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Abstract

We consider a semistochastic continuous-time continuous-state space random process that
undergoes downward disturbances with random severity occurring at random times. Between
two consecutive disturbances the evolution is deterministic, given by an autonomous ordinary
differential equation. The times of occurrence of the disturbances are distributed according
to a general renewal process. At each disturbance the process gets multiplied by a continuous
random variable (“severity”) supported on [0, 1). The inter-disturbance time intervals and
the severities are assumed to be independent random variables that also do not depend on
the history.

We derive an explicit expression for the conditional density connecting two consecutive
post-disturbance levels, and an integral equation for the stationary distribution of the post-
disturbance levels. We obtain an explicit expression for the stationary distribution of the
random process. Several concrete examples are considered to illustrate the methods for
solving the integral equations that occur.

Keywords: Semistochastic process, Disturbances with random severity, Renewal process,
Catastrophe, Disaster

1. Introduction and set-up of the problem

Random disturbances of physical, chemical and biological systems occur commonly. The
effects of such phenomena have been studied intensively in population dynamics. A problem
that motivated this paper was related to the carbon content of an ecosystem – recently
some authors have identified disturbances (extreme droughts, fires, insect outbreaks, etc.)
as key forces driving the dynamics of carbon (Thornton et al [1], Pregitzer and Euskirchen
[2], Bond-Lamberty et al [3], Running [4]), and, more generally, as a factor in the dynamics
of vegetation (see, e.g., Clark [5], and the recent papers D’Odorico et al [6] and Beckage et
al [7]).
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Another situation in which disturbances play an important role is the stochastic phe-
notype switching in microbial populations in response to sudden catastrophic events in the
environment (see, e.g., Kussell and Leibler [8], Wolf et al [9], or, for a more mathematical
exposition, Gander et al [10]). Visco et al [11] recently suggested a mathematical model of
the dynamics of such systems that is somewhat reminiscent of the model we consider in this
paper. We, however, will use the carbon content of an ecosystem as a motivating example
throughout the paper because its nature matches more closely our assumptions in the main
theorems of our paper.

The amount of carbon in the ecosystem increases due to photosynthesis, and after a
long time approaches the corresponding carrying capacity of the ecosystem. Occasionally,
however, a forest fire, an extreme drought, or some other process occurring on much shorter
time scale than the normal growth of plants destroys some part of the ecosystem. We call
such a fast process of decimation of the forest a disturbance, and consider the disturbances
as instantaneous events. Therefore, we arrive at the following continuous-time continuous-
state space stochastic process X(t) modeling the carbon mass in the ecosystem. In the
time between two consecutive disturbances X(t) evolves deterministically, governed by the
autonomous ordinary differential equation

d

dt
X(t) = g(X(t)) . (1)

Sometimes processes like X are called semistochastic in the literature. We will need that the
solution of the differential equation (1) be an invertible function, so we impose the condition
that the function g be strictly positive; it is allowed to be zero only at the ends of the
interval where X(t) is allowed to vary (as in the cases (6) and (7) below). In the context of
the carbon content problem, to account for the constant growth rate of the plants and the
saturation effects (due to finite carrying capacity), one can take, for example, g(x) = 1− x
(cf. Equation (6) below).

We assume that X(t) is non-negative, which is the case in many applications. The
quantity X(t) changes with a downward jump at some discrete set of random times Θ1 <
Θ2 < Θ3 < · · · . The random times Θj form a renewal process. If the cause of the disturbance
is natural, one can perhaps assume that Θj’s come from a Poisson process, but one can, for
example, consider the case of controlled forest fires performed at scheduled times (unless
a natural fire occurs), in which case the process will not be Poisson. We assume that
the fraction of the forest that is destroyed in the disturbance – termed the severity of the
disturbance – is a continuous random variable with a known distribution supported on [0, 1).
To simplify our considerations, we assume that the times of occurrence of the disturbances
do not depend on the state of the system (i.e., on X(t)).

To formulate the questions we study in this paper, we need to introduce some notation.
We define the pre-disturbance levels Y −n and the post-disturbance levels Yn of the process by

Y −n := lim
t↑Θn

X(t), Yn := lim
t↓Θn

X(t) ; (2)

as represented pictorially in Figure 1. Let the severity of the nth disturbance be determined
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Figure 1: On the definition of the Θn, Y −
n , and Yn (2). The process between Θn and Θn+1 is governed

by (1).

by a continuous random variable Un relating the pre- and post-disturbance levels:

Yn = Un Y
−
n . (3)

Clearly, Un should be supported on the interval [0, 1), and it is reasonable to assume that
these random variables are independent and identically distributed. We also want that Un be
independent of the process X(t). Of course, the practical measurements of the distributions
of the inter-disturbance times and the severity of the disturbances in practical situations is
a complicated issue (see, e.g., Reed et al [12]).

One meaningful question that can be asked is to find the distributions of the pre- and
post-disturbance levels. Another interesting problem is to find the fraction of time the
process X spends in the long run in a certain measurable set A ⊂ R. We will assume that
the long-time distribution of X can be described by a p.d.f. fX defined as∫

A

fX(x) dx = lim
T→∞

1

T
µ
(
{t ∈ [0, T ] : X(t) ∈ A}

)
, (4)

for any Borel set A (where µ stands for the Lebesgue measure), whenever this limit exists.

We will call p.d.f.’s like fX stationary or invariant distributions, and the measures they
define invariant measures.

In this paper we derive an explicit expression for the conditional probability density
function fYn+1|Yn relating two consecutive post-disturbance levels, in terms of the p.d.f. fT of
the inter-disturbance times Tn, the p.d.f. fU of the severities Un, and the function g in (1).
This function is the kernel in an integral equation for the stationary probability density
function fY of the post-disturbance levels Yn. To solve the integral equation for fY , we
transform it to a differential equation that is easier to solve. We also derive an explicit
expression for fX (4) in terms of fY , fU , and g.

