
MATH 5763 Homework 9 Due Fri, 4/22/11

Problem 1. Let X = {Xt : t ≥ 0} be a time-homogeneous continuous-time Markov
process with state space X = ηZ, where ηZ is a shorthand notation for the set of all integer
multiples of η:

ηZ := {. . . ,−2η,−η, 0, η, 2η, . . .} .

The process X is allowed to jump “up” or “down” by η with equal probabilities (like in the
case of a symmetric simple random walk). Let the intensity of the process X be τ , i.e.,

pjk(h) := P
(
X(t+ h) = kη

∣∣Xt = jη
)

=


τh+ o(h) for k = j ± 1 ,

1− 2τh+ o(h) for k = j ,

0 otherwise .

(a) Show that the probabilities pk(t) := P(Xt = kη) satisfy the system of ODEs

p′k(t) = τ
[
pk−1(t)− 2pk(t) + pk+1(t)

]
.

(b) Use the system of ODEs for the probabilities pk(t) to show that the characteristic
function

φ(ξ, t) = E
[
eiξXt

]
=
∑
k∈Z

eiξkη pk(t)

satisfies the equation
∂φ

∂t
= τ

(
eiξη − 2 + e−iξη

)
φ.

(c) Assume that at t = 0, the process was at 0 (i.e., X0 = 0). What does this imply for
φ(ξ, 0)? Solve the equation for φ(ξ, t) derived in part (b) with the initial condition you
just found.

Hint: Although the equation for φ(ξ, t) derived in (b) is about a function of two
variables (namely, ξ and t), it does not contain ξ-derivatives, so you can solve it simply
as an ordinary differential equation treating ξ as a fixed number. The ODE you then
have to solve is of the simplest kind, x′(t) = αx(t), where α = const.

(d) Now let the “spatial step-size” η of the process go to zero, and the “temporal intensity”
τ of the process go to infinity, in such a way that 2η2τ → 1. Compare the expres-
sion for the characteristic function φ(ξ, t) in this limit with the characteristic function

φN(µ,σ2)(ξ) = eiµξ−
1
2
σ2ξ2 of a normal random variable with mean µ and variance σ2.

What can you conclude about the distribution of the random variable Xt in the limit
η → 0, τ →∞, 2η2τ → 1?

Hint: To perform the limiting transition, you can expand the expression eiξη−2+e−iξη

(which will be part of your result for φ(ξ, t)) in a Taylor series with respect to η around
the point η = 0, and, after the obvious cancellations, you will obtain

eiξη − 2 + e−iξη = −η2ξ2 + o(ξ2) .
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Problem 2. This problem is about distributions (generalized functions). In class we showed
directly that H ′ = δ, where H = χ[0,∞) is the Heaviside (“unit step”) function. Here you
will explore this relations by using Laplace transform, and will also obtain results about
approximating Dirac delta-function by “rectangle” functions.

Throughout this problem, let a stand for a strictly positive number. Let Ha := χ[a,∞); treat
this a a function defined on R or on [0,∞), depending on the context. Define the distribution
δa by ∫

R
δa(x)ψ(x) dx = ψ(a) ,

where ψ is an arbitrary test function (i.e., an infinitely differentiable function with compact
support).

(a) Prove directly that H ′a = δa in the sense that

∫
R
H ′a(x)ψ(x) dx =

∫
R
δa(x)ψ(x) dx.

Hint: Adapt the calculation we did in class.

(b) Directly from the definition of the Laplace transform compute the Laplace transforms
L[Ha](ξ) and L[δa](ξ) of Ha and δa. (Remember the assumption a > 0.)

(c) Directly from the definition of the Laplace transform prove that, for an arbitrary
differentiable function f : [0,∞)→ R, L[f ′](ξ) = ξL[f ](ξ)− f(0).

(d) Apply the identity from part (c) formally to Ha to give a different proof to the result
proved in part (a).

(e) For ε > 0, let the function ga,ε : [0,∞) → R be defined as ga,ε := 1
ε
χ[a,a+ε]. Compute

L[ga,ε] and find lim
ε→0
L[ga,ε]. What is the moral of your result?

(f) In class we defined the nth derivative δ
(n)
a of δa by

∫
R
δ(n)a (x)ψ(x) dx := (−1)nψ(n)(a).

Use this definition to find L[δ
(n)
a ].

