
MATH 3423 Homework 9 Due Mon, 11/14/16

Problem 1. Consider the linear constant coefficient system

x′1(t) = x1(t) + 2x2(t)

x′2(t) = 2x1(t) + x2(t) .
(1)

(a) Write the system (1) in the form x′(t) = Ax(t). Note that A is a symmetric matrix.

(b) What does the general theory claim about the eigenvalues and eigenvectors of the matrix A?

(c) Find the eigenvectors and the normalized eigenvectors of the symmetric matrix A.

(d) Show that the eigenvectors and eigenvectors of A found in (c) satisfy the properties that you
predicted in (b).

(e) Write down the matrix S whose columns are the normalized eigenvectors of A.

(f) Find S−1. You can answer this question without doing any calculations, but please explain
what properties you are using.

(g) Find D = S−1AS and compute etD.

(h) Use your results from parts (e)–(g) to compute et A.

(i) Use your result from part (h) to find the solution of the system (1) if x(0) =

(
5
1

)
.

Problem 2. Solve the linear constant coefficient system (1) from the previous problem with initial

condition x(0) =

(
5
1

)
by using that, if all eigenvalues λj of the matrix A are distinct, then the

general solution of the system x′(t) = Ax(t) is given by

x(t) =
n∑
j=1

Cje
λjtuj ,

where uj are the corresponding eigenvectors (not necessarily normalized).

Problem 3. As you know, one way to approximate a function f of one variable is to replace it
by its tangent line at some point of interest, or by the “best fitting” parabola at this point (these
approximations correspond to using the first- or second-order Taylor polynomial of the function f
at this point). This type of approximation, however, works very well only near this point, and can
be very inaccurate over an entire interval.

One way to approximate a function f (of one variable) on an entire interval is the following. Choose
some class of functions H, say all linear functions. Then look for a function h from this class H
for which the “distance” between f and h is the smallest possible. The “distance” – which is

1



usually called “error” – can be defined in many different ways. If we want to approximate f by a
function h ∈ H on the interval [a, b], and we want |f(x) − h(x)| to be small for all x ∈ [a, b], then
an appropriate definition for the “error” would be E∞ := max

x∈[a,b]
|f(x)− h(x)|. Another choice is to

minimize E1 :=

∫ b

a
|f(x)− h(x)| dx, but the expressions for E∞ and E1 cause technical difficulties

if one tries to use them in practice. The most convenient for numerical purposes expression for the
error is

E2 :=

∫ b

a
[f(x)− h(x)]2 dx ,

which we will use below. Incidentally, the cryptic notations E∞, E1, and E2 are similar to the
notations for the norms ‖ ‖∞, ‖ ‖1, and ‖ ‖2.
In this problem you will find the best approximation of the function f(x) = x3 by a linear function,
hµ,ν(x) := µx+ ν, over the interval [0, 1] if the “error” is given by the integral

Ef (µ, ν) :=

∫ 1

0
[f(x)− hµ,ν(x)]2 dx . (2)

In other words, you have to choose the values of the constants µ and ν that minimize the error
Ef (µ, ν) given by (2).

Hint: Here is a useful fact:

∫ 1

0
[x3 − (µx+ ν)]2 dx =

1

7
− 2

5
µ+

1

3
µ2 − 1

2
ν + µν + ν2 .

Problem 4. In this problem you will solve in a geometric way the problem of finding the linear
function that is “closest” to the function x3 in the sense that it minimizes the “error” (2). Let
V3(0, 1) stand for the linear space of polynomials on the interval [0, 1] of degree no greater than 3,
endowed with the inner product

〈P,Q〉 =

∫ 1

0
P (x)Q(x) dx , P ∈ V3(0, 1) , Q ∈ V3(0, 1) .

Below we will use the “quantum mechanical notation”

〈P |Q〉 := 〈P,Q〉 ,

where 〈P | is the “bra-vector” corresponding to the “ket-vector” |P 〉.
It is easy to show directly that the polynomials

N0(x) = 1

N1(x) = x− 1

2

N2(x) = x2 − x+
1

6

N3(x) = x3 − 3

2
x2 +

3

5
x− 1

20
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form an orthogonal basis of the space V3(0, 1); the norms of these vectors are

‖N0‖ =
√
〈N0, N0〉 = 1 , ‖N1‖ =

1√
12

, ‖N2‖ =
1√
180

, ‖N1‖ =
1√

2800
;

you do not need to do any of these calculations. This basis has the property that Nk is a polynomial
of degree k.