We use our theoretical results to compute explicitly fY and fX in several particular
cases (in each case we also give the allowed range of the initial condition x0):
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(A) the constant growth rate equation:

g(x) = 1 , x0 ∈ [0,∞) ; (5)

(B) an equation corresponding to growth with saturation (modeling the carbon mass in an
ecosystem):

g(x) = 1− x , x0 ∈ [0, 1) ; (6)

(C) the logistic equation:
g(x) = x(1− x) , x0 ∈ (0, 1) ; (7)

(D) the exponential growth equation:

g(x) = x , x0 ∈ (0,∞) . (8)

In each of these examples we will assume that the disturbance times Θn form a Poisson
process of rate λ (thus, the inter-disturbance times Tn = Θn − Θn−1 are exponentially
distributed) and that U is uniformly distributed on the interval [0, 1).

Note that in (7) and (8) we required that the initial condition x0 be strictly positive –
the reason for this is that in these cases g(0) = 0, so that if the population is zero at some
moment, it will be always zero after that.

We emphasize that, generally, the post-disturbance levels Yn do not form a Markov chain.
A notable exceptional case when Yn do form a Markov chain is when all inter-disturbance
times Tn are equal to some constant (independent of n). Another particular case is when the
Tn’s are random but all disturbances bring the population to zero (i.e, if P(U = 0) = 1; this
kind of disturbance is usually called a disaster or a catastrophe) – then the random variables
Yn are independent.

Since our exposition is directed mostly towards applied scientists, we ignore the com-
plicated question of deriving general conditions for existence of stationary distributions, and
instead try to construct the stationary distributions in several concrete examples. (For a
physically meaningful situation where such a question is solved see, e.g., Doering and Hors-
themke [13].) Since our construction of invariant p.d.f.’s is explicit, the uniqueness of the
stationary p.d.f. – whenever such p.d.f. exists – follows from the uniqueness of the solution
of the differential equation obtained in the process of computing fYn+1|Yn . (See, however,
Remark 3).

Our results are exact and purely analytical, so they can be used as a testing tool of
numerical simulations of random processes.

Note that ideas similar to the ones considered in this paper can be applied, mutatis
mutandis, to the case of a non-positive function g in (1) and disturbances at the times Θn

that go upwards – a generalization of the so-called “counter model” [14, Sec. 7.3] in which the
sizes of the upward jumps (Yn−Y −n ) are random variables independent of the pre-disturbance
levels Y −n (while in our formalism they depend on Y −n ).
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Below we mention some works that study similar problems, but under different assump-
tions. Usually in them the system is modeled by a continuous-time, discrete state space
random process.

In an early work on impulsively forced population models, Kaplan et al [15] studied a
branching process with disasters occurring at the times of an independent renewal process.
The population is represented by a discrete state space process, and each particle alive at
the time of the disaster survives the disaster with certain probability (independently on the
other particles).

Bartoszyński [16] proposed a model of development of rabies in a human organism. In
his model, the population of viruses is represented by a discrete state space random process
that jumps upwards by jumps that are independent identically distributed random variables
with a given distribution, while between the jumps the population decreases exponentially.
The times of occurrence of upward jumps are allowed to be population-dependent.

Hanson and Tuckwell [17] studied extinction times in logistically growing populations
that undergo disasters of fixed magnitude that occur in time as a Poisson process. In their
subsequent work [18], they analyzed disasters that are a constant multiple of the current
population size, and in [19] they considered more general distributions of the size of the
disasters. These and other models were discussed by Lande [20] in the context of risks
of population extinction from different factors. Cairns [21] considered general methods for
numerical solutions for first-exit times in semistochastic processes.

Pakes et al [22] considered a continuous state space model of a population that grows
exponentially between a discrete set of times at which a random fraction of the population
emigrates; in particular, the authors studied the extinction time. They assumed that the
sizes of the groups emigrating are independent identically distributed random variables with
a given distribution, while the rate of occurrence of the events of emigration depends on the
population size. (This model is a generalization of the one developed by Bartoszyński [16].)
Brockwell et al [23] considered a discrete state space birth-immigration-catastrophe process,
in which the population can undergo two types of jumps at random times – upward jumps
by one and downward jumps of sizes given by certain particular types of probability distribu-
tions. In another paper [24], the same authors studied catastrophe processes to a stochastic
process with continuous state space. Brockwell [25, 26] generalized the considerations of
[23] to a wider class of probability distributions of the downward jumps. More recently,
discrete state space processes with different types of catastrophes are considered by Cairns
and Pollett [27], Pollett et al [28], Economou and Gómez-Corral [29], among others.

One particular type of catastrophes in stochastic population models with discrete state
space – namely, binomial catastrophes – seems to be particularly similar in spirit to our
assumption that X(t) is multiplied by a random number in [0, 1) at each occurrence of a
disturbance. In such models the disturbances occur according to a renewal process (usually
a Poisson process), and each individual survives after the disturbance with probability p ∈
[0, 1), independently of the other individuals. Therefore, the expected population size right
after the disturbance is equal to the pre-disturbance population multiplied by p. Such
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processes are studied by Brockwell et al [23], Economou [30], and Artalejo et al [31].

We would also like to note that the problem studied in this paper is somewhat similar
to the so-called “processes with random regulation” (see, e.g., [32, 33, 34] and the references
therein).

The plan of our paper is the following: in Section 2 we derive an integral equation for
the conditional p.d.f. fYn+1|Yn and an expression for the stationary distribution fY of the
post-disaster levels, in Section 3 we derive a formula for the stationary distribution fX of
the process X, in Section 4 we apply the general theory to the concrete examples (5)–(8),
Section 5 is devoted to a comparison (on a “physical level of rigor”) of a discrete stochastic
process with its continuous analogue.

2. Deriving an expression for the conditional p.d.f. fYn+1|Yn of two consecutive
post-disturbance levels and an integral equation for the stationary p.d.f. fY
of Yn

We start by introducing some notations related to the solutions of the differential equa-
tion (1). Let φt(x0) be the flow of (1) with initial condition x(0) = x0 in absence of dis-
turbances in the time interval [0, t). Let ψ(x0, x1) stand for the duration of time that the
system needs to evolve from x0 to x1 in absence of disturbances, i.e.,

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1) . (9)

Since g is strictly positive (except possibly vanishing at the ends of allowed interval for its
argument), φt(x0) is a strictly increasing function of t, and the function ψ is well-defined.
From (9) it is clear that ψ(x0, x1) < 0 for x1 < x0.

Throughout the paper, we denote by d the maximum allowed value that X(t) can take,
i.e., d = 1 in the cases (6) and (7), while d =∞ in the cases (8) and (5). We always assume
that the initial value x0 is in the interval [0, d) or (0, d).

