
MATH 5453 Homework 9 Due Thu, Nov 6

Problem 33 from Section 2.4 of the book.

Additional question: Construct a function sequence satisfying the conditions of Problem
2.4/33 for which

∫
f 6= lim inf

∫
fn.

Hint to Problem 2.4/33: This is very easy if you use Theorem 2.30 and some of the famous
convergence theorems.

Additional problem 1.

Let {fn} and {gn} be real-valued function sequences.

(a) Prove that if fn → f in measure, then αfn → αf in measure for any c ∈ R.

(b) Prove that if fn → f in measure and gn → g in measure, then fn + gn → f + g in
measure.

Hint to (b): The triangle inequality implies that

{x : |fn(x) + gn(x)− f(x)− g(x)| < ε}

⊃
{

x : |fn(x)− f(x)| < ε

2

}
∩

{
x : |gn(x)− g(x)| < ε

2

}
.

Take the complement of this inclusion, then take the measure of both sides, use DeMorgan’s
laws and Boole’s inequality, and take the limit n →∞.

Additional problem 2.

Consider the function sequence {fn}∞n=1, where fn : [0,∞) → R is defined by fn(x) = x
n
,

and let µ be the Lebesque measure on [0,∞). Use the sequence {fn}∞n=1 to show that the
condition µ(X) < ∞ in Egoroff’s Theorem is indeed necessary.

Additional problem 3.

(a) Show that the condition lim
n→∞

µ ({x ∈ X : |fn(x)− f(x)| > 0}) = 0 implies that fn → f

in measure on X.

(b) Give an example of a sequence of functions fn : [0, 1] → R converging in measure to
a function f : [0, 1] → R but such that limn→∞ µ ({x ∈ X : |fn(x)− f(x)| > 0}) 6= 0.
This shows that the converse of (a) is false.

(c) Show that the condition in (a) implies that for µ-almost all x ∈ X, fn(x) = f(x) for
infinitely many n ∈ N. This is equivalent to showing that µ-almost all x ∈ X belong
to the set lim sup{x ∈ X : fn(x) = f(x)}.
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Additional problem 4.

Let {an}∞n=1 be a sequence of real numbers. Show that the sequence converges to a real
number a if and only if every subsequence {ank

}∞k=1 of {an}∞n=1 has a subsequence {ankj
}∞j=1

converging to a.

Remark: This fact holds also for sequences {an}∞n=1 for which lim
n→∞

an = −∞ or for which

lim
n→∞

an = ∞ (but you do not need to prove this here).

Additional problem 5.

Let µ be a Lebesgue-Stieltjes measure on R, M be the domain of µ, and L1(µ) be the linear
space of real-valued integrable functions. (All statements below are true also for complex-
valued functions.)

(a) Let f ∈ L1(µ) and ε > 0. Then there exists an integrable simple function φ =
∑

j ajχEj

(where, without loss of generality, we assume that all numbers aj are non-zero) such
that

∫
|f − φ| dµ < ε.

Hint: Let {φn}∞n=1 be a sequence of simple functions as in Theorem 2.10, and apply
the Dominated Convergence Theorem to the sequence {|φn − f |}∞n=1.

Remark: This statement means that the integrable simple functions are dense in the
space L1(µ) endowed with the L1(µ)-metric.

(b) Show that the sets Ej in the notations of (a) have finite measure.

Hint: Recall that, in the notations of (a), we assumed that aj 6= 0 for all j.

(c) Let E ∈ M, and µ(E) < ∞. Then for every ε > 0 there exists a set A that is a finite
union of open intervals such that µ(E 4 A) < ε.

Hint: Use Theorem 1.18.

(d) Show that, if E and F are measurable sets, µ(E 4 F ) =
∫
|χE − χF | dµ.

(e) Combine the previous results to show that each integrable function f can be ap-
proximated arbitrarily closely in the L1(µ)-metric by an integrable simple function
φ =

∑
j bjχAj

, where Aj are open intervals.

(f) Let (a, b) be an open interval. Show that we can approximate χ(a,b) in the L1 metric
arbitrarily closely by continuous functions that vanish outside (a, b) (i.e., are equal to
zero when their argument is not in (a, b)).

(g) Prove that the set of compactly supported continuous functions is dense in L1(µ), i.e.,
that for any ε > 0, there exists a continuous function g ∈ L1(µ) that vanishes outside
a bounded interval and such that

∫
|f − g| dµ < ε.
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