Let Q ∈ V3(0, 1) be the polynomial
Q(x) = x3 .

As in Problem 3, we want to find a linear function, i.e., a polynomial of degree no more than 1 that
is “closest” to Q; such polynomials form a subspace of V3(0, 1) which we will denote by V1(0, 1):

V1(0, 1) = {L : [0, 1]→ R | L(x) = µx+ ν , µ ∈ R, ν ∈ R } .

Since Nk is a polynomial of degree k, any polynomial of degree 1 – i.e., every L ∈ V1(0, 1) – is a
linear combination of N0 and N1, so that we can write

V1(0, 1) = span {N0, N1} = {L = αN0 + βN1 | α ∈ R, β ∈ R } . (3)

Recall that, for any vector P ∈ V3(0, 1), the operator

ΠP :=
|P 〉〈P |
‖P‖2

is the orthogonal projection of an arbitrary vector Q ∈ V3(0, 1) onto the direction of P :

ΠP |Q〉 =
|P 〉〈P |
‖P‖2

|Q〉 =
|P 〉〈P |Q〉
‖P‖2

.

Similarly, since the vectors N0 and N1 are orthogonal to one another, the orthogonal projection
onto the plane V1(0, 1) = span {N0, N1} is given by the operator

ΠV1(0,1) := ΠN0 + ΠN1 =
|N0〉〈N0|
‖N0‖2

+
|N1〉〈N1|
‖N1‖2

.

The projection of an arbitrary vector |Q〉 ∈ V3(0, 1) onto the plane V1(0, 1) is, therefore, given by
ΠV1(0,1)|Q〉 ∈ V1(0, 1). It can be shown that, among all vectors in V1(0, 1), the vector ΠV1(0,1)|Q〉 is
the one that is “closest” to |Q〉 ∈ V3(0, 1) in the sense, that norm of the difference

|Q〉 −ΠV1(0,1)|Q〉

is the smallest. Note that, if |Q〉 ∈ V1(0, 1), then |Q〉 −ΠV1(0,1)|Q〉 = 0.
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(a) Check that the vector Q ∈ V3(0, 1) defined by Q(x) = x3 can be written as a linear combina-
tion of the vectors from the orthogonal basis {N0, N1, N2, N3} of V3(0, 1) as

Q =
1

4
N0 +

9

10
N1 +

3

2
N2 +N3

(i.e., x3 = 1
4N0(x) + 9

10N1(x) + 3
2N2(x) +N3(x)).

(b) Show that the projection ΠV1(0,1)|Q〉 is equal to 1
4N0 + 9

10N1.

Hint: This is very easy if you use the result of part (a) and the fact that the basis {N0, N1, N2, N3}
of V3(0, 1) is orthogonal.

(c) Compare your answer to part (b) with the function hµ,ν that you found in Problem 3.

Problem 5. In this problem you will answer in a different way the same question as in Problems
3 and 4.

Looking at the figure in Problem 4, we see that, the shortest distance from “the end“ of the vector
Q to the plane V1(0, 1) is accomplished if the difference |Q〉 − ΠV1(0,1)|Q〉 is perpendicular to the
plane V1(0, 1). Since ΠV1(0,1)|Q〉 belongs to V1(0, 1) which was defined (recall (3)) as the span of
the vectors N0 and N1, i.e., the set of all linear combinations of N0 and N1. Therefore, we have

ΠV1(0,1)|Q〉 = a|N0〉+ b|N1〉 .

Therefore, the vector

|Q〉 −ΠV1(0,1)|Q〉 = |Q〉 − (a|N0〉+ b|N1〉) = |Q〉 − a|N0〉 − b|N1〉 (4)

must be orthogonal to any vector from V1(0, 1), which is equivalent to saying that it is orthogonal
to each of the vectors |N0〉 and |N1〉 that “generate” the plane V1(0, 1).

(a) Write down the conditions (
|Q〉 −ΠV1(0,1)|Q〉

)
⊥ N0 ,(

|Q〉 −ΠV1(0,1)|Q〉
)
⊥ N1

for Q(x) = x3 and N0 and N1 given in Problem 4, and derive a system of two equations
for the constants a and b in (4). Your calculations will be greatly simplified if you use the
representation of Q as a superposition of the vectors Nj that was derived in part (a) of
Problem 4.

(b) Solve the system obtained in part (a). Compare your result for the vector a|N0〉 + b|N1〉 ∈
V1(0, 1) from (4) with the vector hµ,ν obtained in Problem 3 and the vector ΠV1(0,1)|Q〉
obtained in Problem 4.
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