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Abstract. We present a discrete-state stochastic model for Cholera to ex-

plain the behavior of an environmental reservoir. The resulting birth-death-

immigration model does a reasonable job explaining the expected number of
infecteds but does poorly in explaining the variance of the process. A contin-

uous state limit is derived to provide an SDE approximation to the process.

Using data from Dhaka we fit the parameters of our models and discuss the
implications.

1. Introduction

The dynamics of disease rates depend on number of people who can contract and
spread the disease. This dependence leads to periodic behavior in the number of
infected individuals. The periodicity implies that certain times are characterized by
very high and low rates. Additionally, certain diseases can be contracted through
an environmental reservoir, requiring no infected individuals initially to spread the
disease. When disease rates are very low the environmental reservoir is determining
how the disease is spread, since the spreading of disease from person to person is
minimal. To explain the effect of an environmental reservoir we identify those times
when disease rates are very low and study how the disease behaves shortly after.

Cholera can be contracted person to person as well as from an environmental
reservoir. From figure 1 we see highly periodic behavior in disease rates. When
disease rates are very high the susceptible population is low and this slows the
spread of disease so that rates decrease. Likewise, when rates are low the susceptible
population is high which allows the disease to spread. From the ACF, figure 2 left,
we see a strong correlation at periods of one and two years, this plot suggests
there is a strong annual cycle with cholera. Additionally, the periodogram (figure 2
right) has a strong peak at one year cycles, as well as smaller peaks for six-month
and quarterly periods. From this we can conclude that the behavior of Cholera is
periodic annually. We should then analyze the behavior of this disease within a
year time-frame.

We see from figure 3 that the yearly behavior of this disease is consistent across
time. The disease seems to peak around April then steadily decline to a minimum
around August, from which it begins to rise again. This pattern clearly repeats it-
self every year. Around August we would expect the effect from the environmental
reservoir to be the strongest. We want to model the rise in disease rates after the
disease is at its minimum. Cholera rates seem to rise up until November then start
to decrease around December. However, the rate of increase slows down after No-
vember suggesting that between August and November is when the environmental
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Figure 1. Time-Series of Cholera Mortality

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series: Cholera

0 1 2 3 4 5 6

5e
+

03
5e

+
04

5e
+

05

frequency

sp
ec

tr
um

Series: Cholera
Smoothed Periodogram

bandwidth = 0.0428

Figure 2. ACF and Power Spectrum of Cholera Infections

reservoir effect is greatest and the crowding-out effect is negligible. Our goal is to
offer a stochastic model for the behavior of Cholera between August and November.

Modeling using a counting process allows us to estimate the effects of person-to-
person infection and infection from the reservoir. The data are monthly Cholera
mortality rates in Dhaka, Bangladesh. Our estimates of the parameters get close
to the moments of the data, but are not able to fit them exactly. The variance of
the data becomes too large as the number of infecteds grow for our model to fit
the data. Consequently, our model can explain the expected value of the number
of infecteds fairly well, but fails to accurately describe the variance of year to year
infection rates.

2. Modeling with Count Processes

2.1. Discrete State Continuous Time Modeling. To model disease rates when
there is a reservoir present we shall use a birth-death-immigration process. Let X(t)
be the number of infected individuals. Since the disease is contagious, anyone with
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Figure 3. Superposition of Yearly Infections and Mean Infections

the disease can spread it and therefore creates a type of branching process. Dis-
eases contracted from other individuals will be part of the birth process. Obviously
removal from the population of infected individuals is the death process. Addi-
tionally, since there is a reservoir from which healthy people can contract cholera
we add an immigration term for those who enter into the population of infected
individuals, but have not contracted the disease from someone else.

For the immigration rate we will assume a Poisson process with constant rate ν.
First we must find the generating function for the birth-death process. We begin
by modeling the short-time transition probabilities. We allow the birth and death
rates to be nonlinear, with respect to the population size. Let λn be the birth rate
when there are n individuals with the disease and µn be the corresponding death
rate. We define the rates as, λn = nαλ + ν and µn = nβµ where α, β ∈ R. The
short-time transition probabilities are then,
(2.1.1)

P (X(t + h) = j | X(t) = i) =


(iαλ + ν)h + o(h), j = i + 1
1− (λiα + ν + µiβ)h + o(h), j = i

iβµh + o(h), j = i− 1
o(h), |j| > i + 1.

