g];
out2 = [ 0 ; speed*cos(angle*pi/180) ; 0 ; speed*sin(angle*pi/180) ];
out3 = odeset(′RelTol′, 1.e-6, ...

′Events′, ′on′, ...
′Refine′, 20, ...
′OutputFcn′, ′odephas2′, ...
′OutputSel′, [1 3]);

elseif strcmp(flag, ′′) % calculate f(t,y)
out1 = [ y(2) ; 0 ; y(4) ; -g ];

elseif strcmp(flag, ′events′) % set up the events
out1 = [y(3) y(4)]; % check whether y(3) or y(4) pass through zero
out2 = [1 0]; % halt only when y(3) passes through 0
out3 = [-1 0]; % an event occurs when y(3) decreases through zero or

% y(4) passes through zero in either direction
end

(At the end of this subsection we rewrite this function using subfunctions for easier readability.) When
flag = ′init′ the function returns the initial and final time as a vector in out1, the initial condition as
a column vector in out2, and the ode solver parameters in out3. In odeset the relative error is set to
10−6 . Next, the location of certain events is to be calculated. Third, many more data points are calcu-
lated on the numerical trajectory than needed so that the solution looks smooth. Also, the output is to
be plotted using the graphics function odephas2 which calculates the phase plane. Finally, the first and
third components of y, i.e., x and z , are to be plotted (rather than the first and second, which is the
default). (We have included each parameter on a separate line simply for readability.)

When flag = ′′ the function returns the right-hand side of the ode. Finally, when flag = ′ events ′

the function sets up the event handler. The variables which are to be watched to determine when they
pass through 0 are returned as a vector in out1. out2 contains the vector which determines if the pro-
gram is to stop when an event occurs. out3 contains the vector which specifies in which direction the
variables are to pass through 0 in order for an event to occur.

The calling sequence for solving this ode system is
>> [t, Y, tevent, Yevent, index event] = ode45(′gravity′, [], [], [], 10, 45)

If any of the parameters tspan, y0, or params are empty, the function is called with flag = ′ init ′ .
On output from this function, the first output argument contains tspan, the second contains y0, and
the third contains params. These output arguments are used if the corresponding argument in the calling
statement is empty (i.e., [] ).
Note: Even if only one of the parameters is to be obtained from the function, all three of the output argu-

ments, i.e., out1, out2, and out3, must be defined (if only as empty matrices).
Note: The number and types of the output arguments depend on the contents of flag. Be careful!

Since functions such as gravity can grow rather long and unwieldy, we split this function up into the
primary function gravity2 and a number of subfunctions. Consider doing this if have trouble debugging
your code.

90



11. Polynomials and Polynomial Functions

function [out1, out2, out3] = gravity2(t, y, flag, speed, angle)
% gravity: the trajectory of a ball thrown from (0,0) with initial
% speed and angle (in degrees) given
g = 9.8;
if strcmp(flag, ′init′) % set initial parameters

[out1, out2, out3] = initialize(g, speed, angle);
elseif strcmp(flag, ′′) % calculate f(t,y)

out1 = fnctn(g, y);
elseif strcmp(flag, ′events′) % set up the events

[out1, out2, out3] = events(y);
end

function [times, y0, params] = initialize(g, speed, angle)
% initializes all the parameters and settings
times = [0 10*speed/g];
y0 = [ 0 ; speed*cos(angle*pi/180) ; 0 ; speed*sin(angle*pi/180) ];
params = odeset(′RelTol′, 1.e-6, ...

′Events′, ′on′, ...
′Refine′, 20, ...
′OutputFcn′, ′odephas2′, ...
′OutputSel′, [1 3]);

function deriv = fnctn(g, y)
% calculates the right hand side
out1 = [ y(2) ; 0 ; y(4) ; -g ];

function [values, halt, direction] = events(y)
% sets up the events
values = [y(3) y(4)]; % check whether y(3) or y(4) pass through zero
halt = [1 0]; % do not halt when this occurs
direction = [-1 0]; % an event occurs when y(1) passes through zero in

% either direction

11. Polynomials and Polynomial Functions

In MATLAB the polynomial

p(x) = c1x
n−1 + c2x

n−2 + . . . + cn−1x + cn .

is represented by the vector q = (c1, c2, . . . , cn)T . You can easily calculate the roots of a polynomial by
>> r = roots(q)

Conversely, given the roots of a polynomial you can recover the coefficients of the polynomial by
>> q = poly(r)

Warning: Note the order of the coefficients in the polynomial. c1 is the coefficient of the highest power of
x and cn is the coefficient of the lowest power, i.e., 0.

The polynomial can be evaluated at x by
>> y = polyval(q, x)

where x can be a scalar, a vector, or a matrix. If A is a square matrix, then

p(A) = c1A
n−1 + c2A

n−2 + . . . + cn−1A + cn

is calculated by
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>> polyvalm(q, A)
(See section 14 for more details on this type of operation.)

A practical example which uses polynomials is to find the “best” fit to data by a polynomial of a partic-
ular degree. Suppose the data points are{

(−3,−2), (−1.2,−1), (0,−0.5), (1, 1), (1.8, 2)
}

and we want to find the “best” fit by a straight line. Defining the data points more abstractly as{
(xi, yi)

∣∣ i = 1, 2, . . . , n
}

and the desired straight line by y = c1x + c2 , the matrix equation for the
straight line is 

x1 1
x2 1
..
.

..

.

xn 1

( c1

c2

)
=


y1

y2

..

.

yn

 .

In general, there is no solution to this overdetermined linear system. Instead, we find the least-squares
solution c = (c1, c2)T by

>> c = [x ones(n, 1)] \ y
We can plot the data points along with this straight line by

>> xx = linspace(min(x), max(x), 100);
>> yy = polyval(c, xx);
>> plot(xx, yy, x, y, ′o′)

We can find the “best” fit by a polynomial of degree m < n, i.e., y = c1x
m + c2x

m−1 + . . . + cm+1 , by
calculating the least-squares solution to

Vc = y

where

V =


xm

1 xm−1
1

. . . x1 1
xm

2 xm−1
2

. . . x2 1
..
.

..

.
..
.

..

.

xm
n xm−1

n
. . . xn 1

 and c =


c1

c2

..

.

cn

 .

The matrix V is called a Vandermonde matrix . The statement
>> V = vander(x);

generates the square Vandermonde matrix with m = n− 1. To generate the n×(m− 1) Vandermonde
matrix we want, enter

>> V = vander(x)
>> V(: , 1:m-1) = [];

This entire procedure can be carried out much more easily by entering
>> q = polyfit(x, y, m-1)

where the third argument is the order of the polynomial (i.e., the number of coefficients in the polyno-
mial).

You can also find a local maximum or minimum of the polynomial p(x) by finding the zeroes of p′(x).
The coefficients of p′(x) are calculated by

>> polyder(q)
where q is the vector of the coefficients of p(x).

Given a set of data points
{

(xi, yi)
}

there is sometimes a need to estimate values that lie within these
data points (this is called interpolation) or outside them (this is called extrapolation). This estimation is
generally done by fitting data which is “near” the desired value to a polynomial and then evaluating this
polynomial at the value.

There are a number of commands to interpolate data points in any number of dimensions. The simplest
command in one dimension is

>> interp1(x, y, xvalues, <method>)
where xvalues is a vector of the values to be interpolated and <method> is an optional argument speci-
fying the method to be used. One additional requirement for this command is that the elements of x are
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monotonic, i.e., either all in increasing order or in decreasing order, to make it easy for the function to de-
termine which data points are “near” the desired value. Four of the interpolation methods which can be
used are the following:

′nearest′: The interpolated value is the value of the nearest data point.
′linear′: Linear splines are used to connect the given data points. That is, straight lines connect

each pair of adjacent data points. (This is the default.)
′spline′: Cubic splines are used to connect the given data points. That is, cubic polynomials con-

nect each pair of adjacent data points. The additional constraints needed to obtain unique
polynomials are that the the two polynomials which overlap at each interior data point
have the same first and second derivatives at this point.

′cubic′: Cubic polynomials connect each pair of adjacent data points. Each polynomial is calculated
by using the two nearest data points (if possible) at each end of the interval in which each
desired value is contained. (The technical name for this is cubic Hermite interpolation.)

Interpolation really means interpolation. If a value lies outside the interval [x1, xn] then, by default,
NaN is returned. This can be changed by adding a fifth argument:
• If the fifth argument is a number, this value is returned whenever the value lies outside the interval.
• If the fifth argument is ′extrap′ , extrapolation (using the same method) is used.
The command spline is specific to cubic spline interpolation. With it you can specify precisely the

boundary conditions to use.

Polynomial Functions

interp1(x, y, xvalues, <method>) Interpolates any number of values using the given data
points and the given method.

interp2 Interpolates in two dimensions.
interp3 Interpolates in three dimensions.
interpn Interpolates in n dimensions.
poly(<roots>) Calculates the coefficients of a polynomials given its roots.
polyder(q) Calculates the derivative of a polynomial given the vector of

the coefficients of the polynomial.
polyfit(x, y, <order>) Calculates the coefficients of the least-squares polynomial of

a given order which is fitted to the data
{

(xi, yi)
}

.
polyval(q, x) Evaluates the polynomial p(x).
polyvalm(q, A) Evaluates the polynomial p(A) where A is a square matrix.
roots(q) Numerically calculates all the zeroes of a polynomial given

the vector of the coefficients of the polynomial.
spline Cubic spline interpolation.

