
MATH 4073 Homework 9 Due Fri, 12/02/16

Problem 1. Consider the function

f(t, y) = t3 − 1 + t cos2 y .

Show that the function f satisfies a Lipschitz condition in the variable y and find its Lipschitz
constant on the rectangle

D = [−5, 1]×
[
0, π6

]
:=
{

(t, y) ∈ R2 : t ∈ [−5, 1], y ∈
[
0, π6

]}
.

Problem 2. The integral

M =

∫ 2

0
e−x

2
dx = 0.88208139076242167996748103591405403722405177086855646801 . . .

cannot be expressed in terms of elementary functions, so it must be evaluated numerically.

(a) Find the maximum of the absolute value of the second derivative of the function f(x) = e−x
2

when x has an arbitrary value in the interval [0, 2].

(b) Use the formula for the error of the composite trapezoidal rule to give a rigorous upper
bound on the absolute error in approximating the exact value M by the value coming from
the composite trapezoidal rule by subdividing the interval [0, 2] into n equal subintervals.

(c) What is the smallest value of n you can take to ensure that the error does not exceed 10−6?

(d) Compute the approximate value of M that you obtain by running the MATLAB code
comp_trap.m (from the class web-site) with the value of n obtained in part (c). This code
performs numerical integration by using the composite trapezoidal rule.

Hint: If you have forgotten how to run a MATLAB code, look at the instructions for running
the code bisection.m in the materials accompanying Homework 2.

(e) Compute the actual value of the numerical error from part (d) and compare it with the
admissible value of the error.

Problem 3.

(a) Show that the function y(t) defined implicitly by the equation

y(t)3 − t sin
(
y(t)

)
+ t2 − 1 = 0 (1)

satisfies the IVP

dy

dt
=

sin y − 2t

3y2 − t cos y
, t ≥ 0 ,

(2)

y(0) = 1 .
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(b) Find the numerical value of y(12) by solving the equation (1) using Newton’s method. In
other words, derive Newton’s functional iteration and apply it to equation (1) by using the
MATLAB code newton.m available on the class web-site. Use some reasonable value of the
tolerance, say, 10−12 (recall that the accuracy of MATLAB is about 10−16). Attach the
MATLAB output of running the code newton.m in verbose mode.

(c) In the materials accompanying this homework on the class web-site, you will find the MAT-
LAB codes euler.m and rhs.m needed in this part of the problem, as well as instructions
how to use them.

Use the MATLAB code euler.m to solve the IVP (2) and find y(12). Do it with N = 10,
100, 1000, 10000, and 100000 (which corresponds to stepsize h = 0.05, 0.005, 0.0005, 0.00005
and 0.000005, respectively). In a table put the values of N , the corresponding values of
y(12)approx obtained by running euler.m, as well as the absolute errors |y(12)exact−y(12)approx|,
where y(12)exact is the value found in part (a) by using Newton’s method (using small enough
tolerance, i.e., 10−12).

(d) Plot by hand or using some software the logarithm of the error, |y(12)exact−y(12)approx|, versus
the logarithm of the stepsize h. Find the slope of the approximate straight line that goes
through these points. How does the value of this slope match with the theoretical prediction
for the value of the error of Euler’s method?

Note that you can use natural logarithms or logarithms base 10, or any other base to plot
the results (but use the same base for both axes!) – this is not going to change the slope of
the approximate straight line.

Problem 4. The so-called error function is defined as

erf(t) :=
2√
π

∫ t

0
e−x

2
dx .

In Problem 2 you computed the value of the integral needed to find erf(2). In this problem you
will find erf(2) by using a different method.

(a) Write an IVP for the function erf(t):

dy

dt
= f(t, y) , t ∈ [a, b] ,

y(a) = α .

In other words, find the numerical values of a, b, and α, and the function f(t, y).

(b) Use Euler’s method with N = 10, 100, 1000, 10000, and 100000, to find erf(2).

Compare your results with the exact value, which is

erf(2)exact = 0.995322265018952734162069256367252928610891797040060076738 . . . .
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