From this we are able to derive a system of forward equations. Let pj(t) :=
P (X(t) = j) and pij(h) := P (X(t + h) = j | X(t) = i). It follows from the Chapman-
Kolmogorov equations that,

P (X(t + h) = j) =
∑
i∈S

P (X(t) = i) P (X(t + h) = j | X(t) = i)

= P (X(t + h) = j | X(t) = j − 1) pj−1(t)

+ P (X(t + h) = j | X(t) = j) pj(t)

+ P (X(t + h) = j | X(t) = j + 1) pj+1(t) + o(h)

= (((j − 1)αλ + ν)h)pj−1(t) + (1− (λjα + ν + µjβ)h)pj(t)

+ µ(j + 1)βhpj+1(t) + o(h).
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We subtract P (X(t) = j) and divide by h, then take the limit as h ↓ 0 while
noting that limh↓0

o(h)
h = 0. We are then left with,

lim
h↓0

pj(t + h)− pj(t)
h

= ((j − 1)αλ + ν)pj−1(t)− (λjα + ν + µjβ)pj(t)

+ µ(j + 1)βpj+1(t).

Therefore we have that,

(2.1.2) p′j(t) = (λ(j − 1)α + ν)pj−1(t)− (λjα + ν + µjβ)pj(t) + µ(j + 1)βpj+1(t).

Take the special case where α = β = 1, if we multiply by sj then sum we have
that,

∞∑
j=0

sjp′j(t) = λs2
∞∑

j=1

(j − 1)sj−2pj−1(t) + νs

∞∑
j=1

sj−1pj−1(t)− (λ + µ)s

·
∞∑

j=0

jsj−1pj(t)− ν

∞∑
j=0

sjpj(t) + µ

∞∑
j=0

(j + 1)sjpj+1(t)

Since the probability generating function of the process is G(s, t) =
∑∞

j=0 sjpj(t)
we are left with a first order partial differential equation.

(2.1.3)
∂G

∂t
= (s− 1)

[
νG + (λs− µ)

∂G

∂s

]
Subject to the boundary condition G(s, 0) = sI , given X(0) = I,∵ pj(0) = δij . We
solve this equation by the method of characteristics. First we rewrite it in the form
τ(s, t)∂G

∂t + σ(s, t)∂G
∂s = ρ(s, t, G). Then we solve the equations dt

τ(s,t) = ds
σ(s,t) =

dG
ρ(s,t,G) , noting that the constants that occur after solving can be expressed as func-
tions. That is C1 = Φ1(s, t, G) and C2 = Φ2(s, t, G), then the general solution of
the PDE has the form Φ1(s, t, G) = f(Φ2(s, t, G)), where f is an arbitrary function
of one variable. We have that ∂G

∂t + (s− 1)(µ−λs)∂G
∂s = ν(s− 1)G so that we need

to solve dt = ds
(s−1)(µ−λs) and ds

µ−λs = dG
νG . This yields that

C1 =
lnG

ν
− ln(λs− µ)

λ
and C2 = t +

1
λ− µ

ln
(

1− s

µ− λs

)
.

Taking exponents of both expressions we have that

G(λs− µ)−
ν
λ = f

(
et(1− s)

1
λ−µ (µ− λs)

1
µ−λ

)
.

Let z = z(s) be the argument inside f , then by using the boundary condition we
can solve for f(z).

G(s, 0) = f
(
(1− s)

1
λ−µ (µ− λs)

1
µ−λ

)
︸ ︷︷ ︸

z(s)

= sI(λs− µ)
ν
λ

⇒ f(z) =
(

µzλ−µ − 1
λzλ−µ − 1

)I (
µzλ−µ − 1
λzλ−µ − 1

· λ− µ

) ν
λ
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So that, G(s, t) =
(

µ−λ
λzλ−µ−1

) ν
λ

(
µzλ−µ−1
λzλ−µ−1

)I

, where z = et(1 − s)
1

λ−µ (µ − λs)
1

µ−λ .
Plugging in for z we finally obtain,

(2.1.4) G(s, t) =
(

µ− λ

et(λ−µ)(s− 1)λ + µ− sλ

) ν
λ

(
et(λ−µ)(s− 1)µ + µ− sλ

et(λ−µ)(s− 1)λ + µ− sλ

)I

We see that G(1, t) = 1,∀t, so X(t) is honest ∀λ, µ, and ν. From the moment
generating function we can find the mean and variance of this process. We can
find the first moment since E(X(t)) = ∂G

∂s

∣∣
s=1

. Also, the variance is V(X(t)) =
Gss(1, t) + Gs(1, t)− (Gs(1, t))2. So that,

(2.1.5) E(X(t)) = Iet(λ−µ) + ν
(et(λ−µ) − 1)

λ− µ

Or equivalently,

(2.1.6) E(X(t)) = Ie(λ−µ)t + ν

∫ t

0

e(λ−µ)sds.