12. Numerical Operations on Functions

MATLAB can also find a zero of a function by
>> fzero(′<function>′, x0)

or
>> fzero(@<function>, x0)

>> fzero(<function>, x0)
if <function> is an inline function. x0 is a guess as to the location of the zero. Alternately,

>> fzero(′<function>′, [xmin xmax])
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finds a zero in the interval x ∈ (xmin, xmax) where the signs of the function must differ in sign at the
endpoints of the interval.
Note: The function must cross the x-axis so that, for example, fzero cannot find the zero of the function

f(x) = x2 .
The full argument list is
>> fzero(′<function>′, xstart, options, <arg 1>, <arg 2>, . . . )

where xstart is either x0 or [xmin xmax], as we discussed previously. We can “tune” the zero finding
algorithm by using the variable options, which is defined by

>> options = optimset(′<Name 1>′, <Value 1>, ′<Name 2>′, <Value 2>, ...)
Enter

>> help optimset
to see the various options. If desired, we can also pass arguments to <function>. The initial line of
<function> is then

function y = <function>(x, <arg 1>, <arg 2>, . . . )
For example, we can find a zero of the function f(x) = cos ax + bx by
>> yzero = fzero(′fcos′, xstart, [], a, b)

where the function is defined as
function y = fcos(x, a, b)
% fcos: f(x) = cos(a*x) + b*x
y = a*cos(x) + b*x;

We can find a zero of a particular function, such as f(x) = cos 2x + 3x without creating a function file by
>> fzero(′cos(2*x) + 3*x′, 0)

or
>> F = ′cos(2*x) + 3*x′

>> fzero(F, 0)
or

>> F inline = inline(′cos(2*x) + 3*x′, ′x′)
>> fzero(F inline, 0)

MATLAB can also find a local minimum of a function of a single variable in an interval by
>> fmin(′<function>′, xmin, xmax)

or
>> fminbnd(′<function>′, xmin, xmax)

(the latter is preferred). As with fzero, the full argument list is
>> fminbnd(′<function>′, xmin, xmax, options, <arg 1>, <arg 2>, . . . )

and <function> can be a string containing the function rather than the name of a function file.
MATLAB can also find a local minimum of a function of several variables by
>> fminsearch(′<function>′, iterate0)

where iterate0 is a vector specifying where to begin searching for a local minimum. For example, if we
enter

>> fminsearch(′fnctn′, [0 0]′)
or

>> fminsearch(@fnctn, [0 0]′)
on the function defined in a function M-file by

function y = fnctn(x)
% fnctn: y = (x1 - 1)ˆ2 + (x2 + 2)ˆ4
y = (x(1) - 1)ˆ2 + (x(2) + 2)ˆ4;we obtain (1.0000− 2.0003)T (actually (1.00000004979773,−2.00029751371046)T ). Alternately, if the

function is defined inline by
>> fnctn = vectorize(inline(′(x(1) - 1)ˆ2 + (x(2) + 2)ˆ4′, ′x′))

we enter
>> fminsearch(fnctn, [0 0]′)
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(i.e., no quote marks and no “@”). The answer might not seem to be very accurate. However, the value of
the function at this point is 1.03×10−14 , which is quite small. If our initial condition is (1, 1)T , the re-
sult is (0.99999998869692,−2.00010410231166)T . Since the value of funct at this point is 2.45×10−16 ,
the answer is about as accurate as can be expected. In other words, the location of a zero and/or a lo-
cal minimum of a function might not be as accurate as you might expect. Be careful. To determine the
accuracy MATLAB is using to determine the minimum value type

>> optimset(’fminsearch’)
The value of TolX, the termination tolerance on x, is 10−4 and the value of TolFun, the termination
tolerance on the function value, is the same.

There is no direct way to find zeroes of functions of more than one dimension. However, it can be done
by using fminsearch. For example, suppose we want to find a zero of the function

f(x) =
(

x1 + x2 + sin(x1 − x2)
x1 − x2 + 2 cos(x1 + x2)

)
.

Instead, we can find a minimum of g(x) = f2
1 (x) + f2

2 (x). If the minimum value is 0, we have found a
zero of f — if it is not zero, we have not found a zero of f For example, the result of

>> xmin = fminsearch(@f, [0 0])
is xmin = (−.1324 . . . , 1.0627 . . . ). We are not done since we still have to calculate g(xmin). This is
≈ 2.4×10−9 which is small — but is it small enough? We can decrease the termination tolerance by

>> opt = optimset(’TolX’, 1.e-8, ’TolFun’, 1.e-8)
>> xmin = fminsearch(@f, [0 0], opt)

Since g(xmin) = 2.3×10−17 we can assume that we have found a zero of f.
MATLAB can also calculate definite integrals by the functions quad, which uses the adaptive Simpson’s

method, or quad8, which uses the adaptive Newton-Cotes 8 panel method. To evaluate
∫ b

a
f(x) dx by

Simpson’s method enter
>> quad(′<function>′, a, b)

The full argument list is
>> quad(′<function>′, a, b, tol, trace, <arg 1>, <arg 2>, ...)

where tol sets the relative tolerance for the convergence test and information about each iterate is
printed if trace is non-zero. The arguments following are passed to the function file which calculates
f(x).

MATLAB can also calculate the double integral∫ b

a

∫ d

c

f(x, y) dxdy

by
>> dblquad(′<function>′, a, b, c, d)
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Numerical Operations on Functions

dblquad(′<function>′, a, b, c, d) Numerically evaluates a double integral.
fmin(′<function>′, xmin, xmax)
fminbnd(′<function>′, xmin, xmax)

} Numerically calculates a local minimum of a one-
dimensional function given the endpoints of the interval
in which to search

fmins(′<function>′, iterate0)
fminsearch(′<function>′, iterate0)

} Numerically calculates a local minimum of a multi-
dimensional function given the the initial iterate vector.

fzero(′<function>′, x0) Numerically calculates a zero of a function given the
initial iterate. x0 can be replaced by a 2-vector of the
endpoints of the interval in which a zero lies.

optimset Allows you to modify the parameters used by fzero,
fminbnd, and fminsearch.

quad(′<function>′, a, b) Numerically evaluates an integral using Simpson’s
method.

quad8(′<function>′, a, b) Numerically evaluates an integral using a Newton-Cotes
method.

13. Discrete Fourier Transform

There are a number of ways to define the discrete Fourier transform; we choose to define it as the dis-
cretization of the continuous Fourier series. In this section we show exactly how to discretize the contin-
uous Fourier series and how to transform the results of MATLAB’s discrete Fourier transform back to
the continuous case. We are presenting the material in such detail because there are a few slightly differ-
ent definitions of the discrete Fourier transform; we present the definition which follows directly from the
real Fourier series. xdi A “reasonable” continuous function f which is periodic with period T can be
represented by the real trigonometric series

f(t) = a0 +
∞∑

k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
for all t ∈ [0, T ]

where

a0 =
1
T

∫ T

0

f(t) dt

ak =
2
T

∫ T

0

f(t) cos kt dt

bk =
2
T

∫ T

0

f(t) sin kt dt

 for k ∈ N[1,∞) .

The coefficients a0, a1, a2, . . . and b1, b2, . . . are called the real Fourier coefficients of f , and ak and bk

are the coefficients of the k-th mode. The power of the function f(t) is†

P =
1
T

∫ T

0

∣∣f(t)
∣∣ 2 dt

†The term “power” is a misnomer because the function f need not be related to a physical quantity for which
the power makes any sense. However, we will stick to the common usage.

To understand the physical significance of power, we begin with the definition of work. Consider a particle

which is under the influence of the constant force ~F . If the particle moves from the point P0 to P1 then the

work done to the particle is ~F q~r, where ~r is the vector from P0 to P1 . The power of the particle is the work

done per unit time, i.e., ~F q~v where ~v = ~r/t.
Next, consider a charge q which is moving between two terminals having a potential difference of V . The
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so that

P = |a0|2 +
1
2

∞∑
k=1

(
|ak|2 + |bk|2

)
.

The power in each mode, i.e., the power spectrum, is

Pk =
{ |a0|2 if k = 0

1
2

(
|ak|2 + |bk|2

)
if k > 0

and the frequency of the k-th mode is k/T cycles per unit time.
Since

cos αt =
eiαt + e−iαt

2
and sinαt =

eiαt − e−iαt

2i
,

we can rewrite the real Fourier series as the complex Fourier series

f(t) = a0 +
∞∑

k=1

[
1
2 (ak − ibk)e2πikt/T + 1

2 (ak + ibk)e−2πikt/T
]

so that

f(t) =
∞∑

k=−∞

cke2πikt/T for all t ∈ [0, T ] (13.1)

where
c0 = a0

ck = 1
2 (ak − ibk)

c−k = 1
2 (ak + ibk)

}
for k > 0 . (13.2)

The coefficients . . . , c−2, c−1, c0, c1, c2, . . . are called the complex Fourier coefficients of f , and ck and
c−k are the coefficients of the k-th mode. (Note that these Fourier coefficients are generally complex.) We
can also calculate ck directly from f by

ck =
1
T

∫ T

0

f(t)e−2πikt/T dt for k = . . . ,−2,−1, 0, 1, 2, . . .

Note that if f is real, then c−k = c∗k (by replacing k by −k in the above equation). The power of f(t)
is

P = |c0|2 +
∞∑

k=1

(
|ck|2 + |c−k|2

)
and the power in each mode is

Pk =
{ |c0|2 if k = 0(

|ck|2 + |c−k|2
)

if k > 0 .

work done on the charge is W = qV = ItV , where I is the current and t is the time it takes for the charge to
move between the two terminals. If R is the resistance in the circuit, V = IR and the power is

P =
W

t
= IV = I2R =

V 2

R
.

Thus, if we consider f(t) to be the voltage or the current of some signal, the instantaneous power in the signal is
proportional to f2(t) and the average power is proportional to

1

T

Z T

0

˛̨
f(t)

˛̨ 2
dt .
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We can only calculate a finite number of Fourier coefficients numerically and so we truncate the infinite
series at the M -th mode. We should choose M large enough that

f(t) ≈
M∑

k=−M

cke2πikt/T for all t ∈ [0, T ] .

There are now
N = 2M + 1

unknowns (which is an odd number because of the k = 0 mode). We require N equations to solve for
these N unknown coefficients. We obtain these equations by requiring that the two sides of this ap-
proximation be equal at the N equally spaced abscissas tj = jT/N for j = 0, 1, 2, . . . , N − 1 (so that
0 = t0 < t1 < . . . < tN−1 < tN = T ).† That is,

f(tj) =
M∑

k=−M

γke2πiktj/T for j = 0, 1, 2, . . . , N − 1

or

fj =
M∑

k=−M

γke2πijk/N for j = 0, 1, 2, . . . , N − 1 (13.3)

where fj ≡ f(tj). This linear system can be solved to obtain

γk =
1
N

N−1∑
j=0

fje
−2πijk/N for k = −M,−M + 1, . . . ,M . (13.4)

The reason we have replaced the coefficients c−M , c−M+1, . . . , cM−1, cM by γ−M , γ−M+1, . . . , γM−1, γM

is that the c’s are the coefficients in the continuous complex Fourier series, eq. (13.1), and are calculated
by (13.2). The γ’s are the coefficients in the discrete complex Fourier series, eq. (13.3), and are calcu-
lated by (13.4).
Note: To repeat: the discrete Fourier coefficient γk is a function of M , i.e., γk(M), and is generally not

equal to the continuous Fourier coefficient ck . However, as M →∞ we have γk(M) → ck . For a
fixed M we generally only have γk(M) ≈ ck as long as |k| is “much less than” M . Of course, it
takes practice and experimentation to determine what “much less than” means.