Theorem 1. Let X be a continuous-time continuous-state space semistochastic process sat-
isfying the following assumptions:

(a) X(t) takes values in the interval [0, d);

(b) the disturbances occur at times Θ1 < Θ2 < Θ3 < · · · , and the inter-disturbance times
Tn = Θn −Θn−1 (positive by definition) are independent identically distributed contin-
uous random variables which are also independent of the process X; fT stands for the
p.d.f. of the common distribution of the Tn’s;

(c) between two consecutive disturbances X(t) evolves deterministically governed by the
autonomous differential equation (1); the function g in (1) is non-negative (except
possibly vanishing at the ends of interval where X(t) can take values) and Lipschitz (so
that (1) has a unique solution);
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(d) the random variables Un (3) connecting the pre- and post-disturbance levels (2) – and,
hence, determining the severity of the disturbances – are independent identically dis-
tributed random variables that do not depend on the process X; the common p.d.f. of
the Un’s is fU , which is supported on [0, 1).

Then the conditional p.d.f. of the (n + 1)st post-disturbance level Yn+1 conditioned on
the nth post-disturbance level Yn is given by

fYn+1|Yn(xn+1|xn) =

∫ d

max{xn,xn+1}

fT (ψ(xn, x
−
n+1))

g(x−n+1)
fU

(
xn+1

x−n+1

)
dx−n+1

x−n+1

. (10)

If the post-disturbance levels Yn tend asymptotically (as n → ∞) to some continuous
random variable Y , then p.d.f. fY of Y satisfies the integral equation

fY (y) =

∫ d

0

fYn+1|Yn(y|x) fY (x) dx , (11)

as well as the non-negativity and normalization conditions: fY ≥ 0 and
∫ d

0
fY (x) dx = 1.

Proof. Assume that ∆x−n+1 is an infinitesimal positive increment and ignore terms of order
higher than linear in it. Then for x−n+1 ∈ [xn, d) and x−n+1 + ∆x−n+1 ∈ [xn, d), we have

fY −
n+1|Yn

(x−n+1|xn) ∆x−n+1 = P
(
Y −n+1 ∈ (x−n+1, x

−
n+1 + ∆x−n+1]

∣∣Yn = xn
)

= P
(
Tn+1 ∈ (ψ(xn, x

−
n+1), ψ(xn, x

−
n+1 + ∆x−n+1)]

∣∣Yn = xn
)

= P
(
Tn+1 ∈ (ψ(xn, x

−
n+1), ψ(xn, x

−
n+1 + ∆x−n+1)]

)
= P

(
Tn+1 ∈

(
ψ(xn, x

−
n+1), ψ(xn, x

−
n+1) +

∂ψ

∂x−n+1

(xn, x
−
n+1) ∆x−n+1

])
= P

(
Tn+1 ∈

(
ψ(xn, x

−
n+1), ψ(xn, x

−
n+1) +

∆x−n+1

g(x−n+1)

])
=

fT (ψ(xn, x
−
n+1))

g(x−n+1)
∆x−n+1 ,

therefore

fY −
n+1|Yn

(x−n+1|xn) =
fT (ψ(xn, x

−
n+1))

g(x−n+1)
χ[xn,d)(x

−
n+1) . (12)

The expression for the conditional p.d.f. fYn+1|Y −
n+1

follows directly from the definition:

fYn+1|Y −
n+1

(xn+1|x−n+1) ∆xn+1 = P
(
Yn+1 ∈ (xn+1, xn+1 + ∆xn+1]

∣∣Y −n+1 = x−n+1

)
= P

(
Un+1Y

−
n+1 ∈ (xn+1, xn+1 + ∆xn+1]

∣∣Y −n+1 = x−n+1

)
= P

(
Un+1x

−
n+1 ∈ (xn+1, xn+1 + ∆xn+1])

= P
(
Un+1 ∈

(
xn+1

x−n+1

,
xn+1 + ∆xn+1

x−n+1

])
= fU

(
xn+1

x−n+1

)
∆xn+1

x−n+1

,
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hence

fYn+1|Y −
n+1

(xn+1|x−n+1) =
1

x−n+1

fU

(
xn+1

x−n+1

)
. (13)

We use (13) and (12) to obtain the desired conditional p.d.f. fYn+1|Yn . Recall that
supp fT = (0,∞), supp fU = [0, 1), and ψ(x, y) ≥ 0 for 0 ≤ x ≤ y < d, to obtain

fYn+1|Yn(xn+1|xn) =

∫
fYn+1|Y −

n+1
(xn+1|x−n+1) fY −

n+1|Yn
(x−n+1|xn) dx−n+1

=

∫ d

max{xn,xn+1}

fT (ψ(xn, x
−
n+1))

g(x−n+1)
fU

(
xn+1

x−n+1

)
dx−n+1

x−n+1

.

Finally, the integral equation (11) for the stationary p.d.f. of the post-disturbance level
follows directly from

fYn+1(xn+1) =

∫ d

0

fYn+1|Yn(xn+1|xn) fYn(xn) dxn .

Since (11) is linear in fY , we need to impose the normalization condition in order to find the
overall multiplicative constant in fY .

It is instructive to check that
∫ d

0
fYn+1|Yn(xn+1|xn) dxn+1 = 1. We change the order of

integration and merge two integrals into one to obtain∫ d

0

fYn+1|Yn(xn+1|xn) dxn+1 =

∫ d

0

dxn+1

∫ d

max{xn,xn+1}

dx−n+1

x−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)
fU

(
xn+1

x−n+1

)
=

∫ xn

0

dxn+1

∫ d

xn

dx−n+1

x−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)
fU

(
xn+1

x−n+1

)
+

∫ d

xn

dxn+1

∫ d

xn+1

dx−n+1

x−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)
fU

(
xn+1

x−n+1

)
=

∫ d

xn

dx−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)

∫ xn

0

dxn+1

x−n+1

fU

(
xn+1

x−n+1

)
+

∫ d

xn

dx−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)

∫ x−n+1

xn

dxn+1

x−n+1

fU

(
xn+1

x−n+1

)
=

∫ d

xn

dx−n+1

fT (ψ(xn, x
−
n+1))

g(x−n+1)

∫ 1

0

dξ fU (ξ)

=

∫ ∞
0

dt fT (t) = 1 .