We see that the expected value is linearly proportional to the immigration term
times the integral of the expected value of a birth-death process. This is because
each time an immigration occurs it starts a new birth death process from the time
it occurs to the final time t. Additionally, the variance of the process at time t is

V(X(t)) = I
λ + µ

λ− µ
et(λ−µ)(et(λ−µ) − 1) + ν

(λet(λ−µ) − µ)(et(λ−µ) − 1)
(λ− µ)2

.(2.1.7)

As we would expect, if we take the limit as ν ↓ 0 we are left with the expected
value and variance of a simple birth-death process found in Grimmett and Stirzaker
[3].

lim
ν↓0

E(X(t)) = Iet(λ−µ), lim
ν↓0

V(X(t)) = I
λ + µ

λ− µ
et(λ−µ)(et(λ−µ) − 1)

Intuitively we expect that as time goes to infinity if the birth rate is larger
than the death rate this process would explode and if the death rate is larger, the
immigration rate should determine the expected value of the process.

(2.1.8) lim
t→∞

E(X(t)) =

{
∞, if λ > µ

ν
µ−λ , if λ < µ

The expected value behaves as expected. When λ < µ we have that the expected
value is a ratio between the immigration rate and the difference between the death
and birth rate, say the net death rate. It has been shown that the asymptotic
distribution of death-immigration process is Poisson

(
ν
µ

)
, [3]. So that the expected

value would be ν
µ , which is essentially what we have.

Also, as the birth rate approaches the death rate we expect births to cancel
deaths and only our immigration term should affect the expected value. Indeed,
limλ→µ E(X(t)) = I + νt, which is the initial population size plus the expected
value of a Poisson process with rate ν.

Obviously, the asymptotic probability of extinction is zero, since there is constant
immigration. However, we can still say something about the process eventually
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Figure 4. Probability X(t) = 0 when λ < µ

Figure 5. Probability X(t) = 0 when λ > µ

going to 0. We have that P(X(t) = 0) = G(0, t) =
(

µ−λ
µ−λet(λ−µ)

) ν
λ

(
µet(λ−µ)−µ
λet(λ−µ)−µ

)I

,
so

lim
t→∞

P(X(t) = 0) =


(

µ−λ
µ

) ν
λ

, if λ < µ

0, if λ > µ.

Surprisingly, limt→∞ P(X(t) = 0) < 1,∀ν > 0 in either case. For the simple birth
death process considered in [3] the asymptotic probability of a zero population is 1, if
µ > λ, and less than one but positive, if µ < λ. This is particularly important since
diseases with environmental reservoirs do not go extinct even if all infecteds have
been removed and in our model sometimes will never even reach a zero population.

2.2. Numerical Methods for Finding Transition Probabilities. One method
for solving the forward equations is by Laplace transforms. We know that L[f ′](θ) =
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θL[f ](θ) − f(0). We assume that pj(0) = δij , given that X(0) = i. So the trans-
formed forward equations are,

(2.2.1) p̂j(θ) =
δij + (λ(j − 1)α + ν)p̂j−1(θ) + µ(j + 1)β p̂j+1(θ)

(θ + λjα + ν + µjβ)

One can then solve these equations by numerically by inverting the Laplace
transform. This would then give the transition probabilities when the birth and
death rates are non-linear with respect to the population size.

2.3. Simulating From the Process. Given a stochastic semigroup {Pt : t ≥ 0},
with entries pij(s, t) for some s ≤ t, we can construct the generator of the Markov
chain. Since pij(h) is approximately linear when h is small there exist constants
{gij : i, j ∈ S}, where S = N ∪ {0} is the state space, such that pij(h) w gijh,
if i 6= j and pii(h) w 1 + giih . The generator matrix, G = (gij), gives us the
probability of jumping or staying put for a small time interval h. We have that
either nothing happens during (t, t+h) with probability 1+giih+o(h), or the chain
jumps to state j 6= i with probability gijh + o(h).

From our construction we have that gii = −(i(λ+µ)+ν), gi,i+1 = iλ+ν, gi,i−1 =
iµ for i 6= 0, and g00 = −ν, g01 = ν. For any other jump gij = 0, thus

G =


−ν ν 0 0 0 · · ·
µ −(λ + µ + ν) λ + ν 0 0 · · ·
0 2µ −(2(λ + µ) + ν) 2λ + ν 0 · · ·
0 0 3µ −(3(λ + µ) + ν) 3λ + ν · · ·
...

...
...

...
...

. . .

 .