We define the discrete Fourier series by

fFS(t) =
M∑

k=−M

γke2πikt/T for all t ∈ [0, T ] .

It is our responsibility (using our experience) to choose M large enough that f(t) ≈ fFS(t). Given
f = (f0, f1, f2, . . . , fN−1)T , the Fourier coefficients are calculated in MATLAB by

>> fc = fft(f)/N
where the coefficients of the discrete Fourier transform are contained in fc in the order(

γ0, γ1, . . . , γM−1, γM , γ−M , γ−M+1, . . . , γ−2, γ−1

)T
.

The original function, represented by the vector f, is recovered by
>> f = N*ifft(fc)

†Note that tN is not used because f(tN ) has the same value as f(t0) and so does not provide us with an
independent equation.
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Warning: One of the most common mistakes in using fft is forgetting that the input is in the order

f0, f1, f2, . . . , fN−1

while the output is in the order

γ0, γ1, . . . , γM−1, γM , γ−M , γ−M+1, . . . , γ−2, γ−1 ,

not
γ−M , γ−M+1, . . . , γ−2, γ−1γ0, γ1, . . . , γM−1, γM .

There is only one difficulty with our presentation. As we have already stated, the vector f has
N = 2M + 1 elements, which is an odd number. The Fast Fourier Transform (FFT, for short), which
is the method used to calculate the discrete Fourier coefficients by fft and also to recover the original
function by ifft, generally works faster if the number of elements of f is even, and is particularly fast if
it a power of 2.

The figure below shows the number of flops needed to calculate fft(f) as a function of N . Since the
vertical axis is logarithmic, it is clear that there is a huge difference in the number of flops required as we
vary N .† (The dips are at N = 26, 27, 28, and 29 .)
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For N to be even, we have to drop one coefficient, and the one we drop is γM . Now

N = 2M

is even. The discrete complex Fourier series is

fFS(t) =
M−1∑

k=−M

γke2πikt/T for all t ∈ [0, T ]

and the discrete Fourier coefficients are calculated by

γk =
1
N

N−1∑
j=0

fje
−2πijk/N for k = −M,−M + 1, . . . ,M − 2,M − 1 .

As before, given f = (f0, f1, f2, . . . , fN−1)T , the Fourier coefficients are calculated by
>> fc = fft(f)/N

†Unless N is very large or you have to do many runs, the CPU time used is only a tiny fraction of a second.
There is often no need to manipulate the data to obtain a “good” value of N . (This was calculated using version
5 of MATLAB.)
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The coefficients of the discrete Fourier transform are now contained in fc as

fc =
(
γ0, γ1, . . . , γM−2, γM−1, γ−M , γ−M+1, . . . , γ−2, γ−1

)T
.

The original function, represented by the vector f, is again recovered by
>> f = N*ifft(fc)

Note: Since there are now an even number of Fourier coefficients, we can reorder them by using
fftshift, which switches the first half and the last half of the elements. The result is

fftshift(fc) =
(
γ−M , γ−M+1, . . . , γ−2, γ−1, γ0, γ1, . . . , γM−2, γM−1,

)T
.

Warning: Remember that if you reorder the elements of fc by
>> fc shift = fftshift(fc)

you will have to “unorder” the elements by applying
>> fc = fftshift(fc shift)

again before you use ifft.
Note: When N is even we cannot recover γM and so we only know one of the two coefficients of the

M -th mode. Thus, we cannot determine the M -th mode correctly. Although we cannot give a sim-
ple example, it occasionally happens that this causes difficulties. The solution is to set γ−M = 0 so
that the M -th mode is dropped completely.

Here is a simple example of the use of Fourier coefficients from The Student Edition of MATLAB: User’s
Guide. We begin with a signal at 50 and 120 hertz (cycles per unit time), y0, and then we perturb it by
adding Gaussian noise, ypert. We plot the periodic unperturbed signal, and then the perturbed signal,
vs. time. (If you enter all these commands into an M-file, put a pause command between each of the
plot commands.)

>> time = .6;
>> N = 600;
>> t = linspace(0, time, N);
>> y0 = sin(2*pi*50*t) + sin(2*pi*120*t); % unperturbed signal
>> ypert = y0 + 2*randn(size(t)); % perturbed signal
>> figure(1)
>> plot(t, y0, ′r′), axis([0 time -8 8])
>> hold on
>> plot(t, ypert, ′g′)

Clearly, once the random noise has been added, the original signal has been completely lost — or has it.
We now look at the Fourier spectrum of y0 by plotting the power at each frequency. First, we plot the

unperturbed power, power0, and then the perturbed power, powerpert, vs. the frequency at each mode,
freq. The two spikes in the plot of the unperturbed power are precisely at 50 and 120 hertz, the signa-
ture of the two sine functions in y0. (For simplicity in the discussion, we have deleted the power in the
M -th mode by fc(N/2 +1) = [] so that power0(k) is the power in the k−1-st mode.)

>> fc0 = fft(y0)/N; % Fourier spectrum of unperturbed signal
>> figure(2)
>> fc0(N/2 +1) = []; % delete k = N/2 +1 mode
>> power0(1) = abs(fc0(1)).ˆ2;
>> power0(2:N/2) = abs(fc0(2:N/2)).ˆ2 + abs(fc0(N-1:-1:N/2 +1)).ˆ2;
>> freq = [1:N]′/time; % the frequency of each mode
>> plot(freq(1:N/2), power0, ′r′), axis([0 freq(N/2) 0 .5])
>> fcpert = fft(ypert)/N; % Fourier spectrum of perturbed signal
>> hold on
>> powerpert(1) = abs(fcpert(1)).ˆ2;
>> powerpert(2:N/2) = abs(fcpert(2:N/2)).ˆ2 + abs(fcpert(N-1:-1:N/2 +1)).ˆ2;
>> plot(freq(1:N/2), powerpert, ′g′)

Clearly, the original spikes are still dominant, but the random noise has excited every mode.
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To see how much power is in the unperturbed signal and then the perturbed signal, enter
>> sum(power0)
>> sum(powerpert)

The perturbed signal has about five times as much power as the original signal, which makes clear how
large the perturbation is.

Let us see if we can reconstruct the original signal by removing any mode whose magnitude is “small”.
By looking at the power plots, we see that the power in all the modes, except for those corresponding
to the spikes, have an amplitude / 0.1. Thus, we delete any mode of the perturbed Fourier spectrum,
i.e., fcpert, whose power is less than this value; we call this new Fourier spectrum fcchop. We then
construct a new signal ychop from this “chopped” Fourier spectrum and compare it with the original
unperturbed signal.

>> fcchop = fcpert; % initialize the chopped Fourier spectrum
>> ip = zeros(size(fcpert)); % construct a vector with 0’s
>> ip(1:N/2) = ( powerpert > 0.1 ); % where fcchop should be
>> ip(N:-1:N/2 +2) = ip(2:N/2); % zeroed out
>> fcchop( find(˜ip) ) = 0; % zero out "small" modes
>> ychop = real( N*ifft(fcchop) ); % signal of "chopped" Fourier spectrum
>> figure(1)
>> plot(t, ychop, ′b′)

( ychop is the real part of N*ifft(fcchop) because, due to round-off errors, the inverse Fourier trans-
form returns a “slightly” complex result.) The result is remarkably good considering the size of the per-
turbation. If you have trouble comparing y0 with ychop, reenter

>> plot(t, y0, ′r′)

Discrete Fourier Transform

fft(f) The discrete Fourier transform of f.
ifft(fc) The inverse discrete Fourier transform of the Fourier coefficients fc.
fftshift(fc) Switches the first half and the second half of the elements of fc.

14. Mathematical Functions Applied to Matrices

As we briefly mentioned in subsection 2.6, mathematical functions can generally only be applied to
square matrices. For example, if A ∈ Cn×n then eA is defined from the Taylor series expansion of ea .
That is, since

ea = 1 +
a

1!
+

a2

2!
+

a3

3!
+ . . .

we define eA to be

eA = 1 +
A

1!
+

A2

2!
+

A3

3!
+ . . . .

(Thus, if A ∈ Cm×n where m 6= n then eA does not exist because Ak does not exist if A is not a square
matrix.)

If A is a square diagonal matrix eA is particularly simple to calculate since

Ap =


a11 0a22 . . .

an−1,n−10 ann


p

=


ap
11 0ap

22 . . .
ap

n−1,n−10 ap
nn

 .
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Thus,

eA =


ea11

0ea22

. . .
ean−1,n−10 eann

 .

The MATLAB command
>> expm(A)

calculates eA if A is a square matrix. (Otherwise, it generates an error message.)
A simple example where eA occurs is in the solution of first-order ode systems with constant coeffi-

cients. Recall that the solution of

dy

dt
(t) = ay(t) for t ≥ 0 with y(0) = yic

is
y(t) = yice

at .

Similarly, the solution of

d

dt


y1(t)
y2(t)

..

.

yn(t)

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

..

.
..
. . . . ..

.

an1 an2 . . . ann




y1(t)
y2(t)

..

.

yn(t)

 for t ≥ 0 with y(0) = yic

i.e., y′(t) = Ay(t), is
y(t) = eAtyic .

To calculate y(t) for any time t, you only need enter
>> expm(A*t) * yic

Note: The above statement gives the exact solution to the ode system at t = 10 by
>> expm(A*10) * yic

You could also use numerical methods, as discussed in section 10, to solve it. However, you would
have to solve the ode for all t ∈ [0, 10] in order to obtain a numerical approximation at the final
time. This would be much more costly than simply using the analytical solution.

Similarly,
√
B is calculated in MATLAB by entering

>> sqrtm(A)
Finally, log B is calculated in MATLAB by entering

>> logm(A)
These are the only explicit MATLAB commands for applying mathematical functions to matrices. How-
ever, there is a general matrix function for the other mathematical functions. The command

>> funm(A, ′<function>′)
evaluates <function>(A).

Matrix Functions

expm(A) Calculates eA where A must be a square matrix.
sqrtm(A) Calculates

√
A where A must be a square matrix.

logm(A) Calculates log A where A must be a square matrix.
funm(A, ′<function>′) Calculates <function>(A) where A must be a square matrix.
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These tables summarize the functions and operations described in this document. The number (or num-
bers) shown give the page number of the table where this entry is discussed.

