

MATH 5763 Homework 9 Due Tue, 11/24/2015


Problem 1. Let {B(t)}t≥0 be a standard Wiener process (for which B(t) ∼ N(0, t)). Let m > 0,
fix t > 0, and consider the event {B(t) > m}. Since B(s) is a continuous function for 0 ≤ s ≤ t,
and B(0) = 0, the Intermediate Value Theorem implies that if the event B(t) > m occurs, then we
have B(s) = m for at least one s ∈ [0, t]. It is natural to be interested in the moment when the
Wiener process reaches position m for the first time, so define


Tm := inf {s > 0 : B(s) = m} .


Set


R(s) :=


{
B(s) for s < Tm ,


2m−B(s) for s ≥ Tm ,


which may be envisaged as reflecting the portion of the path after Tm with respect to the horizontal
line {y = m}. This construction – reminiscent of the Reflection Principle from Food for Thought
Problem 2 of Homework 5 – is represented in the figure below; note that by the definition of Tm,
R(t) ≤ m when B(t) ≥ m.


Figure 1: Sketch illustrating the Reflection Principle.


The argument of the Reflection Principle first asserts that the original and the reflected paths
are equally likely, because of the symmetry of the normal distribution around its mean (here
we are using the fact that B(t) ∼ N(0, t)). Second, it observes that reflection is a one-to-one
transformation, and finally it claims that we therefore have


P(Tm ≤ t, B(t) > m) = P(Tm ≤ t, B(t) < m) . (1)


This observation yields a remarkably neat way to find the distribution of Tm, done in the steps
below.


(a) How are the events {B(t) > m} and {Tm ≤ t} related? Explain why this implies that


P(Tm ≤ t, B(t) > m) = P(B(t) > m) . (2)
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(b) Note that the events {B(t) > m} and {B(t) < m} form a partition of the sample space. Use
this fact together with the Reflection Principle (1) and the equality (2) to show that


P(Tm ≤ t) = P(|B(t)| > m) =


√
2


πt


∫ ∞
m


e−x
2/(2t) dx =


∫ t


0


|m|√
2πy3


e−m
2/(2y) dy .


Here we wrote absolute value of m in the final expression to make the formula applicable to
any m ∈ R, not just to positive values of m.


(c) What is the p.d.f. of the random variable Tm?


Food for Thought. One can show that P(Tm <∞) = 1 by showing that
∫∞
0 fTm(x) dx = 1. Think


about the meaning of this fact. There is no need to do this calculation or to write anything about
this in your write-up.


Problem 2. Let {B(t) : t ≥ 0} be a standard Brownian motion (i.e., B(t) ∼ N(0, t)). Define the
integrated Brownian motion


Z(t) :=


∫ t


0
B(u) du .


One can prove that the integrated Brownian motion is a Gaussian process (you do not need to prove
this). The increments of the process Z, however, are not independent, as you will show below.


(a) For 0 ≤ s < t, use that E[B(u)B(v)] = min {u, v}, to compute the autocorrelation function
RZ(t, s) = E[Z(t)Z(s)]. The calculation goes like this:


RZ(t, s) = E[Z(t)Z(s)]


= E
[∫ t


0
B(u) du


∫ s


0
B(v) dv


]
=


∫ t


0


∫ s


0
E [B(u)B(v)] dv du


=


∫ t


0


(∫ s


0
min {u, v} dv


)
du ,


and perform the integration over the rectangle (u, v) ∈ [0, t]×[0, s] in the (u, v)-plane (remem-
ber that t > s); use that min {u, v} = u above the diagonal v = u, and min {u, v} = v below


the diagonal. Be careful with the limits of integration. The result is RZ(t, s) = s2
(
t


2
− s


6


)
.


(b) Use the result from (a) to compute Cov (Z(t)− Z(s), Z(s)).


(c) Use your result from part (b) to decide whether the increments (Z(t)−Z(s)) and (Z(s)−Z(0))
are independent.


Problem 3. Use the fact that the Wiener process has independent increments to show that W (t)
and (W (t)2 − t) are martingales. You have to prove only that E[W (t)|W (s)] = W (s) and that
E[W (t)2 − t|W (s)] = W (s)2 − s for any 0 ≤ s < t.
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