Problem 1. [Spaces of sequences]

Let ℓ^{p}, ℓ^{∞}, and s stand for linear spaces of sequences $\mathbf{x}=\left(x_{j}\right)_{j \in \mathbb{N}}:=\left(x_{1}, x_{2}, \ldots\right)$ endowed with the norms

$$
\begin{aligned}
\|\mathbf{x}\|_{\ell^{p}} & :=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p}\right)^{1 / p} \quad \text { for } p \in[1, \infty) \\
\|\mathbf{x}\|_{\ell^{\infty}} & :=\sup _{j \in \mathbb{N}}\left|x_{j}\right| \\
\|\mathbf{x}\|_{s} & :=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{\left|x_{j}\right|}{1+\left|x_{j}\right|}
\end{aligned}
$$

(a) Let $\left(\mathbf{x}^{(n)}\right)_{n \in \mathbb{N}}$ be the sequence of infinite sequences $\mathbf{x}^{(n)}$, where

$$
\begin{equation*}
\mathbf{x}^{(n)}:=(\underbrace{1,1, \ldots, 1}_{n \text { terms }}, 0,0, \ldots) . \tag{1}
\end{equation*}
$$

Show that the sequence $\left(\mathbf{x}^{(n)}\right)_{n \in \mathbb{N}}$ converges to the sequence $\mathbf{1}=(1,1, \ldots)$ in the space s.
(b) Demonstrate that the sequence $\left(\mathbf{x}^{(n)}\right)_{n \in \mathbb{N}}$ given by (1) is not a Cauchy sequence (and, hence, does not converge) in ℓ^{∞}.
(c) Does the sequence $\left(\mathbf{x}^{(n)}\right)_{n \in \mathbb{N}}$ given by (1) converge in ℓ^{p} for some $p \in[1, \infty)$?
(d) Let $\left(\mathbf{y}^{(n)}\right)_{n \in \mathbb{N}}$ be the sequence of infinite sequences $\mathbf{y}^{(n)}$, where

$$
\begin{equation*}
\mathbf{y}^{(n)}:=(\underbrace{\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}}_{n \text { terms }}, 0,0, \ldots) . \tag{2}
\end{equation*}
$$

Show that this sequence converges in s to the sequence $\mathbf{0}=(0,0, \ldots)$.
(e) Show that the sequence $\left(\mathbf{y}^{(n)}\right)_{n \in \mathbb{N}}$ given by (2) converges in ℓ^{∞}.
(f) Show that the sequence $\left(\mathbf{y}^{(n)}\right)_{n \in \mathbb{N}}$ given by (2) converges in ℓ^{p} for $p \in(1, \infty)$.
(g) Does the sequence $\left(\mathbf{y}^{(n)}\right)_{n \in \mathbb{N}}$ given by (2) converge in ℓ^{1} ?
(h) Let $\left(\mathbf{z}^{(n)}\right)_{n \in \mathbb{N}}$ be the sequence of infinite sequences $\mathbf{z}^{(n)}$, where

$$
\mathbf{z}^{(n)}:=(\underbrace{\frac{1}{n^{\alpha}}, \frac{1}{n^{\alpha}}, \ldots, \frac{1}{n^{\alpha}}}_{n \text { terms }}, 0,0, \ldots) .
$$

For which $p \in(0, \infty)$ does this sequence converge in ℓ^{p} ?

Problem 2. [Equivalence of norms]

Two norms, $\|\cdot\|$ and $\|\cdot\|^{\prime}$, on the same linear space V are said to be equivalent if there exist positive constants C_{1} and C_{2} such that

$$
C_{1}\|\mathbf{x}\| \leq\|\mathbf{x}\|^{\prime} \leq C_{2}\|\mathbf{x}\| \quad \forall \mathbf{x} \in V .
$$