Arithmetical Operators

+ Addition. (p. 6, 25)
- Subtraction. (p. 6, 25)
* Scalar or matrix multiplication. (p. 6, 25)
.* Elementwise multiplication of matrices. (p. 25)
/ Scalar division. (p. 6, 25)
./ Elementwise division of matrices. (p. 25)
\ Scalar left division, i.e., b\a = a/b. (p. 6)
\ The solution to Ax = b for A ∈ Cm×n : when m = n and A is nonsingular this

is the solution Gaussian elimination; when m > n this is the least-squares ap-
proximation of the overdetermined system; when m < n this is a solution of the
underdetermined system. (p. 25, 52)

.\ Elementwise left division of matrices i.e., B.\A = A./B. (p. 25)

ˆ Scalar or matrix exponentiation. (p. 6, 25)
.ˆ Elementwise exponentiation of matrices. (p. 25)

Special Characters

: Creates a vector by a:b or a:c:b; subscripts matrices. (p. 22)
; Ends a statement without printing out the result; also, ends each row when enter-

ing a matrix. (p. 8)
, Ends a statement when more than one appear on a line and the result is to be

printed out; also, separates the arguments in a function; also, can separate the
elements of each row when entering a matrix. (p. 8)

... Continues a MATLAB command on the next line. (p. 6)
% Begins a comment. (p. 6)
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Getting Help

demo Runs demonstrations of many of the capabilities of MATLAB. (p. 14, 45)
doc On-line reference manual. (p. 14)
help On-line help. (p. 14)
helpdesk Loads the main page of the on-line reference manual. (p. 14)
load Loads back all of the variables which have been saved previously. (p. 14)
lookfor Searches all MATLAB commands for a keyword. (p. 14)
save Saves all of your variables. (p. 14)
type Displays the actual MATLAB code. (p. 14)
who Lists all the current variables. (p. 14)
whos Lists all the current variables in more detail than who. (p. 14)

ˆC Abort the command which is currently executing (i.e., hold down the control key
and type “c”). (p. 14)

Predefined Variables

ans The default variable name when one has not been specified. (p. 8)
pi π. (p. 8)
eps Approximately the smallest positive real number on the computer such that

1 + eps 6= 1. (p. 8)
Inf ∞ (as in 1/0 ). (p. 8)
NaN Not-a-Number (as in 0/0 ). (p. 8)
i

√
−1 . (p. 8)

j
√
−1 . (p. 8)

realmin The smallest “usable” positive real number on the computer. (p. 8)
realmax The largest “usable” positive real number on the computer. (p. 8)

Format Commands

format short The default setting. (p. 10)
format long Results are printed to approximately the maximum number of digits of accuracy in

MATLAB. (p. 10)
format short e Results are printed in scientific notation. (p. 10)
format long e Results are printed in scientific notation to approximately the maximum number of

digits of accuracy in MATLAB. (p. 10)
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Input-Output Functions

csvread Reads data into MATLAB from the named file, one row per line of input. (p. 38)
csvwrite Writes out the elements of a matrix to the named file using the same format as

csvread. (p. 38)
diary Saves your input to MATLAB and most of the output from MATLAB to disk.

(p. 6)
fopen Opens the file with the permission string determining how the file is to be accessed.

(p. 53)
fclose Closes the file. (p. 53)
fscanf Behaves very similarly to the C command in reading data from a file using any

desired format. (p. 53)
fprintf Behaves very similarly to the C command in writing data to a file using any de-

sired format.
It can also be used to display data on the screen. (p. 53, 53)

input Displays the prompt on the screen and waits for you to enter whatever is desired.
(p. 9)

load Reads data into MATLAB from the named file, one row per line of input. (p. 38)
print Prints a plot or saves it in a file using various printer specific formats. (p. 38)

Some Common Mathematical Functions

abs Absolute value (p. 11, 12)
acos Inverse cosine. (p. 11)
acosh Inverse hyperbolic cosine. (p. 11)
angle Phase angle of a complex number.

(p. 12)
asin Inverse sine. (p. 11)
asinh Inverse hyperbolic sine. (p. 11)
atan Inverse tangent. (p. 11)
atan2 Inverse tangent using two argu-

ments. (p. 11)
atanh Inverse hyperbolic tangent. (p. 11)
ceil Round upward to the nearest inte-

ger. (p. 11)
conj Complex conjugation. (p. 12)
cos Cosine. (p. 11)
cosh Hyperbolic cosine. (p. 11)
exp Exponential function. (p. 11)
factorial Factorial function. (p. 11)
fix Round toward zero to the nearest

integer. (p. 11)

floor Round downward to the nearest
integer. (p. 11)

imag The imaginary part of a complex
number. (p. 12)

log The natural logarithm, i.e., to the
base e. (p. 11)

log10 The common logarithm, i.e., to the
base 10. (p. 11)

mod The modulus after division. (p. 11)
real The real part of a complex number.

(p. 12)
rem The remainder after division.

(p. 11)
round Round to the closest integer. (p. 11)
sign The sign of the real number. (p. 11)
sin Sine. (p. 11)
sinh Hyperbolic sine. (p. 11)
sqrt Square root. (p. 11)
tan Tangent. (p. 11)
tanh Hyperbolic tangent. (p. 11)
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Elementary Matrices

eye Generates the identity matrix. (p. 18)
ones Generates a matrix with all elements being 1. (p. 18)
rand Generates a matrix whose elements are uniformly distributed random numbers in

the interval (0, 1). (p. 18)
randn Generates a matrix whose elements are normally (i.e., Gaussian) distributed ran-

dom numbers with mean 0 and standard deviation 1. (p. 18)
speye Generates a Sparse identity matrix. (p. 81)
sprand Sparse uniformly distributed random matrix. (p. 81, 81)
sprandsym Sparse uniformly distributed symmetric random matrix; the matrix can also be

positive definite. (p. 81)
sprandn Sparse normally distributed random matrix. (p. 81)
zeros Generates a zero matrix. (p. 18)

Specialized Matrices

hilb Generates the hilbert matrix. (Defined on p. 50.)
vander Generates the Vandermonde matrix. (Defined on p. 92.)

Elementary Matrix Operations

size The size of a matrix. (p. 18)
length The number of elements in a vector. (p. 18)
.′ The transpose of a matrix. (p. 18)
′ The conjugate transpose of a matrix. (p. 18)

Manipulating Matrices

cat Concatenates arrays; this is useful for putting arrays into a higher-dimensional
array. (p. 30)

clear Deletes a variable or all the variables. This is a very dangerous command.
(p. 8)

diag Extracts or creates diagonals of a matrix. (p. 22)
spdiags Generates a sparse matrix by diagonals. (p. 81)
repmat Tiles a matrix with copies of another matrix. (p. 22)
reshape Reshapes the elements of a matrix. (p. 22)
squeeze Removes (i.e., squeezes out) dimensions which only have one element. (p. 30)
triu Extracts the upper triangular part of a matrix. (p. 22)
tril Extracts the lower triangular part of a matrix. (p. 22)
[] The null matrix. This is also useful for deleting elements of a vector and rows or

columns of a matrix. (p. 22)
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Odds and Ends

path Viewing and changing the search path. (p. )
cputime Approximately the CPU time (in seconds) used during this session. (p. 25)
tic, toc Returns the elapsed time between these two commands. (p. 25)
pause Halts execution until you press some key. (p. 73)
rats Converts a floating-point number to a “close” rational number, which is frequently

the exact value. (p. 52)

Two-Dimensional Graphics

plot Plots the data points in Cartesian coordinates. (p. 39)
fill Fills one or more polygons. (p. 45)
semilogx The same as plot but the x axis is logarithmic. (p. 39)
semilogy The same as plot but the y axis is logarithmic. (p. 39)
loglog The same as plot but both axes are logarithmic. (p. 39)
ezplot Generates an “easy” plot (similar to fplot ). It can also plot a parametric func-

tion, i.e.,
(
x(t), y(t)

)
, or an implicit function, i.e., f(x, y) = 0. (p. 39)

polar Plots the data points in polar coordinates. (p. 39)
ezpolar Generates an “easy” polar plot. (p. 39)
linspace Generates equally-spaced points, similar to the colon operator. (p. 39)
xlabel Puts a label on the x-axis. (p. 39)
ylabel Puts a label on the y-axis. (p. 39)
title Puts a title on the top of the plot. (p. 39)
axis Controls the scaling and the appearance of the axes. (p. 39)
hold Holds the current plot or release it. (p. 39)
hist Plots a histogram. (p. 39)
errorbar Plots a curve through data points and also the error bar at each data point.

(p. 39)

Three-Dimensional Graphics

plot3 Plots the data points in Cartesian coordinates. (p. 41)
ezplot3 Generates an “easy” plot in 3-D. (p. 41)
fill3 Fills one or more 3D polygons. (p. 45)
mesh Plots a 3-D surface using a wire mesh. (p. 41)
ezmesh Generates an “easy” 3-D surface using a wire mesh. (p. 41)
surf Plots a 3-D filled-in surface. (p. 41)
ezsurf Generates an “easy” 3-D filled-in surface. (p. 41)
view Changes the viewpoint of a 3-D surface plot. (p. 41)
meshgrid Generates a 2-D grid. (p. 41)
zlabel Puts a label on the z-axis. (p. 41)
axis Controls the scaling and the appearance of the axes. (p. 41)
contour Plots a contour looking down the z axis. (p. 41)
ezcontour Generates an “easy” contour looking down the z axis. (p. )
contour3 Plots a contour in 3-D. (p. 41)
ezcontour3 Generates an “easy” contour in 3-D. (p. 41)
colorbar Adds a color bar showing the correspondence between the value and the color.

