Problem 1. Demonstrate that $\rho(x,y) = |e^x - e^y|$ is a metric on \mathbb{R} .

Problem 2. Given a metric space (X, ρ) , define a new metric on X by

$$\sigma(x,y) = \min\{\rho(x,y), 1\} .$$

- (a) Show that σ is a metric on X. Remark: Observe that X has a finite diameter in the σ metric.
- (b) Show that $\lim_{n\to\infty} x_n = x$ in (X, ρ) if and only if $\lim_{n\to\infty} x_n = x$ in (X, σ) .
- (c) Show that the sequence (x_n) is Cauchy in (X, ρ) if and only if it is Cauchy in (X, σ) . This means that (X, ρ) is complete if and only if (X, σ) is complete.

Problem 3. Two metrics ρ and σ on a set X are said to be topologically equivalent if for each $x \in X$ and each number r > 0, there is a number s > 0 (which in general depends on x and r) such that $B_s^{\rho}(x) \subset B_r^{\sigma}(x)$ and $B_s^{\sigma}(x) \subset B_r^{\rho}(x)$, where $B_r^{\rho}(x) := \{y \in X : \rho(x,y) < y\}$ is the open ball of radius r centered at x (and similarly for $B_s^{\sigma}(x)$, etc.).

- (a) Recall that an open set A in a metric space (X, ρ) is defined as a set with the property that, if $x \in A$, then there exists a ball $B_r^{\rho}(x)$ that is entirely contained in A.

 Prove that topologically equivalent metrics have the same open sets (which can be restated by saying that topologically equivalent metrics induce the same topology).
- (b) Prove that topologically equivalent metrics have the same closed sets.
- (c) Consider \mathbb{R} with the two different metrics:

$$\rho(x,y) = |x - y|, \qquad \sigma(x,y) = |e^x - e^y|.$$

Prove that the metrics ρ and σ on X are topologically equivalent.

- (d) The metric space (X, ρ) (defined in part (c)) is complete because it is a closed subset of the complete metric space (\mathbb{R}, d) where d(x, y) = |x y| is the standard metric on \mathbb{R} . Consider the sequence $(x_n)_{n \in \mathbb{N}}$ given by $x_n = n$ in the metric space (X, σ) (defined in part (c)). Is (x_n) a Cauchy sequence in (X, σ) ? Does it converge in (X, σ) ?
- (e) Discuss the meaning of your observation in part (d).

Problem 4. Two metrics ρ and σ on a set X are said to be equivalent (or strongly equivalent) if there exist constants $C_1 > 0$ and $C_2 > 0$ such that $C_1\rho(x,y) \leq \sigma(x,y) \leq C_2\rho(x,y)$ for all $x,y \in X$.

- (a) Prove that equivalent metrics are topologically equivalent.
- (b) Prove that equivalent metrics have the same Cauchy sequences.
- (c) Give an example of topologically equivalent metrics that are not equivalent.
- (d) [Food for Thought only!] Think about the meaning of the following statement:

The continuity of a function $f:X\to Y$ (where (X,ρ) and (Y,τ) are metric spaces) is preserved if either ρ or τ is replaced by a topologically equivalent metric, but uniform continuity is preserved only if either ρ or τ is replaced by an equivalent metric.

Problem 5. Two norms, $\| \|$ and $\| \|'$, on the same vector space V are said to be *equivalent* if there exist positive constants C_1 and C_2 such that $C_1 \|\mathbf{u}\| \le \|\mathbf{u}\|' \le C_2 \|\mathbf{u}\|$ for any $\mathbf{u} \in V$. Consider the vector space \mathbb{R}^n with the following norms defined on it:

$$\|\mathbf{u}\|_1 := \sum_{j=1}^n |u_j|, \qquad \|\mathbf{u}\|_2 := \left(\sum_{j=1}^n |u_j|^2\right)^{1/2}, \qquad \|\mathbf{u}\|_{\infty} := \max_{1 \le j \le n} |u_j|.$$

- (a) Prove that the norms $\| \|_1$ and $\| \|_{\infty}$ on \mathbb{R}^n are equivalent.
- (b) Directly from the definition of equivalence of norms, prove that if the norms $\| \|$ and $\| \|'$ are equivalent and the norms $\| \|'$ and $\| \|''$ are equivalent, then the norms $\| \|$ and $\| \|''$ are equivalent.