Let X(s) = i, then define U = inf{t ≥ 0 : X(t + s) 6= i} to be the time it takes
for the chain to jump. It has been shown that U is exponentially distributed with
parameter −gii, [3]. There are only two possible places the chain can jump if it
is at state i, either to i + 1 or i − 1. This implies that the probability of jumping
to state j 6= i, given that a jump occurs, is − gij

gii
. Therefore, this distribution is

Bernoulli with parameter − gi,i+1
gii

. If there is a success we jump up one, otherwise
we jump down one. From this we can easily simulate the process as long as we set
the initial conditions and parameter values.

We see that in figure 6 the growth is exponential. We have that as the immigra-
tion parameter increases the growth becomes more linear than exponential. This is
as expected since the immigration parameter is always constant so if ν dominates
the process the growth should be linear. Conversely, if the birth rate is dominant
then the growth should be exponential since λn = nλ increases as the population
size increases.

When the death rate is larger than the birth rate we know from (2.1.8) that
the immigration term will determine the key features of the process. We see that
the process quickly goes to the steady-state value, then behaves like a stationary
process. Also, we have that the variance increases as ν increases. Further evidence
of the importance of the immigration term is given by the time it takes for the
jumps to occur. When λ > µ we see that regardless of ν it takes around 2 time
units for there to be 1000 jumps. However, when λ < µ we find that it takes
about 180, 47, 23 and 14 time units for 1000 jumps as we increase the immigration
parameter. Based on the characteristics of the simulations and from figure 3, during
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Figure 6. Simulation Realizations with 1000 Jumps, λ > µ
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Figure 7. Simulation Realizations with 1000 Jumps, λ < µ

the months of August to October, we would expect cholera to behave as a process
whose birth rate is larger than the death rate.
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I = 28.48, λ = 75.8, µ = 75, ν = 60

2.4. Estimating Parameters: Method of Moments. One method for estimat-
ing the parameters of our model is by using the expected value and variance of our
data and of the process to set up a system of equations. These equations can then
be solved to determine the parameter values. Since there are three parameters to
estimate we need three moments from the data. Our process is intended to model
the data from August (t = 0) to around November (t = 3), so that using the mean
and variance of the data we can get up to 6 moments. By inspecting Figure 3, we
see that the data is very volatile after August so we use only the first moments of
the months September to November.

Results from the MOM estimation indicate that our model has problems ex-
plaining the variance of the process. The numerical root finding is very sensitive
to initial conditions and encounters many singular points during the search. The
main problem is that the variance of this process gets large too quickly for it to
be explained by our model, which has exponential growth in the variance. Even
when we use only first moments to estimate the parameters we encounter similar
problems. In fact the only time we find a stable solution is when we make a change
of variable of a = λ − µ and use the means of October and November. This gives
us the estimate for the difference between the birth and death rate as well as the
immigration rate.

We estimate that a = λ − µ w 0.8 and ν w 60. Of course we still do not know
that exact values of λ and µ separately, although we do have a linear equation
that they satisfy. We choose λ and µ so that the processes variance is close to the
variance of the data. In figure 2.4 we see that the choice λ w 75.8 and µ w 75 allows
us to accurately estimate the variance during September and November, but is far
from accurate for the month of October. The problem is that the large increase in
the variance from September to October cannot be explained by the exponential
growth given by our model. This increase is just too drastic.

Once we have estimates for a = λ − µ and ν we would like to get a confidence
interval. We use the bootstrap to get an estimate of the variability of our pa-
rameters. Since our model does not do a good job explaining the variance of the
data, essentially being too small, we use a non-parametric bootstrap. Since we
have 50 realizations with our data (August to November), we first randomly draw
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with replacement from our data 50 times. Then we use the resulting expected
values to estimate the parameters with MOM. The variance across our estimates
then becomes the basis for the construction of our confidence interval. One way to
construct a confidence interval is to use the expected value found in the original
MOM estimate plus or minus two standard deviations from the bootstrap. This
would give us an approximate 95% confidence interval for our parameter estimates.
However, we can also use the 97.5% and 2.5% quantiles of the fitted estimates. Our
confidence interval would not be symmetric but it would give a better idea of the
true range of possible values, since if the variance were very high for an estimate a
symmetric confidence interval may include negative values.

λ− µ ν
Estimate 0.7977 60.3917
97.5% Quantile 1.1141 148.8714
2.5% Quantile 0.5025 7.6462

Table 1. Estimates and Confidence Intervals for Parameters

We see that the confidence interval for the difference between the birth and
death rate contains all positive values. The standard deviation is about 0.1598
which does not seem all that large. However, for the immigration term we have a
standard deviation of about 38.2580, which would actually go below zero for a 95%
confidence interval lower bound. This suggests a high degree of variability in our
estimation for the rate of infection from the reservoir. We cannot have too much
confidence in our estimate nor even state whether the reservoir plays a very strong
role in spreading the disease or just a small one. If ν were around 7 then only
around 7 individuals would be expected to contract the disease from the reservoir.
This is insignificant as the number of infected individuals from the data is over 400
in October and over 1000 in November. If however the rate were closer to 140 or
so then the reservoir is extremely important in determining the initial spread of
Cholera.