(p. 45)
colormap Determines the current color map or choose a new one. (p. 45)
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Advanced Graphics Features

clf Clear a figure (i.e., delete everything in the figure (p. 45)
demo Runs demonstrations of many of the capabilities of MATLAB. (p. 14, 45)
figure Creates a new graphics window and makes it the current target. (p. 45)
fplot Plots the specified function within the limits given. (p. 45)
gtext Places the text at the point given by the mouse. (p. 46)
image Plots a two-dimensional image. (p. 45)
legend Places a legend on the plot. (p. 46)
subplot Divides the graphics window into rectangles and moves between them. (p. 45)
text Adds the text at a particular location. (p. 46)
ginput Obtains the current cursor position. (p. 46)

String Functions

inline Creates a mathematical function. (p. 33)
vectorize Modifies a mathematical function created by inline so that it can evaluate vec-

tors or matrices. (p. 33)
num2str Converts a variable to a string. (p. 33)
sprintf Behaves very similarly to the C command in writing data to a text variable using

any desired format. (p. 33)
sscanf Behaves very similarly to the C command in reading data from a text variable

using any desired format. (p. 33)
str2num Converts a string to a variable. (p. 33)
strcmp Compares strings. (p. 61)

Data Manipulation Commands

errorbar Plots a curve through data points and also the error bar at each data point.
(p. 39)

hist Plots a histogram of the elements of a vector. (p. 39)
max The maximum element of a vector. (p. 29)
min The minimum element of a vector. (p. 29)
mean The mean, or average, of the elements of a vector. (p. 29)
norm The norm of a vector or a matrix. (p. 29)
prod The product of the elements of a vector. (p. 29)
sort Sorts the elements of a vector in increasing order. (p. 29)
std The standard deviation of the elements of a vector. (p. 29)
sum The sum of the elements of a vector. (p. 29)
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Some Useful Functions in Linear Algebra

chol Calculates the Cholesky decomposition of a symmetric, positive definite matrix.
(p. 59)

cond Calculates the condition number of a matrix. (p. 59)
condest Calculates a lower bound to the condition number of a square matrix. (p. 59)
det Calculates the determinant of a square matrix. (p. 59)
eig Calculates the eigenvalues, and eigenvectors if desired, of a square matrix. (p. 59)
eigs Calculates some eigenvalues and eigenvectors of a square matrix. (p. 59)
inv Calculates the inverse of a square invertible matrix. (p. 59)
lu Calculates the LU decomposition of a square invertible matrix. (p. 59)
norm Calculates the norm of a vector or matrix. (p. 59)
null Calculates an orthonormal basis for the null space of a matrix. (p. 59)
orth Calculates an orthonormal basis for the range of a matrix. (p. 59)
pinv Calculates the pseudoinverse of a matrix. (p. 52)
qr Calculates the QR decomposition of a matrix. (p. 59)
rank Estimates the rank of a matrix. (p. 59)
rref Calculates the reduced row echelon form of a matrix. (p. 49)
svd Calculates the singular value decomposition of a matrix. (p. 59)

Logical and Relational Operators

& Logical AND. (p. 62)
| Logical OR. (p. 62)

˜ Logical NOT. (p. 62)
xor Logical EXCLUSIVE OR. (p. 62)

< Less than. (p. 61)
<= Less than or equal to. (p. 61)
== Equal. (p. 61)
> Greater than. (p. 61)
>= Greater than or equal to. (p. 61)

˜= Not equal to. (p. 61)
strcmp Comparing strings. (p. 61)

Flow Control

break Terminates execution of a for or while loop. (p. 63)
case Part of the switch command. (p. 63)
continue Begins the next iteration of a for or while loop immediately. (p. 63)
else Used with the if statement. (p. 63)
elseif Used with the if statement. (p. 63)
end Terminates the scope of the for, if, switch, and while statements. (p. 63)
error Displays the error message and terminates all flow control statements. (p. 73)
for Repeat statements a specific number of times. (p. 63)
if Executes statements if certain conditions are met. (p. 63)
otherwise Part of the switch command. (p. 63)
switch Selects certain statements based on the value of the switch expression. (p. 63)
while Repeats statements as long as an expression is true. (p. 63)
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Logical Functions

all True if all the elements of a vector are true; operates on the columns of a matrix.
(p. 66)

any True if any of the elements of a vector are true; operates on the columns of a ma-
trix. (p. 66)

exist False if this name is not the name of a variable or a file. (p. 66)
find The indices of a vector or matrix which are nonzero. (p. 66)
logical Converts a numeric variable to a logical one. (p. 66)
ischar True if a vector or array contains character elements. (p. 66)
isempty True if the matrix is empty, i.e., []. (p. 66)
isfinite Generates a matrix with 1 in all the elements which are finite (i.e., not Inf or

NaN ) and 0 otherwise. (p. 66)
isinf Generates a matrix with 1 in all the elements which are Inf and 0 otherwise.

(p. 66)
islogical True for a logical variable or array. (p. 66)
isnan Generates a matrix with 1 in all the elements which are NaN and 0 otherwise.

(p. 66)

Programming Language Functions

echo Turns echoing of statements in M-files on and off. (p. 73)
error Displays the error message and terminates the function. (p. 73)
eval Executes MATLAB statements contained in a text variable. (p. 75)
feval Executes a function specified by a string. (p. 75)
function Begins a MATLAB function. (p. 73)
global Defines a global variable (i.e., it can be shared between different functions and/or

the workspace). (p. 73)
lasterr If eval “catches” an error, it is contained here. (p. 75)
persistent Defines a local variable whose value is to be saved between calls to the function.

(p. 73)
keyboard Stops execution in an M-file and returns control to the user for debugging pur-

poses. (p. 71, 73)
nargin Number of input arguments supplied by the user. (p. 73)
nargout Number of output arguments supplied by the user. (p. 73)
return Terminates the function immediately. (p. 71, 73)

110



Appendix: Reference Tables

Debugging Commands

keyboard Turns debugging on. (p. 71, 73)
dbstep Execute one or more lines. (p. 71)
dbcont Continue execution. (p. 71)
dbstop Set a breakpoint. (p. 71)
dbclear Remove a breakpoint. (p. 71)
dbup Change the workspace to the calling function or the base workspace. (p. 71)
dbdown Change the workspace down to the called function. (p. 71)
dbstack Display all the calling functions. (p. 71)
dbstatus List all the breakpoints. (p. 71)
dbtype List the current function, including the line numbers. (p. 71)
dbquit Quit debugging mode and terminate the function. (p. 71)
return Quit debugging mode and continue execution of the function. (p. 71, 73)

Discrete Fourier Transform

fft The discrete Fourier transform. (p. 101)
fftshift Switches the first half and the second half of the elements of a vector. (p. 101)
ifft The inverse discrete Fourier transform. (p. 101)

Sparse Matrix Functions

speye Generates a Sparse identity matrix. (p. 81)
sprand Sparse uniformly distributed random matrix. (p. 81, 81)
sprandn Sparse normally distributed random matrix. (p. 81)
sparse Generates a sparse matrix elementwise. (p. 81)
spdiags Generates a sparse matrix by diagonals. (p. 81)
full Converts a sparse matrix to a full matrix. (p. 81)
find Finds the indices of the nonzero elements of a matrix. (p. 81)
nnz Returns the number of nonzero elements in a matrix. (p. 81)
spfun Applies the function to a sparse matrix. (p. 81)
spy Plots the locations of the nonzero elements of a sparse matrix. (p. 81)
spconvert Generates a sparse matrix given the nonzero elements and their indices. (p. 81)

ODE Solvers

ode45 Non-stiff ode solver; fourth-order, one-step method. (p. 83)
ode23 Non-stiff ode solver; second-order, one-step method. (p. 83)
ode113 Non-stiff ode solver; variable-order, multi-step method. (p. 83)
ode15s Stiff ode solver; variable-order, multi-step method. (p. 83)
ode23s Stiff ode solver; second-order, one-step method. (p. 83)
ode23t Stiff ode solver; trapezoidal method. (p. 83)
ode23tb Stiff ode solver; second-order, one-step method. (p. 83)
odeset Assigns values to properties of the ode solver. (p. 85)
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Numerical Operations on Functions

dblquad Numerically evaluates a double integral. (p. 96)
fmin
fminbnd

} Numerically calculates a local minimum of a one-dimensional function. (p. 96)

fmins
fminsearch

} Numerically calculates a local minimum of a multi-dimensional function. (p. 96)

optimset Allows you to modify the parameters used by fzero, fminbnd, and fminsearch.
(p. 96)

fzero Numerically calculates a zero of a function. (p. 96)
quad Numerically evaluates an integral using Simpson’s method. (p. 96)
quad8 Numerically evaluates an integral using a Newton-Cotes method. (p. 96)

Numerical Operations on Polynomials

interp1 Does one-dimensional interpolation. (p. 93)
interp2 Does two-dimensional interpolation. (p. 93)
interp3 Does three-dimensional interpolation. (p. 93)
interp4 Does n-dimensional interpolation. (p. )
poly Calculates the coefficients of a polynomial given its roots. (p. 93)
polyder Calculates the derivative of a polynomial. (p. 93)
polyfit Calculates the least-squares polynomial of a given order which fits the given data.

(p. 93)
polyval Evaluates a polynomial at a point. (p. 93)
polyvalm Evaluates a polynomial with a matrix argument. (p. 93)
roots Numerically calculates all the zeroes of a polynomial. (p. 93)
spline Cubic spline interpolation. (p. 93)

Matrix Functions

expm Matrix exponentiation. (p. 102)
funm Evaluate general matrix function. (p. 102)
logm Matrix logarithm. (p. 102)
sqrtm Matrix square root. (p. 102)
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Solutions To Exercises

These are the solutions to the exercises given in subsections 1.8, 2.9, and 4.4.

1.8.1a) >> a = 3.7; b = 5.7; deg = pi/180; ab = 79*deg;
>> c = sqrt(aˆ2 + bˆ2 - 2*a*b*cos(ab))

answer: 7.3640

b) >> format long
>> c

answer: 7.36398828251259

c) >> format short e
>> asin( (b/c)*sin(ab) ) / deg

answer: 4.9448e+01

d) >> diary ′triangle.ans′

1.8.2) >> (1.2e20 - i*12ˆ20)ˆ(1/3)answer: 1.3637e+07 - 7.6850e+06i

1.8.3) >> th = input(′th =′); cos(2*th) - (2*cos(th)ˆ2 - 1)

1.8.4) help fix or doc fix.
2.9.1a) >> A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

>> A = [1:4; 5:8; 9:12; 13:16]
>> A = [ [1:4:13]′ [2:4:14]′ [3:4:15]′ [4:4:16]′ ]

b) >> A(2,:) = (-9/5)*A(2,:) + A(3,:)

2.9.2) >> A = 4*eye(n) - diag( ones(n-1,1), 1 ) - diag( ones(n-1,1), -1 )

2.9.3) >> A = diag([1:n].ˆ2) - diag( ones(n-1,1), 1 ) - diag( exp([2:n]), -1 )

2.9.4a) >> A = [ ones(6,4) zeros(6) ]; A(6,1) = 5; A(1,10) = -5

b) >> A = A - tril(A,-1)

2.9.5) >> x = [0:30]′.ˆ2 % or x = [0:30].ˆ2′
2.9.6a) >> R = rand(5)

b) >> [m, im] = max(R′)

c) >> mean(mean(R)) % or mean(R(:))

d) >> S = sin(R)

e) >> r = diag(R)

2.9.7a) >> A = [1 2 3; 4 5 6;7 8 10]
>> B = Aˆ.5 % or B = sqrtm(A)
>> C = A.ˆ.5 % or C = sqrt(A)

b) >> A - Bˆ2
>> A - C.ˆ2

4.4.1a) >> x = linspace(-1, +1, 100);
>> y = exp(x);
>> plot(x, y)

b) >> z = 1 + x + x.ˆ2 /2 + x.ˆ6 /6
>> hold on
>> plot(x, z)

c) >> plot(x, y-z)
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Solutions To Exercises

d) >> hold off
>> plot(x, y, x, z, x, y-z)
>> axis equal
>> xlabel(′x′)
>> ylabel(′y′)
>> title(′eˆi\pi = -1 is profound′)

4.4.2a) >> x = linspace(-3, 3, 91);
>> y = x;
>> [X, Y] = meshgrid(x, y); % or just do [X, Y] = meshgrid(x, x);
>> Z = (X.ˆ2 + 4* Y.ˆ2) .* sin(2*pi*X) .* sin(2*pi*Y);
>> surf(X, Y, Z);

b) One particular choice is
>> view([1 2 5]) % or view([63 66])
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Index

Note: In this index MATLAB commands come first, followed by symbols, and only then does the index begin
with “A”.

