Number of Dyck and ballot paths with a given number of "touchdowns" - a combinatorial derivation

Karl Schaettle • Nikola P. Petrov

Received: date / Accepted: date

Abstract

Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references. Keywords: Please provide 4 to 6 keywords which can be used for indexing purposes.

Keywords keywords

Define a ballot path as a random walk from $(0,0)$ to (n, h) given by steps $(1,1)$ and $(1,-1)$ such that the second coordinate is always nonnegative. Moreover define a Dyck path to be a ballot path such that $h=0$. We desire to find a nonrecursive formula for the number of ballot paths ending at (n, h) which contain d "touchdowns," or points $(x, 0)$ such that $x \neq 0$. We define this function to be $N_{(n, h)}(d)$.

According to the well-known Ballot Theorem [1], for arbitrary n and $h>0$, the number of ballot paths such that all points of the path have positive second coordinate except the origin is $\frac{h}{n}\binom{n}{\frac{n}{2}}$. The main ingredient in the proof of this theorem is the Reflection Principle, stating that, if n_{1}, n_{2}, h_{1}, and h_{2} are integers satisfying $0 \leq n_{1}<n_{2}, h_{1}>0, h_{2}>0$, then the number of paths from $\left(n_{1}, h_{1}\right)$ to $\left(n_{2}, h_{2}\right)$ which touch or cross the t-axis is equal to the number of all paths from $\left(n_{1},-h_{1}\right)$ to $\left(n_{2}, h_{2}\right)$. Then the Ballot Theorem is obtained by This formula is obtained by applying the principle of reflection about the line

[^0]$y=0$ to find the number of paths which $d o$ intersect the x -axis nontrivially and subtracting them from the total number of random walks from $(0,0)$ to (n, h) given by steps $(1,1)$ and $(1,-1)$.

Similarly we reflect about $y=-1$ to obtain the total number of ballot paths ending at (n, h), which is

$$
\begin{equation*}
\frac{2+2 h}{n+h+2}\binom{n}{\frac{n+h}{2}}=\frac{h+1}{n+1}\binom{n+1}{\frac{n+h}{2}+1} \tag{1}
\end{equation*}
$$

We establish a general expression for $N_{(2 n, 0)}(d)$ by recursion, first finding $N_{(2 n, 0)}(1)$, which is of course the smallest value d may assume when $h=0$ as the last point of the Dyck path is necessarily a touchdown. We note that the $N_{(2 n, 0)}(1)$ is equal to the number of Dyck paths of length $2 n-2$; by expressing a Dyck path of length $2 n$ and zero touchdowns as an initial upward step followed by a Dyck path of length $2 n-2$ and concluded by a downward step, we see a clear bijection between the two quantities. Thus by using the latter part of equation (1) with the proper parameters, we have that

$$
\begin{equation*}
N_{(2 n, 0)}(1)=\frac{1}{2 n-1}\binom{2 n-1}{n} \tag{2}
\end{equation*}
$$

A recursive relationship for $N_{(2 n, 0)}(d)$ can thus be obtained by the simple observation that a Dyck path of length $2 n$ and d touchdowns may be described as the concatenation of a Dyck path of length $2 i$ and 1 touchdown and a Dyck path of length $(2 n-2 i)$ and $(d-1)$ touchdowns. Summing over the number of such concatenations gives the recursion:

$$
\begin{align*}
N_{(2 n, 0)}(d) & =\sum_{i=1}^{n-(d-1)} N_{(2 i, 0)}(1) N_{(2 n-2 i, 0)}(t-1) \tag{3}\\
& =\sum_{i=1}^{n-(d-1)} \frac{1}{2 i-1}\binom{2 i-1}{i} N_{(2 n-2 i, 0)}(d-1)
\end{align*}
$$

Where the upper limit of summation is obtained by observing that $(d-1)$ touchdowns require a Dyck path of length at least 2(d-1). Equation (3) is helpful in verifying the general closed form of $N_{(2 n, 0)}(d)$, and gives us the following surprising result.