(g) Often the formal notation δ(x− a) is used instead of δa, the reason behind this being
that by treating δ as an ordinary function and changing the variable x to y = x − a,
we obtain for any test function ψ∫

R
δ(x− a)ψ(x) dx =

∫
R
δ(y)ψ(y + a) dy = ψ(y + a)|y=0 = ψ(a) .

Use this to find the Laplace transform L[δa(· + ∆x)](ξ) of the function δa(x + ∆x),

where ∆x is a constant. What is L
[
δa(·+ ∆x)− δa(·)

∆x

]
?

(h) Take the limit ∆x → 0 of L
[
δa(·+ ∆x)− δa(·)

∆x

]
. Compare this with your result in

part (f); discuss briefly.

2



Problem 3. Let {W (t)}t≥0 be a standard Wiener process (for which W (t) ∼ N(0, t)). Let
m > 0, fix t > 0, and consider the event {W (t) > m}. Since W (s) is a continuous function
for 0 ≤ s ≤ t, and W (0) = 0, the Intermediate Value Theorem implies that if the event
W (t) > m occurs, then we have W (s) = m for at least one s ∈ [0, t]. It is natural to be
interested in the moment when the Wiener process reaches position m for the first time, so
define

Tm := inf {s > 0 : W (s) = m} .

Set

R(s) :=

{
W (s) for s < Tm ,

2m−W (s) for s ≥ Tm ,

which may be envisaged as reflecting the portion of the path after Tm with respect to the
horizontal line {y = m}. This construction – reminiscent of the Reflection Principle from
Problem 4 of Homework 4 and Problem 5 of Homework 5 – is represented in the figure below;
note that by the definition of Tm, R(t) ≤ m when W (t) ≥ m.

Figure 1: Sketch illustrating the reflection principle.

The argument of the Reflection Principle first asserts that the original and the reflected
paths are equally likely, because of the symmetry of the normal distribution around its mean
(here we are using the fact that W (t) ∼ N(0, t)). Second, it observes that reflection is a
one-to-one transformation, and finally it claims that we therefore have

P(Tm ≤ t, W (t) > m) = P(Tm ≤ t, W (t) < m) . (1)

This observation yields a remarkably neat way to find the distribution of Tm, done in the
steps below.

(a) How are the events {W (t) > m} and {Tm ≤ t} related? Explain why this implies that

P(Tm ≤ t, W (t) > m) = P(W (t) > m) . (2)

3



(b) Note that the events {W (t) > m} and {W (t) < m} form a partition of the sample
space. Use this fact together with the Reflection Principle (1) and the equality (2) to
show that

P(Tm ≤ t) = P(|W (t)| > m) =

√
2

πt

∫ ∞
m

e−x
2/(2t) dx =

∫ t

0

|m|√
2πy3

e−m
2/(2y) dy .

Here we wrote absolute value ofm in the final expression to make the formula applicable
to any m ∈ R, not just to positive values of m.

(c) What is the p.d.f. of the random variable Tm?

Food for thought. One can show that P(Tm < ∞) = 1 by showing that
∫∞
0
fTm(x) dx = 1.

Think about the meaning of this fact. There is no need to do this calculation or to write
anything about this in your write-up.

Problem 4. Consider a queue of type M(λ)/M(µ)/1, i.e., a one-server queue at which the
customers arrive as a Poisson process of rate λ (with inter-arrival times of type Exp(λ)), and
the service times are independent Exp(µ) random variables. Due to the memorylessness of
the exponential random variables, this stochastic process is Markov. Let ρ := µ

λ
stand for

the traffic intensity.

Suppose that at a given moment there are k ≥ 1 customers in the queue (including the one
being served). Let Z stand for the number of customers completing service before the next
arrival. Show that the p.m.f. of Z is

pZ(j) =


1

1 + ρ

(
ρ

1 + ρ

)j
for 0 ≤ j ≤ k − 1 ,(

ρ

1 + ρ

)k
for j = k .

Hint: Think simply, without going into queueing theory. If Z = j ≤ k − 1, then there are
exactly j people served before the next new customer arrives. This means that

S1 + · · ·+ Sr < A ≤ S1 + · · ·+ Sr+1 ,

where Si are the service times and A is the time until the arrival of the next new customer.
What kind of random variables are A and Tr := S1 + · · ·+ Sr? The event {Tr < A ≤ Tr+1}
can be expressed in terms of the events {A ≤ Tr+1} and {A ≤ Tr} – how can this fact be
used to find its probability?
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