Note: All words shown in typewriter font are MATLAB commands or predefined variables unless it is specifically
stated that they are defined locally (i.e., in this document).

Note: If an item is a primary topic of a section, an appendix, or a subsection, this is indicated as well as the page
number (in parentheses).

MATLAB Commands

abs, 11, 12, 105
acos, 11, 105
acosh, 11, 105
all, 66, 110
angle, 12, 105
any, 65, 66, 110
asin, 11, 105
asinh, 11, 105
atan, 11, 105
atanh, 11, 105
atan2, 11, 105
axis, 35, 39, 41, 44, 107
ballode, 86
break, 62, 63, 109
case, 63, 109

different than in C, 63
cat, 30, 106
ceil, 11, 105
chol, 54, 59, 109
clear, 7, 8, 11, 106

danger in using, 7
clf, 43, 45, 108
colorbar, 44, 45, 107
colormap, 44, 45, 107
cond, 50, 54, 59, 109
condest, 54, 59, 109
conj, 12, 105
continue, 62, 63, 109
contour, 40, 41, 107
contour3, 40, 41, 107
cos, 11, 105
cosh, 11, 105
cputime, 24, 25, 107
csvread, 37, 38, 52, 105
csvwrite, 37, 38, 52, 105
cumsum, 28, 29
dblquad, 95, 96, 112
dbclear, 71, 111
dbcont, 71, 111
dbdown, 71, 111
dbquit, 71, 111
dbstack, 71, 111
dbstatus, 71, 111
dbstep, 71, 111
dbstop, 71, 111

dbtype, 71, 111
dbup, 71, 111
demo, 3, 13, 14, 34, 41, 45, 104, 108
det, 55, 59, 109
diag, 20, 22, 106
diary, 5, 6, 105
diff, 28, 29
disp, 7, 8, 32, 53
doc, 3, 13, 14, 104
echo, 70, 73, 110
eig, 25, 55, 59, 69, 109
eigs, 56, 59, 109
else, 61, 63, 109
elseif, 61, 63, 109
end, 60, 62, 63, 109
error, 69, 73, 109, 110
errorbar, 37, 39, 107, 108
eval, 74, 75, 110
exist, 66, 110
exp, 11, 12, 105
expm, 102, 112
eye, 17, 18, 106
ezcontour, 40, 41, 107
ezcontour3, 40, 41, 107
ezmesh, 40, 41, 107
ezplot, 36, 39, 107
ezplot3, 39, 41, 107
ezpolar, 36, 39, 107
ezsurf, 40, 41, 107
factorial, 10, 11, 105
fclose, 52, 53, 105
feval, 74, 75, 110
fft, 98, 101, 111
fftshift, 100, 101, 111
figure, 43, 45, 108
fill, 44, 45, 107
fill3, 44, 45, 107
find, 64, 65, 66, 80, 81, 110, 111
fix, 11, 105
floor, 11, 105
fmin, 94, 96, 112
fminbnd, 94, 96, 112
fmins, 96, 112
fminsearch, 94, 96, 112
fopen, 52, 53, 105
for, 60, 63, 109
format, 9, Subsect. 2.5 (25), 104
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fplot, 41, 45, 108
fprintf, 7, 37, 52, 53, 105
fscanf, 37, 52, 53, 105
full, 79, 81, 111
function, 67, 72, 73, 110
funm, 102, 112
fzero, 93, 94, 96, 112
ginput, 42, 46, 108
global, 72, 73, 110
gtext, 42, 43, 46, 108
help, 3, 12, 14, 67, 73, 104
helpdesk, 13, 104
hilb, 25, 26, 55, 76, 106
hist, 36, 39, 107, 108
hold, 35, 39, 107
if, 60, 63, 109
ifft, 98, 101, 111
imag, 12, 105
image, 44, 45, 108
inline, 33, 108
input, 9, 105
interp1, 93, 112
interp2, 93, 112
interp3, 93, 112
interpn, 93, 112
inv, 23, 56, 59, 109
ischar, 66, 110
isempty, 66, 72, 110
isfinite, 66, 110
isinf, 66, 110
islogical, 65, 66, 110
isnan, 66, 110
keyboard, 70, 71, 73, 110, 111
lasterr, 74, 75, 110
legend, 42, 46, 108
length (number of elements in), 17, 18, 29, 65, 106
linspace, 34, 37, 39, 107
load, 13, 14, 37, 38, 44, 104, 105

be careful, 38
log, 11, 105
logical, 65, 66, 110
loglog, 36, 39, 107
logm, 102, 112
log10, 11, 105
lookfor, 12, 14, 67, 104
lu, 57, 59, 109
max, 27, 28, 29, 108
mean, 28, 29, 108
mesh, 40, 41, 44, 107
meshgrid, 40, 41, 107
min, 29, 108
mod, 11, 105
nargin, 69, 73, 110
nargout, 69, 73, 110
nnz, 80, 81, 111
norm, 29, 57, 59, 69, 108, 109
null, 58, 59, 109
num2str, 32, 33, 53, 108
odeset, 84, 85, 90, 91, 111

ode113, 82, 111
ode15s, 82, 111
ode23, 82, 111
ode23s, 82, 111
ode23t, 82, 111
ode23tb, 82, 111
ode45, 82, 111
ones, 17, 18, 106
optimset, 94, 96, 112
orth, 58, 59, 109
otherwise, 63, 109
path, 68, 107
pause, 67, 70, 73, 107
persistent, 72, 73, 110
pinv, 51, 52, 109
plot, 34, 35, 39, 42, 92, 107
plot3, 39, 41, 107
polar, 36, 39, 107
poly, 91, 93, 112
polyder, 92, 93, 112
polyfit, 92, 93
polyval, 91, 92, 93, 112
polyvalm, 92, 93, 112
print, 38, 105
prod, 29, 108
qr, 58, 59, 109
quad, 95, 96, 112
quad8, 95, 96, 112
rand, 17, 18, 36, 50, 106
randn, 17, 18, 37, 106
rank, 58, 59, 109
rats, 52, 107
real, 12, 105
rem, 11, 105
repmat, 21, 22, 106
reshape, 20, 21, 22, 106
return, 69, 71, 73, 110, 111
roots, 91, 93, 112
round, 11, 105
rref, Sect. 5 (46), 73, 109
save, 13, 14, 104
semilogx, 36, 39, 107
semilogy, 36, 39, 107
sign, 11, 105
sin, 11, 105
sinh, 11, 105
size, 17, 18, 106
sort, 28, 29, 108
sparse, 78, 79, 81, 111
spconvert, 80, 81, 111
spdiags, 79, 81, 111

differences from diag, 79
speye, 81, 106, 111
spfun, 81, 111
spline, 93, 112
sprand, 80, 81, 106, 111
sprandn, 80, 81, 106, 111
sprandsym, 80, 81, 106
sprintf, 32, 33, 108
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spy, 81, 111
sqrt, 11, 27, 105
sqrtm, 23, 102, 112
squeeze, 30, 106
sscanf, 33, 108
std, 28, 29, 108
strcmp, 61, 108, 109
str2num, 33, 108
subplot, 43, 45, 108
sum, 29, 64, 108
surf, 40, 41, 44, 107
svd, 58, 59, 109
switch, 62, 63, 109

different than in C, 63
tan, 11, 105
tanh, 11, 105
text, 42, 43, 46, 108
tic, 24, 25, 107
title, 36, 39, 42, 107
toc, 24, 25, 107
tril, 21, 22, 106
triu, 20, 22, 106
type, 13, 14, 67, 104
vander, 92, 106
vectorize, 33, 108
view, 40, 41, 107
while, 62, 63, 109
who, 13, 14, 104
whos, 13, 14, 104
xlabel, 36, 39, 42, 43, 107
xor, 62, 64, 109
ylabel, 36, 39, 42, 43, 107
zeros, 17, 18, 106
zlabel, 41, 42, 44, 107

Symbols

+, 6, 22, 25, 103
exception to, 24

-, 6, 22, 25, 103
*, 6, 22, 25, 103
.*, 23, 25, 103
/, 6, 23, 25, 103

warning about matrix division, 23
./, 23, 25, 103
\, 6, 25, 47, 48, 51, 52, 103
.\, 23, 25

ˆ, 5, 6, 23, 25, 103
.ˆ, 23, 25
′ , 6, 16, 18, 106
. ′ , 16, 18, 106
..., 5, 6, 103
%, 5, 6, 103
,, 6, 8, 15, 22, 103
;, 6, 8, 15, 22, 103
:, 16, Subsect. 2.2 (18), Subsect. 2.3 (19), 22, 103
<, 61, 109
<=, 61, 109
>, 61, 109

>=, 61, 109
==, 61, 109

˜=, 61, 109
&, 62, 64, 109
|, 62, 64, 109

˜, 62, 64, 109
!, See factorial
[], 21, 22, 106

A

AH, See Conjugate transpose
AT, See Transpose
A+, See Pseudoinverse
Abort command, 12
abs, 11, 12, 105
Accuracy, 9

principle, 10
acos, 11, 105
acosh, 11, 105
all, 66, 110
AND (logical operator), 62, 64, 109
angle, 12, 105
ans, 7, 8, 104
any, 65, 66, 110
Arithmetic progression, 18
Arithmetical operations, Subsect. 1.1 (5), Subsect. 2.4

(22), 103
+, 6, 22, 25, 103

exception to, 24
-, 6, 22, 25, 103
/, 6, 23, 25, 103

warning about matrix division, 23
./, 23, 25, 103
*, 6, 22, 25, 103
.*, 23, 25, 103
\, 6, 25, 47, 48, 51, 52, 103
.\, 23, 25

