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Number of Dyck and ballot paths with a given
number of “touchdowns” – a combinatorial
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Define a ballot path as a random walk from (0, 0) to (n, h) given by steps (1, 1)
and (1,−1) such that the second coordinate is always nonnegative. Moreover
define a Dyck path to be a ballot path such that h = 0. We desire to find a non-
recursive formula for the number of ballot paths ending at (n, h) which contain
d ”touchdowns,” or points (x, 0) such that x 6= 0. We define this function to
be N(n,h)(d).

According to the well-known Ballot Theorem [1], for arbitrary n and h > 0,
the number of ballot paths such that all points of the path have positive second
coordinate except the origin is h

n

(
n

n+h
2

)
. The main ingredient in the proof of

this theorem is the Reflection Principle, stating that, if n1, n2, h1, and h2 are
integers satisfying 0 ≤ n1 < n2, h1 > 0, h2 > 0, then the number of paths from
(n1, h1) to (n2, h2) which touch or cross the t-axis is equal to the number of
all paths from (n1,−h1) to (n2, h2). Then the Ballot Theorem is obtained by
This formula is obtained by applying the principle of reflection about the line
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y = 0 to find the number of paths which do intersect the x-axis nontrivially
and subtracting them from the total number of random walks from (0, 0) to
(n, h) given by steps (1, 1) and (1,−1).

Similarly we reflect about y = −1 to obtain the total number of ballot
paths ending at (n, h), which is

2 + 2h

n+ h+ 2

(
n

n+h
2

)
=
h+ 1

n+ 1

(
n+ 1

n+h
2 + 1

)
(1)

We establish a general expression for N(2n,0)(d) by recursion, first finding
N(2n,0)(1), which is of course the smallest value d may assume when h = 0
as the last point of the Dyck path is necessarily a touchdown. We note that
the N(2n,0)(1) is equal to the number of Dyck paths of length 2n − 2; by
expressing a Dyck path of length 2n and zero touchdowns as an initial upward
step followed by a Dyck path of length 2n− 2 and concluded by a downward
step, we see a clear bijection between the two quantities. Thus by using the
latter part of equation (1) with the proper parameters, we have that

N(2n,0)(1) =
1

2n− 1

(
2n− 1

n

)
(2)

A recursive relationship for N(2n,0)(d) can thus be obtained by the simple
observation that a Dyck path of length 2n and d touchdowns may be described
as the concatenation of a Dyck path of length 2i and 1 touchdown and a Dyck
path of length (2n − 2i) and (d − 1) touchdowns. Summing over the number
of such concatenations gives the recursion:

N(2n,0)(d) =

n−(d−1)∑
i=1

N(2i,0)(1)N(2n−2i,0)(t− 1)

=

n−(d−1)∑
i=1

1

2i− 1

(
2i− 1

i

)
N(2n−2i,0)(d− 1)

(3)

Where the upper limit of summation is obtained by observing that (d− 1)
touchdowns require a Dyck path of length at least 2(d − 1). Equation (3) is
helpful in verifying the general closed form of N(2n,0)(d), and gives us the
following surprising result.

Proposition 1 For n > 0, N(2n,0)(1) = N(2n,0)(2) = 1
2n−1

(
2n−1

n

)
Proof

N(2n,0)(2) =

n−1∑
i=1

1

2i− 1

(
2i− 1

i

)
N(2n−2i,0)(1) (4)

=

n−1∑
i=1

1

2i− 1

(
2i− 1

i

)
1

2n− 2i− 1

(
2n− 2i− 1

n− i

)
(5)
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It turns out that Equation (5) has a very simple closed-form expression if
we sum from i = 0 to i = n, which [3]

n∑
k=0

p+ qk

(a+ ck)(b− ck)

(
a+ ck

k

)(
b− ck
n− k

)
=
p(a+ b− cn) + aqn

a(a+ b)(b− cn)

(
a+ b

n

)
(6)

gives as 1
1−n

(
2n−2

n

)
, and thus

N(2n,0)(2) =
1

1− n

(
2n− 2

n

)
− −2

2n− 1

(
2n− 1

n

)
=

1

1− n

(
2n− 2

n

)
+

2

n− 1

(
2n− 2

n

)
=

1

n− 1

(
2n− 2

n

)
=

1

2n− 1

1

n− 1

(2n− 1)!

n!(n− 2)!

=
1

2n− 1

(
2n− 1

n

)
Which completes our proof.

Observe now that N(2n,0)(1) = 1
2n−1

(
2n−1

n

)
and N(2n,0)(2) = 1

n−1

(
2n−2

n

)
=

2
2n−2

(
2n−2

n

)
. This inspires us towards conjecture.