We used the substitutions ξ = xn+1/x
−
n+1 and t = ψ(xn, x

−
n+1), and the fact that the definition

(9) and the differential equation (1) yield x−n+1 = φt(xn), dx−n+1/dt = g(x−n+1).
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3. An expression for the stationary p.d.f. fX of the stochastic process X

Suppose that we know the stationary p.d.f. fY (x) of the post-disturbance levels. In this
section we will derive two expressions for the stationary p.d.f. of X(t) defined by (4) .

Theorem 2. Under the assumptions of Theorem 1, if the stationary p.d.f. of X exists, then
it is given by the expressions

fX(x) =
χ(0,d)(x)

g(x)

∫ x

0

dxn fY (xn)

∫ ∞
ψ(xn,x)

dτn+1
fT (τn+1)

τn+1

(14)

=
χ(0,d)(x)

g(x)

∫ ∞
0

dτn+1
fT (τn+1)

τn+1

∫ x

max{0,φ−τn+1 (x)}
dxn fY (xn) . (15)

Proof. Consider the evolution of the system between the nth and the (n + 1)st distur-
bances. We will first find the p.d.f. fX|Yn,Tn+1 of X conditioned on the values of the nth
post-disturbance level and the time interval Tn+1 = Θn+1−Θn between the nth and (n+1)st
disturbance. Assume that Yn = xn and Tn+1 = τn+1. Let x∗ be some value between xn and
x−n+1, and ∆x∗ > 0 be an infinitesimal increment, so that

xn ≤ x∗ < x∗ + ∆x∗ < x−n+1 .

Let τ ∗ and τ ∗ + ∆τ ∗ be the time elapsed between the moment of occurrence of the nth
disturbance and the moment when the level has values x∗ and x∗+ ∆x∗, respectively. Using
(9), we can write x∗ = φτ∗(xn) and x∗ + ∆x∗ = φτ∗+∆τ∗(xn) or, equivalently, τ ∗ = ψ(xn, x

∗)
and τ ∗ + ∆τ ∗ = ψ(xn, x

∗ + ∆x∗). Clearly,

0 ≤ τ ∗ < τ ∗ + ∆τ ∗ < τn+1 .

The differential equation (1) implies that ∆x∗

∆τ∗
= dx

dt

∣∣
t=Θn+τ∗

= g(x∗). The probability of

X(t) to be in the interval (x∗, x∗+ ∆x∗] between times Θn and Θn+1 is equal to the fraction
of time between the nth and (n + 1)st disturbance that the system spends in the interval
(Θn + τ ∗,Θn + τ ∗ + ∆τ ∗]:

fX|Yn,Tn+1(x
∗|xn, τn+1) ∆x∗ = P(X(Θn + τ) ∈ (x∗, x∗ + ∆x∗]|τ ∈ (0, τn+1])

=
∆τ ∗

τn+1

=
1

τn+1

∆x∗

g(x∗)
,

which implies the following expression for fX|Yn,Tn+1 :

fX|Yn,Tn+1(x|xn, τn+1) =
χ(xn,φτn+1 (xn)](x)

τn+1 g(x)
. (16)

The p.d.f. of X is obtained from the conditional one (16) by averaging over Yn and Tn+1:

fX(x) =

∫
dτn+1 fT (τn+1)

∫
dxn fY (xn) fX|Yn,Tn+1(x|xn, τn+1)

=

∫
dτn+1 fT (τn+1)

∫
dxn fY (xn)

χ(xn,φτn+1 (xn)](x)

τn+1g(x)
.
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Because of the nature of the problem, this integration should be over τn+1 ≥ 0, xn ∈ (0, d).
However, because of the indicator function in the integrand and since X(t) is always assumed
to be non-negative, for a given value of x, the domain of integration is

0 ≤ xn ≤ x ≤ φτn+1(xn) .

From this (14) and (15) follow easily.

Checking that fX integrates to 1 can again be done by changing the order of integrations
and substitutions similar to the ones in the verification of the normalization condition for
fYn+1|Yn after Theorem 1.

4. Particular cases of disturbances of uniform severity occurring in time as a
Poisson process

In this section we apply the expressions derived in Theorems 1 and 2 to the four par-
ticular cases (A)–(D) listed in the introduction. In all cases we assume that:

(a) the times Θn of occurrence of disturbances form a Poisson process of rate λ, hence the
inter-disturbance times Tn = Θn−Θn−1 are independent exponential random variables:

Tn ∼ Exp (λ) =⇒ fT (t) = λe−λtχ[0,∞)(t) (17)

(where χA stands for the indicator function of the set A);

(b) the severity of the disturbances are determined by the independent random variables
Un which are uniformly distributed on [0, 1):

Un ∼ Unif ([0, 1)) =⇒ fU(x) = χ[0,1)(x) . (18)

4.1. Case (A) – constant growth rate

If the deterministic change of X is described by the constant growth rate equation (5),
then the functions φ and ψ (9) are

φt(x0) = x0 + t , ψ(x0, x) = x− x0 . (19)

Substituting the functions g (5), fT (17), fU (18), and ψ (19) into the expression (10)
for the conditional p.d.f. fYn+1|Yn relating two consecutive post-disturbance levels, we obtain

fYn+1|Yn(xn+1|xn) =

∫ ∞
max{xn,xn+1}

λe−λ(x−n+1−xn) 1

x−n+1

dx−n+1

=

 −λeλxnEi(−λxn) if 0 < xn+1 < xn ,

−λeλxnEi(−λxn+1) if 0 < xn < xn+1 ,

10



where Ei is the exponential integral [35, Eqn. 5.1.2]. The integral equation (11) takes the
form

fY (x) = −λEi(−λx)

∫ x

0

eλyfY (y) dy − λ
∫ ∞
x

eλy Ei(−λy)fY (y) dy , x ∈ [0,∞) . (20)

We can rewrite the right-hand side of (20) by using the integral representation of Ei and
changing the order of integration in the second term:

−λ
∫ ∞
x

eλy Ei(−λy)fY (y) dy = λ

∫ ∞
x

dy eλy fY (y)

∫ ∞
λy

dt
e−t

t

= λ

∫ ∞
λx

dt
e−t

t

∫ t/λ

x

dy eλy fY (y)