ˆ, 6, 23, 25, 103
.ˆ, 23, 25
elementwise, 23

Array, See Matrix, Multidimensional array, or Vector
ASCII character representation, 32, 42
asin, 11, 105
asinh, 11, 105
atan, 11, 105
atanh, 11, 105
atan2, 11, 105
Augmented matrix form, 46–49

See also Matrix
Average value, 28
axis, 35, 39, 41, 44, 107

B

Ball, 89
ballode, 86
Binary format, 13, 38
break, 62, 63, 109
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C

ˆC, 12, 14, 104
C (programming language), 6, 19, 33, 37, 46, 52, 53, 62,

63, 71, 72, 105, 108
C++ (programming language), 74
Calculator, Subsect. 1.1 (5)
case, 63, 109

different than in C, 63
Case sensitive, 8
cat, 30, 106
Catching errors, 74
ceil, 11, 105
chol, 54, 59, 109
Cholesky decomposition, 54
clear, 7, 8, 11, 106

danger in using, 7
clf, 43, 45, 108
Clown, 44
Colon operator, 16, Subsect. 2.2 (18), Subsect. 2.3 (19),

22, 103
possible floating-point errors in, 19, 34

See also linspace
colorbar, 44, 45, 107
Color map, 44
colormap, 44, 45, 107
Comment character, 5, 6, 103
Complex conjugate, 12
Complex numbers, 5, Subsect. 1.6 (11)
cond, 50, 54, 59, 109
condest, 54, 59, 109
Condition number, See Matrix
conj, 12, 105
Conjugate transpose

See also Transpose
Continuation (of a line), 5, 6, 103
continue, 62, 63, 109
contour, 40, 41, 107
Contour plot, 40
contour3, 40, 41, 107
Control flow, See Programming language
cos, 11, 105
cos z, 12
cosh, 11, 105
CPU, 24
cputime, 24, 25, 107
csvread, 37, 38, 52, 105
csvwrite, 37, 38, 52, 105
Cubic splines, See Interpolation
cumsum, 28, 29
Cursor

entering current position, 42

D

Data
best polynomial fit to, 92
closing files, 52
manipulation, Subsect. 2.7 (27), 108

Data (cont.)
opening files, 52
reading into MATLAB, 37, 38, 52, 80, 105
writing from MATLAB, 37, 38, 52, 105

dblquad, 95, 96, 112
dbclear, 71, 111
dbcont, 71, 111
dbdown, 71, 111
dbquit, 71, 111
dbstack, 71, 111
dbstatus, 71, 111
dbstep, 71, 111
dbstop, 71, 111
dbtype, 71, 111
dbup, 71, 111
Debugging M-files, See Function files and Script files
demo, 3, 13, 14, 34, 41, 45, 104, 108
Demonstration program, 3, 13, 41, 44
det, 55, 59, 109
Determinant, 55
diag, 20, 22, 106
Diagonals, See Matrix
diary, 5, 6, 105
diff, 28, 29
Digits of accuracy, 9
disp, 7, 8, 32, 53
Display

formatting the, Subsect. 1.4 (9)
misinterpreting, Subsect. 2.5 (25)
suppressing, 6, 8, 15, 22, 103
variable, 7, 8, 53

See also dispSee fprintf
doc, 3, 13, 14, 104
Documentation (MATLAB), 13
Dot product, 24
Duffing’s equation, See Ordinary differential equations
duffing1 (locally defined), 82
duffing2 (locally defined), 86, 87
duffing3 (locally defined), 87

E

ez, 12
Earth, 44
echo, 70, 73, 110
eig, 25, 55, 59, 69, 109
Eigenvalues, 25, 54, 55, 56, 59, 69

definition of, 55
Eigenvectors, 55, 56, 59, 69
eigs, 56, 59, 109
else, 61, 63, 109
elseif, 61, 63, 109
end, 60, 62, 63, 109
eps, 8, 9, 62, 104

See also Machine epsilon
error, 69, 73, 109, 110
Error bars, 36, 37
errorbar, 37, 39, 107, 108
Euclidean length, See Length of a vector
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eval, 74, 75, 110
EXCLUSIVE OR (logical operator), 62, 64, 109
exist, 66, 110
exp, 11, 12, 105
expm, 102, 112
Exponentiation, 5, 6, 23
Extrapolation, 92

See also Interpolation
eye, 17, 18, 106
ezcontour, 40, 41, 107
ezcontour3, 40, 41, 107
ezmesh, 40, 41, 107
ezplot, 36, 39, 107
ezplot3, 39, 41, 107
ezpolar, 36, 39, 107
ezsurf, 40, 41, 107

F

factorial, 10, 11, 105
Factorial function, 10
FALSE (result of logical expression), 62
Fast Fourier transform, See Fourier transform
fclose, 52, 53, 105
feval, 74, 75, 110
fft, 98, 101, 111
fftshift, 100, 101, 111
figure, 43, 45, 108
fill, 44, 45, 107
fill3, 44, 45, 107
find, 64, 65, 66, 80, 81, 110, 111
Finite differences, 28
fix, 11, 105
Floating-point numbers, 8, 19
Floating-point operations, See Flops
floor, 11, 105
Flops (floating-point operations), 24
Flow control, See Programming language
fmin, 94, 96, 112
fminbnd, 94, 96, 112
fmins, 96, 112
fminsearch, 94, 96, 112
fopen, 52, 53, 105
for, 60, 63, 109
format, 9, Subsect. 2.5 (25), 104
Format commands, 9, 104
Fourier series, Sect. 13 (96)

complex, 97
real, 96

Fourier transform, Sect. 13 (96)
discrete, Sect. 13 (96), 101, 111
fast (FFT), 99

fplot, 41, 45, 108
fprintf, 7, 37, 52, 53, 105

specifications, 53
Frequency, See Power
fscanf, 37, 52, 53, 105

specifications, 53
full, 79, 81, 111

function, 67, 72, 73, 110
Function handle, 75
Function files, Subsect. 8.3 (66)

commands in, 71, 73, 110, 111
comments in, 67, 68
conflict between function and variable name, 10
debugging, 70
error, 69, 73, 109, 110
definition line, 67
example using multiple input and output arguments,

69
function (required word), 67, 72, 73, 110
input and output arguments, 67, 71–72

variable number of, 69
names of, 67
passing function names to, 74, 75
primary function in, 72
return, 69, 71, 73, 110, 111
subfunctions in, 72

Functions (mathematical)
See also Polynomials

built-in, 10, 13
common mathematical, Subsect. 1.5 (10)
definite integrals of, 95
“hijacked”, 73
inline, 33

passing as an argument, 75
local minimum of, 94
numerical operations on, 93, 96, 112
order in which MATLAB searches for functions, 68,

73
primary, 72
private, 73
subfunctions
zeroes of, 93, 95

funm, 102, 112
fzero, 93, 94, 96, 112

G

Gaussian elimination, 47, 50
Generalized eigenvalue problem, 56
get intervals fast (locally defined), 78
get intervals slowly (locally defined), 77
ginput, 42, 46, 108
global, 72, 73, 110
Graphics, Sect. 4 (34)

advanced techniques, Subsect. 4.3 (41), 108
changing endpoints, 35
customizing lines and markers, 35
demonstration, 34
holding the current plot, 35
labelling, 42–46

text properties, 42
using TEX commands, 43

multiple plots, 43
multiple windows, 43
printing, 38, 105
saving to a file, 38, 105
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Graphics (cont.)

two-dimensional, Subsect. 4.1 (34), 107
three-dimensional, Subsect. 4.2 (39)
window, 34

Gravity, 89
gravity (locally defined), 90
gravity2 (locally defined), 90, 91
gtext, 42, 43, 46, 108

H

H, See Conjugate transpose
Handle, See Function handle
Helix, 39
help, 3, 12, 14, 67, 73, 104
Help facility, Subsect. 1.7 (12)

keyword, 12
getting help, 14, 104

helpdesk, 13, 104
Hermite polynomials, See Interpolation
hilb, 25, 26, 55, 76, 106
hilb local (locally defined), 68
Hilbert matrix, 25, 26, 50, 55, 59, 68

function file for, 68, 75
hist, 36, 39, 107, 108
Histogram, 36
hold, 35, 39, 107

I

I, See Identity matrix
i, 5, 8, 104
Identity matrix, 17

See also eye
if, 60, 63, 109
ifft, 98, 101, 111
imag, 12, 105
image, 44, 45, 108
Imaginary numbers, 5, 8, 104
Inf, 8, 35, 104
Inline, 33, 108
Inline functions, See Functions (mathematical)
Inner product, 24
input, 9, 105
Integration, numerical, 95
Interpolation, 92, 93

cubic, 93
cubic splines, 93
how to do extrapolation, 93
linear splines, 93

interp1, 93, 112
interp2, 93, 112
interp3, 93, 112
interpn, 93, 112
inv, 23, 56, 59, 109
ischar, 66, 110
isempty, 66, 72, 110
isfinite, 66, 110
isinf, 66, 110

islogical, 65, 66, 110
isnan, 66, 110

J

j, 5, 8, 104
Java (programming language), 74

K

keyboard, 70, 71, 73, 110, 111
Keyword, 12

L

lasterr, 74, 75, 110
Left division, See \
legend, 42, 46, 108
Lemniscate of Bernoulli, 36
length (number of elements in), 17, 18, 29, 65, 106
Length of a vector (i.e., Euclidean length), 29

See also norm
Linear splines, See Interpolation
Linear system of equations, Sect. 5 (46), Subsect. 5.3

(51)
least-squares solution, 51, 92
overdetermined, Subsect. 5.3 (51), 92
solving by rref, Sect. 5 (46)
underdetermined, Subsect. 5.3 (51)

linspace, 34, 37, 39, 107
load, 13, 14, 37, 38, 44, 104, 105

be careful, 38
log, 11, 105
logical, 65, 66, 110
Logical expression, 60

result of, 61
Logical functions, 66, 110
Logical operators, 62, 109

AND (&), 62, 64, 109
applied to matrices, Subsect. 8.2 (63)

result of, 64
EXCLUSIVE OR (xor), 62, 109
NOT (˜), 62, 109
OR (|), 62, 109

loglog, 36, 39, 107
logm, 102, 112
log10, 11, 105
lookfor, 12, 14, 67, 104
lu, 57, 59, 109
LU decomposition, 57

M

Machine epsilon (eps), 8, 104
calculation of, 62

Mathematical functions, Subsect. 1.5 (10), 12, Subsect.
2.6 (27), 105

Matrix
augmented, 46–49
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Matrix, augmented (cont.)