Proposition 1 For $n>0, N_{(2 n, 0)}(1)=N_{(2 n, 0)}(2)=\frac{1}{2 n-1}\binom{2 n-1}{n}$
Proof

$$
\begin{align*}
N_{(2 n, 0)}(2) & =\sum_{i=1}^{n-1} \frac{1}{2 i-1}\binom{2 i-1}{i} N_{(2 n-2 i, 0)}(1) \tag{4}\\
& =\sum_{i=1}^{n-1} \frac{1}{2 i-1}\binom{2 i-1}{i} \frac{1}{2 n-2 i-1}\binom{2 n-2 i-1}{n-i} \tag{5}
\end{align*}
$$

It turns out that Equation (5) has a very simple closed-form expression if we sum from $i=0$ to $i=n$, which [3]

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{p+q k}{(a+c k)(b-c k)}\binom{a+c k}{k}\binom{b-c k}{n-k}=\frac{p(a+b-c n)+a q n}{a(a+b)(b-c n)}\binom{a+b}{n} \tag{6}
\end{equation*}
$$

gives as $\frac{1}{1-n}\binom{2 n-2}{n}$, and thus

$$
\begin{aligned}
N_{(2 n, 0)}(2) & =\frac{1}{1-n}\binom{2 n-2}{n}-\frac{-2}{2 n-1}\binom{2 n-1}{n} \\
& =\frac{1}{1-n}\binom{2 n-2}{n}+\frac{2}{n-1}\binom{2 n-2}{n} \\
& =\frac{1}{n-1}\binom{2 n-2}{n} \\
& =\frac{1}{2 n-1} \frac{1}{n-1} \frac{(2 n-1)!}{n!(n-2)!} \\
& =\frac{1}{2 n-1}\binom{2 n-1}{n}
\end{aligned}
$$

Which completes our proof.

Observe now that $N_{(2 n, 0)}(1)=\frac{1}{2 n-1}\binom{2 n-1}{n}$ and $N_{(2 n, 0)}(2)=\frac{1}{n-1}\binom{2 n-2}{n}=$ $\frac{2}{2 n-2}\binom{2 n-2}{n}$. This inspires us towards conjecture.
Theorem 1 For $n>0$ and $d \leq n, N_{(2 n, 0)}(d)=\frac{d}{2 n-d}\binom{2 n-d}{n}$.
The proof is purely algebraic once one applies the following lemma, which in turn comes fairly naturally from Equation (3) and Proposition 1.

Lemma $1 N_{(2 n, 0)}(d)=N_{(2 n, 0)}(d-1)-N_{(2 n-2,0)}(d-2)$
Proof

$$
N_{(2 n, 0)}(d)=\sum_{i=2}^{n-(d-2)} N_{(2 i, 0)}(2) N_{(2 n-2 i, 0)}(d-2)
$$

which is obtained by considering a Dyck path of length $2 n$ and d touchdowns to be a concatenation of a Dyck path of length $2 i, 2$ touchdowns and a Dyck path of length $2 n-2 i, d-2$ touchdowns. By Proposition 1, we then have

$$
\begin{align*}
N_{(2 n, 0)}(d) & =\sum_{i=2}^{n-(d-2)} N_{(2 i, 0)}(1) N_{(2 n-2 i, 0)}(d-2) \\
& =\sum_{i=1}^{n-(d-2)} N_{(2 i, 0)}(1) N_{(2 n-2 i, 0)}(d-2)-N_{(2,0)}(1) N_{(2 n-2,0)}(d-2) \\
& =N_{(2 n, 0)}(d-1)-N_{(2 n-2,0)}(d-2) \tag{7}
\end{align*}
$$

noting that the final step is simply an application of Equation (3) and the observation that $N_{(2,0)}(1)=1$, which completes the proof of the lemma.

To prove Theorem 1, we begin with the fact that it holds for $d=1$ and $d=2$, and proceed by strong induction on d. Suppose the Theorem to be true for all positive integers strictly less than some d. We wish to show, then, that $N_{(2 n, 0)}(d)=\frac{d}{2 n-d}\binom{2 n-d}{n}$. By Lemma 1 we have the recursion:

$$
\begin{aligned}
N_{(2 n, 0)}(d) & =N_{(2 n, 0)}(d-1)-N_{(2 n-2,0)}(d-2) \\
& =\binom{2 n-d+1}{n} \frac{d-1}{2 n-d+1}-\binom{2 n-d}{n-1} \frac{d-2}{2 n-d} \\
& =\frac{(2 n-d)!(2 n-d+1)}{n!(n-d)!(n-d+1)} \frac{d-1}{2 n-d+1}-\frac{(2 n-d)!}{n!\frac{1}{n}(n-d)!(n-d+1)} \frac{d-2}{2 n-d} \\
& =\binom{2 n-d}{n}\left(\frac{d-1}{n-d+1}-\frac{n(d-2)}{(2 n-d)(n-d+1)}\right) \\
& =\binom{2 n-d}{n} \frac{2 n d-d^{2}-2 n+d-n d+2 n}{(n-d+1)(2 n-d)} \\
& =\binom{2 n-d}{n} \frac{d(n-d+1)}{(n-d+1)(2 n-d)} \\
& =\binom{2 n-d}{n} \frac{d}{2 n-d}
\end{aligned}
$$