= λ

∫ ∞
λx

dt
e−t

t

[
P
(
t
λ

)
− P (x)

]
= λ

∫ ∞
λx

dt
e−t

t
P
(
t
λ

)
+ λEi(−λx)P (x) ,

where we have set P (z) =
∫ z

0
eλy fY (y) dy. Substituting this back in (20), we obtain

fY (x) = λ

∫ ∞
λx

dt
e−t

t

∫ t/λ

0

dy eλyfY (y) , x ∈ [0,∞) . (21)

The integral equations (20) or, equivalently, (21) can be solved by converting them to a
differential equation. Differentiate (21) once, resp. twice, with respect to x to obtain

f ′Y (x) = −λe−λx

x

∫ x

0

dy eλyfY (y) , (22)

f ′′Y (x) = λe−λx
λx+ 1

x2

∫ x

0

dy eλyfY (y)− λ

x
fY (x) . (23)

Using (22) to express the integral in (23) in terms of f ′Y (x) yields the following linear second-
order differential equation for fY :

xf ′′Y (x) + (λx+ 1)f ′Y (x) + λfY (x) = 0 . (24)

The left-hand side of this differential equation is a total derivative [36, Eq. 2.116], so we
integrate it once to obtain the first-order linear differential equation

xf ′Y (x) + λxfY (x) = C1 .

In the limit x→ 0, the left-hand side of this equation tends zero, so C1 = 0, and the equation
further reduces to a separable equation with general solution fY (x) = C2e−λx. (The point
x = 0 is a singular point for the equation (24), but this does not influence our result since
what we are solving is not (24) but the integral equation (21).) Using the normalization

11



condition
∫∞

0
fY (x) dx = 1 to find the constant C2, we obtain that asymptotically, the

post-disturbance levels are exponentially distributed:

fY (x) = λe−λxχ[0,∞)(x) . (25)

The mean and the variance of Y are EY = 1
λ

and VarY = 1
λ2

, respectively.

For computing fX , we can use either (14) or (15) to obtain

fX(x) = λ
[
(γ + ln(λx)) e−λx − Ei(−λx)

]
χ[0,∞)(x) , (26)

where γ = 0.5772156649 . . . is the Euler’s constant. The mean and the variance of X are

EX =
3

2λ
, VarX =

17

12λ2
.

4.2. Case (B) – growth with saturation (modeling the carbon content of an ecosystem)

In this case equation (6) yields

φt(x0) = 1 + (x0 − 1)e−t , ψ(x0, x) = ln
1− x0

1− x
. (27)

From (6), (10), (17), (18), and (27), we obtain

fYn+1|Yn(xn+1|xn) =

∫ 1

max{xn,xn+1}
λ

(
1− x−n+1

1− xn

)λ
1

x−n+1(1− x−n+1)
dx−n+1

=


λ

(1− xn)λ
B1−xn(λ, 0) if 0 < xn+1 < xn ,

λ

(1− xn)λ
B1−xn+1(λ, 0) if 0 < xn < xn+1 ,

where Bz(a, b) is the incomplete beta function [35, Eqn. 6.6.1]. Therefore, the integral
equation (11) for fY becomes

fY (x) = λB1−x(λ, 0)

∫ x

0

fY (y)

(1− y)λ
dy + λ

∫ 1

x

B1−y(λ, 0) fY (y)

(1− y)λ
dy , x ∈ [0, 1) . (28)

We can rewrite this integral equation in an equivalent form by using the integral represen-
tation of the incomplete beta function to rewrite B1−y(λ, 0) in (28), then change the order
of integration (like in the derivation of (21)), arriving finally at the integral equation

fY (x) = λ

∫ 1−x

0

dt
tλ−1

1− t

∫ 1−t

0

dy
fY (y)

(1− y)λ
, x ∈ [0, 1) . (29)

To solve (28) or, equivalently, (29), we convert them to a differential equation. Differentiate
(29) once, resp. twice, with respect to x,

f ′Y (x) = −λ(1− x)λ−1

x

∫ x

0

fY (y)

(1− y)λ
dy ,

12



f ′′Y (x) = −λ
[

(1− x)λ−1

x

]′ ∫ x

0

fY (y)

(1− y)λ
dy − λ(1− x)λ−1

x

fY (x)

(1− x)λ
,

which implies the following linear second-order differential equation for fY :

x(1− x)f ′′Y (x) + [(λ− 2)x+ 1]f ′Y (x) + λfY (x) = 0 . (30)

According to [36, Eq. 2.258], the left side of this equation is a total derivative, so the equation
can be integrated once to the linear first-order differential equation

x(1− x)f ′Y (x) + λxfY (x) = C1 ,

where C1 is an arbitrary constant. Since for x → 0, the left-hand side of the last equation
tends to zero, the constant C1 is zero (see the parenthetical remark in the derivation of (25)).

As a result, we arrive at the separable differential equation dfY
dx

= −λfY (x)
1−x , whose general

solution is fY (x) = C2(1− x)λ. Normalizing, we obtain

fY (x) = (λ+ 1)(1− x)λ χ(0,1)(x) . (31)

The mean and the variance of Y are easy to find: EY = 1
λ+2

, VarY = λ+1
(λ+2)2(λ+3)

,

To compute fX , we use (14) and integrate by parts:

fX(x) =
χ(0,1)(x)

1− x

∫ x

0

dy (λ+ 1)(1− y)λ
∫ ∞

ln 1−y
1−x

dt
λe−λt

t

=
λχ(0,1)(x)

1− x

∫ x

y=0

d
[
(1− y)λ+1

] ∫ ln 1−y
1−x

∞
dt

e−λt

t

=
λχ(0,1)(x)

1− x

(1− y)λ+1

∫ ln 1−y
1−x

∞
dt

e−λt

t

∣∣∣∣∣
x

y=0

+

∫ x

0

(1− y)λ
e−λt

t

∣∣∣∣ln
1−y
1−x

t=∞
dy


=

λχ(0,1)(x)

1− x

{
(1− x)λ+1

(
li
(

1
1−x

)
+ lim

y↑x

[
li
((

1−x
1−y

)λ)− li
(

1−y
1−x

)])
− li((1− x)λ)

}
,

which simplifies to

fX(x) =
λχ(0,1)(x)

1− x
{

(1− x)λ+1
[
li
(

1
1−x

)
+ lnλ

]
− li
(
(1− x)λ

)}
. (32)

Here li is the logarithmic integral [35, Eqn. 5.1.3]. We plot fX for several values of λ in
Figure 2.