Theorem 1 For n > 0 and d ≤ n, N(2n,0)(d) = d
2n−d

(
2n−d

n

)
.

The proof is purely algebraic once one applies the following lemma, which
in turn comes fairly naturally from Equation (3) and Proposition 1.

Lemma 1 N(2n,0)(d) = N(2n,0)(d− 1)−N(2n−2,0)(d− 2)

Proof

N(2n,0)(d) =

n−(d−2)∑
i=2

N(2i,0)(2)N(2n−2i,0)(d− 2)

which is obtained by considering a Dyck path of length 2n and d touchdowns
to be a concatenation of a Dyck path of length 2i, 2 touchdowns and a Dyck
path of length 2n− 2i, d− 2 touchdowns. By Proposition 1, we then have

N(2n,0)(d) =

n−(d−2)∑
i=2

N(2i,0)(1)N(2n−2i,0)(d− 2)

=

n−(d−2)∑
i=1

N(2i,0)(1)N(2n−2i,0)(d− 2)−N(2,0)(1)N(2n−2,0)(d− 2)

= N(2n,0)(d− 1)−N(2n−2,0)(d− 2)

(7)
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noting that the final step is simply an application of Equation (3) and the
observation that N(2,0)(1) = 1, which completes the proof of the lemma.

To prove Theorem 1, we begin with the fact that it holds for d = 1 and
d = 2, and proceed by strong induction on d. Suppose the Theorem to be true
for all positive integers strictly less than some d. We wish to show, then, that
N(2n,0)(d) = d

2n−d

(
2n−d

n

)
. By Lemma 1 we have the recursion:

N(2n,0)(d) = N(2n,0)(d− 1)−N(2n−2,0)(d− 2)

=

(
2n− d+ 1

n

)
d− 1

2n− d+ 1
−
(

2n− d
n− 1

)
d− 2

2n− d

=
(2n− d)!(2n− d+ 1)

n!(n− d)!(n− d+ 1)

d− 1

2n− d+ 1
− (2n− d)!

n! 1n (n− d)!(n− d+ 1)

d− 2

2n− d

=

(
2n− d
n

)(
d− 1

n− d+ 1
− n(d− 2)

(2n− d)(n− d+ 1)

)
=

(
2n− d
n

)
2nd− d2 − 2n+ d− nd+ 2n

(n− d+ 1)(2n− d)

=

(
2n− d
n

)
d(n− d+ 1)

(n− d+ 1)(2n− d)

=

(
2n− d
n

)
d

2n− d

Finally, we use the general formulas of N(2n,0)(d) and N(n,h)(0) to obtain
a non-recursive formula for N(n,h)(d), where h 6= 0, d 6= 0. We observe that a
ballot path of length n, final height h with d touchdowns can be described as
the concatenation of a Dyck path of length 2i and d touchdowns with a ballot
path of length n− 2i, ending height h and 0 touchdowns. In other words, for
h 6= 0 and d 6= 0,

N(n,h)(d) =

n−h
2∑

i=d

N(2i,0)(d)N(n−2i,h)(0) (8)

=

n−h
2∑

i=d

d

2i− d

(
2i− d
i

)
h

n− 2i

(
n− 2i
n−h
2 − i

)
(9)

where the lower limit of summation comes from the fact that a Dyck path
with d touchdowns must be of length at least 2d, and similarly the upper limit
ensures that the ballot path of ending height h with 0 touchdowns is at least
h steps long.

Thus by using Equation ???, we can now write a closed-form expression
for Zn(h), though it adopts a different form in the case h = 0. For h 6= 0, we
have
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Zn(h) =

n−h
2∑

j=0

N(n,h)(j)κ
j

=
h

n

(
n

n+h
2

)
+

n−h
2∑

j=1

N(n,h)(j)κ
j

=
h

n

(
n

n+h
2

)
+

n−h
2∑

j=1

κj

n−h
2∑

i=j

j

2i− j

(
2i− j
i

)
h

n− 2i

(
n− 2i
n−h
2 − i

)
And of course we also have

Z2n(0) =

n∑
j=1

N(2n,0)(j)κ
j

=

n∑
j=1

(
2n− j
n

)
j

2n− j
κj (10)

Equation 12 seems a bit gruesome, but it is far easier to compute for large n,
say n > 1000, than the equation given by Brak, Owczarek, and Rechnitzer [2].
It is also much easier to approximate, as it involves nothing more complicated
than binomial coefficients, for which there are a plethora of approximation
methods.
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