3. Diffusion Approximation to the Counting Process

3.1. SDE from Transition Probabilities. Let X = {X(t) : t ≥ 0} be a diffusion
process. Suppose there exist functions a(t, x) and b(t, x), such that

E (X(t + h)−X(t) | X(t) = x) = a(t, x)h + o(h)

and
E

(
[X(t + h)−X(t)]2 | X(t) = x

)
= b2(t, x)h + o(h).

Then we identify a(x, t) and b2(x, t) as the infinitesimal mean and variance of the
diffusion process. It follows that the differential form of this is dXt = a(t, Xt)dt +
b(t, Xt)dWt, where Wt is a standard Wiener process, or equivalently in its integrated
form

Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs

where the second integral is an Itô integral.
Using the short-time transition probabilities given by (2.1.1) we have that a(x, t) =

(λ− µ)x + ν and b2(x, t) = (λ + µ)x + ν. This gives us the SDE,
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Figure 9. Two Sample Paths of dXt = ((λ − µ)Xt + ν)dt +√
((λ + µ)Xt + ν)dWt (left) and dXt = ((λ−µ)Xt+ν)dt+ϕXtdWt

(right); I = 28.48, λ = 2.8, µ = 2, ν = 60, ϕ = 1/2

(3.1.1) dXt = ((λ− µ)Xt + ν) dt +
√

(λ + µ)Xt + νdWt

Due to the nonlinear stochastic term and no easy way of transforming the variable
to get a linear SDE we attempt to solve (3.1.1) numerically. We use an Euler
approximation, with equidistant discretization times, given in [6].

From figure 9 we see that the SDE derived from the birth-death-immigration
process is very similar to our BDI simulation. The expected value for the BDI
process is very close to the SDE solution. However from figure 10, it is apparent
that the expected value of the data is proportional to the standard deviation. This
would imply that the stochastic term in the SDE should be linear in Xt rather
than the square root. This would also insure a much larger variance in the process,
which is one shortcoming or the BDI model. We do not just square the stochastic
term in (3.1.1). This is because the

√
(λ + µ)Xt + ν term has a meaning as the

infinitesimal variance of the BDI process. But, (λ+µ)Xt+ν has no direct meaning,
we just want Xt to appear linearly with the stochastic part, dWt. Therefore we
choose the SDE,

(3.1.2) dXt = ((λ− µ)Xt + ν)dt + ϕXtdWt
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Figure 10. Proportionality Between the Expected Value and
Variance of the Data

where ϕ is a constant. This SDE is linear so we have a solution (taken from [6])

(3.1.3) Xt = Φt

(
X0 + ν

∫ t

0

Φ−1
s ds

)
where Φt = e((λ−µ)− 1

2 ϕ2)t+ϕWt .
One reason for choosing this SDE to model the data is that the variability in the

BDI model does not become large enough to explain the variance in the data. This
can be attributed to the ‘‘environmental stochasticity” for which the BDI model
does not consider. Rather our model considers only the ‘‘population stochasticity”.
This suggests we model the process with additional sources of variability. From
(3.1.3) we can find the expected value and variance of this process and try to
re-estimate the parameters using MOM.

Let a = λ− µ, then we have that the expected value of this process is

E(Xt) = E
(

ΦtX0 + ν

∫ t

0

ΦtΦ−1
s ds

)
= X0e

(a−ϕ2

2 )tE(eϕWt) + ν

∫ t

0

e(a−ϕ2

2 )(t−s)E
(
eϕ(Wt−Ws)

)
ds

= X0e
(a−ϕ2

2 )t+ ϕ2

2 t + ν

∫ t

0

e(a−ϕ2

2 )(t−s)+ ϕ2

2 (t−s)ds

= X0e
at + ν

eat − 1
a

= X0e
(λ−µ)t + ν

∫ t

0

e(λ−µ)sds.