Long calculations yield the following expressions for the mean and the variance of X:

EX = 1− λ(λ+ 1)

λ+ 2
ln
λ+ 1

λ
, (33)

VarX = λ(λ+ 1)

[
1

2(λ+ 3)
ln
λ+ 2

λ
− λ(λ+ 1)

(λ+ 2)2

(
ln
λ+ 1

λ

)2
]
. (34)

For very small positive λ, E[X] ≈ 1+ 1
2
λ lnλ, VarX ≈ 1

6
λ ln

(
2
λ

)
− 1

4
(λ lnλ)2; for very large λ,

E[X] ≈ 3
2λ
− 17

6λ2
, VarX ≈ 17

12λ2
− 9

λ3
. We show the plots of E[X]+σX , E[X], and E[X]−σX ,

where σX =
√

VarX, as functions of λ, in Figure 3.
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Figure 2: Plots of fX for the case of growth with saturation, for λ = 0.1 (thick solid line), λ = 0.5 (thick
dashed line), λ = 0.9 (dotted line), λ = 2 (thin solid line), λ = 10 (thin dashed line).

4.3. Case (C) – logistic equation

For the logistic equation (7),

φt(x0) =
x0

x0 + (1− x0)e−t
, ψ(x0, x) = ln

(
1− x0

x0

x

1− x

)
. (35)

A straightforward computation yelds

fYn+1|Yn(xn+1|xn) =

∫ 1

max{xn,xn+1}
λ

(
xn

1− xn
1− x−n+1

x−n+1

)λ
1

(x−n+1)2(1− x−n+1)
dx−n+1

=


λ+ xn

(λ+ 1)xn
if 0 < xn+1 < xn ,(

xn
1− xn

1− xn+1

xn+1

)λ
λ+ xn+1

(λ+ 1)xn+1

if 0 < xn < xn+1 ,

so the stationary p.d.f. of the post-disturbance level Y satisfies the integral equation

fY (x) =
λ+ x

(λ+ 1)x

(
1− x
x

)λ ∫ x

0

(
y

1− y

)λ
fY (y) dy+

1

λ+ 1

∫ 1

x

(
1 +

λ

y

)
fY (y) dy , x ∈ [0, 1) .

(36)
The derivatives of fY can be found from (36) to be

f ′Y (x) = −λ (1− x)λ−1

xλ+2

∫ x

0

(
y

1− y

)λ
fY (y) dy ,

14



0 1 2 3 4 5 6
0

0.5

1

Figure 3: Plots of E[X] (thick solid line), E[X]+σX , and E[X]−σX , as functions of λ, for the case of growth
with saturation.

f ′′Y (x) = − λ

x2(1− x)
fY (x)− λ (1− x)λ−2(3x− 2− λ)

xλ+3

∫ x

0

(
y

1− y

)λ
fY (y) dy ,

which implies the following linear second-order differential equation for fY :

x2(1− x) f ′′Y (x) + (2 + λ− 3x)x f ′Y (x) + λ fY (x) = 0 , x ∈ [0, 1) .

Following a suggestion in [36, Eq. 2.325a], we set fY (x) = 1
x
u(x), and rewrite the differential

equation for fY as a differential equation for u:

x(1− x)u′′(x) + (λ− x)u′(x) + u(x) = 0 .

The left-hand side of this differential equation is a total derivative, so we integrate both sides
to obtain

x(1− x)u′(x) + (x+ λ− 1)u(x) = C1 ,

where C1 is a constant. Setting x = 1 in the left-hand side, and noticing that the integral
equation (36) implies that fY (1) = 0, we see that C1 = 0, and obtain that u satisfies a sepa-

rable differential equation with general solution u(x) = C2
(1−x)λ

xλ−1 , hence fY (x) = C2

(
1−x
x

)λ
.

Finally, fY must satisfy the normalization condition
∫ 1

0
fY (x) dx = C2

∫ 1

0

(
1−x
x

)λ
dx = 1, but

this integral converges only for |λ| < 1. Therefore, we obtain that

fY (x) =
sin(πλ)

πλ

(
1− x
x

)λ
if λ < 1 . (37)

Note the interesting fact that for very small positive values of λ, the stationary distribution
of Y tends to uniform. The mean and the variance of Y for λ < 1 are EY = 1−λ

2
and

VarY = 1−λ2
12

, respectively.
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The non-existence of a p.d.f. of a stationary distribution of the post-disturbance level
for λ ≥ 1 can be easily understood. A large value λ means that the disturbances occur
frequently. Since for small values of x the function g(x) = x(1 − x) has small values, if X
becomes small, then it cannot recover before the next disturbance occurs. Therefore, for
λ ≥ 1, the disturbances will eventually drive X and, hence, Y , to 0. In this case, there is a
stationary distribution, but it is not described by a p.d.f.:

P(Y = 0) = 1 if λ ≥ 1 .

Remark 3. For λ < 1, there exist two invariant measures of the post-disturbance levels – a
discrete one (concentrated at 0), and an absolutely continuous one (given by the p.d.f. (37)).
From the way we solve the integral equation (11) by reducing it to a differential equation,
it is clear that under the conditions of Theorem 1, there is no more than one p.d.f. that
solves (11). This, however, does not exclude the possibility of existence of two invariant
measures one of which is discrete, as in the present example.

In the case λ < 1, we obtain from (15)

fX(x) =
χ(0,1)(x)

x(1− x)

∫ ∞
0

dt
λe−λt

t

∫ x

φ−t(x)

dy
sin(πλ)

πλ

(
1− y
y

)λ
. (38)

We were not able to solve this integral analytically, but one can use it for numerical compu-
tations. We plot fX for several values of λ in Figure 4.
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Figure 4: Plots of fX for the logistic case, for λ = 0.1 (thick solid line), λ = 0.3 (thick dashed line), λ = 0.5
(dotted line), λ = 0.7 (thin solid line), λ = 0.9 (thin dashed line).