Finally, we use the general formulas of $N_{(2 n, 0)}(d)$ and $N_{(n, h)}(0)$ to obtain a non-recursive formula for $N_{(n, h)}(d)$, where $h \neq 0, d \neq 0$. We observe that a ballot path of length n, final height h with d touchdowns can be described as the concatenation of a Dyck path of length $2 i$ and d touchdowns with a ballot path of length $n-2 i$, ending height h and 0 touchdowns. In other words, for $h \neq 0$ and $d \neq 0$,

$$
\begin{align*}
N_{(n, h)}(d) & =\sum_{i=d}^{\frac{n-h}{2}} N_{(2 i, 0)}(d) N_{(n-2 i, h)}(0) \tag{8}\\
& =\sum_{i=d}^{\frac{n-h}{2}} \frac{d}{2 i-d}\binom{2 i-d}{i} \frac{h}{n-2 i}\binom{n-2 i}{\frac{n-h}{2}-i} \tag{9}
\end{align*}
$$

where the lower limit of summation comes from the fact that a Dyck path with d touchdowns must be of length at least $2 d$, and similarly the upper limit ensures that the ballot path of ending height h with 0 touchdowns is at least h steps long.

Thus by using Equation ???, we can now write a closed-form expression for $Z_{n}(h)$, though it adopts a different form in the case $h=0$. For $h \neq 0$, we have

$$
\begin{aligned}
Z_{n}(h) & =\sum_{j=0}^{\frac{n-h}{2}} N_{(n, h)}(j) \kappa^{j} \\
& =\frac{h}{n}\binom{n}{\frac{n+h}{2}}+\sum_{j=1}^{\frac{n-h}{2}} N_{(n, h)}(j) \kappa^{j} \\
& =\frac{h}{n}\binom{n}{\frac{n+h}{2}}+\sum_{j=1}^{\frac{n-h}{2}} \kappa^{j} \sum_{i=j}^{\frac{n-h}{2}} \frac{j}{2 i-j}\binom{2 i-j}{i} \frac{h}{n-2 i}\binom{n-2 i}{\frac{n-h}{2}-i}
\end{aligned}
$$

And of course we also have

$$
\begin{align*}
Z_{2 n}(0) & =\sum_{j=1}^{n} N_{(2 n, 0)}(j) \kappa^{j} \\
& =\sum_{j=1}^{n}\binom{2 n-j}{n} \frac{j}{2 n-j} \kappa^{j} \tag{10}
\end{align*}
$$

Equation 12 seems a bit gruesome, but it is far easier to compute for large n, say $n>1000$, than the equation given by Brak, Owczarek, and Rechnitzer [2]. It is also much easier to approximate, as it involves nothing more complicated than binomial coefficients, for which there are a plethora of approximation methods.

References

1. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd edn. (Wiley, New York, 1968), Sec. III. 1
2. R. Brak, A. L. Owczarek, A. Rechnitzer, J. Math. Chem. 45, 49-57 (2009)
3. А. П. Прудников, Ю. А. Брычков, О. И. Маричев, Интегралы и ряды. Том 1: Элементарные функции. (Russian) [Integrals and series. Vol. 1: Elementary functions.] (Nauka, Moscow, 1981), Section 4.2.6, Equation (21), p. 624
4. O. Sofrygin, Counting the number of Dyck paths according to different types of parameters, http://people.brandeis.edu/ gessel/47a/sofrygin.pdf
5. E. Deutsch, A bijection on Dyck paths and its consequences, Discrete Mathematics 179, 253-256 (1998)
6. E. Deutsch, Dyck path enumeration, Discrete mathematics 204, 167-202 (1999) ${ }^{1}$
7. N. Dershowitz, S. Zaks, Enumerations of ordered trees, Discrete Mathematics 31, 9-28 (1980) ${ }^{2}$
8. D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd edn. (Addison-Wesley, Reading, MA, 1997), Sec. 1.2.6, Example 4 (pp. 62, 63)

[^1]9. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA, 1989), Eqn. (5.63)
10. T. V. Narayana, Lattice path combinatorics, with statistical applications (Univ of Toronto Press, 1979)

[^0]: This research has been partially supported by NSF grant DMS 0807658.
 K. Schaettle

 Department of Chemical Engineering, University of Oklahoma, Norman, OK 73019, USA
 E-mail: kschaettle@ou.edu
 N. P. Petrov

 Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA; Tel.: +1-405-325-4316, Fax: +1-405-325-7484. E-mail: npetrov@ou.edu

[^1]: 1 His equation (6.22) is our formula for the number of Dyck paths; he says that this result can be found in Theorem 4 and Corollary 4.1 of [7].
 2 Theorem 1 is Narayana's result; an alternative proof of it in terms of lattice paths is given in the Appendix.

