
MATH 4443 Homework 9 Due 4/5/18 (Thursday)

Problem 1. Demonstrate that ρ(x, y) = |ex − ey| is a metric on R.

Problem 2. Given a metric space (X, ρ), define a new metric on X by

σ(x, y) = min{ρ(x, y), 1} .

(a) Show that σ is a metric on X.

Remark: Observe that X has a finite diameter in the σ metric.

(b) Show that lim
n→∞

xn = x in (X, ρ) if and only if lim
n→∞

xn = x in (X, σ).

(c) Show that the sequence (xn) is Cauchy in (X, ρ) if and only if it is Cauchy in (X, σ).
This means that (X, ρ) is complete if and only if (X, σ) is complete.

Problem 3. Two metrics ρ and σ on a set X are said to be topologically equivalent if for
each x ∈ X and each number r > 0, there is a number s > 0 (which in general depends on x
and r) such that Bρ

s (x) ⊂ Bσ
r (x) and Bσ

s (x) ⊂ Bρ
r (x), where Bρ

r (x) := {y ∈ X : ρ(x, y) < y}
is the open ball of radius r centered at x (and similarly for Bσ

s (x), etc.).

(a) Recall that an open set A in a metric space (X, ρ) is defined as a set with the property
that, if x ∈ A, then there exists a ball Bρ

r (x) that is entirely contained in A.

Prove that topologically equivalent metrics have the same open sets (which can be
restated by saying that topologically equivalent metrics induce the same topology).

(b) Prove that topologically equivalent metrics have the same closed sets.

(c) Consider R with the two different metrics:

ρ(x, y) = |x− y| , σ(x, y) = |ex − ey| .

Prove that the metrics ρ and σ on X are topologically equivalent.

(d) The metric space (X, ρ) (defined in part (c)) is complete because it is a closed subset
of the complete metric space (R, d) where d(x, y) = |x−y| is the standard metric on R.
Consider the sequence (xn)n∈N given by xn = n in the metric space (X, σ) (defined in
part (c)). Is (xn) a Cauchy sequence in (X, σ)? Does it converge in (X, σ)?

(e) Discuss the meaning of your observation in part (d).

Problem 4. Two metrics ρ and σ on a set X are said to be equivalent (or strongly equivalent)
if there exist constants C1 > 0 and C2 > 0 such that C1ρ(x, y) ≤ σ(x, y) ≤ C2ρ(x, y) for all
x, y ∈ X.
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(a) Prove that equivalent metrics are topologically equivalent.

(b) Prove that equivalent metrics have the same Cauchy sequences.

(c) Give an example of topologically equivalent metrics that are not equivalent.

(d) [Food for Thought only!] Think about the meaning of the following statement:

The continuity of a function f : X → Y (where (X, ρ) and (Y, τ) are metric
spaces) is preserved if either ρ or τ is replaced by a topologically equivalent
metric, but uniform continuity is preserved only if either ρ or τ is replaced by an
equivalent metric.

Problem 5. Two norms, ‖ ‖ and ‖ ‖′, on the same vector space V are said to be equivalent
if there exist positive constants C1 and C2 such that C1‖u‖ ≤ ‖u‖′ ≤ C2‖u‖ for any u ∈ V .

Consider the vector space Rn with the following norms defined on it:

‖u‖1 :=
n∑
j=1

|uj| , ‖u‖2 :=

(
n∑
j=1

|uj|2
)1/2

, ‖u‖∞ := max
1≤j≤n

|uj| .

(a) Prove that the norms ‖ ‖1 and ‖ ‖∞ on Rn are equivalent.

(b) Directly from the definition of equivalence of norms, prove that if the norms ‖ ‖ and
‖ ‖′ are equivalent and the norms ‖ ‖′ and ‖ ‖′′ are equivalent, then the norms ‖ ‖ and
‖ ‖′′ are equivalent.

Problem 6. Many theorems that hold in finite-dimensional spaces are not true in infinite-
dimensional spaces. One can think of the real infinite-dimensional space R∞ as the space of
infinite sequences: u = (u1, u2, u3, . . .), where uj are real numbers (j ∈ N := {1, 2, 3, . . .}).
In this space we can define the norms ‖ ‖1, ‖ ‖2, and ‖ ‖∞ as usual:

‖u‖1 :=
∑
j∈N

|uj| , ‖u‖2 :=

(∑
j∈N

|uj|2
)1/2

, ‖u‖∞ := sup
j∈N
|uj| .

The notations `1, `2, and `∞ are sometimes used for the spaces of infinite sequences whose
‖u‖1, ‖u‖2, or ‖u‖∞, are finite:

`1 := {u ∈ R∞ : ‖u‖1 <∞} ,
`2 := {u ∈ R∞ : ‖u‖2 <∞} ,
`∞ := {u ∈ R∞ : ‖u‖∞ <∞} .

One can show that `1 ⊆ `2 ⊆ `∞ (you do not need to do this here). In this problem you will
give examples showing that these inclusions are strict, i.e., that there exist vectors that are
in `2 but not in `1, and there exist vectors that are in `∞ but not in `2.
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(a) Give an explicit example of a sequence v such that ‖v‖∞ <∞, but ‖v‖2 is infinite.

(b) Give an explicit example of a sequence w such that ‖w‖2 <∞, but ‖w‖1 is infinite.

Hint: Think how you can use the following facts:

∞∑
j=1

1

j2
=
π2

6
,

∞∑
j=1

1

j
=∞ .

Problem 7. In this problem you will prove the famous Contraction Mapping Theorem
(often called Banach Contraction Mapping Theorem).

Let f : R→ R be a function for which there exists a constant c such that 0 < c < 1, and

|f(x)− f(y)| ≤ c |x− y| , ∀x, y ∈ R .

This can also be stated as saying that f is Lipschitz with Lipschitz constant < 1. Geometri-
cally speaking, this means that the distance between the images f(x) and f(y) is no greater
than c times the distance between the original points x and y.

(a) Show that f is continuous on R.

(b) Pick some point y1 ∈ R and construct the sequence (yn)n∈N iteratively by setting

yn+1 = f(yn) .

Show that (yn) is a Cauchy sequence. This allows you to conclude that (yn) converges;
let y = lim yn.

Hint: Show that |ym+1− ym+2| ≤ cm|y1− y2|, then use the formula for geometric series

to show that, for any m < n, |ym − yn| ≤
cm−1

1− c
|y1 − y2|, and use this to prove that

(yn) is Cauchy.

(c) Prove that y (defined in part (b)) is a fixed point of the function f , i.e., that

f(y) = y .

(d) Prove that y (defined in part (b)) is the unique fixed point of the function f . This
implies, in particular, that for any x ∈ R, the sequence of iterates (x, f(x), f(f(x)), . . .)
converges to y.

Food for Thought: Davidson and Donsig, Exercises 9.1/J, 7.1/A, 7.1/C, 7.1/D
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