is not a matrix, 47
Cholesky decomposition, 54
condition number, 54

approximation to, 54
defective, 55
deleting rows or columns, 21
determinant of, See Determinant
diagonals of, 20, 79, 80
elementary, 18, 106
elementary operations, 106
extracting submatrices, 19
full, 78
generating, Subsect. 2.1 (15), Subsect. 2.3 (19)

individual elements, 16
by submatrices, 17

Hermitian, 16
Hilbert, See Hilbert matrix
identity, 17
inverse of, 56
Jacobian, 83, 88
logical, 65
lower triangular part of, 20, 57

unit, 57
LU decomposition, 57
manipulation, Subsect. 2.3 (19), 106
“masking” elements of, 65
maximum value, 27, 28
minimum value, 28
multidimensional, Subsect. 2.8 (29)
null, 21, 22, 106
orthogonal, 58
QR decomposition, 58
positive definite, 80
preallocation of, 68
pseudoinverse of, 51
replicating, 21
reshaping, 20, 21
singular

warning of, 56
singular value decomposition, 58
sparse, Sect. 9 (78), 111
specialized, 106
sum of elements, 28
SVD, See Singular value decomposition (above)
symmetric, 16, 80
tridiagonal, 55, 78
unitary, 58
upper triangular part of, 20
Vandermonde, See Vandermonde matrix

max, 27, 28, 29, 108
Maximum value, 27
mean, 28, 29, 108
Mean value, 28
mesh, 40, 41, 44, 107
meshgrid, 40, 41, 107
M-file, 67
min, 29, 108
Minimum value, 28

mod, 11, 105
Monotonicity, test for, 28
Monty Python, 32
Moore-Penrose conditions, 51
Mouse location, See ginput
Multidimensional arrays, Subsect. 2.8 (29)

N

NaN, 8, 104
nargin, 69, 73, 110
nargout, 69, 73, 110
Newton-Cotes method (of numerical integration), 95
Newton’s laws, 89
nnz, 80, 81, 111
norm, 29, 57, 59, 69, 108, 109
Norm

matrix, 57
Frobenius, 57
p -norm, 57

vector, 57
NOT (logical operator), 62, 64, 109
null, 58, 59, 109
Null matrix, 21, 22, 106
Null space, 58
num2str, 32, 33, 53, 108

O

Ode, See Ordinary differential equations
odeset, 84, 85, 90, 91, 111
ode113, 82, 111
ode15s, 82, 111
ode23, 82, 111
ode23s, 82, 111
ode23t, 82, 111
ode23tb, 82, 111
ode45, 82, 111
ones, 17, 18, 106
optimset, 94, 96, 112
OR (logical operator), 62, 64, 109
Ordinary differential equations, Sect. 10 (81)

Duffing’s equation, 81–88
first-order system, 81

with constant coefficients, 102
projectile equation
solvers, 82, 83, 111
ode113, 82, 111
ode15s, 82, 111
ode23, 82, 111
ode23s, 82, 111
ode23t, 82, 111
ode23tb, 82, 111
ode45, 82, 111
absolute error, 83
adaptive step size, 83
events, 86–87
passing parameters to, 87
properties of, 85
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Ordinary di�erential equations, solvers (cont.)

relative error, 83
statistics for, 85

stiff, 83, 88
Van der Pol’s equation, 88–89

orth, 58, 59, 109
Orthonormal basis, 58
otherwise, 63, 109
Outer product, 24
Overdetermined system, See Linear system of equations

P

Parentheses, 8
path, 68, 107
Path, See Search path
pause, 67, 70, 73, 107
persistent, 72, 73, 110
pi, 7, 8, 104
Piecewise polynomials, See Interpolation
pinv, 51, 52, 109
plot, 34, 35, 39, 42, 92, 107
Plot, generating a, See Graphics
Plotting

a curve, 34, 39
a function, 36, 41
a parametric function, 36
an implicit function, 36
in polar coordinates, 36

plot3, 39, 41, 107
polar, 36, 39, 107
Polar coordinates, 36
poly, 91, 93, 112
polyder, 92, 93, 112
polyfit, 92, 93
Polynomials, Sect. 11 (91), 112

differentiating, 92
evaluating, 91
finding minimum and maximum of, 92
order of, 92
representing by vector
roots of, 91

polyval, 91, 92, 93, 112
polyvalm, 92, 93, 112
Positive definite matrix, See Matrix
Power, 96, 97

average, 97
definition of, 96
frequency of, 97
in each mode, 97
instantaneous, 97
spectrum, 97

prealloc (locally defined), 69
Predefined variables, See Variables
Principles about computer arithmetic, 8, 10
print, 38, 105
Printing, See Display
prod, 29, 108
Product

Product (cont.)

dot, See Dot product
inner, See Inner product
outer, See Outer product

Programming language (MATLAB), Sect. 8 (60)
flow control, Subsect. 8.1 (60), 63, 109

break out of, 62
continue loop, 62
for loops, 60
if statement, 60
switch statement

different than in C, 63
while loops, 62

needed less frequently, 63
Pseudoinverse, See Matrix
Pseudorandom numbers, See Random numbers
Pythagorean theorem, 10

Q

QR decomposition, 58
qr, 58, 59, 109
quad, 95, 96, 112
Quadratic polynomial, roots of, 11
quad8, 95, 96, 112
Quote mark, 6

R

rand, 17, 18, 36, 50, 106
randn, 17, 18, 37, 106
Random matrix, 17, 21, 50, 81, 111
Random numbers, 17

Gaussian distribution, 17, 37
normal distribution, 17
pseudorandom numbers, 17
seed, 17
uniform distribution, 17, 36

rank, 58, 59, 109
Rank of matrix, 58
rats, 52, 107
Rational approximation to floating-point number, 52,

107
RCOND, 50, 55, 56
real, 12, 105
realmax, 8, 104
realmin, 8, 9, 104
Reduced row echelon form, 47

round-off errors in, 49
Relational operators, 61, 109
<, 61, 109
<=, 61, 109
>, 61, 109
>=, 61, 109
==, 61, 109

˜=, 61, 109
matrix, Subsect. 8.2 (63)

result of, 64
rem, 11, 105
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Remainder, 11, 105
Request input, 9
repmat, 21, 22, 106
reshape, 20, 21, 22, 106
return, 69, 71, 73, 110, 111
RGB components (of a color), 44
roots, 91, 93, 112
round, 11, 105
Round-off errors, Subsect. 1.3 (8), 10, 19, 21, 23, 26, 27,

34, 49, Subsect. 5.2 (49), 50, 56
rref, Sect. 5 (46), 73, 109

S

save, 13, 14, 104
Save terminal commands, 5
Save work, 5
Scientific notation, 5
Script files, 66, 67, 68, 70

debugging, 70
names of, 67

Search path, 68, 73
semilogx, 36, 39, 107
semilogy, 36, 39, 107
sign, 11, 105
Simpson’s method (of numerical integration), 95
sin, 11, 105
sin z, 12
Singular value decomposition, 58
sinh, 11, 105
size, 17, 18, 106
sort, 28, 29, 108
Sort numbers, 28
sparse, 78, 79, 81, 111
spconvert, 80, 81, 111
spdiags, 79, 81, 111

differences from diag, 79
speye, 81, 106, 111
spfun, 81, 111
spline, 93, 112
Splines, See Interpolation
sprand, 80, 81, 106, 111
sprandn, 80, 81, 106, 111
sprandsym, 80, 81, 106
sprintf, 32, 33, 108
spruce (locally defined function), 70
spy, 81, 111
sqrt, 11, 27, 105
sqrtm, 23, 102, 112
squeeze, 30, 106
sscanf, 33, 108
Standard deviation, 28
Statements

executing in text variables, 74
rerunning previous, 9
separating on a line, 6, 8, 15, 22, 103

std, 28, 29, 108
Stiff ode, 83, 88
strcmp, 61, 108, 109

String, See Text string
str2num, 33, 108
Subfunctions, See Functions
subplot, 43, 45, 108
sum, 29, 64, 108
surf, 40, 41, 44, 107
Surface plot, 40

changing view, 40
filled-in, 40
wire-frame, 40

svd, 58, 59, 109
SVD, See Singular value decomposition
switch, 62, 63, 109

T

T, See Transpose
tan, 11, 105
tanh, 11, 105
Taylor series expansion, 101
TEX, See Text string
text, 42, 43, 46, 108
Text string, 6, Sect. 3 (32), 108

appending to, 32
concatenating, 32
converting to, 32
comparing strings, 61
executing, 74
TEX commands in, 43

Text window, 34
tic, 24, 25, 107
Time, See cputime, tic, toc
title, 36, 39, 42, 107
toc, 24, 25, 107
Transpose, 16, 18, 106

conjugate, 16, 18, 106
Trigonometric functions, Subsect. 1.5 (10), Subsect. 2.6

(27)
tril, 21, 22, 106
triu, 20, 22, 106
TRUE (result of logical expression), 62
type, 13, 14, 67, 104

U

Underdetermined system, See Linear system of
equations

V

Van der Pol’s equation, See Ordinary differential
equations

vander, 92, 106
Vandermonde matrix, 92
Variables, Subsect. 1.2 (6)

about, 8
case sensitive, 8
conflict between variable and function name, 10
deleting, 8
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Variables (cont.)

global, 72
inputting, 9
list of, 13
loading, 13
local, 67, 71
logical, 65
modifying, 72
overwriting, 6
persistent, 72
predefined, 7, 8, 104
ans, 7, 8, 104
eps, 8, 9, 62, 104
i, 5, 8, 104
Inf, 8, 35, 104
j, 5, 8, 104
NaN, 8, 104
overwriting, 7, 60
pi, 7, 8, 104
realmax, 8, 104
realmin, 8, 9, 104

saving, 13
saving local variables in functions, 72
special cases of vectors or matrices, 6
static, 72
text, 6, Sect. 3 (32)

See also Text string
typeless, 7, 72

vdp1 (locally defined), 88
vdp2 (locally defined), 88
Vector

average value of elements, 28
column vs. row, 15
deleting elements, 21
generating, Subsect. 2.1 (15)

individual elements, 17
logical, 65
“masking” elements of, 65
maximum value, 27
mean value of elements, 28
minimum value, 28
preallocation of, 68
repeated elements, testing for, 28
sort elements, 28
standard deviation of elements, 28
sum of elements, 28

vectorize, 33, 108
Vectorizing code, Subsect. 8.5 (75)
view, 40, 41, 107

W

while, 62, 63, 109
who, 13, 14, 104
whos, 13, 14, 104
Workspace, 5, 70

X

xlabel, 36, 39, 42, 43, 107
xor, 62, 64, 109

Y

ylabel, 36, 39, 42, 43, 107

Z

zeros, 17, 18, 106
zlabel, 41, 42, 44, 107
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