One can also use (38) in order to compute the moments of X numerically. For example,
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one can change the order of integration to find

EX =

∫ 1

0

x fX(x) dx

=
sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

dx

1− x

∫ x

φ−t(x)

dy

(
1− y
y

)λ
=

sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

dy

(
1− y
y

)λ ∫ φt(y)

y

dx

1− x

=
sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

dy

(
1− y
y

)λ
ln(1 + yet − y)

=
λ(1− λ)

2

∫ ∞
0

dt
e−λt(et − 1)

t
3F2({1, 1, 2− λ}; {2, 3}; 1− et) ,

where pFq is the generalized hypergeometric function, [35, Eqn. 15.1.1].

pFq(a;b; z) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
,

where (a)k = a(a + 1)(a + 2) · · · (a + k − 1) is the Pochhammer symbol. In our particular
case,

3F2({1, 1, 2− λ}; {2, 3}; 1− et) = 2
∞∑
k=0

(1− et)k

(k + 1)(k + 2)
.

With the same change of variables, the second moment of X can be computed numeri-
cally from

E[X2] =

∫ 1

0

x2 fX(x) dx

=
sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

x dx

1− x

∫ x

φ−t(x)

dy

(
1− y
y

)λ
=

sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

dy

(
1− y
y

)λ ∫ φt(y)

y

x dx

1− x

=
sin(πλ)

π

∫ ∞
0

dt
e−λt

t

∫ 1

0

dy

(
1− y
y

)λ [
ln(1 + yey − y) +

y(y − 1)(1− e−t)

y + (1− y)e−t

]
.

We computed E[X2] numerically by using the last representation (as a double integral). We
show the plots of E[X] + σX , E[X], and E[X]− σX (with σX =

√
VarX), as functions of λ,

in Figure 5.
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Figure 5: Plots of E[X] (thick solid line), E[X] + σX , and E[X]− σX , as functions of λ, for the logistic case.

4.4. Case (D) – exponential growth: an example without an absolutely continuous invariant
measure

The exponential growth equation (8) yields

φt(x0) = x0 et , ψ(x0, x) = ln
x

x0

. (39)

The conditional p.d.f. connecting the p.d.f.s of Yn and Yn+1 has the form

fYn+1|Yn(xn+1|xn) =


λ

(λ+ 1)xn
if 0 < xn+1 < xn ,

λxλn
(λ+ 1)xλ+1

n+1

if 0 < xn < xn+1 ,

and the stationary p.d.f. fY satisfies the integral equation

fY (x) =
λ

λ+ 1

[
1

xλ+1

∫ x

0

yλfY (y) dy +

∫ ∞
x

fY (y)

y
dy

]
.

This equation can be converted to the Cauchy-Euler equation

x2f ′′Y (x) + (λ+ 2)xf ′Y (x) + λfY (x) = 0 ,

whose general solution is well-known:

fY (x) =

{
C1x

−1 + C2x
1−λ if λ 6= 1 ,

C1x
−1 + C2x

−1 lnx if λ = 1 .
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One can easily check that this function cannot satisfy the normalization condition for any λ,
so an absolutely continuous invariant measure in this case does not exist. The non-existence
of a continuous stationary p.d.f. fY can be easily explained intuitively – if at some moment
the value of X is too small, then the growth rate is small and the solution is driven to 0 by
the disturbances; if the solution becomes too large, then the disturbance cannot compensate
the fast growth and X drifts away to infinity.

5. Comparison of the “standard” continuous-time discrete-state space death-
immigration-disaster process with its continuous analogue

In this section we compare the classical example of a continuous-time discrete-state
space model of a death-immigration-disaster process with its continuous counterpart, as an
illustration of the differences in the predictions of the two models.

Consider the “standard” continuous-time discrete-state space death-immigration-disaster
process with state space S = {0, 1, 2, 3, . . .}. Let the immigration rate be ν, the death rate
from state n be nµ, and the disaster rate be δ, then the generator of the evolution semigroup
of the system is given by

G =


−ν ν 0 0 0 · · ·
δ + µ −(δ + µ+ ν) ν 0 0 · · ·
δ 2µ −(δ + 2µ+ ν) ν 0 · · ·
δ 0 3µ −(δ + 3µ+ ν) ν · · ·
...

...
...

...
...

. . .

 . (40)

Our goal in this section is to formulate a continuous-state space continuous-time stochas-
tic process that is deterministic between the disasters that occur at random times, as in our
setup described in the Introduction, and to compare some quantities characterizing these two
processes. First we need to write a differential equation after an appropriate rescaling. Let
Xph(tph) be the discrete state-space process; here the subscript “ph” stands for ”physical”.

We choose a large positive dimensionless constant N and define X̃ := 1
N
Xph, and we will

think of X̃ as taking a continuum of values. Due solely to immigration, X̃ will increase on
average by ν

N
∆tph + o(∆tph) in a short time interval of duration ∆tph. Due solely to death,

X̃ will decrease on average by
µXph

N
∆tph + o(∆tph) = µX̃ ∆tph + o(∆tph) in a short time

interval of duration ∆tph. Therefore, we can write

∆X̃

∆tph

≈ ν

N
− µX̃ . (41)

Finally, we eliminate the rate µ by defining a dimensionless time by t := µ tph, which, in the
limit ∆t→ 0, transforms (41) into the differential equation

d

dt
X̃ = α− X̃ , α :=

ν

Nµ
, (42)
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describing the evolution of the system between two consecutive disasters. The times of
occurrence of the disasters form a Poisson process with (dimensionless) rate λ = δ/µ.

Chao and Zheng [37] (see also Kyriakidis [38]) solved the general problem of determining
the transient probabilities of a process with generator G given by (40) (different approaches
to such problems are discussed in the review [39] of Economou and Fakinos). In particular,
they obtained that the stationary distribution π = (π0, π1, π2, . . .) of Xph is

πn =
1

n!

(
ν

µ

)n
e−ν/µ

∫ 1

0

exp

(
ν

µ
yµ/δ

)(
1− yµ/δ

)n
dy

=

(
ν

µ

)n
e−ν/µ

Γ
(

1 + δ
µ

)
1F1

(
δ
µ
;n+ 1 + δ

µ
; ν
µ

)
Γ
(
n+ 1 + δ

µ

) , (43)

where 1F1 is the Kummer confluent hypergeometric function (see [35, Eqn. 13.1.2], where

1F1(a; b; z) is denoted by M(a, b, z)). Using (43), one can compute the mean and the variance
of the stationary distribution π of Xph:

E[Xph] =
ν

µ+ δ
, VarXph =

ν

δ

1 + 2
(
µ
δ

)2
+ µ

δ

(
3 + ν

δ

)(
1 + µ

δ

)2 (
1 + 2µ

δ

) .