We are using the fact that ϕWt and ϕ(Wt −Ws) are distributed N(0, ϕ2t) and
N(0, ϕ2(t−s)) respectively, so that the expectation is over lognormal r.v.’s. Notice
that this is the same value as in (2.1.6). Since we did not change the deterministic
part of the equation it is no surprise that we have the same expected value as
in the BDI. In figure 9 we use the same parameters as in the BDI simulations.
This allows us to easily compare the two processes, noting the strong similarities
between the BDI process and its corresponding SDE approximation. We also see
how much greater the variability is in the SDE approximation with ‘‘environmental
stochasticity”.
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fusion Variance (right)

We can also find the variance of this process. First we find the second moment,

E(X2
t ) = E

(
X2

0Φ2
t + 2X0ν

∫ t

0

Φ2
t Φ

−1
s ds + ν2

∫ t

0

∫ t

0

Φ2
t Φ

−1
u Φ−1

v dudv

)
= X2

0e(a− 1
2 ϕ2)2tE(e2ϕWt) + 2X0ν

∫ t

0

e(a− 1
2 ϕ2)(2t−s)E(eϕ(2Wt−Ws))ds

+ ν2

∫ t

0

∫ t

0

e(a− 1
2 ϕ2)(2t−u−v)E(eϕ(2Wt−Wu−Wv))dudv

= X2
0e(a− 1

2 ϕ2)2t+2ϕ2
+ 2X0ν

∫ t

0

e(a− 1
2 ϕ2)(2t−s)+(2t− s

2 )ϕ2
ds

+ ν2

∫ t

0

∫ t

0

e(a− 1
2 ϕ2)(2t−u−v)+(2t−u+v

2 )ϕ2
dudv

= X2
0e(2a+ϕ2)t + 2X0ν

e(a+ϕ2)t(eat − 1)
a

+ ν2 eϕ2t(eat − 1)2

a2

= eϕ2t · (eat(ν + aX0)− ν)2

a2

which implies that,

V(Xt) = E(X2
t )− (E(Xt))

2

= eϕ2t · (eat(ν + aX0)− ν)2

a2
−

(
(eat(ν + aX0)− ν)

a

)2

= (eϕ2t − 1)
(eat(ν + aX0)− ν)2

a2
= (eϕ2t − 1)(E(Xt))2.

From this it is apparent that the standard deviation of the process is σt =
√

(eϕ2t − 1)·
E(Xt)) ∝ E(Xt), which agrees with the data.

Now we can estimate ϕ using the variance of the data. Since the expected
value of this diffusion is the same as the BDI process we can use our estimates
of the a and ν parameters we obtained with the MOM. To estimate ϕ we use
a nonlinear least-squares approach. We minimize the sum of squares difference
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between the data and the variance given by the diffusion. We see in figure 11
that the standard deviation of the data does not display exponential growth from
October to November, however our diffusion does. We therefore cannot include the
month of November in our model since it clearly does not have properties similar to
our diffusion. We only use the data for the variance in September and October and
obtain an estimate of ϕ = 0.8197. We have very closely fitted the variance of the
data for the months of September and October, something we were unable to do
with the BDI variance. This is most likely due to the fact that this models variance
is proportional to its expected value, whereas in the diffusion approximation the
variance was proportional to the expected value.

3.2. Constructing a Limiting Process. Our goal is to construct an infinitesimal
mean and variance from our birth-death-immigration process, so that we can find
the forward equation of the diffusion process and the resulting SDE approximation.
We first attempt to find the characteristic function of the process when we let the
jumps sizes get very small but the amount of jumps grow very large. We look at
P(X(t + h) = ξj | X(t) = ξi), for some ξ > 0 and initial population X(0) = I. If
we let ξ ↓ 0 the jumps get very small, and since λn = nλ and µn = nµ, letting
X(0) →∞ will create a large number of jumps. However the immigration term is
just a constant, unless we make ν large the immigration aspect of this process will
vanish, so we also let ν →∞. We select our limits so that Iξ → τ and νξ → σ.

The characteristic function of a stochastic process is defined as ϕ(s, t) = E(eisX(t)) =∑∞
k=0 eisξkpk(t). We could of course reformulate our forward equation to find a PDE

that this function satisfies. However, if we notice that G(s, t) = E(sX(t)) then we
have that G(eisξ, t) = ϕ(s, t). So that,

ϕ(s, t) =
(

µ− λ

et(λ−µ)(eisξ − 1)λ + µ− eisξλ

) ν
λ

(
µ(1− eisξ)− (µ− λeisξ)e−t(λ−µ)

λ(1− eisξ)− (µ− λeisξ)e−t(λ−µ)

)I

(3.2.1)

We now take the appropriate limits and are left with,

(3.2.2) lim
I→ τ

ξ

lim
ν→σ

ξ

lim
ξ↓0

ϕ(s, t) = e
is

„
σ et(λ−µ)−1

λ−µ +τet(λ−µ)
«
.