In this problem let $\mathbb{R}^{n}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{j} \in \mathbb{R}\right\}$ stand for the linear space of finite sequences of n numbers, $\mathbb{R}^{\infty}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{R}\right\}$ stand for the linear space of infinite sequences, and let $\|\cdot\|_{p}$ denote the ℓ^{p}-norm in \mathbb{R}^{n} or \mathbb{R}^{∞} :

$$
\|\mathbf{x}\|_{p}:=\left(\sum_{j}\left|x_{j}\right|^{p}\right)^{1 / p} \quad \text { for } p \in[1, \infty) ; \quad\|\mathbf{x}\|_{\infty}:=\sup _{j}\left|x_{j}\right|
$$

(a) Prove that the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^{n} are equivalent.
(b) Prove that the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^{n} are equivalent.
(c) Use your results from parts (a) and (b) to show that the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on \mathbb{R}^{n} are equivalent.
(d) Give an example to show that $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ are not equivalent norms on the space $\mathbb{R}^{\infty}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{R}\right\}$.
(e) Give an example to show that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are not equivalent norms on the space \mathbb{R}^{∞} from part (d).

Problem 3. [Comparison of L^{p} for different p; Hölder inequality]

Let Ω be an open subset of $\mathbb{R}^{n}, L^{p}(\Omega)$ be the linear space of functions $f: \Omega \rightarrow \mathbb{R}$ with $\|f\|_{L^{p}(\Omega)}<\infty$, and in all parts of this problem assume that

$$
1 \leq p_{1}<p_{2} \leq \infty .
$$

(a) Use the Hölder inequality,

$$
\left|\int_{\Omega} f(x) g(x) \mathrm{d} x\right| \leq\|f\|_{L^{p}(\Omega)}\|g\|_{L^{q}(\Omega)}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ if $p, q \in(1, \infty)$, or $p=1$ and $q=\infty$, to show that

$$
\left.\left|\int_{\Omega}\right| h(x)\right|^{p_{1}} \mathrm{~d} x\left|\leq|\Omega|^{1-p_{1} / p_{2}}\|h\|_{L^{p_{2}}(\Omega)}^{p_{1}}\right.
$$

where $|\Omega|:=\int_{\Omega} 1 \mathrm{~d} x$ is the volume of the domain Ω. Please write your derivation in detail.

Hint: Set $p=p_{2} / p_{1}>1, f=|h|^{p_{1}}$, and choose g appropriately.
(b) Use your result for part (a) to show that $L^{p_{2}}(\Omega) \subset L^{p_{1}}(\Omega)$ if $|\Omega|<\infty$.
(c) Give a simple example to show that the inclusion in part (b) is strict, i.e., for $|\Omega|<\infty$, find a function $f \in L^{p_{1}}(\Omega)$ such that $f \notin L^{p_{2}}(\Omega)$.
Hint: Consider $f(x)=\frac{1}{x^{\alpha}}$ for $x \in(0,1)$ where $\alpha>0$ is appropriately chosen.
(d) Give a simple example that shows that the inclusion from part (b) is not true if $|\Omega|$ is infinite.
Hint: How about $f(x)=\frac{1}{x^{\alpha}}$ for $x \in(1, \infty)$ for an appropriate choice of $\alpha>0$?

Problem 4. [Continuity of operators]

Let $C[0,1]$ be the linear space of continuous functions on $[0,1]$ with the norm

$$
\|f\|_{C[0,1]}:=\sup _{x \in[0,1]}|f(x)|,
$$

and $C^{1}[0,1]$ be the linear space of C^{1} functions on $[0,1]$ with the norm

$$
\|f\|_{C^{1}[0,1]}:=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|,
$$

(a) Let $A: C[0,1] \rightarrow C[0,1]$ be the linear integral operator

$$
(A f)(x):=\int_{0}^{x} f(y) \mathrm{d} y
$$

Show that the operator A is continuous.
(b) Let the linear integral operators B be defined by

$$
(B f)(x):=\int_{0}^{1} K(x, y) f(y) \mathrm{d} y
$$

where $K \in C^{1}([0,1] \times[0,1])$. Show that B is a continuous map from $C[0,1]$ to $C^{1}[0,1]$.
(c) Prove that the nonlinear operator $E: C[0,1] \rightarrow C[0,1]$ defined by

$$
(E f)(x):=f(x)^{2}
$$

is continuous.