In our notations these formulas read

E[X̃] =
E[Xph]

N
=

α

1 + λ
, Var X̃ =

VarXph

N2
=

α2λ

(λ+ 1)2(λ+ 2)
+

α

N(λ+ 1)
. (44)

Now we treat the process as a continuous-state space process X that satisfies the differ-
ential equation d

dt
X = α −X (cf. (42)), and the disturbances occur as a Poisson process of

rate λ = δ/µ, and are complete (i.e., P(U = 0) = 1, or, formally, fU is the Dirac delta func-
tion, fU(x) = δ(x)). Then φt(x0) = α + (x0 − α)e−t, ψ(x0, x) = ln x0−α

x−α , and the expression
(15) for fX yields

fX(x) =
χ(0,α)(x)

α− x

∫ ∞
0

dt
λe−λt

t

∫ x

max{0,α+(x−α)et}
dy δ(y)

=
χ(0,α)(x)

1− x

∫ ∞
0

dt
λe−λt

t
χ(− ln α−x

α
,∞)(t) ,

= − λ

α− x
li
(
(1− x

α
)λ
)
χ(0,α)(x) . (45)

The mean and the variance of X are

EX = α

(
1− λ ln

λ+ 1

λ

)
, VarX = α2λ

[
1

2
ln
λ+ 2

λ
− λ

(
ln
λ+ 1

λ

)2
]
. (46)

In Figure 6 we plot the probability mass functions (43) of X̃ for N = 10, 50, and 3000,
and the p.d.f. (45) of X, all for λ = 0.1, α = 1.0. In Figure 7 we display the probability
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Figure 6: P.d.f. of X (dashed line) and p.m.f.’s of X̃ for N = 10 (very thick stairs), 50 (thick stairs), and
3000 (thin stairs), all for λ = 0.1, α = 1.0.

mass functions (43) of X̃ for N = 10, 50, and 3000, and the p.d.f. (45) of X, all for λ = 1.1,
α = 1.0.

Figures 8 and 9 show the means and the variances of X (44) and X̃ (46) as functions

of λ, all for α = 1. Note that the mean of X̃ does not depend on N , while in Figure 9 we
plotted Var X̃ for N = 10, 50, and 1000.

One important difference between the discrete- and the continuous-state space cases is
that, in the limit of absence of disasters, limλ→0 VarX = 0, while limλ→0 Var X̃ = α

N
= ν

µ
.

This is easy to explain – while X(t) tends to α as t → ∞, X̃(t) fluctuates because of the
immigration and death processes.

Acknowledgments

We would like to express our gratitude to Yiqi Luo and Kevin Grasse for their encour-
agement and illuminating discussions, and to the referees for the constructive suggestions.
The research of NPP has been partially supported by National Science Foundation grant
DMS-0807658.

References

[1] P. E. Thornton, B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D. S. Ellsworth, A. H.
Goldstein, R. K. Monson, D. Hollinger, M. Falk, J. Chen, J. P. Sparks. Modeling and
measuring the effects of disturbance history and climate on carbon and water budgets in
evergreen needleleaf forests. Agricutural and Forest Meteorology 113:1 (2002) 185–222.

21



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

Figure 7: P.d.f. of X (dashed line) and p.m.f.’s of X̃ for N = 10 (very thick stairs), 50 (thick stairs), and
3000 (thin stairs), all for λ = 1.1, α = 1.0.

[2] K. S. Pregitzer, E. S. Euskirchen. Carbon cycling and storage in world forests: biome
patterns related to forest age. Global Change Biology 10:12 (2004) 2052–2077.

[3] B. Bond-Lamberty, S. D. Peckham, D. E. Ahl, S. T. Gower. Fire as the dominant driver
of central Canadian boreal forest carbon balance. Nature 450 (2007) 89–92.

[4] S. W. Running. Ecosystem disturbance, carbon, and climate. Science 321 (2008) 652–
653.

[5] J. S. Clark. Ecological disturbance as a renewal process: theory and application to fire
history. Oikos 56:1 (1989) 17–30.

[6] P. D’Odorico, F. Laio, L. Ridolfi. A probabilistic analysis of fire-induced tree-grass
coexistence in savannas. The American Naturalist 167:3 (2006) E79–E87.

[7] B. Beckage, W. J. Platt, L. J. Gross. Vegetation, fire, and feedbacks: a disturbance-
mediated model of savannas. The American Naturalist 174:6 (2009) 805–818.

[8] E. Kussell, S. Leibler. Phenotypic diversity, population growth, and information in
population environments. Science 309 (2005) 2075–2078.

[9] D. M. Wolf, V. V. Vazirani, A. P. Arkin. Diversity in times of adversity: probabilistic
strategies in microbial survival games. Journal of Theoretical Biology 234:2 (2005) 227–
253.

[10] M. J. Gander, C. Mazza, H. Rummler. Stochastic gene expression in switching environ-
ments. Journal of Mathematical Biology 55:2 (2007) 249–269.

22



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 8: Means of X (thick line) and X̃ (thin line) as functions of λ, all for α = 1.

[11] P. Visco, R. J. Allen, S. N. Majumdar, M. R. Evans. Switching and growth for microbial
populations in catastrophic responsive environments. Biophysical Journal 98:7 (2010)
1099–1108.

[12] D. H. Reed, J. J. O’Grady, J. D. Ballou, R. Frankham. The frequency and severity of
catastrophic die-offs in vertebrates. Animal Conservation 6:2 (2003) 109–114.

[13] C. R. Doering, W. Horsthemke. A comparison between transitions induced by random
and periodic fluctuations. Journal of Statistical Physics 38:3–4 (1985) 763–783.

[14] S. Karlin. A First Course in Stochastic Processes. Academic Press, New York, 1966.

[15] N. Kaplan, A. Sudbury, T. Nilsen. A branching process with disasters. Journal of Applied
Probability 12:1 (1975) 47–59.
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