We see that by letting the initial population and immigration rate grow large
we eliminate the population dynamics in the system which removes all the vari-
ance in the process and leaves us with a deterministic solution. The ”population
stocahsticity” has been completely removed so we have no variability left in our
process. In fact we have the characteristic function of a normal random variable
with expected value basically identical to the BDI process and zero variance. We
are unable to get a limiting solution that is interesting, since all the variance is
removed from the process. This prevents us from deriving a limiting diffusion.

4. Conclusion

Our attempt to model the spread of Cholera during the months of August
through November has failed to explain the variance of the data. Although the
variance of a simple birth-death-immigration process is much larger than the ex-
pected value it grows too slow to explain the variance of the Cholera data. The
behavior of the expected value and variance of our process, namely exponential
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growth, seems to be appropriate however. Additionally, we find that the SDE ap-
proximation to the BDI process seems reasonable. The numerical solution of the
SDE looks very similar to the simulated discrete state process.

We should note that neither the mean nor variance of the BDI process can fit all
three data points (September-November). The growth in both the expected value
and variance from September to October is too large and cannot be fit using our
exponential model. It seems that the process from August to September and from
October to November need to be modeling separately. During August to September
the immigration term, reservoir effect, dominates since the infected population is
so small. The growth seems better modeled linearly. However, from October to
November the population is large enough for exponential growth to appropriately
model the data. We could try letting the constants be functions of time. The
immigration term should be very large comparatively in the beginning of the process
but as the population grows the difference between the birth and death rate should
dominate the process.

References

[1] Engen, S., Lande, R., Sæther, B. E., Stochastic Population Dynamics in Ecology and Conser-

vation, Oxford University Press, New York, 2003.
[2] Gardiner, C. W., Handbook of Stochastic Methods, 3rd edition, Springer, Berlin, 2004.

[3] Grimmett, G. R., Stirzaker, D. R., Probability and Random Processes, 3rd edition, Oxford
University Press, New York, 2004.

[4] Karlin, S., Taylor, H. M., A Second Course in Stochastic Processes, Academic Press, New

York, 1981.
[5] Kiffe, T. R., Matis, J. H., Stochastic Population Models, Springer, New York, 2000.

[6] Kloeden, P. E., Platen, E., Numerical Solution of Stochastic Differential Equations, Springer,

Berlin, 1999.
[7] Koelle, K., Pascual, M., Disentangling Extrinsic from Intrinsic Factors in Disease Dynamics:

A Nonlinear Time Series Approach with an Application to Cholera, The American Naturalist,

163:901-913, 2004.
[8] Rice, J. A., Mathematical Statistics and Data Analysis, 2nd edition, Duxbury Press, Belmont,

Ca., 1995.

[9] Øksendal, B. K., Stochastic Differential Equations, 6th edition, Springer, Berlin, 2003.



16 MURAT O. AHMED

5. Source Code for MATLAB

Birth-Death-Immigration Simulation

figure
M=input(’Enter parameters as a matrix, each row is [X(0) lambda mu nu]: ’);
for k=1:4

v=M(k,:);
X(1)=v(1);U(1)=0;
if X(1)~=0

U(2)=exprnd(1/(X(1)*(v(2)+v(3))+v(4)));
T(1)=binornd(1,(X(1)*v(2)+v(4))/(X(1)*(v(2)+v(3))+v(4)));
if T==1

X(2)=X(1)+1;
else

X(2)=X(1)-1;
end

else
U(2)=exprnd(1/v(4));
X(2)=X(1)+1;

end
for i=1:5000

if X(i+1)~=0
U(i+2)=U(i+1)+exprnd(1/(X(i)*(v(2)+v(3))+v(4)));
T(i+1)=binornd(1,(X(i)*v(2)+v(4))/...

(X(i)*(v(2)+v(3))+v(4)));
if T(i+1)==1

X(i+2)=X(i+1)+1;
else

X(i+2)=X(i+1)-1;
end

else
U(i+2)=U(i+1)+exprnd(1/v(4));
X(i+2)=X(i+1)+1;

end
end
t=linspace(0,U(5002),1001);
exval=v(1)*exp(t*(v(2)-v(3)))+(v(4)*(exp(t*(v(2)-v(3)))-1))./...

(v(2)-v(3));
vari=max(v(1)*(v(2)+v(3))/(v(2)-v(3))*exp(t*(v(2)-v(3))).*...

(exp(t*(v(2)-v(3)))-1)+(v(4)*(v(2)*exp(t*(v(2)-v(3)))...
-v(3)).*(exp(t*(v(2)-v(3)))-1))./(v(2)-v(3))^2,0);

sd=sqrt(vari); subplot(2,2,k)
plot(t,exval,’g’,U,X,’k’,t,exval+2*sd,’--b’,t,exval-2*sd,’--b’)
xlabel(’Time’);ylabel(’Population Size’);
title([’Birth-Death-Immigration: X(0)=’,num2str(v(1)),...