Problem 6. Many theorems that hold in finite-dimensional spaces are not true in infinite-dimensional spaces. One can think of the real infinite-dimensional space \mathbb{R}^{∞} as the space of infinite sequences: $\mathbf{u} = (u_1, u_2, u_3, \ldots)$, where u_j are real numbers $(j \in \mathbb{N} := \{1, 2, 3, \ldots\})$. In this space we can define the norms $\|\cdot\|_1, \|\cdot\|_2$, and $\|\cdot\|_{\infty}$ as usual:

$$\|\mathbf{u}\|_1 := \sum_{j \in \mathbb{N}} |u_j| , \qquad \|\mathbf{u}\|_2 := \left(\sum_{j \in \mathbb{N}} |u_j|^2\right)^{1/2} , \qquad \|\mathbf{u}\|_{\infty} := \sup_{j \in \mathbb{N}} |u_j| .$$

The notations ℓ^1 , ℓ^2 , and ℓ^{∞} are sometimes used for the spaces of infinite sequences whose $\|\mathbf{u}\|_1$, $\|\mathbf{u}\|_2$, or $\|\mathbf{u}\|_{\infty}$, are finite:

$$\begin{split} \ell^1 &:= \left\{ \mathbf{u} \in \mathbb{R}^\infty \ : \ \|\mathbf{u}\|_1 < \infty \right\} \,, \\ \ell^2 &:= \left\{ \mathbf{u} \in \mathbb{R}^\infty \ : \ \|\mathbf{u}\|_2 < \infty \right\} \,, \\ \ell^\infty &:= \left\{ \mathbf{u} \in \mathbb{R}^\infty \ : \ \|\mathbf{u}\|_\infty < \infty \right\} \,. \end{split}$$

One can show that $\ell^1 \subseteq \ell^2 \subseteq \ell^\infty$ (you do *not* need to do this here). In this problem you will give examples showing that these inclusions are strict, i.e., that there exist vectors that are in ℓ^2 but not in ℓ^1 , and there exist vectors that are in ℓ^∞ but not in ℓ^2 .

- (a) Give an explicit example of a sequence \mathbf{v} such that $\|\mathbf{v}\|_{\infty} < \infty$, but $\|\mathbf{v}\|_{2}$ is infinite.
- (b) Give an explicit example of a sequence \mathbf{w} such that $\|\mathbf{w}\|_2 < \infty$, but $\|\mathbf{w}\|_1$ is infinite. *Hint:* Think how you can use the following facts:

$$\sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6} , \qquad \sum_{j=1}^{\infty} \frac{1}{j} = \infty .$$

Problem 7. In this problem you will prove the famous Contraction Mapping Theorem (often called Banach Contraction Mapping Theorem).

Let $f: \mathbb{R} \to \mathbb{R}$ be a function for which there exists a constant c such that 0 < c < 1, and

$$|f(x) - f(y)| \le c |x - y|, \quad \forall x, y \in \mathbb{R}.$$

This can also be stated as saying that f is Lipschitz with Lipschitz constant < 1. Geometrically speaking, this means that the distance between the images f(x) and f(y) is no greater than c times the distance between the original points x and y.

- (a) Show that f is continuous on \mathbb{R} .
- (b) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence $(y_n)_{n \in \mathbb{N}}$ iteratively by setting

$$y_{n+1} = f(y_n) .$$

Show that (y_n) is a Cauchy sequence. This allows you to conclude that (y_n) converges; let $y = \lim y_n$.

Hint: Show that $|y_{m+1} - y_{m+2}| \le c^m |y_1 - y_2|$, then use the formula for geometric series to show that, for any m < n, $|y_m - y_n| \le \frac{c^{m-1}}{1-c} |y_1 - y_2|$, and use this to prove that (y_n) is Cauchy.

(c) Prove that y (defined in part (b)) is a fixed point of the function f, i.e., that

$$f(y) = y .$$

(d) Prove that y (defined in part (b)) is the unique fixed point of the function f. This implies, in particular, that for any $x \in \mathbb{R}$, the sequence of iterates $(x, f(x), f(f(x)), \ldots)$ converges to y.

Food for Thought: Davidson and Donsig, Exercises 9.1/J, 7.1/A, 7.1/C, 7.1/D