’, \lambda=’,num2str(v(2)),’, \mu=’,num2str(v(3)),...
’, \nu=’,num2str(v(4))],’FontSize’,14);

legend(’Expected Value’,’Process Value’,’Conf. Int.: E(X(t))\pm 2 SD’,0);
end
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Non-Parametric Bootstrap Estimation of Conf. Int.
uiopen(’/Users/muratoa/Desktop/Mathematics/REU/Dhaka.xls’,1)
for i = 1:49

M(i,:) = Dhaka(12*i+1:12*(i+1));
end
N = [Dhaka(1:12)’;M]; C = N(:,8:11);
%Generates random sampling w/replacement from data%
%and calculates the paramter estimates%
for k = 1:200

R = floor(50*rand(50,1)+1);
for j = 1:50

dat(j,:) = C(R(j),:);
end
xb(k,:) = mean(dat);
x(:,k) = fsolve(@(x)[xb(k,1)*exp(2*x(1))+...
(x(2)*(exp(2*x(1))-1))./x(1)-xb(k,3);...
xb(k,1)*exp(3*x(1))+...
(x(2)*(exp(3*x(1))-1))./x(1)-xb(k,4)],[.8 ; 60]);

end
%Makes sure all estimates are positive%
for l = 1:200

if x(1,l) < 0 || x(2,l) < 0
L(l) = l;

else
L(l) = 0;

end
end
s = sort(L);
n = s(201-mean(L>=1)*200:200);
for i=1:length(n)

x(:,n(i)-(i-1))=[];
end
%Calculates the std. dev. of parameter est.%
%so we can create a conf. int.%
sig = sqrt(var(x’))
%or alternatively we can use the quantiles of the dist%
Y = [quantile(x(1,:),.975) quantile(x(1,:),.025);...

quantile(x(2,:),.975) quantile(x(2,:),.025)]
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Euler-Maruyama Approximation of SDE’s
figure
M=input(’Enter parameters as a matrix, each row is [T N X(0) lambda mu nu phi]: ’);
for k = 1:2

v = M(k,:);
n = v(1)/v(2); Y1(1) = v(3); Y2(1) = v(3);
W = normrnd(0,sqrt(n),v(2)-1,1);
for i = 1:v(2)-1

Y1(i+1) = max(0,Y1(i)+((v(4)-v(5))*Y1(i)+v(6))*n...
+sqrt((v(4)+v(5))*Y1(i)+v(6))*W(i));

Y2(i+1) = Y2(i)+((v(4)-v(5))*Y2(i)+v(6))*n...
+v(7)*Y2(i)*W(i);

end
t = linspace(0,v(1),length(Y1));
exval = v(3)*exp(t*(v(4)-v(5)))+(v(6)*(exp(t*(v(4)-v(5)))...

-1))./(v(4)-v(5));
vari = v(3)*(v(4)+v(5))/(v(4)-v(5))*exp(t*(v(4)-v(5))).*...

(exp(t*(v(4)-v(5)))-1)+(v(6)*(v(4)*exp(t*(v(4)-v(5)))...
-v(5)).*(exp(t*(v(4)-v(5)))-1))./(v(4)-v(5))^2;

vari2 = (exp(t*v(7)^2)-1).*(exp(t*(v(4)-v(5)))*(v(6)...
+(v(4)-v(5))*v(3))-v(6)).^2/(v(4)-v(5))^2;

sd = sqrt(vari);
sd2 = sqrt(vari2);
subplot(2,2,2*k-1)
plot(t,exval,’g’,t,Y1,’k’,t,exval+2*sd,’--b’,t,max(0,exval-2*sd),’--b’)
xlabel(’Time’);ylabel(’Population Size’);
title([’dX_t=((\lambda-\mu)X_t+\nu)dt+((\lambda+\mu)X_t+\nu)^{1/2}dW_t’],...

’FontSize’,14);
legend(’Expected Value’,’Process Value’,...

’Pred. Int.: E(X(t))\pm 2 SD’,0);
subplot(2,2,2*k)
plot(t,exval,’g’,t,Y2,’k’,t,exval+2*sd2,’--b’,t,max(0,exval-2*sd2),’--b’)
xlabel(’Time’);ylabel(’Population Size’);
title([’dX_t=((\lambda-\mu)X_t+\nu)dt+\phiX_tdW_t’],...

’FontSize’,14);
legend(’Expected Value’,’Process Value’,...

’Pred. Int.: E(X(t))\pm 2 SD’,0);
end
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